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CryoGAN: A New Reconstruction Paradigm for
Single-Particle Cryo-EM Via Deep Adversarial

Learning
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Abstract—We present CryoGAN, a new paradigm for single-
particle cryo-electron microscopy (cryo-EM) reconstruction based
on unsupervised deep adversarial learning. In single-particle cryo-
EM, the structure of a biomolecule needs to be reconstructed
from a large set of noisy tomographic projections with unknown
orientations. Current reconstruction techniques are based on a
marginalized maximum-likelihood formulation that requires cal-
culations over the set of all possible poses for each projection image,
a computationally demanding procedure. Our approach is to seek
a 3D structure that has simulated projections that match the real
data in a distributional sense, thereby sidestepping pose estimation
or marginalization. We prove that, in an idealized mathematical
model of cryo-EM, this approach results in recovery of the cor-
rect structure. Motivated by distribution matching, we propose
CryoGAN, a specialized GAN that consists of a 3D structure, a
cryo-EM physics simulator, and a discriminator neural network.
During reconstruction, the 3D structure is optimized so that its
projections obtained through the simulator resemble real data (to
the discriminator). Simultaneously, the discriminator is trained to
distinguish real projections from simulated projections. CryoGAN
takes as input only real projection images and the distribution of
the cryo-EM imaging parameters. It involves neither prior training
nor an initial estimation of the 3D structure. CryoGAN currently
achieves a 10.8 Å resolution on a realistic synthetic dataset. Prelim-
inary results on experimental β-galactosidase and 80S ribosome
data demonstrate the ability of CryoGAN to exploit data statistics
under standard experimental imaging conditions. We believe that
this paradigm opens the door to a family of novel likelihood-free
algorithms for cryo-EM reconstruction.

Index Terms—Single-particle cryo-electron microscopy (cryo-
EM), tomographic reconstruction, deep learning, generative
adversarial networks, cryo-EM physics simulator.
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I. INTRODUCTION

S INGLE-PARTICLE cryo-electron microscopy (cryo-EM)
is a powerful method to determine the atomic structure

of macro-molecules by imaging them with electron rays at
cryogenic temperatures [1]–[3]. Its popularity has rocketed in
recent years, culminating in 2017 with the Nobel Prizes awarded
to Jacques Dubochet, Richard Henderson, and Joachim Frank.
In single-particle cryo-EM, one collects 2D noisy projections
from numerous copies (dubbed “particles”) of a 3D biomolecule
of interest, where each copy is randomly oriented. (In prac-
tice, these particles may not be exact duplicates due to im-
purities in sample preparation and different conformations of
the target biomolecule; this work assumes that these can be
removed during preprocessing.) There exists a multitude of
software packages to produce high-resolution 3D structure(s)
from these 2D measurements [4]–[12]. These packages are based
on sophisticated algorithms, which include projection-matching
approaches [13], [14], frequency marching [15], common-
lines [16], maximum-likelihood optimization frameworks, and
a range of other methods [17]–[22], enabling the determination
of structures with unprecedented atomic resolution.

Reconstruction in single-particle cryo-EM is a challenging
task. A key reason behind this difficulty is that the imaged
particles have unknown poses. Hence, the tomographic recon-
struction task involves a high-dimensional, nonconvex opti-
mization problem with numerous local minima. Currently, most
software packages rely on a marginalized maximum-likelihood
(ML) formulation [23] that is solved through an expectation-
maximization algorithm [9], [11]. The latter involves calcula-
tions over the discretized space of poses for each projection, a
computationally demanding procedure. Moreover, the outcome
of the global process is predicated on the quality of the initial
reconstruction [24], [25]. Additionally, one often relies on the
input of an expert user for appropriate processing decisions and
parameter tuning [26]. Even for more automated methods, the
risk of outputting incorrect and misleading 3D reconstructions
is ever-present.

To bypass these limitations, we introduce CryoGAN, an unsu-
pervised reconstruction algorithm for single-particle cryo-EM
that exploits the remarkable ability of generative adversarial
networks (GANs) to model data distributions [27]. CryoGAN
is driven by the competitive training of two entities: one that
tries to capture the distribution of real data, and another that
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Fig. 1. Schematic comparison between (a) a standard GAN architecture and (b) the CryoGAN architecture. Both frameworks rely on a deep adversarial learning
scheme to model the distribution of the real data. CryoGAN looks for the volume whose simulated projections have a distribution that matches the real data
distribution. This is achieved by adding a “cryo-EM physics simulator” that produces measurements following a mathematical model of the cryo-EM imaging
procedure. Importantly, CryoGAN does not rely on a first low-resolution volume estimate, but is initialized with a zero-valued volume. Note that, for both
architectures, the updates involve backpropagating through the neural networks; those actions are not indicated here for the sake of clarity.

discriminates between generated samples and samples from the
real dataset. In a standard GAN, the two entities are each a
convolutional neural network (CNN). They are known as the
generator and the discriminator and are trained simultaneously
using backpropagation. The important twist with CryoGAN is
that we replace the generator network by a cryo-EM physics
simulator. By doing so, CryoGAN learns the 3D density map
whose simulated projections are the most consistent with a
given dataset of 2D measurements in a distributional sense. We
summarise in Figure 1 the fundamental difference between a
typical GAN and CryoGAN.

A. Contributions and Outline

The main contributions of this paper are (1) a mathematical
framework that deploys distribution matching for cryo-EM re-
construction, including a proof that builds on [28] and that shows

that this approach can recover the true structure in an idealized
setting; and (2) CryoGAN, an algorithm for cryo-EM recon-
struction motivated by this framework, along with experimental
validation on simulated and experimental cryo-EM data.

