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DALM, Deformable Attenuation-Labeled Mesh for
Tomographic Reconstruction and Segmentation

Jakeoung Koo , Anders Bjorholm Dahl , and Vedrana Anderson Dahl

Abstract—Most X-ray tomographic reconstruction methods rep-
resent a solution as an image on a regular grid. Such representation
may be inefficient for reconstructing homogeneous objects from
noisy or incomplete projections. Here, we propose a mesh-based
method for reconstruction and segmentation of homogeneous ob-
jects directly from sinogram data. The outcome of our proposed
method consists of curves outlining the regions of constant atten-
uation, and this output is represented using a labeled irregular
triangle mesh. We find the solution by deforming the mesh to
minimize the residual given by the sinogram data. Our method
supports multiple materials, and allows for topological changes
during deformation. An integral part of our algorithm is an efficient
forward projection of the labeled mesh onto the sinogram domain.
We initialize our algorithm based on graph total variation, also here
taking advantage of the mesh representation. Experimental results
on simulated datasets show that our method gives a compact rep-
resentation of the reconstruction and also accurate segmentation
results for challenging data with e.g. large noise, a small number
of angles or problems with limited angle. We also demonstrate
the result on real fan-beam data. The proposed geometric solution
shows a further step towards using alternative representations for
tomographic reconstruction.

Index Terms—Deformable models, tomographic reconstruction,
tomographic segmentation.

I. INTRODUCTION

IN X-RAY CT, the aim of the tomographic reconstruction
is typically to compute an image of a scanned object with

image voxels representing attenuation coefficients arranged on
a regular grid [1]. This representation is well-suited for a wide
range of reconstruction problems. However, for homogeneous
objects with simple geometry, grid-based representation may be
very redundant.

In this work, we propose a reconstruction and segmentation
method using an interface-based representation in the form of a
labeled deformable mesh and we investigate the properties of our
method. The proposed method is targeted at objects composed
of homogeneous components. Our work extends the method by
Dahl et al. [2] that employs a deformable closed curve to outline
one object in the reconstruction. Here, we replace one single
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Fig. 1. Mesh deformation minimizes the residual. A mesh configuration (a)
with triangle labels indicated by colors (black, gray and white) and interface
drawn in red. This configuration yields a residual (b) where the dark regions
denote large values. Two large displacements in the normal direction are shown
as the arrows in (a) and their corresponding residuals are shown as dotted lines
in (b). After deformation, we obtain the mesh with two new regions (c) shown
in rectangles, with the residual (d).

curve by an interface represented as edges in a labeled mesh,
and we deform the interface based on Deformable Simplicial
Complex (DSC) proposed by Misztal and Bærentzen [3]. This
gives our method several advantages compared to [2]. First, we
can reconstruct multiple objects thanks to topological adaptivity
of DSC. Second, as DSC supports multi-label segmentation, our
method also supports objects with different materials. Third,
DSC may employ either fixed or adaptive mesh resolution, which
gives an additional flexibility to our method. Fourth, while in [2]
an initialization is done by circle, meshing of the reconstruction
domain allows us to efficiently initialize our algorithm by finding
a configuration close to the desired solution.

In Fig. 1 we show an example of a labeled mesh before and
after the deformation. To obtain a segmentation, we compute the
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displacements of the interface vertices to minimize the residual
between data and the computed sinogram from the mesh. While
moving those vertices, the mesh quality is maintained by split-
ting or merging nearby faces. These local mesh operations allow
two new pores to be created from nearby pores.

A. Related Works

Two approaches to finding segmentations directly from sino-
gram data are related to our work: discrete-valued tomography
and deformable models. We will review those two approaches
in addition to mesh-based reconstruction methods.

Discrete-valued tomography methods assume that the recon-
struction image has a small number of discrete attenuation
coefficients. This acts as a prior to deal with situations where
there are a small number of homogeneous objects from small
angular range and noisy sinogram data. Batenburg and Sijbers
in [4] proposed the DART method, which combines an existing
iterative reconstruction method and a thresholding scheme. To
improve DART’s robustness to noise and to automatically com-
pute the attenuation coefficients, extensions have been suggested
in [5], [6], and [7].

The method in [8] splitted the variables representing attenua-
tion coefficients into continuous and discrete. This splitting turns
the problem into two simple problems solved by the conjugate
gradient method and a submodular minimization solver. In [9]
the authors suggested a joint reconstruction and segmentation
method in a variational framework. Other techniques include
graph cut [10], [11] and convex relaxation techniques [12].
These discrete-valued tomography methods relied on a regular
image grid, while DALM does not restrict the solution on the
image domain. Among these works, we choose one of the
state-of-the-art works [7] to compare our segmentation results
with.

Deformable models from sinogram data have been studied
mostly based on level set methods [13]. Whitaker and Elan-
govan [14] formulated the Mumford-Shah piecewise constant
model [15] in terms of level-set to minimize the reprojection
error. This work was extended to a piecewise smooth model
by Alvino and Yezzi [16]. Extending two-phase segmentation,
a multi-phase piecewise constant model was studied in [17],
[18]. The stated deformable models required dense and regular
discretization. To reduce the unknown variables, a parametric
level set method was proposed in [19] and used in [20]. Those
methods required fewer parameters to represent a level set,
which reduced the unknown variables and allows to use efficient
second-order optimization methods.

