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Efficient `0 gradient-based Super Resolution for
simplified image segmentation

Pasquale Cascarano, Luca Calatroni, Elena Loli Piccolomini

Abstract—We consider a variational model for single-image
super-resolution based on the assumption that the gradient of the
target image is sparse. We enforce this assumption by considering
both an isotropic and an anisotropic `0 regularisation on the
image gradient combined with a quadratic data fidelity, similarly
as studied in [1] for general signal recovery problems. For
the numerical realisation of the model, we propose a novel
efficient ADMM splitting algorithm whose substeps solutions
are computed efficiently by means of hard-thresholding and
standard conjugate-gradient solvers. We test our model on
highly-degraded synthetic and real-world data and quantitatively
compare our results with several variational approaches as well as
with state-of-the-art deep-learning techniques. Our experiments
show that `0 gradient-regularised super-resolved images can be
effectively used to improve the accuracy of standard segmentation
algorithms when applied to QR and cell detection, and landcover
classification problems, in comparison to the results achieved by
other approaches.

Index Terms—Single-image super-resolution, `0-gradient reg-
ularization, inverse Pott function super-resolution, ADMM.

I. INTRODUCTION

The task of single image Super-Resolution (SR) consists
in improving the spatial resolution of an observed Low-
Resolution (LR) imaging data so as to obtain a High-
Resolution (HR) version which, typically, can be used as a
reference for subsequent analysis. Image resolution is limited
in many applications due to the optical characteristics and
the physical limitations of the acquisition devices. Some
standard examples are biomedical and astronomic imaging
where, due to light aberration phenomena, close objects
(molecules, stars. . . ) on LR images cannot be correctly dis-
tinguished/detected, see, e.g. [2], [3]. SR techniques are often
employed also in image recognition problems. This is the
case, for instance, of QR code recognition where images
are often captured by scanning tools (e.g. cell-phones) from
relatively large distances which may affect the accuracy of the
recognition [4]. Analogously, in remote sensing applications
such as land-cover classification, only LR measurements are
often available, which may limit significantly the classification
precision [5], [6].

Mathematically, the task can be formulated as an ill-posed
inverse problem: for a given vectorised LR image g ∈ RM ,
we look for its HR version u ∈ RN defined on a space of
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dimension N = L2M with magnification factor L > 1 which
satisfies the following linear degradation model:

g = SHu + η. (1)

Here, S ∈ RM×N stands for the down-sampling operator,
H ∈ RN×N describes blur degradation and η denotes the
realisation of an Additive White Gaussian Noise (AWGN) r.v.
with zero mean and standard deviation ση > 0.

Due to the ill-posedness of the operator SH, a standard
approach for solving (1) consists in encoding prior knowledge
about the solution u and on the data statistics via an energy
minimisation approach, so that an approximated solution u∗ ∈
RN is computed by solving

u∗ ∈ arg min
u∈RN

1

2
‖SHu− g‖22 + µR(u), (2)

where the quadratic fidelity term models the presence of
AWGN while the (possibly non-convex) regularisation term
R : RN → R ∪ {+∞} encodes prior information on the
target image u, thus ensuring the stability of the inversion
process. The two terms are balanced by a regularisation
parameter µ > 0. We refer the reader to [7], [8] and to the
references therein for a review on variational approaches for
SR problems.

In this work, we choose R so as to promote gradient
sparsity, which is often desirable in image segmentation ap-
plications whenever a simplified, edge-preserving version of
the original data g is required for further analysis. In recent
years, sparse and non-convex gradient-based regularisation
approaches have become very popular in the context of image
reconstruction due to their better ability of preserving sharp
edges even in low-contrast scenarios. A significant contribu-
tion has been made by Storath et al. in a series of papers [1],
[9], [10] where sparsity on the image gradient Du ∈ R2N is
promoted by `0 regularisation which reads

‖Du‖0 := # {(Du)i, i = 1, . . . 2N : (Du)i 6= 0} . (3)

This choice has been thoroughly studied for several imag-
ing problems such as deconvolution, sparse recovery, joint
reconstruction and segmentation, see, e.g., [11]. Moreover,
it has has been shown to be very useful in many situations
where a further classification/labelling step is required. In this
work we propose a novel numerical scheme endowed with
convergence guarantees which justifies the use of this type of
regularisation in the context of SR problems with high blur
and noise degradation.
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A. Related work

The vast majority of sparse optimisation approaches for
SR problems enforces sparsity either on the signal itself [12]
or its representation w.r.t. to some basis/overcomplete dictio-
nary [13]. These methods and their non-convex extensions
have been shown to be very powerful in several applications
such as image microscopy [14] where signal-sparsity can
be assumed. However, for non-point-like objects (such as
piece-wise constant regions), this type of regularisation is
not the appropriate choice. Other classical approaches to the
SR problem are based on the use of least squares, Fourier
series and Tikhonov-type gradient regularisations [7], which
favour noise removal at the price of creating smoothing and
ringing artefacts which are undesirable in many applications
such as object detection, where images with sharper edges are
preferable for better classification. To overcome this drawback,
the use of edge-preserving convex regularisations based on the
idea of gradient sparsity, such as Total Variation (TV) [15]–
[18], its fractional [19] and `0 extension [1], [9], [10], has
been proposed. Such methods have shown good performances
in many applications, although their convexity (in the case
of TV) or their challenging numerical realisation (in the case
of non-convex approaches) often limit their practical use and
precision. Different approaches for solving the SR problem
make use of deep architectures encoding prior information on
the desired HR solution from a training set of examples [20]–
[22]. In particular, in [23] the authors present a Plug-and-Play
(PnP) framework [24] which exploits deep convolutional neu-
ral network denoisers embedded in standard optimisation algo-
rithms, such as Alternating Direction of Multipliers (ADMM)
or Half-Quadratic Splitting (HQS). Differently from model-
based variational approaches, deep learning-based methods
do not require an explicit expression of the regularisation
term R, since this can be learned directly from the data
and adapted to the particular application considered. Those
methods have currently reached state-of-the-art performances
in several image reconstruction problems, although their theo-
retical foundation and their stability to noise perturbations still
limits their practical use in the case of highly-degraded image
data.