CryoGAN has several attractive qualities: No estimation of
the poses is attempted during the learning procedure; rather,
the reconstruction is obtained through distributional match-
ing performed in a likelihood-free manner. Hence, CryoGAN
sidesteps many of the computational drawbacks associated with
likelihood-based methods. The CryoGAN algorithm requires
no prior knowledge of the 3D structure; its learning process
is purely unsupervised. The user needs only to feed the particle
images and estimates of parameters of the contrast transfer func-
tion (CTF). No initial volume is needed: the algorithm may start
with a volume initialized with zeros. Unlike most deep-learning
methods that solve inverse problems in imaging [29], [30], our
method requires no training dataset nor prior training.
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The rest of the manuscript is organized as follows: We de-
scribe related works on cryo-EM reconstruction in Section II. In
Section III, we state the cryo-EM reconstruction problem and
formulate our forward imaging model. In Section IV, we present
our distribution-matching approach and its mathematical justi-
fication, including our main theorem. In Section V, we present
our proposed algorithm, CryoGAN. In Section VI we present our
experiments and results on synthetic and experimental datasets.
We end in Section VII with a discussion.

II. RELATED WORKS

Related works fall into two main categories: the reconstruc-
tion methods used in most standard cryo-EM software packages
and recently proposed deep-learning techniques.

Current Cryo-EM Reconstruction. The main challenge in
cryo-EM reconstruction is that every particle has an unknown
pose when imaged— if the poses were known, ML or maximum
a posteriori (MAP) estimation of the volume could be performed
by solving a standard linear inverse problem, with the large
number of measurements counteracting their low SNR.

The classical paradigm to overcome this problem is to refine
an initial volume by iteratively estimating the unknown poses.
Pose estimation can be achieved with a variety of strategies,
including the popular projection-matching approach [13], [14].
Whatever the method used, pose estimation is challenging be-
cause the SNR of individual projection images is extremely
low. It also requires the estimation of additional parameters and,
at every iteration of the reconstruction pipeline, the generation
of the projections of the intermediate reconstruction at a large
number of poses; this is extremely costly from a computational
point of view.

Another approach is to formulate the reconstruction as an ML
estimation problem in which the unknown poses are marginal-
ized away [9], [11], [31], [32]. This is attractive in that no extra
parameters need to be estimated. The problem can then be solved
using the expectation-maximization algorithm (e.g., [9], [11]),
where marginalization over poses during the so-called E-step
is computationally expensive. This does however still require a
first estimate of the 3D volume.

Alternatively, the ML problem can be minimized ab initio,
without an initial volume, using stochastic gradient descent
(SGD) (e.g., during the first phase of [11]). Here, the challenge
is that the involved gradients require computations over all
poses. For a more in-depth discussion, see [23], [26], [33].
For additional mathematical details on the relationship between
likelihood-based methods and CryoGAN, see Supplementary
Materials Section B.

Likelihood-free methods for single-particle cryo-EM recon-
struction are relatively few. An early approach is [34], which
proposes to reconstruct an ab initio structure such that the
first few moments of the distribution of its simulated cryo-EM
measurements match the ones of the real dataset. However, the
method assumes that the poses of the particles have a uniform
distribution, which can be restrictive. This moment-matching
technique has been recently extended in [35] to reconstruct an ab
initio structure in the case of nonuniform pose distributions. The

authors show that, under appropriate conditions, matching the
first two analytical moments is sufficient to uniquely determine
the 3D structure. Although our proposed method and moment-
matching methods are conceptually similar, the assumptions,
practical considerations, and actual reconstruction algorithms
are very different.

Recently, the work in [36] uses the Wasserstein distance in
a fashion similar to ours. However, the distance there is only
used to cluster the tomographic projections and not to perform
reconstruction.

Deep Learning for Cryo-EM. Deep learning has already
had a profound impact on a wide range of image-reconstruction
applications [29], [37], [38]; yet, its current utilization in single-
particle cryo-EM is mostly restricted to preprocessing steps
such as micrograph denoising [39] or particle picking [40]–[44].
Very recently, deep learning has also been used to solve the
reconstruction problem in cryo-EM. The work in [45] uses
neural networks to model the continuous generative factors of
structural heterogeneity. Another work [46] uses a variational
autoencoder trained using a discriminator-based objective to find
a low-dimensional latent representation of the particles. These
representations are then used to estimate the poses.

From a more general standpoint, if deep learning is now
extensively used to solve inverse problems in imaging [29],
[47]–[49], most methods are based on supervised learning and
thus rely on training data. Interestingly, the reconstruction of
a 3D structure from its 2D views is a prominent problem in
computer vision [50]. Many recent deep-learning algorithms
have been used in this regard [51], [52]. While this problem
is ostensibly similar to that of single-particle cryo-EM recon-
struction, its measurement process is distinct and the level of
noise much lower. A recent work [53] includes simple forward
models within a GAN; however the aim of the method is image
generation (like a standard GAN) and not image reconstruction,
which also restricts the comparison.

III. SINGLE-PARTICLE CRYO-EM

We begin with a mathematical statement of the problem that
CryoGAN addresses, namely, single-particle cryo-EM image
reconstruction. We then give our measurement model for cryo-
EM, including a stochastic formulation.

A. Problem Statement

The goal of single-particle cryo-EM reconstruction is to es-
timate an unknown 3D density map from a large collection of
its noisy, 2D projection images. Following a standard cryo-EM
model [54], we write the linear relationship between the volume
and each projection as

yi = Hϕix+ ni, (1)

where yi ∈ RM is a (vectorized) 2D projection, x ∈ RV is the
(vectorized) 3D density, Hϕ ∈ RM×V is the forward operator
with parameters ϕi ∈ R8, and n ∈ RM is an additive noise fol-
lowing distribution pn. Details of Hϕ are given in Section III-B.

The problem of cryo-EM image reconstruction is to estimate
x from a set {y1, . . . ,yNtot} given by (1). The key challenges
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that separate cryo-EM from other tomography problems are the
fact that the parameters ϕi of the forward operator are different
for each projection and unknown [23], the large number of
projections (Ntot is typically between 104 and 107), and the
high level of noise in the projections.

B. Image-Formation Model

Our cryo-EM forward operator Hϕ is based on [54]–[56], It
is given by

Hϕ = CcStPθ, (2)

where Pθ : RV → RM is a projection operator at orientation
θ (mathematically speaking, an X-ray transform [57]), St :
RM → RM is a shift operator, andCc : RM → RM is a convo-
lution operator. Thus, the imaging parameters, ϕ, comprise the
projection (Euler) angles θ = (θ1, θ2, θ3), the projection shifts
t = (t1, t2), and the CTF parameters c = (d1, d2, αast), where
d1 is the defocus-major, d2 is the defocus-minor, and αast is the
angle of astigmatism.