Such level-set models rely on regular image grids and their
forward projections use an image-based forward model, whereas
the proposed method can directly project a labeled mesh into
sinogram domain. Instead of level-set, our previous work [2]
used an explicit representation, but limited to one simple closed
object. We extend it to consider multiple materials and allow
topological changes.

Several mesh-based reconstruction methods have been pro-
posed. Such methods aim to find an adaptive representation
of objects to match with the structure of objects and improve
the reconstruction quality. In [21] Brankov et al. suggested
a method to estimate an initial mesh configuration from the

reconstruction image obtained by pixel-based filtered backpro-
jection. This dependency on an analytical method could affect
the mesh estimation step severely in the case of limited sinogram
data. Cazasnoves et al. [22] employed a more sophisticated
strategy to build an irregular mesh before reconstruction. They
detected edges in sinogram data to extract structures in 2D and
merge them to estimate the interface of objects in 3D. Around
the interface, a more fine mesh was constructed and then the
reconstruction was performed. Instead of estimating mesh con-
figuration once, adaptive mesh refinement methods have been
proposed. In [23], [24], a tetrahedron mesh was generated from
a coarse regular grid and the Expectation Maximization (EM)
method was used for reconstruction on the mesh. The mesh
was finely refined around the nodes having large attenuation
value variations. They repeated reconstruction and refinement in
a coarse-to-fine way. On the other hand, the method in [25] began
with a fine uniform grid and alternately use EM and coarsen the
mesh, repeatedly. In [26] they iteratively refined the mesh based
on the segmentation result by the level set method.

Unlike existing mesh-based reconstruction methods, our
method aims to deform the interface between materials and uses
the mesh as an auxiliary structure due to the assumption of a
small number of materials.

B. Summary of Contributions and Outline

The main contribution of our work is to develop a mesh-based
deformable method from sinogram data which supports multiple
materials and topological changes during deformation (Sec. III).
We develop an efficient forward projection algorithm mapping a
labeled mesh into the sinogram domain. To avoid local optima,
we employ a robust initialization scheme based on graph total
variation on the mesh (Sec. IV). The numerical results are
presented in noisy and incomplete synthetic data and in real
fan-beam data (Sec. VI).

II. PROBLEM FORMUATION

In this section, we formulate the tomographic segmentation
problem to estimate the curves to segment the regions whose
attenuation values are approximately homogeneous. We follow
the similar formulation in [14], [16] which consider two-region
segmentation, but we extend it to multi-region cases inspired by
the region competition method [27]. Similar to such works, our
formulation is based on variational methods where an energy
over a continuous space is formulated and a low energy reflects
a desired solution. Here, our aim is to find the minimizer. In the
next section, we will propose a concrete algorithm to minimize
the energy.

The sinogram data p(θ, s) is produced by projecting and
rotating an unknown collection of objects onto the detector, and
by θ we denote the projection angle, while s denotes the detector
position.

Tomographic segmentation problem for homogeneous ob-
jects is to divide the reconstruction domain Ω ⊂ R2 into M
mutually disjoint regions {Rm} such that Ω = ∪Mm=1Rm and
Ri ∩Rj �= ∅ for i �= j. Each region is associated to a homoge-
neous object with attenuation coefficient μm. We aim to find the
curves {Cm} to align with the boundaries of unknown objects
such that Cm = ∂Rm for each region Rm.
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Fig. 2. Illustration of line equations for parallel beam. Given a position s along
the detector, blue line represents the line equation Lθ(x, y)− s = 0.

From this configuration, we define μmp̂m as forward projec-
tion of a region Rm with the attenuation value μm where

p̂m(θ, s) =

∫
Rm

δ(Lθ(x, y)− s) dx dy, (1)

and δ is the delta function, s the detector position, θ the projection
angle and Lθ − s = 0 a line ray equation. For the parallel beam,
L is given by Lθ(x, y) = x cos θ + y sin θ (See Fig. 2). By
combining all M materials, we define p̂ as a linear combination
of all the contributions

p̂(θ, s) =

M∑
m=1

μmp̂m(θ, s). (2)

From the estimation p̂, we aim to fit it to the sinogram data
p, by minimizing the reprojection error (p− p̂)2. This fitting
term can lead to an undesirable solution if data is noisy or
incomplete. To prevent it, we introduce a regularization term
to make the curves smooth by penalizing their large lengths.
With this smoothness term, we define the energy to minimize:

E({μm, Cm}) = 1

2

∑
θ,s

(p(θ, s)− p̂(θ, s))2+λ

M∑
m=1

Len(Cm),

(3)
where λ is the weighting parameter for the regularization term
and Len denotes the length of a closed curve, defined by
Len(Cm) =

∫
Cm

dr, with arc length parameter r [28]. Choosing
the optimal regularization parameter λ in (3) is not straightfor-
ward and other variational approaches [14], [16] have the same
problem. We often have an idea of how object shapes look like
before scanning. In this case, the prior knowledge on objects
could help choose the parameter.