B. Contribution

We consider a variational model for solving problem (2)
where a quadratic data fidelity is combined with an `0-
gradient regularisation term both in a coupled (isotropic) and
decoupled (anisotropic) form, the latter being better suited for
directionally-biased images, such as QR scans. To solve the
model efficiently, we propose to use an ADMM algorithm
which decomposes the original problem into substeps cheaply
solved by means of direct hard-thresholding and standard
iterative Conjugate Gradient (CG) linear solvers. Our variable
splitting differs from the one introduced by Storath et al.
in [1], [9], [10], where the non-convex substeps are solved
by means either of approximate graph-cuts approaches [25]
or dynamic programming algorithms. As well as for these
different numerical schemes, we prove in this paper fixed-
point convergence for the proposed ADMM algorithm. Up to

our knowledge, the same variable splitting has been used only
in the case of convex regularisation functions, such as TV, in
[17], [18] where convergence to the global minimum is proved.

We test our SR model on real-world applications (QR
scanning, cell detection and land-cover labelling) where a
simplified HR version of the given LR image g is required
in view of further analysis, showing that the proposed model
improves significantly segmentation and labelling precision.

C. Organisation of the paper

In Section II we provide a review of gradient-sparse varia-
tional methods for single-image SR. In Section III we present
a novel converging ADMM scheme for solving the proposed
model along with details on its practical realisation. In Sec-
tion IV we report some numerical tests on model parameter
sensitivity performed on synthetic data. Finally, in Section V
we apply our model to some real-world applications such as
QR scanning, cell detection, compressed JPG SR and land-
cover classification.We report the convergence proofs of the
proposed ADMM schemes in Appendix A to improve the flow
of the manuscript.

II. `0 GRADIENT-BASED SUPER-RESOLUTION

The use of convex gradient-based regularisations for SR
problems dates back to [15], [16], where TV regularisation1

was employed to promote sparsity on the image gradient
Du = (Dhu,Dvu) ∈ R2×N . Note, that for p ∈ {1, 2}
anisotropic/isotropic regularisation is promoted, respectively.
We remark that fractional generalisations to exponents 1 <
p < 2 are also possible [19].

Gradient-sparsity can be enforced more severely by means
of non-convex `0 gradient smoothing, see, e.g., [11] and [1].
Using an analogous notation as in (4), for p ∈ {1, 2} we thus
consider the `0 gradient regularisation functional defined by:

R(u) = ‖Du‖0,p (5)

:=

N∑
i=1

{ ∣∣(Dhu)i
∣∣
0

+
∣∣(Dvu)i

∣∣
0

for p = 1,∣∣‖(Dhu)i, (Dvu)i‖
∣∣
0

for p = 2,

where by | · |0 we denote the function:

|z|0 :=

{
0 z = 0

1 z 6= 0.

The functional (5) counts the number of jumps of u in terms
of the non-zero values of its gradient magnitude. In particular,
in the case p = 1 the regulariser independently counts the
jumps along the two horizontal and vertical Cartesian direc-
tions, whereas for p = 2 the gradient magnitudes are taken into
account jointly. In both cases, the term ‖Du‖0,p penalizes low-
amplitude structures while preserving edges in the images, thus
favouring sharp piece-wise constant reconstructions which are

1By ‖·‖ we denote the standard Euclidean modulus.

‖Du‖1,p =
N∑
i=1

(‖(Dhu)i‖p + ‖(Dvu)i‖p)1/p , (4)
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particularly desirable for image segmentation problems. We
notice that 0 ≤ ‖Du‖0,p ≤ 2N for p ∈ {1, 2}.

In the following, we will refer to (5) with p = 1 as the
anisotropic `0-gradient regularisation (A-TV0), while for p =
2 we will refer to isotropic `0-gradient regularisation (I-TV0).

III. AN EFFICIENT ADMM SPLITTING

For p ∈ {1, 2}, we consider the non-smooth and non-convex
SR model (2) with the choice (5), that is:

u∗ ∈ arg min
u∈RN

{
Φ(u;µ, p) :=

1

2
‖SHu− g‖22+µ‖Du‖0,p

}
.

(6)
Existence of solutions for (6) is guaranteed by the following
theorem whose proof can be found in [1, Theorem 1] for a
general forward operator A.

Theorem 1: The solution set of both the anisotropic (p = 1)
and isotropic (p = 2) problem (6) is non-empty.

To solve numerically problem (6) we propose an iterative
alternating direction method of multipliers (ADMM) based on
a suitable variable splitting. We separate the description for
the anisotropic and isotropic case. For both cases, fixed-point
convergence of the ADMM iterates upon suitable conditions
is proved.

A. ADMM for the anisotropic regularisation
For p = 1, we can rewrite the unconstrained minimisation

problem (6) in the following equivalent constrained form:

arg min
u

1

2
‖SHu− g‖22 + µ(‖t‖0 + ‖s‖0)

s.t. t := Dhu, s := Dvu

where t, s ∈ RN represent the horizontal/vertical gradient
components, respectively.