The projection operator Pθ is a discretization of the
continuous-domain operator [57]

Pθ{f}(x1, x2) =

∫ ∞

−∞
Rθ{f}(x1, x2, x3) dx3, (3)

where f : R3 → R is a density map andRθ{f}(x) = f(R−1
θ x)

is a 3D rotation of f , where Rθ is the rotation matrix associated
with the Euler angles θ. A plethora of software packages for
computing discretized versions of (3) exist; we use the ASTRA
toolbox [58].

The shift operator St models the fact that the projection
measurements are cropped subimages of a larger micrograph
and can thus be off-center. In the continuous domain,

St{y}(x1, x2) = y(x1 − t1, x2 − t2), (4)

where y : R2 → R is a projection and t gives the 2D offset. We
implement the discretized version of St by using whole-pixel
shifts.

The convolution operator Cc models electron optics [55],
[56]. It is a discretization of the continuous convolution operator
Cc, the frequency response of which is given by the CTF.
Detailed expressions for the CTF can be found Supplementary
Materials Section A.

C. Stochastic Model of Cryo-EM

The noisy projections acquired from a given volumex depend
on the imaging parameters ϕ, which can be assumed to be
sampled from a probability distribution pϕ. Along with the
probability distribution of the noise, it induces a distribution onto
the acquired projections. This means that those can be assumed
to be sampled according to

p(y|x) =
∫
ϕ∈Φ

pn(y −Hϕx)pϕ(ϕ)dϕ, (5)

where Φ is the set of all imaging parameters. We denote a
noiseless projection as yclean = Hϕx.

Correspondingly, we denote by xtrue the 3D structure from
which the projection dataset has been acquired. Therefore, the
projections in the real dataset can be seen as samples of the
distribution p(y|xtrue) which we denote by pdata.

IV. THE DISTRIBUTION-MATCHING APPROACH

The CryoGAN algorithm is motivated by a distribution-
matching approach, the goal being to find a reconstruction
xrec such that its statistical projection distribution matches
the data distribution p(y|xtrue). (In practice, we have ac-
cess only to a large number of samples from this distribu-
tion. Please see Section VII-A.) This means that we recon-
struct a 3D structure whose set of projections resemble the
acquired projection dataset. Intuitively, this suggests that the
3D structure itself should also resemble the 3D structure. We
prove in Theorem 1 that this intuition is indeed correct: in
an idealized setting, distribution matching recovers the true
structure.

Two remarks are in order. Firstly, distribution matching for
cryo-EM reconstruction was first considered in [28]. However,
it involved a restrictive setting where the forward model lacked
noise and optical effects. While our proof for Theorem 1 is based
on the mathematical tools used in [28], our result generalizes
it to a more realistic forward model. Secondly, current ML
methods [9], [11] can be interpreted as distribution-matching
approaches. Thus, Theorem 1 provides a justification for them
as well. To our knowledge, it is the first theoretical result that
states that the ML formulation is apt to recover the correct struc-
ture. For more details on this connection, see Supplementary
Materials Section B.

In the continuous domain, we have that y = Hϕf + n where
y : R2 → R is the 2D measurement obtained from the 3D vol-
ume f andn is the noise. Here,Hϕ = CcStPθ is the continuous-
domain forward operator, Pθ is the projection operator, St is the
shift operator, and Cc is the operator for convolution with the
CTF. We assume that θ ∼ pθ , c ∼ pc, t ∼ pt, and that Pn is the
probability measure associated withn. We denote the probability
measure on the projection space given the 3D structure f as
P (y|f).

We have the following assumptions on the forward model:
1) the characteristic functional [59, Chapter 2] P̂n of the noise

probability measure Pn is nonzero everywhere over its
domain and n is pointwise-defined everywhere in R2;

2) the support of pc is such that, for any c1, c2 ∈
Support{pc} and c1 �= c2, |F{Cc1

}|+ |F{Cc2
}| is pos-

itive everywhere;
3) the volume f is nonnegative everywhere and has a

bounded support;
4) the probability distributions pθ , pc, and pt are bounded.
Before stating Theorem 1, we first comment on these assump-

tions. Assumption 1) holds for many noise distributions used in
cryo-EM models, including white Gaussian noise filtered with
any kernel having compact support. Assumption 2) is commonly
used, for instance, to justify the application of Wiener filter to
the clustered projections in classical cryo-EM reconstruction
pipelines [3]. Assumption 3) is reasonable in cryo-EM because
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the volume represents a 3D electron density map, which is
nonnegative and effectively has a finite size.

Theorem 1: Let P (y|ftrue) be the probability measure associ-
ated with the projection dataset obtained from the true structure
ftrue such that

y = Hϕftrue + n, where ϕ ∼ ptrueϕ and n ∼ P true
n . (6)

Let P rec(y|frec) be the probability measure associated with the
projections obtained from the reconstructed structure frec with
imaging distribution precϕ and noise measure P rec

n . We assume
that these distributions and structures satisfy the assumptions of
the forward model. Then, given ptrueϕ = precϕ and P true

n = P rec
n ,

it holds that

P (y|ftrue) = P (y|frec) ⇔ frec = G(ftrue), (7)

where G is a rotation-reflection operation.
Theorem 1 states that if the reconstructed and true structures

have the same projection distributions then the structures are the
same except for some rotation-reflection operation. This result
supports distribution matching as an approach for cryo-EM
reconstruction. Note that this result assumes that the distribution
of the imaging parameters and the probability measure of the
noise for the reconstructed projections exactly match that of the
true projections.

Discrete-Domain Extension. In practice, the cryo-EM mea-
surements are acquired on a detector grid and are therefore
discrete. Theorem 1 then holds approximately, up to some error
that results from discretization of the measurements, forward
model, and 3D density map.

V. CRYOGAN

Theorem 1 provides motivation for our algorithm, Cryo-
GAN, which aims to match the statistical distribution of the
acquired and simulated data. Based on adversarial learning,
CryoGAN, attempts to reconstruct a voxel-domainxrec such that
p(y|xrec) = p(y|xGT), meaning that the corresponding proba-
bility measures are equal as well. Barring the approximation
error stemming from discretization, Theorem 1 ensures that if
CryoGAN successfully finds such a structure, then it is indeed
a rotated-reflected version of the true structure.