Given attenuation values {μm}, we derive a curve evolution
equation. Consider a curve Cm which encloses the region Rm

with the attenuation μm and the adjacent region Rn with μn.
Then, the curve evolution equation for Cm can be derived as
(see Appendix)

Ck+1
m (r) = Ck

m(r)

+ τ

(
(μm − μn)

∑
θ

(p(θ, s̃)− p̂(θ, s̃)) + λκm(r)

)
Nm(r),

(4)

where k denotes the iteration number, τ the step size, Nm

the outward normal vector, κm the curvature of the curve and

Fig. 3. Illustration of attenuation-labeled mesh. Each triangle is associated
with one material. The blue edges indicate the interface between air and the
material 1 and the red edges between the material 1 and the material 2. For the
illustration, the triangles representing the background are omitted.

s̃ = Lθ(Cm(r)) the detector positions onto which the point
Cm(r) are projected.

III. DEFORMABLE ATTENUTION-LABELED MESH

In this section, we describe the proposed framework, de-
formable attenuation-labeled mesh (DALM), to optimize the
energy in (3). We first propose our mesh-based representation,
called ALM, and its forward projection to generate the estimated
sinogram. From the estimation, we compute the attenuation
values and deform ALM.

A. Attenuation-Labeled Mesh (ALM)

Consider a triangularization of a reconstruction domain Ω ⊂
R2, where every triangle is labeled with a label m from
m ∈ {1, . . . ,M}, and every label has an associated value μm.
In terms of tomographic reconstruction, labels correspond to
different materials, and label values correspond to material
attenuations. While we can operate with an arbitrary number
of materials, we assume that M is known as a prior and much
smaller than the number of triangles.

The construction consisting of a triangle mesh, labels, and
attenuation values is denoted by X , and we call it attenuation-
labeled mesh (ALM). Any ALM configuration is fully defined
by the list of mesh vertices, list of mesh triangles, list of triangle
labels, and a list of label attenuations. An example of ALM is
illustrated in Fig. 3.

Clearly, ALM gives a partitioning of the reconstruction do-
main Ω into different materials, i.e. regions Rm of attenuation
μm, for m = 1, . . . ,M . Furthermore, ALM gives an explicit
representation of interface curves as a collection of interface
edges – mesh edges whose two adjacent triangles are assigned
two different labels. Furthermore, we define interface vertices as
mesh vertices which are adjacent to at least one interface edge.

B. Forward Projection of ALM

We propose a forward projection algorithm to yield the esti-
mated sinogram p̂ from the interface edges of a configuration
of ALM. Our forward model is based on the principle that a
ray should hit a closed region an even number of times. Our
forward algorithm has two advantages: First, we only need the
information of the interface and its surrounding labels. Second,
the forward projection can be done independently for each
interface edge, which allows for efficient parallelization.
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Fig. 4. Illustration of mesh representation and forward projection in fan-beam geometry for a projection angle. For the illustration purpose, we omit the triangles
representing background and the interface edges are shown as darker than non-interface edges. (a) Half-edge based mesh is used to represent objects where each
face is labeled with a material. The shaded region denotes a material and its outside denotes vacuum. The detector positions sv , sv̄ are from the two vertices in a
half-edge. Depending on the sign of (sv − sv̄), we add (b) or subtract (c) the contribution of the segment between the source and the interface. After summing
these values, we obtain (d) the final forward projection for a specific angle.

Algorithm 1: Forward Projection For One Angle.
Input: Attenuation-labeled mesh X , a projection angle θ
Init: p̂m(θ, s)← 0 for every label m, detector pixel s
1: for all interface edge eijdo
2: l← label of triangle left of eij
3: k ← label of triangle left of eji (opposite triangle)
4: si ← projection of i onto the detector (continuous)
5: sj ← projection of j onto the detector (continuous)
6: for all detector pixel s between si and sj do
7: o← source position
8: x← intersection of eij and ray os
9: c← length of ox

10: p̂l(θ, s)← p̂l(θ, s) + sign(si − sj) · c
11: p̂k(θ, s)← p̂k(θ, s) + sign(sj − si) · c
12: end for
13: end for
14: return p̂(θ, s)←∑M

m=1 μmp̂m(θ, s)

In Fig. 4, we provide an illustration of our forward algorithm
for fan-beam geometry given one projection angle. We (b) add or
(c) subtract the contribution between the source point and the in-
terface, depending on the orientation of the half-edges. The sign
of the contribution is determined by the sign of the difference
of detector positions sv, sv̄ corresponding to the initial and end
vertices v, v̄ in the edge, respectively. Then, we (d) sum those
signed contributions. The whole procedure for one projection
angle is summarized in Algorithm 1. After performing forward
projection for all edges and angles, we obtain the final estimated
sinogram.

C. Estimation of Attenuations

In the energy (3), we have two unknowns of attenuation values
and interface curves. Our strategy is to optimize them separately.
Here, we fix the interface curves and optimize M attenuation
values only. The optimal condition with respect to μm reads

0 =
∂E

∂μm
= −

∑
θ,s

(p(θ, s)− p̂(θ, s))p̂m(θ, s), (5)

which leads to a system of linear equations to solve:⎛
⎜⎜⎝
∑

θ,s p̂
2
1 · · · ∑

θ,s p̂1p̂M
...