We can then define the augmented Lagrangian function:

Lβt,βs
(u; t, s,λt,λs) :=

1

2
‖SHu− g‖22+µ‖t‖0 + µ‖s‖0

+ 〈λt,Dhu− t〉+
βt
2
‖Dhu− t‖22 + 〈λs,Dvu− s〉

+
βs
2
‖Dvu− s‖22 (7)

where βt and βs are two positive penalty parameters and λt
and λs are the vectors of Lagrange multipliers related to the
auxiliary variables t and s, respectively. By letting the two
parameters βt, βs increase along the iterations (we will provide
specific growth conditions in the following Theorem 2), we
can then minimise (7) with respect to t, s and u by iterating
the following scheme:

tk+1 ∈ arg min
t

µ‖t‖0 +
βkt
2
‖t− (Dhu

k +
λkt
βkt

)‖22 (8)

sk+1 ∈ arg min
s

µ‖s‖0 +
βks
2
‖s− (Dvu

k +
λks
βks

)‖22 (9)

uk+1 = arg min
u

1

2
‖SHu− g‖22+

+
βkt
2
‖Dhu− (tk+1 − λkt

βkt
)‖22 +

βks
2
‖Dvu− (sk+1 − λks

βks
)‖22 (10)

λk+1
t = λkt − βkt (tk+1 −Dhu

k+1) (11)
λk+1
s = λks − βks (sk+1 −Dvu

k+1), (12)

where a gradient ascent update of λt and λs is also applied.
Under suitable growth assumptions, the sequences (8), (9),

(10) converge to a fixed point (see Appendix A for the proof).
Theorem 2: Let the ADMM iterations (8)-(12) be defined

under the following conditions:
A.1 (βkt ),(βks ) are increasing sequences such that∑+∞

k=1

√
k
βk
t

< +∞,
∑+∞
k=1

√
k
βk
s

< +∞ and
βk
s

βk
t
→ c 6= 0.

A.2 Dh and Dv are full rank.
Then, the sequences (tk), (sk), (uk) converge, i.e.:

tk −→ t∗, sk −→ s∗, uk −→ u∗,

with t∗ = Dhu
∗ and s∗ = Dvu

∗.

We remark that the full rank assumption on the operators
Dh and Dv is verified, for instance, if Dirichlet bound-
ary conditions are assumed. A sufficient condition which
guarantees the required growth of the penalty sequences is
βkt = βks = O(k(1 + ε)k), 0 < ε� 1.

B. ADMM for the isotropic regularisation

For p = 2 we can write problem (6) in the following
equivalent constrained form:

arg min
u

1

2
‖SHu− g‖22 + µ

N∑
i=1

∣∣‖zi‖∣∣0 (13)

s.t. z := Du

where zi :=
(
(Dhu)i, (Dvu)i

)
∈ R2, for each i = 1, . . . , N .

The augmented Lagrangian function reads in this case:

Lβ(u; z,λ) :=
1

2
‖SHu− g‖22 + µ

N∑
i=1

∣∣‖zi‖∣∣0
+ 〈λ,Du− z〉+

β

2
‖Du− z‖22 (14)

where β > 0 is a scalar penalty parameter and λ ∈ R2×N

is the Lagrange multiplier vector. As above, by letting the
penalty parameter increases along the iterations at a certain
growth (see the following Theorem 3), we seek for minimisers
of (13) by iterating the following scheme:

zk+1 ∈ arg min
z

µ
∑N
i=1

∣∣‖zi‖∣∣0 +
βk

2
‖z− (Duk +

λk

βk
)‖22 (15)

uk+1 = arg min
u

1

2
‖SHu− g‖22 +

βk

2
‖Du− (zk+1 − λk

βk
)‖22 (16)

λk+1 = λk − βk(zk+1 −Duk+1). (17)

For this scheme, a similar result as the one in Theorem 2 holds
(see Appendix A for a sketch of the proof).

Theorem 3: Let the ADMM iterations (15)-(16) be defined
under the following conditions:

I.1 (βk) is an increasing sequence such that
∑+∞
k

√
k
βk <

+∞
I.2 D is full rank.

Then, (zk) −→ z∗, (uk) −→ u∗ and z∗ = Du∗.
We remark that in order to guarantee the convergence of

the sequence (uk) to u∗, Theorems 2 and 3 require full rank
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on the operators Dh and Dv . This is not very limiting since
Dirichlet boundary conditions can always be imposed through
an artificial image padding of the image. Our numerical
experiments, however, showed numerical convergence even
when periodic boundary conditions are used. A theoretical
convergence proof in this case is left for future research.
As far as the growth condition on the penalty parameters
is concerned, we remark that in [1] a geometric growth was
assumed. Unfortunately, this is not enough for our theoretical
convergence result to hold, as oscillations may appear if this
is violated. We comment more on this in Section V-A.

C. Efficient solution of the ADMM subproblems

We report here some practical details on the the efficient
solutions of the subproblems (8)-(10) and (15)-(16).

Solution of `0 subproblems: Due to decomposability of the
`0 term, solving problems (8),(9) corresponds to solve the N
one-dimensional `2 − `0 problems

arg min
ti∈R

δ|ti|0 + (ti − fi)
2
2 (18)

where δ = 2µ
βk
t

and fi = (Dhu
k +

λk
t

βk
t

)i for (8), while δ = 2µ
βk
s

,

fi = (Dvu
k +

λk
s

βk
s

)i for (9). As far as the problem (15) is
concerned, it similarly reduces to the solution of the N two-
dimensional `0-regularised problems

arg min
zi∈R2

δ
∣∣‖zi‖∣∣0 + ‖zi − fi‖22 (19)

where δ = 2µ
βk and fi = (Dhu

k
i +

(λk)1,i
βk ,Dvu

k
i +

(λk)2,i
βk ).