The main goal now is to tractably find such a volume. In
order to do so, we formulate the reconstruction task as the
minimization problem

xrec = argmin
x

D (p(y|x), p(y|xtrue)) , (8)

where D is a valid distance between the two distributions. In
essence, (8) states that the appropriate reconstruction is the 3D
density map whose projection distribution is the most similar to
the real dataset in a distributional sense. For the sake of concise-
ness, we shall henceforth use the notation p(y|x) = px(y).

As the distance in (8), we choose the Wasserstein distance
defined as

D(p1, p2) = inf
γ∈Π(p1,p2)

E(y1,y2)∼γ [‖y1 − y2‖], (9)

where Π(p1, p2) is the set of all the joint distributions γ(y1,y2)
whose marginals are p1 and p2. Our choice is driven by works

demonstrating that the Wasserstein distance is more amenable to
minimization than other popular distances (e.g., total-variation
or Kullback-Leibler divergence) for distribution-matching ap-
plications [60]. Using (9), the minimization problem (8) expands
as

xrec = argmin
x

inf
γ∈Π(px,pdata)

E(y1,y2)∼γ [‖y1 − y2‖]. (10)

By using the formalism of [60]–[62], this minimization problem
can also be stated in its dual form

xrec = argmin
x

max
f :‖s‖L≤1

(Ey∼pdata
[s(y)]− Ey∼px

[s(y)]) ,

(11)

where ‖s‖L denotes the Lipschitz constant of the function s :
RM → R.

A. Connection With Wasserstein GANs

The scheme in (10) falls under the framework of Wasserstein
GANs (WGANs) [60]. In the standard WGAN implementation,
the function s is parameterized by a neural network Dφ, called
the discriminator, with parameters φ. The role of the discrimi-
nator is to learn to differentiate between real samples (typically
coming from an experimental dataset) and fake samples. The
latter are produced by another neural network, called the gener-
ator, which aims at producing samples that are realistic enough
to fool the discriminator. This adversarial-learning scheme pro-
gressively drives the WGAN to capture the distribution of the
experimental data.

In CryoGAN, we adapt this adversarial scheme to learn the
volume xwhose simulated projections follow the distribution of
the data. To do so, we rely on a cryo-EM physics simulator whose
role is to produce projections of a volume estimate x using (1).
These simulated projections then follow a distribution y ∼ px.
Hence, (11) translates into

xrec=arg minx max
‖Dφ‖L≤1

(Ey∼pdata
[Dφ(y)]− Ey∼px

[Dφ(y)]) .

(12)
As proposed in [63], the Lipschitz constraint ‖Dφ‖L ≤ 1 can
be enforced by penalizing the norm of the gradient of Dφ with
respect to its input. This gives the final formulation of our
reconstruction problem as

xrec = argmin
x

max
Dφ

(Ey∼pdata
[Dφ(y)]− Ey∼px

[Dφ(y)]

− λ · Ey∼pint
[(‖∇yDφ(y)‖ − 1)2]

)
.

(13)

Here, pint denotes the uniform distribution along the straight
line between points sampled from pdata and px, while λ ∈ R+

is an appropriate penalty coefficient (see [63], Section 4).

B. The CryoGAN Algorithm

Equation (13) is a min-max optimization problem. By re-
placing the expected values with their empirical counterparts
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Algorithm 1: CryoGAN.
Parameters: number of training iterations, ntrain; number of
iterations of the discriminator per training iteration, ndiscr;
size of the batches used for SGD, M ; penalty parameter, λ

1: for ntrain do
2: for ndiscr do
3: sample {y1

batch, . . . ,y
M
batch} from real data

4: sample {y1
sim, . . . ,y

M
sim} from current px

� (Algo. 2)
5: sample {α1, . . . , αM} ∼ U [0, 1]
6: compute ym

int = αmym
batch + (1− αm)ym

sim

7: update discriminator parameters φ using
∇φLS (14)

8: sample {y1
sim, . . . ,ysim

M} from current px
� (Algo. 2)

9: update volume x using ∇xLS (14)

(sums) [63], we reformulate it as the minimization of

LS(x,Dφ) =

M∑
m=1

Dφ(y
nm

data)−
M∑

m=1

Dφ(y
m
sim)

−λ

M∑
m=1

(‖∇yDφ(y
m
int)‖ − 1)2),

(14)

where M is the number of samples in the empirical estimates,
{nm}Mm=1 is a set of random indices into the dataset of measured
projection images, {ym

sim}Mm=1 is a set of projections from the
current estimate x generated by the cryo-EM physics simula-
tor, and ym

int = αmynm + (1− αm)ym
sim, where αm is sampled

from a uniform distribution between 0 and 1.
The empirical estimate (14) is identical to (13) only in the limit

when the number of measurements grows to infinite. Therefore,
the success of the algorithm in real-world scenarios hinges on
the fidelity of this empirical estimate, which presupposes that
the number of particles is very large. More details on the differ-
ence between the empirical estimate (14), Wasserstein-distance
based formulation (13), and the original distribution-matching
formulation (8) are given in Section VII-A.

In practice, we minimize (14) through SGD using batches;
specifically, we use the Adam optimizer [64]. We alternatively
update the discriminator Dφ (for ndiscr iterations) and the vol-
ume x (for one iteration). The pseudocode and a schematic view
of the CryoGAN algorithm are given in Algorithm 1 and Figure 1
b, respectively. The code for our implementation of CryoGAN
is written in Python using the PyTorch [65] package.1 We now
provide more detail on the CryoGAN physics simulator and
discriminator network.