. . .∑
θ,s p̂M p̂1

∑
θ,s p̂

2
M

⎞
⎟⎟⎠
⎛
⎜⎜⎝

μ1

...
μM

⎞
⎟⎟⎠=

⎛
⎜⎜⎝
∑

θ,s p̂1p
...∑

θ,s p̂Mp

⎞
⎟⎟⎠,

(6)
where we omit (θ, s) in p̂m, p for simplicity of notation. The
matrix on the left side is symmetric and positive semi-definite.
In many cases, the background of a material is known as air or
vacuum, so its attenuation coefficient can be set as zero. In this
case, we only need to estimateM − 1 attenuation coefficients. If
the number of unknown attenuation coefficients in (6) is less than
4, we can use the closed-form solution to compute the inverse
of the matrix of size 2-by-2 or 3-by-3 in the left hand side.
Otherwise, we can use Cholesky factorization [29] to solve (6).

D. Deformation of ALM

Given attenuation values, we now deform the interface in the
direction of minimizing the energy (3). In ALM, each vertex v on
the interface is associated with two materials: the inside μv and
the outside μ̃v . For example, μv corresponds to the material for
the triangle: face(opposite(evv̄)) in Fig. 4(a). For each
interface vertex v, we compute the displacement from the current
position, by the discretization of (4), as follows:

τ

(
(μv − μ̃v)

∑
θ

(p(θ, sv)− p̂(θ, sv)) + λκv

)
Nv, (7)

where Nv denotes the outward unit normal vector for the vertex
v and κv is the curvature for the vertex v which can be computed
by the discrete version of Frenet formula [28]. The detector
position sv denotes the position determined by the vertex v and
projection geometry, as shown in Fig. 4(a). Note that sv needs
to be interpolated, as detectors have finite measurements.

From the computed displacements, we aim to deform the
interface. To allow for topological changes during evolution, we
employ a mesh-based deformable model, Deformable Simplicial
Complex (DSC) [3]. Here we briefly explain the principle of
DSC.

DSC moves the interface vertices sequentially towards des-
tinations, while improving the mesh quality. The improvement
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Fig. 5. A diagram of the deformation step in DSC. The loop is done for one
vertex at a time. After all the vertices reach the destination, the mesh is resized.

step includes smoothing non-interface vertices, edge flipping
and removing degenerate faces. The destination of each interface
vertex is computed from (7) which is the displacement from
the current position. When all the interface vertices reach their
destinations, DSC refines the mesh further by splitting long
edges, which are not on the interface, based on the parameter
of average edge length l1. This parameter allows some range of
edge lengths around l1. At this last step, DSC does not split the
interface edges.

We provide a summary of DSC deformation in Fig. 5. We
refer to the paper [3] for more detailed description of DSC.

IV. INITIALIZATION

Snake-based reconstruction suggested in [2] is initialized as
a circle in the middle of the reconstruction domain. Such initial-
ization would also work in our case, and topological adaptivity
provided by DSC would split the curve if needed. Despite the
topological adaptivity, the curve deformation might still stop in
a local optimum, for example if a hole needs to be introduced in
the material.

To avoid local optima, and to improve the efficiency of the
reconstruction, it is desirable to start the mesh deformation from
a good initialization. We present two initialization methods,
the first based on filtered backprojection and the second based
on a graph total variation. The first method is computationally
efficient and aimed for complete and noise-free data. The second
method is capable of handling incomplete or noisy data at an
increased computational complexity.

Both initialization methods share a common pipeline. First,
we construct a regular triangular mesh using a selected edge
length l0. Second, for each mesh triangle t we compute an
attenuation coefficient νt. Third, we divide triangle attenuation
coefficients into background and foreground objects by the k-
means algorithm [30]. The difference between the two proposed
initialization approaches lies in the second step, computing νt.

A. Filtered Backprojection on Mesh

Filtered backprojection method is one of the most popular
methods in tomographic reconstruction [31]. This analytical
method consists of two stages: filtering the sinogram and back-
projection. Filtering sinogram does not depend on the repre-
sentation of unknown objects, while the backprojection stage
depends on the representation. In image reconstruction, for each

pixel, the corresponding sinogram values are accumulated from
all angles. Motivated by this way, we use a similar backprojec-
tion method on a triangular mesh.

For each mesh triangle t, we can compute its forward projec-
tion νtp̂t(θ, s) with the attenuation νt by Algorithm 1. Then, the
estimated sinogram corresponding to the whole mesh would be

p̂mesh(θ, s) =

T∑
t=1

νtp̂t(θ, s) , (8)

where T is the number of triangles in the mesh. This can be
written as a matrix-vector product

p̂mesh = Aν , (9)

where p̂mesh is unwrapped into a vector, A is the forward matrix
whose t-th column is (unwrapped) p̂t and ν is the unknown
vector whose t-th element is νt.

From this setting, the backprojection operator is the adjoint
operator of A, and the backprojected image is

νB = AT p. (10)

Similar to filtered backprojection on images, we first filter the
sinogram and backproject it onto the mesh as in (10).

B. Graph Total Variation

The filtered backprojection method is vulnerable to incom-
plete or noisy data. To deal with degraded data, we present
another initialization method based on graph total variation [32].
In the mesh domain, we impose smoothness between the neigh-
boring faces.

To formulate a minimization problem, we consider the abso-
lute difference of attenuation coefficients of neighboring faces

Esmooth = α
∑

(t,t̄)∈E
|νt − νt̄|, (11)

where E = {(t, t̄) : trianges t and t̄ are adjacent} denotes a set
of edges connecting two neighboring faces andα is a smoothness
weight. This term can be written in a matrix multiplication form
as

Esmooth = ‖Kν‖1 . (12)

Here, K is an oriented edge-triangle incidence matrix with
weight α. Each row of K represents one edge (t, t̄), and has two
non-zero elements: α in a position corresponding to triangle t
and −α in a position corresponding to triangle t̄.