Solving (18) and (19) corresponds to compute the proximal
map of | · |0 with parameter δ evaluated in fi, which is nothing
but the 1D [26] and 2D [11] hard-thresholding operators,
respectively.

Solution of the quadratic subproblems: The first order
optimality conditions of problems (10) and (16) lead to the
solution of large-size linear systems, whose coefficient matrix
is symmetric and positive definite. To solve them efficiently,
we make use of Conjugate Gradient (CG) algorithm with a
warm-start initialisation at every iteration. We remark that,
due to the presence of the downsampling operator S, the
use of more efficient solvers based, for instance, on discrete
Fourier transforms are here not possible, as the product matrix
SH does not have a block-circulant structure. However, under
suitable assumptions on the down-sampling operator S, the
problem admits a closed form solution [27].

D. Comparisons with previous splittings

The variable splitting and the ADMM iterations considered
above are different than the ones considered in [1], [9], [10]
where the choice z = u in (13) is made. Our choice avoids the
presence of the gradient operator in the `0-based problems (8)-
(9) and (15), leading to the faster computation of their solution
by direct solvers without requiring the use of approximate
solvers based on approximate graph-cut algorithms [1]. These
latter algorithms have well-known drawbacks such as strong
dependence on the initialisation and require an approximate

inner solver [9], [28]. As an alternative, in [9], the isotropic
substep is solved by a set of anisotropic problems along the
diagonal or knight-move directions, each of which is computed
by dynamic programming algorithms with computational cost
O(N2) compared to O(N) in our approach.

IV. IMPLEMENTATION NOTES

1) Operators: For the following synthetic example, we
simulate the LR data from a ground-truth HR image by
applying the forward model (1) where the action of the blur
matrix H is computed by assuming a Gaussian PSF with
zero mean and standard deviation σH which will be specified
later on. As S, we consider the discretised 2D Lanczos
down-sampling operator [29] inbuilt in the MATLAB function
imresize. Finally, we consider AWGN with zero mean and
standard deviation ση whose values will be made precise in
the following.

2) Comparisons: We compare our results with the ones
obtained by models based on gradient-sparse regularisation
such as convex isotropic TV (I-TV) [16], non-convex capped
TV (c-TV) [30] and anisotropic fractional TV [31] which, for
consistency, have been implemented within the same ADMM
optimisation framework. We further add comparisons with
the results obtained by two state-of-the-art Deep Learning-
based approaches. The former is the Content Adaptive Re-
sampler (CAR) [22] convolutional neural network, which is
characterised by a downsampler-upsampler structure. For that,
we use a pre-trained model 2 taking into account only the
trained upsampler part. The latter is the Image Restoration
Convolutional Neural Network (IRCNN) [23], which is a Plug
and Play (PnP) method based on HQS optimisation.

3) Initialisation, parameters and evaluation metrics: We
initialise u0 in our model as u0 = STg. Given the non
convexity of problem (6), the choice of a wise initialisation
is important. We tested several ones (the aforementioned one,
the zero image and the I-TV initialisation) and kept the one
providing the best results. The variables t0, s0, z0 as well as
λ0
t ,λ

0
s,λ

0 in (8)-(12) and in (15)-(17) were set to 0. To ensure
convergence by Theorems 2 and 3, the penalty sequences are
chosen as (βk) = k(1+ε)k with ε = 10−4. Note that for such
small choice of ε, k(1 + ε)k ≈ k, i.e. the growth of (βk) is
almost linear. The process is stopped when the relative change
between consecutive iterates uk is lower than 10−3.

For simulated data, we evaluate the quality of the SR
outputs by means of Peak-Signal-to-Noise-Ratio (PSNR) and
Structure Similarity index (SSIM) as well as the Jaccard
index, an evaluation metric in the range [0, 1] measuring the
ratio between correctly detected points and false detections
frequently employed in the context of microscopy imaging.
We remark that choosing the right evaluation metric for SR
problems is not trivial, see, e.g., [32] for a review. While PSNR
and SSIM are good choices to quantify reconstruction quality,
the Jaccard index is more appropriate to assess correct versus
false pixel localisation.

2https://github.com/sunwj/CAR

https://github.com/sunwj/CAR
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V. NUMERICAL EXPERIMENTS

We report here several experiments performed on synthetic
and real data. All the experiments are executed on a PC
Intel(R) Core(TM) i5-6200U CPU @ 2.30 GHz 2.40GHz with
8.00Gb RAM using Matlab R2018b and Python 3. The codes
are available at https://github.com/pcascarano.

A. Computational analysis on synthetic data

We first analyse the reconstruction and the convergence
properties of the proposed models/algorithms and comment
on their parameter sensitivity.

For this first example, LR data were generated by applying
(1) to the HR 428×600 grayscale image in Figure 1 (a). Gaus-
sian blur with σH = 1 and down-sampling with factor L = 4
were applied and AGWN with standard deviation ση = 0.01
was added to get the LR image in Figure 1 (b). In Figure 1
(c)-(f) we report the results computed by the anisotropic (A-
TV0) and isotropic (I-TV0) `0-gradient model for two different
values of the regularisation parameter µ ∈ {0.005, 0.01}.
The jump-sparse regularisation flattens out many details in
the reconstruction, promoting a cartoon-like reconstruction
which can then be used for subsequent classification and
segmentation purposes: the higher the regularisation parameter
µ, the more simplified the reconstruction. We further add a
close-up of two ROIs: the blue square contains both fine details
(filaments, yellow arrows) and corner points (green arrows),
the red one textured details. The directional bias of the A-
TV0 regularisation along the horizontal and vertical direction
is here clearly visible. We report in the captions of the Figure 1
(c)-(f) the values ‖Du∗‖0,1 and ‖Du∗‖0,2 which corresponds
to the number of gradient jumps on the output image. Note
that choosing a larger µ, more jump-sparsity is promoted so
the number of jumps on u∗ is smaller.