CryoEM Physics Simulator (Generator). The goal of the
physics simulator is to sample ysim ∼ px(y); this is done
in three steps. First, we sample the imaging parameters ϕ
from the distribution pϕ: ϕ ∼ pϕ. Second, we generate noise-
less CTF-modulated and shifted projections from the current

1Code for the CryoGAN algorithm is [Online]. Available: https://github.com/
harshit-gupta-cor/CryoGAN

Algorithm 2: Pseudocode for Cryo-EM Physics Simulator.
Parameters: current volume estimate x

1: sample the Euler angles θ = (θ1, θ2, θ3) ∼ pθ
2: sample the 2D shifts t = (t1, t2) ∼ pt
3: sample the CTF parameters c = (d1, d2, αast) ∼ pc
4: generate a synthetic noiseless projection based on (2),

with ynoiseless = Hϕx
5: sample the noise n ∼ pn. Add to the projection as

ysim = ynoiseless + n.

volume estimate withHϕ(x). Third, we sample the noise model
to simulate noisy projections y = Hϕ(x) + n, where n ∼ pn.
A pseudocode of this cryo-EM physics simulator is given in
Algorithm 2.

We now detail the steps of the generator. Recall
that the set of imaging parameters is given by ϕ =
(θ1, θ2, θ3, t1, t2, d1, d2, αast). We first sample the Euler an-
gles θ = (θ1, θ2, θ3) from a distribution pθ decided a priori
based on the acquired dataset. Similarly, the projection shifts
t = (t1, t2) are sampled from the prior distribution pt. The
CTF parameters c = (d1, d2, αast) are sampled from the prior
distribution pc. In practice, we exploit the fact that the CTF
parameters can often be efficiently estimated for all micrographs.
We then uniformly sample from the whole set of extracted CTF
parameters.

We generate noiseless projections ynoiseless by applying Hϕ

to the current volume estimate x. The projection operator
Pθ in (2) is implemented using the ASTRA toolbox [58].
We propagate gradients back through the projection opera-
tion to the volume x by using the ASTRA backprojection
algorithm.

The simulator must then add realistic noise to the clean
projections so that the distribution of the simulated projec-
tions may closely match that of the real data, which is highly
noisy (Figure 5). To produce realistic noise realizations, we
extract random background patches directly from the micro-
graphs themselves, at locations where particles do not appear,
and add them pixel-wise to the clean projection. For consis-
tency, the noise patch added to a given noiseless projection
is taken from the same micrograph that was used to estimate
the CTF parameters previously applied to that specific projec-
tion. We detail this approach when describing our experiments
in Section VI.

In summary, the physics simulator in CryoGAN differs for
the generator network in a standard GAN in several ways: the
learnable parameters are the voxel values of the reconstruction
rather than weights and biases; the architecture comes from a
physics model rather than the typical convolutional layers, and
the randomness comes from the random selection of the imaging
parameters and noise patch, rather than from a multivariate
Gaussian input.

Discriminator Network. The cryo-EM physics simulator is
paired with a discriminator network whose architecture is similar
to those used in standard GANs. Its role is to differentiate be-
tween projections from the experimental dataset and projections

https://github.com/harshit-gupta-cor/CryoGAN
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Fig. 2. Architecture of the discriminator. The parameter for the channel
size is C = 96 in every experiment. The input image with size (H ×W ) is
successively processed and downsampled to output a scalar.

generated by the cryo-EM physics simulator. The discriminator
is not pretrained; its weights are optimized via the adversarial
learning scheme described in Section V during reconstruction.
The gradients from the discriminator carry information on the
difference between the real and simulated projections at a given
runtime. Those gradients are used by the cryo-EM physics
simulator to update itself, thus improving on the realism of the
simulated projections.

The discriminator takes an image as input and outputs a
scalar value. It is composed of 8 layers: 6 convolutional blocks
followed by 2 fully connected (FC) layers. Each convolutional
block is made up of a convolutional layer followed by a max-
pooling and a leaky ReLU (with negative slope of 0.1). The
number of channels in each convolutional layer is 96, 192, 384,
768, 1536, and 3072. The filters in these layers are of size 3, and
the padding size is 1. The max-pooling layer uses a kernel of size
2 with a stride of 2. This leads to a downsampling by a factor of
2. The output of the final convolutional block is then reshaped,
fed into the FC layer with 10 neurons, and finally processed by
a leaky ReLU. The resulting activations are fed to the last FC
layer to output a scalar. The architecture of the discriminator
network is illustrated in Figure 2.

VI. EXPERIMENTS AND RESULTS

We now describe our experiments and results on synthetic and
experimental datasets.

For each experiment, we randomly divided the dataset into
halves and performed separate reconstructions. We then aligned
the two reconstructed structures and calculated the FSC between
them using the FOCUS software [66], [67]. We report the
half-half resolution where this FSC crosses the 0.143 cutoff.
Additionally, we aligned and averaged these half-maps and
report the resolution (with FSC cutoff 0.5 and 0.143) with respect
to the true structure. For the experiments associated with β-
galactosidase (synthetic and experimental data), we considered
the density map obtained from the PDB-5a1a atomic model
as the true structure (see Section VI-A). Similarly, for the 80S
Ribosome case, we used the preprocessed publicly available
EMDB-2660 as the true structure (see Section VI-D). These
true structures were used to create the datasets in every synthetic
experiment.

TABLE I
RECONSTRUCTION RESOLUTION (Å) FOR SYNTHETIC β-GALACTOSIDASE

A. Synthetic Experiment

We first assess the performance of CryoGAN on a syn-
thetic dataset that mimics theβ-galactosidase dataset (EMPIAR-
10061) from [68] in terms of noise level and CTF parameters. In
the context of this experiment, we refer to these synthetic data as
“real,” in contrast to the projections coming from the CryoGAN
physics simulator, which we term “simulated.”

Experimental Setup. For the ground-truth volume, we gen-
erated a 2.5 Å density map from PDB-5a1a atomic model
using the Chimera software [69]. This gave us a volume of
size (302× 233× 163) with voxel size 0.637 Å. The vol-
ume was then padded, averaged, and downsampled to a size
(180× 180× 180) with voxel size 1.274 Å. This corresponds
to a Nyquist resolution of 2.548 Å for the reconstructed volume.

We generated 41000 projections from this volume according
to the forward model (2). Shifts were not used. The projection
directions were sampled from a uniform distribution over 3D
rotations. To set the CTF parameters for each projection, we
randomly picked a micrograph in the EMPIAR- 10061 dataset,
extracted its CTF parameters using CTFFIND4 [70], and applied
them to the projection. The parameterB of the envelope function
of the CTF (see Supplemenary Material (42)) was chosen such
that it decays to 0.2 at the Nyquist frequency. To simulate
a realistic noise for each projection, we randomly selected
a background patch from the same micrograph used for the
CTF parameters. This noise patch was downsampled to size
(192× 192), normalized to zero-mean, and scaled and added
to the projection. The scaling was such that the signal-to-noise
ratio was −20 dB.