Combining a data fidelity term of reprojection error and
smoothness term (12), we aim at finding ν by solving the
following minimization problem:

νTV = argmin
ν

1

2
‖Aν − p‖22 + ‖Kν‖1. (13)

Note that the weighting parameter α is incorporated into the
matrix K.

Optimizing the convex energy (13) is not straightforward,
as the energy has a non-smooth regularization term and two
linear operators of A and K in the composite form. To deal with
these difficulties, we employ the Hybrid Gradient Primal Dual
(HGPD) algorithm [33] which can split the operators and lead
to efficient iteration steps. To split the linear operators, we intro-
duce two variables z1 = Aν, z2 = Kν and the corresponding
dual variables q1, q2. We also impose the positivity constraint
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Fig. 6. An illustration of initialization schemes. In initial reconstructions, each triangle has its own attenuation value. In initial segmentation, the red line represents
the initial guess of the object after applying k-means algorithm to initial reconstruction.

on our solution ν. To use HGPD, we formulate a saddle-point
problem

min
ν

max
q1,q2
〈Aν, q1〉+ 〈Kν, q2〉+ δ + (ν)− F ∗(q1, q2), (14)

where δ + is the indicator function of positive set and F ∗ is the
conjugate function of F (z1, z2) =

1
2‖z1 − p‖22 + ‖z2‖1.

HGPD aims to find a saddle point solution of (14) by the
minimization with respect to the primal variables and the max-
imization with respect to dual variables. The updates of primal
and dual variables are provided in Algorithm 2. For the detailed
derivation we refer to [34, Algorithm 4].

Algorithm 2: Primal Dual Updates For Solving (13).

Set the step sizes τ , σ as 1/(‖A‖2 + ‖K‖2).
Initialize ν0, q01 , q

0
2 as zero vectors.

for k = 0, 1, 2, . . .

νk+1/2 := νk − τ(AT qk1 +KT qk2 ) (15)

νk+1 := max(νk+1/2, 0) (16)

ν̄ := 2νk+1 − νk (17)

qk+1
1 :=

qk1 + σ(Aν̄ − b)

1 + σ
(18)

qk+1
2 :=

qk2 + σKν̄

max(1, |qk2 + σKν̄|) (19)

Fig. 6 shows an illustration of two different methods. We
use the same phantom and sinogram data with 30 angles. For
filtered backprojection, we use Hann filter. The reconstruction
from filtered backprojection has some unstable values around
the boundary, which gives several outliers in the initial segmen-
tation. On the other hand, graph total variation yields a better

Algorithm 3: DALM.
Input: sinogram data p, number of materials M
Output: attenuation-labeled mesh X
1: Construct an initial mesh with regular edge length l0
2: Compute initial reconstruction ν by Algorithm 2
3: Construct an initial ALM X by applying k-means to ν
4: while stop condition not metdo
5: Forward projection of ALM by Algorithm 1
6: Estimate attenuations by (6)
7: Estimate displacements by (4)
8: Deform the ALM X by DSC
9: end while

result with clean background due to the local smoothness and
positivity constraint.

V. COMBINED METHOD

Combining the initialization scheme, we summarize our pro-
posed method, DALM, in Algorithm 3. We estimate an initial
configuration by reconstructing attenuations on regular mesh
and clustering them by k-means method [30]. This clustering
yields an initial attenuation-labeled mesh (ALM). We iteratively
update attenuation coefficients and deform ALM. This proce-
dure repeats until the magnitude of deformation is less than a
threshold or the iteration number exceeds 500.

VI. EXPERIMENTAL RESULTS

In this section, we perform experiments to demonstrate the ro-
bustness and the limitation of DALM. We illustrate the adaptivity
of topological changes and investigate the initialization meth-
ods. We show the relative advantages over other reconstruction
methods on various synthetic datasets. We also investigate the
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Fig. 7. DALM supports topological changes and captures complex shapes.
The first column shows two phantom objects to be reconstructed. The second
column shows the intermediate step and the final result of [2] from the circle
initialization, where (b) and (d) are from the data generated by (a) and (g) and
(i) are by (f). The last column shows the corresponding results of DALM from
the same initialization.

numerical performance and the effects of algorithm parameters.
Finally, we present results on real fan-beam data.

A. Support of Topological Changes During Deformation

Here, we illustrate one advantage of our method: topological
adaptivity during deformation. Fig. 7 shows behaviour of our
method compared to [2] on the two phantoms (a) and (f). The
sinogram data are generated from the phantoms with parallel
beam geometry and 30 angles. To better illustrate the curve
evolution, we initialize both methods as circles. For the phantom
(a), as shown in (b) and (d), a single curve used in [2] does
not allow for change in topology during the curve evolution.
The curves of the proposed method are shown in (c) and (e).
The curves (interfaces) are red edges between faces labeled
as foreground (white) and background (black). While moving
interface vertices, the mesh quality is maintained by splitting
or merging nearby faces. These local mesh operations allow

for topological changes of objects during deformation. Support
for topological adaptivity also helps reconstructing the complex
shape (f). As shown in (g) and (i), the deformation of [2] stops
in a local minimum, whereas our method successfully recovers
the spiral shape (j).