We now validate the algorithmic convergence behaviour
w.r.t. to the choice of the penalty sequences (βkt ), (βks ), (βk).
Namely, in Figure 2 (a) and 2 (b) we report the behaviour of
the objective functions Φ(uk;µ, p) in (6) along the ADMM
iterations for different choices of the penalty sequences (left).
For both cases p = 1 and p = 2 we choose βk = βkt = βks ≡
10 for all k (blue line), βk = βkt = βks = k0.5 (red line) and
βk = βkt = βks = k(1 + ε)k with ε = 10−4 (yellow line).
On the same plots we further show the decay of the quadratic
data term (right). We observe that when the penalty sequence
fulfil the required growth condition then the convergence is
nicely monotone. whereas for the other two choices, the decay
exhibits oscillations while preserving a globally decreasing
trend. Numerically, this suggests that possibly less severe
growth conditions may be employed, such as a sufficiently
large constant values of the penalty parameters. A further study
on this is left for future research.

To confirm the improved computational performance of our
ADMM algorithm w.r.t. to the one proposed in [9] and
adapted to solve the SR problem (6), we report in Table I
a comparison table both in terms of number of iterations-to-
convergence and computational times. We stress that the poor
performance of the ADMM algorithm in [9] is due here to
the large computational cost required to solve the `0 gradient
steps via inner optimisation routines. This, combined with

Table I: Iterations till convergence (iter) and computational time
(in seconds) for different methods solving (6).

Method [9] A-TV0 I-TV0

iter 1905 63 59
time (s) 2866.31 214.83 195.99

(a) HR (b) LR (x4)

(c) ‖Du∗‖0,1=26822, µ = 0.005 (d) ‖Du∗‖0,2=24067, µ = 0.005

(e) ‖Du∗‖0,1=19059, µ = 0.01 (f) ‖Du∗‖0,2=18547, µ = 0.01

Figure 1: Results obtained for µ ∈ {0.005, 0.1} by the SR
anisotropic (A-TV0) and isotropic (I-TV0) `0 gradient-sparse model
on a synthetic image.

the use of CG solvers (required for the SR problem under
consideration as no Fourier-based approaches can be used in
general) makes the overall cost much higher in comparison to
our more explicit splitting.
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Figure 2: Values of the cost function in (6) (left y-axis) and of
the fidelity term (right y-axis) along iterations in the two cases
Φ(uk;µ, 1) (a) and Φ(uk;µ, 2) (b). The penalty sequences are
chosen as βk = βk

t = βk
s ≡ 10 (blue), βk = βk

t = βk
s = k0.5

(red), βk = βk
t = βk

s = k(1 + ε)k with ε = 10−4 (yellow).

B. Real-world applications

We now report the results obtained by applying the proposed
model to different real-world applications where a SR version
of the given LR image is required for further image analysis.

1) QR code recognition: The first application we consider
is the problem of QR super-resolution. As described in, e.g.,
[4], images of QR codes are often scanned nowadays by means
of portable devices with limited resolution. Furthermore, QR
scans are often taken from a distance and in non-optimal

https://github.com/pcascarano
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optical conditions so that blur and noise further limit the
amount of visible information, thus making SR desirable.

For our tests, we first generate a binary QR code image of
size 250 × 250 by using a free QR code generator 3, then
we simulate several LR acquisitions for different levels of
degradation. We consider three test cases: ση = 0.01 and
σH = 1 (TEST 1), ση = 0.05 and σH = 1 (TEST 2) and
ση = 0.01 and σH = 4 (TEST 3). We compare the results
obtained by our model with the ones obtained by the models in
Section IV-2. For each method, we select the model parameters
maximising the Jaccard index. Furthermore, to avoid non-
binary outputs (required for Jaccard index computations), we
post-process the SR results by means of an adaptive Otsu
thresholding and re-compute the evaluation metrics on the
binarised output, see Table II.

In Figure 3 we report the results obtained by the different
methods for the TEST 2 image before (red frame) and after
(blue frame) binarisation. We observe that due to the sharp
nature of the the TV0 regularisations, the results are almost
binary so they do not benefit much from the post-processing
step in terms of Jaccard index values as the other methods
do. In Figure 4 we report a zoom of the best results obtained
before binarisation by all methods starting from the TEST 3
highly corrupted LR image.

I-TV0 I-TV0-BA-TV0-BA-TV0IRCNN-BIRCNN

CAR-BCARA-TV1/2-BA-TV1/2I-TV-BI-TV

Figure 3: QR SR results obtained by different methods on TEST2
image before (red frames) and after (blue frames) binarisation.

IRCNN A-TV0I-TVLR (x4) c-TV

Figure 4: Details of QR SR outputs obtained by different methods
on TEST 3 image.

The quantitative evaluation of the results in terms of PSNR,
SSIM and Jaccard index for the three different test cases is
reported in Table II. Without any binarisation, the A-TV0

model outperforms all the others as far as the PSNR, SSIM
and Jaccard indices are concerned. The simplified geometry
of the QR images considered (i.e. the sole presence of hori-
zontal/vertical edges) makes in fact this kind of data tailored
for such geometrically-biased regularisations. Furthermore, the
highly non-convex jump-sparsification forces the ouptut to be

3https://www.qrme.co.uk/

almost binary, without the need of any further post-processing
binarisation, as it is required by all the other regularisations
to achieve comparable (if not better) quality scores. This sim-
ple example shows that the image simplification intrinsically
favoured by the use of TV0 regularisers shall limits the need
of post-processing techniques.