Generator Settings. For each half-map reconstruction, the
generator was initialized with a volume of size 184× 184× 184
voxels; the pixel size was 1.274 Å. Because β-galactosidase
has D2 symmetry, this volume was parameterized by a quarter-
volume (the first 92× 92× 184 voxels) that was copied and
flipped to create the full volume. We applied a simple, ad hoc
regularization scheme intended to promote nonnegativity during
the initial phases of reconstruction and to increase the stability of
the algorithm, details of which being given in the Supplementary
Materials Section D.

The cryo-EM simulator in the generator matched the process
used to generate the data, except that we assumed that the final
SNR of each projection was unknown, leading us to learn the
scaling parameter that controls the ratio between the projections
and the noise patches. Details on the scaling operation can be
found in the Supplementary Materials Section D.

Training Settings. For the optimization, we used Adam [64]
(β1 = 0.5, β2 = 0.9, ε = 10−8) with a learning rate of 10−3 and
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Fig. 3. CryoGAN is applied on a synthetic projection dataset generated from a 2.5Å β-galactosidase volume. We refer to these synthetic projections as “real,” in
contrast to the projections coming from the CryoGAN physics simulator, which we term “simulated.” (a) The volume is initialized with zeros and is progressively
updated to produce projections whose distribution matches that of the real projections. (b) Corresponding evolution of half-half FSC through time. (c) Evolution
during training of some clean projections (i.e., before CTF and noise) generated by the cryo-EM physics simulator. (d) Row 1: Clean, simulated projections (before
CTF and noise) generated at the final stage of training. Row 2: CTF-modulated simulated projections (before noise) generated at the final stage of training. Row 3:
Simulated projections (with CTF and noise) generated at the final stage of training. Row 4: Real projections, for comparison.

a batch size of 8. The algorithm was run for 40 epochs and the
learning rate decreased by 1% at every epoch. The parameter
for the gradient-penalty term (13) was set to λ = 0.001. The
discriminator was updated 4 times for every update (ndiscr = 4
in Algorithm 1).

Discriminator Settings. The discriminator weights were ini-
tialized to random values using PyTorch default distributions.
All projections were normalized to zero mean and unit standard
deviation before entering the discriminator.

Results. We ran the CryoGAN algorithm for 400 minutes
on an NVIDIA V100 GPU and obtained a reconstruction with
a half-map resolution of 8.64 Å (additional metrics given in
Table I). This confirms that our novel scheme produces recon-
struction with an acceptable quality, although the resolution is
still significantly below the limit that can be expected from the
data. We show in Figure 3 the progression of the CryoGAN
reconstruction. It demonstrates that CryoGAN quickly finds a
reasonable density map, then fills in details.

B. Additional Imaging Conditions

To understand the effect of different imaging conditions on the
quality of the CryoGAN reconstruction, we created additional
synthetic datasets: a dataset with a low noise level (−5.2 dB
SNR); a dataset with a realistic noise level (−20 dB SNR) and

moderate translations (3% of the image size); and a dataset with
a realistic noise level (−20 dB SNR) and large translations (20%
of the image size). For the last two cases, the translation (both
horizontal and vertical) for each projection is first sampled from
a zero-mean symmetric triangular distribution whose total width
is 6% and 40% of the image size, quantized to the nearest integer.
All other conditions remain identical to the main synthetic
experiment, except that the number of epochs for reconstruction
was 100 and the volume clipping value in the generator was
−5%.

Results. The resolutions of the reconstructions are given in
Table I. As expected, the decrease of the noise level from−20 dB
to −5.2 dB improves the reconstruction resolution (from 8.64
Å to 7.53 Å) and results in a sharper looking reconstruction
(Figure 4). For the second and third case, the presence of
translations results in slightly lower resolutions. We suspect this
is because the discriminator must learn to ignore the translations,
which, intuitively, makes its task more challenging.

C. Effect of a Mismatch in the Pose Distribution

We performed another series of synthetic experiments to
understand the robustness of CryoGAN with respect to the
mismatch between the pose distributions associated with the
real projections ptrueθ and the simulated projections precθ . We
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Fig. 4. Additional CryoGAN reconstructions for synthetic datasets with differ-
ent imaging conditions. (a) Reconstruction for a low noise case (−5.2 dB SNR).
(b) Reconstruction for a realistic noise level (−20 dB SNR) and with translations
(3% of the image size) in the data. The reported resolutions correspond to
half-map FSC at 0.143 cutoff.

TABLE II
RECONSTRUCTION RESOLUTION (Å) FOR β-GALACTOSIDASE

used three synthetic datasets, each one created using different
pose distributions ptrueθ . The first dataset was the same as in the
main synthetic experiment (uniform distribution). The second
and the third datasets used nonuniform distributions of the poses,
which were sampled by generating random samples from a 3D
multivariate Gaussian and computing the corresponding Euler
angles. The Gaussians had zero mean and diagonal covariance
Σ = diag(σ, 2, 1) with σ = 2 and 3. On each dataset, we per-
formed three CryoGAN reconstructions characterized using the
same three pose distributions precθ in the physics simulator.

Results. The reconstruction resolutions are shown in Table II.
We observe that the best resolution is usually achieved when the
assumed pose distribution matches the real one (diagonal values
tend to be the lowest in each row and column, especially when
the FSC is computed with respect to the ground truth). However,
assuming a uniform distribution during reconstruction provides

TABLE III
RECONSTRUCTION RESOLUTION (Å) FOR SYNTHETIC RIBOSOME

reasonable reconstructions in all cases (never more than 1.4 Å
worse than the best choice of distribution), which justifies its use
when the true distribution is not known.