B. Choice of Initialization and Parameters

As explained in Sec. IV, graph total variation can provide a
more robust initialization than filtered backprojection. To deal
with incomplete data, we choose the graph total variation method
as the initialization throughout the next experiments.

Unless explicitly mentioned, we choose algorithm parameters
as follows. As for initialization, we fix the initial edge length l0
as 4, the smoothness parameter α as 8 and iterate the primal
dual updates in (2) up to 200 times. As for the deformation of
mesh, we fix the average edge length l1 as 4, λ as 0.01 and set
the maximum iteration number as 500. The step size τ for the
curve evolution is set as 0.2. We use the public code for DSC
provided the authors [3] and use the default parameters.

C. Robustness to Limited Data

In this set of experiment, we aim to show the relative advan-
tage over other reconstruction methods on limited dataset.

We use the synthetic phantom images shown in the second
column of Fig. 8 where Phantom 3 is generated from [35]. Each
phantom has a fixed number of materials. Note that our forward
projection requires a geometric representation of objects, while
algebraic reconstruction methods need a discrete image. To
compare fairly and avoid inverse crime, we generate sinogram
data from images with 512-by-512 size by forward projection
provided in the ASTRA toolbox [36] onto the detector with
256 pixels. Note that we do not employ our forward model to
generate data, but employ an image-based forward model. We
use a parallel beam geometry and choose the area projection
model, which determines the weight in a pixel by the intersection
area of the pixel and the ray whose width is the same as that of
one detector pixel.

We compare DALM to other reconstruction methods includ-
ing (image-based) Filtered Back Projection (FBP), Simultane-
ous Algebraic Reconstruction Technique (SART) [37] and Total
Variation Regularized Discrete Algebraic Reconstruction Tech-
nique (TVR-DART) [7]. TVR-DART is one of the state-of-the-
art discrete tomography methods where reconstruction images
are assumed to have a fixed number of attenuation coefficients.
This method is closely related to ours, as it gives an already
segmented reconstruction. We carefully choose the regulariza-
tion parameter of TVR-DART for fair comparison. Since the test
data is generated from the image, these image-based methods
have benefits in the reconstruction. We use the implementation
of these methods based on ASTRA toolbox [36]. Other lines of
works are learning-based methods using deep neural networks
when training data is available. Although such approaches obtain
impressive performance in some cases, our method is aimed at
another set of problems where no training data is needed. Hence,
we compare against the mentioned model-based methods, rather
than data-driven methods.

Small number of projections: We use sinogram data with a
small number of angles between 0 and 180 degrees. In Fig. 8,



158 IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING, VOL. 7, 2021

Fig. 8. Qualitative results on phantom data with small number of projections. Each row uses the different number of angles in sinogram data generated from
the phantom images in the second column. The first column indicates the numbers of angles used and relative noise level η. The 3nd-5th columns show the
reconstruction image by FBP, SART and TVR-DART, respectively. The last column shows our results based on geometric representation.

Fig. 9. Convergence behavior on phantom images in Fig. 8. (a) Convergence of residuals divided by the size of sinogram data. (b) Convergence of the gray
value (attenuation coefficients) errors which are sum of absolute differences of true attenuation coefficients and estimations divided by the number of materials.
(c) Convergence of the magnitude of deformation which is the mean value of displacements on the interface vertices.
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Fig. 10. Visual comparison of reconstruction results on limited angle data
between TVR-DART and DALM. The odd rows show the reconstruction results
and the even rows show the difference image to ground truth.

we present the qualitative results with different angles chosen
to give reasonable results. In this figure, η denotes the relative
Gaussian noise level. The details about imposing noise will be
explained in VI-D. For Phantom 1 and Phantom 2, TVR-DART
and our method are shown to give accurate reconstruction re-
sults even for a small number of angles. However, TVR-DART
yields a degenerate reconstruction result for Phantom 3 due to
high noisy levels, while DALM captures the overall shape of
foams. TVR-DART also yields an inaccurate reconstruction in
Phantom 4 which has 6 materials and in Phantom 5 which has 4
materials with small features. As indicated in its original paper,
TVR-DART seems to be degenerate when the object have many
materials. On the other hand, DALM overall captures the shapes
in Phantom 4, but our method still misses one tiny feature at the
right bottom part, as can be seen if we zoom in close enough.
In Phantom 5, our method also has difficulty segmenting a fine
detail on the bottom, but gives better result than TVR-DART.

Limited range of angles: In this experiment, we use Phantom
2, but generate sinogram with limited range of angles. In Fig. 10,
we present the qualitative results from limited angle data. The
first row shows the result from data with 30 limited angles
between −60◦ to 60◦ and the second row shows the difference
of the results to the ground truth. Both TVR-DART and our
method yield good reconstruction shapes, but TVR-DART gives

Fig. 11. Error measure with varying relative noise level for residual projection
error between noise-free sinograms and estimations. The error bars show the
mean and standard deviations of the errors with respect to 5 phantom data.

an inaccurate attenuation coefficient. The third row shows the
visual results where a smaller range of angles (−45◦ to 45◦) are
used. The reconstruction by TVR-DART is inaccurate in shape
and attenuation coefficient value. DALM gives a superior result
to that of TVR-DART.