As far as the deep-learning results are concerned, we remark
that the CAR network in this experiment is used in a transfer
learning mode, with no noisy nor blurred images observed in
the training phase. For a fairer comparison, we thus consider
the IRCNN PnP network which is capable to handle different
levels of degradations, although it is shown to fail in the
presence of highly-degraded data, see Figure 4.

Table II: Quantitative evaluation of SR models performance on QR
for three different TEST images and methods. By “-B” we denote
results after binarisation. In each column we colour red the best
method, blue the second-best.

LR Method PSNR PSNR-B SSIM SSIM-B Jaccard

TEST 1

I-TV0 22.5199 29.0809 0.9423 0.9873 0.9980
A-TV0 32.5943 35.8478 0.9913 0.9989 0.9999
I-TV 23.3845 26.3357 0.9489 0.9762 0.9963
c-TV 19.4522 36.7496 0.8849 0.9977 0.9997

A-TV1/2 18.6328 36.7496 0.8594 0.9989 0.9997
CAR 20.2460 27.8163 0.8159 0.9801 0.9966

IRCNN 25.0589 35.3363 0.9622 0.9992 0.9995

TEST 2

I-TV0 19.3318 18.6308 0.8766 0.9156 0.9781
A-TV0 22.6887 22.6256 0.9242 0.9653 0.9912
I-TV 18.1101 18.9848 0.8012 0.9171 0.9798
c-TV 18.7331 21.3473 0.8211 0.9595 0.9882

A-TV1/2 19.2182 22.5108 0.8664 0.9660 0.9910
CAR 18.1320 26.7831 0.7493 0.9805 0.9906

IRCNN 21.4314 26.3968 0.9057 0.9850 0.9902

TEST 3

I-TV0 18.3763 19.7532 0.8634 0.9294 0.9831
A-TV0 19.2908 21.9341 0.8861 0.9556 0.9897
I-TV 17.9552 20.1585 0.8222 0.9282 0.9846
c-TV 16.9580 22.4648 0.7915 0.9605 0.9917

A-TV1/2 17.0785 20.6874 0.7706 0.9372 0.9863
CAR 11.1809 11.5412 0.4057 0.6342 0.8887

IRCNN 14.2915 12.5640 0.6342 0.6565 0.9133

2) Land-cover classification: The exploitation of Multi-
Spectral Images (MSIs) is fundamental in the field of land-
cover mapping and classification [33]. MSIs are satellite
images whose numerous channels (from 4 to 200) are acquired
at a different electromagnetic spectrum bandwidth, such as
visible or infrared bands, which quantifies different types of
information about the objects in the recorded scene, such
as their physical composition and their temperature. Existing
segmentation techniques exploit these properties to label each
pixel of the MSI within a class, thus producing a final 2D la-
belled image. These maps are essential in many sustainability-
related applications and monitoring purposes for detecting
land-cover changes (e.g. deforestation) over the years at the
same geographical location, which cannot be done directly by
simply looking at the MSIs (see [34] and references therein).
Among the many existing open-source MSI datasets, we
consider here e.g. the National Agriculture Imagery Program
(NAIP) [35] dataset and the Hamlin Beach State Park (HBSP)
[36] dataset. The former is a collection of HR MSIs with
1 meter resolution and three RGB channels. The latter is a
database of MSIs with 6 channels, 3 for the RGB and 3 for
the infrared bands and is used for validating the performance
of deep-learning-based segmentation algorithms aiming to

https://www.qrme.co.uk/
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(a) NAIP LR (b) k-MEANS LR (x2)

(c) k-MEANS I-TV (d) k-MEANS I-TV0

Figure 5: k-means segmentation (k = 5) of MSI data. In (c)-(d) the
red and green boxes show possible misclassified details. (a) LR image
(x2) (b) k-means classification of LR image (c) k-means classification
of I-TV output (d) k-means classification of I-TV0 output.

differentiate land objects with analogous characteristics (e.g.
a grass from a tree), see [36].

For this problem, we apply SR methods to increase the
spatial resolution of the given MSI image so as to produce
an output image which could be easily segmented by standard
segmentation algorithms. The need of a SR model in this
specific application is justified by the physical limitations pre-
venting HR acquisitions, such as the limited spatial resolution
in some bandwidths as the infrared band [37]. On the other
hand, a simplified image where noise and blur artefacts are
removed comes very handy for classification purposes. To
compute the land-cover mapping on the output of the SR
regularised images we use in the following a standard k-Means
segmentation and the state-of-the-art U-Net neural network
[38], specifically developed for segmentation tasks.

In the first experiment we consider a LR test image 4 from
the NAIP dataset (Figure 5 (a)). We first run the k-Means
algorithm directly on this image, choosing empirically the
number of classes to be k = 5. The classification obtained
looks speckled and significant classification errors occur (see
5 (b)). In Figures 5 (c)-(d), we report the classification results
obtained by applying k-Means to the I-TV and I-TV0 SR re-
constructions (with L = 2). The segmentation results obtained
on these gradient-sparsified images appear much more reliable.
We notice, in particular, that some parts of the vegetation
are wrongly labelled as water in the I-TV result (red boxes),
whereas this is not the case for the I-TV0 reconstruction (green
boxes), due to its enhanced flattening properties.