D. 80S Ribosome Datasets With Various Noise Levels

We reconstructed synthetic datasets that mimic the 80S Ri-
bosome dataset (EMPIAR-10028) from [71]. The ground-truth
structure with dimensions (180× 180× 180) and voxel size
2.68 Å was obtained by processing the EMDB-2660 recon-
struction from EMPIAR-10028. We created five datasets with
identical imaging conditions (same as EMPIAR-10028), except
for the noise levels. Their SNR were kept at 20 dB, 0 dB,
−5.2 dB,−14 dB, and−20 dB. The noise patches were extracted
from the micrograph background in EMPIAR-10028. In all
datasets, translations were kept at 5% of the image size. We
then performed reconstructions using CryoGAN for 20 epochs.
For more details, see Supplementary Materials Section D.

Results. The reconstruction quality is reported in Table III. As
expected, the resolution decreases with the increase in the noise
level. When the noise level is low (−5.7 dB), we achieve 19.5 Å,
with an isosurface rendering provided in Figure 6. For similar
imaging conditions, the resolution achieved for Ribosome is
worse than that of β-galactosidase. We believe this is because
of the lack of symmetry in Ribosome, the fact that the larger
pixel size for its projections (2.68 Å), and because of its large
blob-like structure. We show in Table III and Figure 6 that the
main culprit behind the loss of resolution is the noise level.

E. Experimental Data—βbeta-Galactosidase
(EMPIAR-10061)

To assess the capacity of CryoGAN to reconstruct real, experi-
mental data, we deploy it on the β-galactosidase projection data
provided in EMPIAR-10061 [68]. These data consist of 1539
micrographs and 41123 particle locations. These were obtained
via automated particle picking followed by 3D classification, as
described in [68].

The details of this experiment matched those of the synthetic
experiment (Section VI-A) with the following changes:

Dataset. The projections, originally of size (384× 384) were
downsampled to (192× 192), with a pixel size of 1.274 Å.
This corresponds to a Nyquist resolution of 2.548 Å for a
reconstructed volume of size (180× 180× 180). The defocus
and astigmatism parameters of the CTF were estimated for each
micrograph using CTFFIND4 [70].



768 IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING, VOL. 7, 2021

Fig. 5. Evolution of CryoGAN while reconstructing the experimental β-galactosidase dataset (EMPIAR-10061) from [68]. (a) The volume is initialized with
zeros and is progressively updated to produce projections whose distribution matches that of the experimental dataset. (b) Evolution during the training of the
clean projections (i.e., before CTF and noise) generated by the cryo-EM physics simulator. (c) Row 1: Clean, simulated projections generated at the final stage of
training. Row 2: CTF-modulated, simulated projections (before noise) generated at the final stage of training. Row 3: Simulated projections (with CTF and noise)
generated at the final stage of training. Row 4: Real projections.

Fig. 6. Different views of the 80S Ribosome and reconstruction using
CryoGAN. (First column) 80S Ribosome (EMD-2660) from EMPIAR-10028.
(Second-column) CryoGAN reconstruction from synthetic data with −5.2 dB
noise and 5% translations. (Third column) 80S Ribosome (EMD-2660) filtered
with a Gaussian with standard deviation of 5 voxels. (Fourth column) CryoGAN
reconstruction filtered with a Gaussian with standard deviation of 5 voxels.

Generator Settings. We reconstruct a volume of size (180×
180× 180) voxels for each half dataset. The CTF parameters
estimated with CTFFIND4 [70] are used in the forward model of
the cryo-EM physics simulator. The parameterB of the envelope
function of the CTF (see (42)) decays to 0.4 at the Nyquist
frequency. The translations are set to zero.

To handle the noise, we randomly extract (prior to the learn-
ing procedure) 41123 patches of size (384× 384) from the
background of the micrographs at locations where particles do
not appear; this is done by identifying patches with the lowest
variance. We extract as many noise patches per micrograph
as we have particle images from that micrograph. Each noise
patch is then downsampled to size (192× 192) and normalized.
Then, during run-time, the noise patches are sampled from this
collection, scaled, and added to the simulated projections. For
consistency, the noise patch added to a given simulated projec-
tion is taken from the same micrograph as the one that was used to
estimate the CTF parameters previously applied to that specific
projection. The scaling operation weighs the contribution of the
noise with respect to the projection signal. More details on the
addition of noise and the regularization constraints enforced on
the volume during the reconstruction are given in Supplementary
Materials Section D.

Discriminator Architecture. The discriminator is initialized
identically for the two half datasets. The projection images (real
and simulated) are smoothed with a Gaussian kernel before being
fed to the discriminator. The standard deviation of the kernel is
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initially set at 2 and changes in every iteration so that it decreases
by a total of 2% in each epoch.

Training Settings. The algorithm is run for 15 epochs and the
learning rate decreases by 8% at every epoch. The parameter
for the gradient-penalty term is set to λ = 1 (see (13)) and
ndiscr = 4.

The norm of the gradients for the discriminator is clipped to a
maximal value of 107. For the generator, the gradients for each
pixel are clipped to a maximal value of 103. The gradients that
correspond to the learning of the scaling ratios between the noise
and projection images are clipped to a value of 10.

Results. We let CryoGAN reconstruct the real EMPIAR-
10061 dataset for 150 minutes on an NVIDIA V100 GPU. For
reproducibility, we ran the reconstruction five times and report
the averaged metrics. We achieved a mean resolution of 11.2 Å
with a standard deviation of 1.14 Å. We obtained the mean reso-
lutions of 26.6 Å and 19.9 Å with respect to the true structure for
0.5 and 0.143 FSC cutoffs, respectively. The standard deviation
for these metrics were 0.45 Å and 0.49 Å, respectively. The
results are displayed in Figure 5. We note that higher-resolution
details are progressively introduced in the estimated volume
throughout the run, as illustrated by the evolution of the FSC
curves between the reconstructed half-maps (Figure 5 d). This
resulted in a 12.08 Å β-galactosidase structure whose simulated
projections closely resemble the real ones (Figure 5 c).

F. Reconstruction of βbeta-Galactosidase With Pose
Distribution From Relion

We performed another CryoGAN reconstruction on β-
galactosidase (EMPIAR-10061) where, instead of a uniform
distribution, we set precθ to be the distribution associated with
the poses obtained from Relion [9]. This distribution acts as a
proxy for the true pose distribution ptrueθ . Hence, this experiment
considers the case when the mismatch between ptrueθ and precθ is
minimal. All the other reconstruction parameters were kept the
same as in the main experiment. More details are available in
the Supplementary Materials.