Convergence behavior: In Fig. 9, we investigate the conver-
gence behavior of DALM for noise-free phantom data with
uniformly-sampled 30 angles. In (a), we show the residual
between the sinogram data and our estimated sinogram divided
by the number of angles and detector pixels per iteration. The
behaviors of phantoms 1, 2 and 3 show smooth curves, while
the phantoms 4 and 5 have some peaks. This instability can
arise when some regions are merged or splitted. In the end,
the residual is shown to be stable. In (b) we plot the errors of
attenuation coefficients per iteration which are measured as the
sum of absolute differences between true attenuation coefficients
and the estimates μm divided by the number of materials. As for
Phantom 1 and 3, the gray value (attenuation coefficient) error
is shown to increase around the 20th iteration. This happens
because we estimate the optimal attenuation coefficients given
the current mesh. Therefore, large changes in the mesh can
affect the estimation of attenuation coefficients. In Phantom
4 and 5, the errors are shown to stablize after around 190
iterations. In (c) we show the magnitude of deformation per
iteration which is calculated as the average of displacements on
interface vertices. These displacements are calculated from the
expression within the large parenthesis in (4). Because the step
size is chosen around 0.2, the exact magnitude of deformation is
smaller than those shown. Both errors of attenuation coefficients
and magnitude of deformation begin to be stable in the end.

D. Robustness to Noise

In the following, we compare our method to other methods
quantitatively with different noise levels. In this set of exper-
iment, we use all the 5 phantoms and generate sinogram data
with 30 projection angles. We impose Gaussian noise e on some
sinogram data p such that a noisy sinogram is given as p̄ = p+ e.
The noise e is determined by varying the relative noise level
η = ‖e‖2/‖p‖2 from 0 to 0.03.

We employ a metric residual projection error [38] between
the noise-free sinogram p and the estimated sinogram p̂. This
estimated sinogram p̂ is obtained by forward projection of the
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Fig. 12. Effect of algorithm parameters with different noise levelsη in terms of residual projection error. Effect of (a) edge length parameter, (b) curve regularization
parameter λ and (c) smoothness parameter α in the initialization. In (a) initial edge length l0 and average edge length l1 during deformation are set as the same
values. Phantom 1 is used for this result.

Fig. 13. Effect of average edge length l1. Final mesh results of Phantom 3 are
shown with varying average edge length, starting from the same initialization.

reconstruction. Then, the residual projection error is the mean
squared error between between the noise-free sinogram p and
the estimation p̂.

In Fig. 11, we present residual projection errors with varying
relative noise level η. When there is no noise, SART gives the
best result as it aims to minimize the residual without regular-
ization. However, as noise level increases, DALM is shown to
yield better results than other methods.

In image-based reconstruction, it is common to evaluate the
quality of reconstruction based on image quality metrics such as
peak signal-to-noise ratio (PSNR) or structural similarity index
(SSIM). To use such metrics, from our DALM solutions we pro-
duce images of size 256× 256, the same size as reconstructions
by image-based methods we compare against. As explained in
Sec. VI-C, ground truth phantoms have the different image size
of 512× 512, so we downscale those phantoms by half, and then
compute PSNR and SSIM between the downscaled phantoms

TABLE I
MEAN AND STANDARD DEVIATION OF PSNR AND SSIM WITH VARYING

NOISE LEVELS η

Fig. 14. Reference reconstruction image by filtered backprojection from the
carved cheese data with 180 projection angles.

and the solutions. In Table I we provide the quantitative results
by PSNR and SSIM with different noise levels. Our result is
shown to give better results in all noise levels. In this result we
use 5 phantoms and present the mean and standard deviation
values.

The large standard deviation for the three methods might
indicate that the difference between the means is not significant.
Therefore, we performed a three-way ANOVA with no interac-
tion between variables. The results for both PSNR and SSIM
show that the phantom and the noise level have a very large
influence on quality measure, and our method has a smaller,
but also significant influence. In conclusion, ANOVA confirms
that the quality means for the three methods are significantly
different.

E. Effects of Algorithm Parameters

We investigate the main parameters of our method: the initial
reconstruction regularization parameter α, the average edge
length of the mesh l1 and the curve regularization parameter
λ. We use the same dataset and settings as in Section VI-C. Note
that we have two parameters to control the fineness of mesh:
the initial edge length l0 and the average edge length l1 during
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Fig. 15. Reconstruction and segmentation results on real fan-beam data.

TABLE II
COMPUTATIONAL COST AND COMPACTNESS OF MESH WITH WITH VARYING

AVERAGE EDGE LENGTH l1

evolution. Throughout the experiment, we fix l0 as 4 and this
parameter affects the initial reconstruction quality and speed.
It is desired to choose this parameter as small as possible to
capture the details of objects. After initialization, we collapse
non-interface edges for computational efficiency, but interface
edges are unchanged. This way, we preserve the details on the
interface, while non-interface regions have a more coarse mesh.
Subsequently, the average edge length l1 controls the fineness
of the mesh during evolution.