In the second experiment we use the I-TV0 model for SR
to pre-process an image from the validation set of the HBSP
dataset before giving it as an input to the U-Net [36]. To do
so, we consider a LR MSI acquisition of size 440× 350× 6
and apply the SR model (with L = 2) to each channel. For
comparisons, we use the U-Net both on the given LR MSI
and on the computed SR reconstruction. We report the results

4Image identification number: M 4207221 NW 18 1 20120709

(a) (b)

Figure 6: Results of MSI segmentation by U-NET. (a) Result on the
given LR image (x2). (b) Result on the I-TV0 reconstruction.

in Figure 6. Note, that differently from k-Means, U-NET does
not require the user to specify the number of required classes.
We observe that the quality of the U-Net segmentation is
significantly improved when a pre-processing with SR I-TV0

is made. When applied to the given LR image (see Figure 6
(a)), the U-Net is in fact not capable to differentiate the group
of trees (blue) from the grass (red). Increasing the resolution
and promoting sparsity on the image gradient seems to be of
great help for achieving more accurate results.

3) Cell detection: Standard light microscopes suffer from
a limited resolving power which often causes blur artefacts
and limits spatial resolution. In such conditions, the good
performance of segmentation algorithms allowing for a precise
location of isolated cells as well as cell clusters is very
challenging, despite their large use in biomedical applications
where a fast segmentation is important for data analysis [39].
We test our `0-gradient SR model on the light-microscope
EVICAN data (Figure 7 (a)) [40] for which the reference
GT image in Figure 7 (b) has been found based on star-
convexity shape prior [41]. We apply the I-TV0 model and
its competitors on the LR acquisition obtained by (1) from
GT setting L = 4, σH = 6 and ση = 0.02. For the different
methods, the segmented regions are shown in Figure 7 (c)-(e),
while in Table III the PSNR, SSIM and Jaccard index values
are reported. The `0-gradient sparsity enforced by the I-TV0

method allows for a better detection of the two isolated cells
(green boxes) as well as the cell cluster (red boxes). However,
when compared to I-TV, such simplification penalises more
strongly image reconstruction metrics (PSNR and SSIM).

Table III: Quantitative comparisons on cell image SR between
different methods.

Method PSNR SSIM Jaccard
I-TV 35.6891 0.9198 0.6855

I-TV1/2 35.2428 0.9102 0.8753
I-TV0 35.2863 0.9135 0.8778
CAR 35.1664 0.9044 0.8057

4) Compressed JPG images SR: In [1], [11], [42] `0-
gradient regularisation has been used for JPG compression
artefact removal. Here, we consider a scenario where such
task is performed along with a resolution improvement. To
do so, we consider an RGB LR cartoon-type image of size
170× 170 suffering from JPG compression artefacts and with
small, not discernible details, and apply the gradient-sparse



8

(a) LR + mask (b) GT + mask (c) A-TV1/2 + mask

(d) I-TV + mask (e) CAR + mask (f) I-TV0 + mask

Figure 7: Cell detection results. In (b)-(f) the green and red squares
indicate two isolate cells and a cell cluster, respectively. Computed
masks are coloured cyan.

SR models. As no ground truth is available for this example,
for all models we empirically select the parameters producing
the best visual output.

In Figure 8 we report two close-ups of the computed SR
reconstructions marked by blue and red boxes. The blue box
highlights small details which are poorly discernible in the
LR image, while the red box considers a patch of the face
with some blunt edges and a small (but meaningful!) face
mole (see green box). We see that both A-TV0 and I-TV0

reconstructions are sharper and more cartoonised than the
ones obtained by the other models. Furthermore, the well-
known I-TV and c-TV loss of contrast reconstruction artefact
makes small details hardly discernible. Due to the high-level
of compression artefacts, we remark that both IRCNN and
CAR results are very blurred.

VI. CONCLUSIONS

We considered a variational model with `0 gradient-sparsity-
promoting regularisation combined with a quadratic data fi-
delity for single-image super-resolution of images corrupted
by blur and Gaussian noise. The use of non-convex `0 jump-
sparse regularisations has been originally proposed in [1] in
the context of general 1D inverse problems and subsequently
applied in [9], [10] to image segmentation and reconstruction
problems. To overcome the computational limitations required
by the use of ADMM splitting strategies considered in these
works, we propose a novel ADMM algorithm allowing for the
efficient solution of its subproblems by means of direct hard-
thresholding or standard CG solvers. For the proposed scheme
we prove fixed-point convergence results assuming specific
growth conditions on the sequence of penalty parameters.
We validate our model on synthetic data and test it on real-
world examples where gradient-sparse super-resolved outputs
are required in view of an accurate recognition/classification
step (such as QR code recognition [4], cell detection and
land-cover classification [33]). By numerous comparisons with
convex and non-convex variational approaches, and with state-
of-the-art deep learning methods [22], [23], we show that
the proposed approach significantly improves classification
precision, while limiting at the same times smoothing and

loss-of-contrast artefacts in comparison with classical convex
regularisations.

Further work should address the use of analogous regular-
isations and algorithms for the joint modelling of SR and
segmentation problems via, e.g., Mumford-Shah functionals
[9]. Furthermore, the extension of the convergence results to
other gradient discretisations and to less restrictive growth
conditions for the sequence of penalty parameters is envisaged.

APPENDIX A
CONVERGENCE ANALYSIS

We report here a complete convergence proof of Theorem
2 and a sketch of the proof of Theorem 3, which is based on
similar arguments.

A. Proof of Theorem 2

Proof: We consider the ADMM sequences
(uk), (tk), (sk), defined in (8)-(10). We want to show
that there exists u∗ such that:

uk → u∗, tk → Dhu
∗, sk → Dvu

∗.