In Fig. 13, segmentation results of Phantom 3 are provided
with varying average edge length l1. As l1 increases, we have the
compact representation of objects, while preserving the outlines
of objects. In Table II, we provide the information of final mesh
and computational cost with different average edge length. As
expected, as average edge length is higher, we obtain more
compact representation of objects and reduce the computational
cost. To investigate the cost of each step, we divide the total
time into three steps: first, initialization; second, computing
forward projections, attenuation coefficients and displacements;
third, the deformation step. Most of the computational cost is
attributed to the deformation part. Based on this, we identify the

mesh deformation model as the critical step. A more efficient
deformation model could therefore be a candidate for improv-
ing the algorithm speed. For other image-based methods, the
computational time is 13.6 seconds for SART and 42.4 seconds
for TVR-DART. Both methods reconstruct 65 536 pixels. For
the experiments, we use a laptop with 3.5 GHz processor and
16 GB memory.

The initial regularization parameterα controls the smoothness
of the initial reconstruction result. We observe that our method
is not sensitive to initialization in the simple datasets such as
Phantom 1, 2, 3 and 4, but sensitive in Phantom 5. We leave as
a future work to solve the apparent issue of initialization.

In Fig. 12, we provide the effects of the main parameters with
different noise levels. For this experiment, we use Phantom 1
and show how residual reprojection errors are affected. In (a)
we show the effect of fineness of mesh. We set both the initial
edge length l0 and the average edge length l1 as the same values,
so that the fineness of mesh is fixed from initialization to the
end. As those values increase, overall, the residual projection
error also increases. So there is a trade-off between accuracy
and compactness of representation. In (b) it is shown that as the
relative noise level increases, so does the optimal parameter of
curve regularization λ. If the data is noisy or incomplete, we need
stronger regularization. Note that, in addition, the deformation
step has a regularization effect intrinsic to DSC. In (c) we see
that the initialization smoothness parameter α does not affect
the error, significantly.

F. Real Dataset

In the following, we perform an experiment on real fan-beam
data provided by [39]. The authors of [39] carved out the letters



162 IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING, VOL. 7, 2021

‘CT’ in a cheese. The carved cheese was scanned using micro-
CT under the exposure time of 1000 ms, the acceleration voltage
of 40 kV and the current of 1 mA in X-ray tube [39]. Two
phases (materials) are present: cheese and air. The geometry of
the scanning is flat fan-beam, and the number of detector pixels
is 989. For this data we do not have the exact ground truth, but
we consider the reconstruction by FBP from sinogram with 180
angles as the reference image shown in Fig. 14.

We compare our methods in challenging cases under the
small number of projection angles or limited range of angles. In
Fig. 15, we provide the reconstruction and segmentation results
from SART, TVR-DART and our method, DALM. The first
row shows the results when using sinogram from 18 projection
angles. The second and third row present the results from limited
angle data with 15 angles of 0–90 ◦ and 90–180 ◦, respectively.
As TVR-DART and our method give the segmentation results,
we provide the estimated boundaries overlaid on the reference
image on the third and last column, respectively. DALM captures
the shape of the object, even in the limited angle data. Overall,
our method is shown to give slightly smaller letters due to
regularization of curves.

VII. CONCLUSION AND DISCUSSION

We have presented DALM, a mesh-based method for 2D
reconstruction and segmentation directly from sinogram data. In
DALM, a labeled mesh is deformed to align interface edges with
object boundaries. By using mesh deformation which supports
topological changes and prevents self-intersections, DALM
overcomes the drawbacks of existing explicit representation-
based methods [2], [27], [40]. Moreover, our method easily
supports multiple objects, while in popular level-set methods,
supporting multiple regions is not straightforward and additional
efforts are required [41]. Experimental results on synthetic data
show that our method gives an accurate geometric solution with
a compact representation of objects. We provide an efficient
forward projection scheme, while the deformation step costs
more in terms of computation time. We leave for future work to
speed up the deformation step and extend to 3D reconstruction.

APPENDIX

DERIVATION OF THE CURVE EVOLUTION EQUATION (4)

To derive the evolution equation (4), we begin with the case
of single material. Let Cm denote the curve to represent the
boundary of foreground object with material μm and the air
background. We introduce an artificial time parameter t and
assume that the detector positions s are sampled dense enough.
Following [16], the curve evolution equation for Cm is

∂Cm(r)

∂t
=

(
μm

∑
θ

(p(θ, s̃)− p̂(θ, s̃)) + λ̄κm(r)

)
Nm(r),

(20)
where κm is the curvature, Nm is the outward normal vector,
s̃ = Lθ(Cm(r)) with r the arc length parameter and λ̄ is the
regularization parameter.

We now extend to M multiple materials where the domain is
divided by mutually disjoint regions {Rm} and the curves {Cm}
represent their boundaries. Let the region Rm be adjacent to the
region Rn with the boundary Cn and the attenuation μn. Then,

for the points onCm ∩ Cn �= ∅, the curve evolution equation for
Cm is given [27]:

∂Cm(r)

∂t
=

(
μm

∑
θ

(p(θ, s̃)− p̂(θ, s̃)) + λ̄κm(r)

)
Nm(r)

+

(
μn

∑
θ

(p(θ, s̃)− p̂(θ, s̃)) + λ̄κn(r)

)
Nn(r).

(21)
For the points on Cm ∩ Cn, the normal vectors and the curva-
tures have the opposite sign such that Nm = −Nn and κm =
−κn [27]. Plugging these relations into (21), we have

∂Cm(r)

∂t
=

(
(μm − μn)

∑
θ

(p(θ, s̃)− p̂(θ, s̃)) + 2λ̄κm(r)

)

×Nm(r). (22)

From this equation, we derive (4) with the fixed step size τ and
λ := 2λ̄.
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