To shorten the proof, we remark that everything proved for
the sequences (tk),(βkt ), (λkt ) and (Dhu

k) can be deduced
for (sk), (βks ), (λks) and (Dvu

k) in the same way.
We start defining the following functionals:

Ghk(t) := µ‖t‖0 +
βkt
2
‖t− (Dhu

k +
λkt
βkt

)‖22,

Fk(u) :=
1

2
‖SHu− g‖22 +

βkt
2
‖Dhu− (tk+1 − λkt

βkt
)‖22+

+
βks
2
‖Dvu− (sk+1 − λks

βks
)‖22.

Step 1: There holds:

‖tk+1 −Dhu
k − λkt

βkt
‖2 ≤

√
2µN

βkt
. (20)

This inequality can be trivially shown by the minimality of
tk+1 in (8) which entails Ghk(tk+1) ≤ Ghk(Dhu

k +
λk

t

βk
t

),
therefore we get:

µ‖tk+1‖0 +
βkt
2
‖tk+1 − (Dhu

k +
λkt
βkt

)‖22

≤ µ‖Dhu
k +

λkt
βkt
‖0 ≤ µN,

by definition of ‖·‖0,where we recall N is the dimension of
the vector uk. By neglecting the first term on the Left Hand
Side (LHS) of the above inequality, we deduce (20).

Step 2: From the minimality of uk+1 in (10) we have:
Fk(uk+1) ≤ Fk(uk) for every k. By definition of Fk and
applying (20) and its analogous related to the sequences (sk),
(βks ), (λks) and (Dvu

k), we deduce:

1

2
‖SHuk+1 − g‖22 +

βkt
2
‖Dhu

k+1 − tk+1 +
λkt
βkt
‖22 (21)

+
βks
2
‖Dvu

k+1 − sk+1 +
λks
βks
‖22 ≤

1

2
‖SHuk − g‖22 + 2µN.
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A-TV0 I-TV0IRCNNCARc-TVI-TVLR (x4)

Figure 8: JPG artefact removal by means of different SR models. For I-TV, c-TV, A-TV0 and I-TV0 the regularisation parameters are
chosen as µ: 0.08, 0.05, 0.02, 0.02, respectively.

Since the all the terms on the LHS of (21) are nonnegative,
the following inequality holds:

1

2
‖SHuk+1 − g‖22 ≤

1

2
‖SHuk − g‖22 + 2µN ≤ . . . (22)

≤ 1

2
‖SHu0 − g‖22 + 2µNk

From (21) and by the sub-additivity property of the square
root we can also derive the following inequality:

‖Dhu
k+1 − tk+1 +

λkt
βkt
‖2 ≤

√
1

βkt
‖SHu0 − g‖2 +

√
4µN

k

βkt
(23)

Step 3: We show that the sequences Dhu
k and Dvu

k

are Cauchy sequences, hence they converge. We prove this
for Dhu

k, the proof for Dvu
k is identical.

‖Dhu
k+1 −Dhu

k‖2 ≤

≤ ‖Dhu
k+1 − tk+1 +

λkt
βkt
‖2 + ‖Dhu

k − tk+1 +
λkt
βkt
‖2.

By assumption A.1 applied on the RHS of (23) we deduce:

‖Dhu
k+1 − tk+1 +

λkt
βkt
‖2 → 0, (24)

which, combined with (20) and (23) entails that Dhu
k is a

Cauchy sequence. Hence it converges to a point t∗. Similarly,
Dvs

k converges to a point s∗.
Step 4: We prove now the convergence of the sequences

tk and Dhu
k. By writing (11) as:

λk+1
t

βkt
= Dhu

k+1 − tk+1 +
λkt
βkt
, (25)

and from (24) we deduce that ‖λ
k+1
t ‖2√
βk
t

→ 0. By monotonicity

of the (βkt ) we then deduce that ‖λ
k
t ‖2√
βk
t

→ 0. Hence:

‖Dhu
k+1 − tk+1‖2 ≤

‖λk+1
t ‖2 + ‖λkt ‖2√

βkt
,

where both quantities on the RHS tend to 0 as k → ∞.
Therefore, by the uniqueness of the limit, tk −→ t∗ and
Dhu

k −→ t∗.

Step 5: We can now prove convergence of the sequence
(uk) . For simplicity, let us define the quantities A := SH

and Mk :=
1

βkt
ATA + DT

hDh +
βks
βkt

DT
vDv , for every k. By

A.2, we observe that the matrix Mk is invertible for all k and
that the optimality condition of (10) reads:

Mku
k = DT

h (tk+1 − λkt
βk

) +
βks
βkt

DT
v (sk+1 − λks

βk
) +

1

βkt
ATg.

Since tk+1 → t∗, sk+1 → s∗, λk
t

βk
t
→ 0, λk

s

βk
s
→ 0, and by

Assumptions A.1 and A.2, we have that 1
βk
t
ATg → 0 so

that the RHS converges pointwise to z∗ = DT
h t
∗ + cDT

v s
∗.

Additionally, the sequence M−1k converges pointwise to M∗.
We thus have that uk = M−1k Mku

k →M∗z∗ := u∗.
We now want to show that t∗ = Dhu

∗ and, similarly, that
s∗ = Dvu

∗. We show the details only for the former case. By
the triangle inequality we get:

‖t∗ −Dhu
∗‖2 ≤‖t∗ −Dhu

k‖2 + ‖Dhu
k −Dhu

∗‖2
≤ ‖t∗ −Dhu

k‖2 + ‖Dh‖2‖uk − u∗‖2,

where both terms tend to 0 since Dhu
k → t∗ and uk → u∗.

B. Proof of Theorem (3)

Proof: The proof of Theorem (3) follows the same steps
as the previous one. The only main difference in it is the
definiton of Mk, which reads in this case:

Mk :=
1

βk
ATA + DTD =

1

βk
ATA + DT

hDh + DT
vDv.

By proceeding similarly as above the conclusion holds.
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