Results. We achieved a half-half resolution of 11.47 Å. The
resolution with respect to the true structure was 32.8 Å and 20.9
Å for 0.5 and 0.143 FSC cutoffs, respectively. The reconstruction
quality is similar to the case when the uniform distribution is
assumed. This, we believe, is because of two main reasons:
firstly, the distribution obtained from the Relion poses is very
similar to a uniform distribution. This can be seen in Figure 7.d
in the Supplementary Materials and has also been reported for
EMPIAR-10061 in [72]. Secondly, as shown on the synthetic
dataset in Table II, reconstructions using a uniform distribution
give fairly good and consistent results and are similar to the one
that can be achieved with using a distribution with less mismatch.

G. Experimental Data—80S Ribosome (EMPIAR-10028)

We also deployed CryoGAN on the experimental projection
data obtained from 80S Ribosome [71] provided in EMPIAR-
10028. This dataset contains 102547 projections. For more
details about the dataset and the reconstruction procedure, see
the Supplementary Materials.

Results. We achieved a half-half resolution of 55.5 Å resolu-
tion. The resolution with respect to the true structure was 100.7
Å and 54.2 Å for 0.5 and 0.143 FSC cutoffs, respectively. We
provide the reconstruction in Figure 6. It matches reasonably
well a smoothed version of the ground truth.

Like was the case with the synthetic data, the results obtained
with the experimental 80S Ribosome dataset are not as good as
those for β-galactosidase. This is probably because the former
does not have any symmetry, while its structure is larger and
more blobby. These issues decrease the effective SNR of the
Ribosome data (more number of variables to predict) and, hence,
result in lower resolutions. As shown in Table III, an increase
in SNR improves the resolution for Ribosome in the synthetic
experiments. We believe that, for experimental data, methods
that help mitigate the effect of noise, for instance multiresolution
approaches for GANs [73], [74], would improve the resolution
for Ribosome-like structures. See Section VII-B for more dis-
cussions. Moreover, the pixel size in the Ribosome data (2.68 Å)
is twice coarser than in β-galactosidase data. This limits access
to the information needed to reconstruct at higher resolutions.

VII. DISCUSSION

We have presented CryoGAN, an algorithm for single-particle
cryo-EM reconstruction motivated by distribution matching.
Our experiments showed that CryoGAN is able to reconstruct
reasonable structures, even from highly noisy experimental data.
We now discuss the connections between the CryoGAN algo-
rithm and the theory of distribution matching that we developed
in Section IV, as well as future steps to improve the CryoGAN
algorithm.

A. CryoGAN and Theorem 1

It is important to understand that, while the CryoGAN algo-
rithm attempts to solve a distribution-matching problem, there
are several reasons why Theorem 1 does not guarantee that
CryoGAN will provide a perfect reconstruction. Firstly, several
details complicate the successful minimization of the distribu-
tion distance in (11): the empirical estimates in (11) require
infinite data to be perfectly accurate, the loss function in (11) is
non-convex, and the discriminator Dφ in (13) may not span all
the valid functions swith Lipschitz less than or equal to 1 in (11).
Secondly, the algorithm warrants discretization of projections,
structures, and the forward model in (8) which is a slight (but
controllable) deviation from continuous-domain formulation of
Theorem 1. Additional work is thus required to understand
the effect of these nonidealities on the quality of reconstruc-
tion. One step in this direction would be to obtain a bound
on the reconstruction error as a function of the distributional
distance (8).

Another point to note is that there are many algorithms other
than CryoGAN that exploit the distribution-matching approach.
This includes current ML techniques [9], [11] that minimize
the KL-divergence (using it as D in (8)) to achieve distribution
matching. However, because of the structure of this divergence,
ML methods need to marginalize away the imaging parameters.
Unlike them, CryoGAN relies on Wasserstein distance and,
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hence, does not need marginalization but only a method to
sample from the two distributions (11). For more details, see
the Supplementary Materials.

B. Future Improvements

While the spatial resolution of the CryoGAN reconstructions
from real data is not yet competitive with the state-of-the-art
(which typically is around 3-4 Å), the algorithm is already able
to steadily perform the hardest part of the job, which is to obtain
a reasonable structure by using nothing but the particle dataset
and CTF estimations. We believe that some key developments
will help to bring the CryoGAN algorithm to the stage where it
becomes a relevant contributor for high-resolution reconstruc-
tion in single-particle cryo-EM. We have laid out a roadmap for
future improvements that should get us to this stage, and may
eventually help us reconstruct dynamic structures.

Beyond simple engineering tweaks (e.g., a tuning of the
number of layers in the discriminator, a change of the opti-
mization strategies, or the use of Fourier methods to accelerate
the projection), we expect several directions of research to be
fruitful.

Multiresolution. A promising line of research is the use of a
coarse-to-fine strategy in CryoGAN. Several GAN architectures
rely on such approaches, such as the progressive GANs [74]
and the styleGANs [73]. In the context of CyroGAN, this could
involve the reconstruction of a low-resolution structure from
lowpass-filtered measurements followed by a progressive in-
crease in the resolution of the estimated structure, the resolution
of the measurements, and the complexity of the discrimina-
tor. The motivation is twofold. First, similar to [73], [74], an
increased robustness during the low-resolution regime tends
to have a positive impact on the convergence of the higher-
resolution steps. Second, unique to CryoGAN, the approach
could help with highly noisy data, because a lowpass-filtering
of the measurements tends to increase their SNR. We expect
a multiresolution approach to be especially beneficial in the
reconstruction of non-symmetric structures from noisy data
(e.g., the 80S ribosome Section VI-G), as we have shown in
Section VI-D that noise is a major factor that limits the resolution
of the CryoGAN reconstruction.

The impact of multiresolution techniques on CryoGAN could
be as important as the one they had on GANs, where they allowed
the field to progress in just a few years from the generation of
blurry facial images [27] to simulated images indistinguishable
from real facial images [73], [74], More generally, the upcoming
tools and extensions in GAN architectures could bring signifi-
cant gains in resolution to the CryoGAN implementation.

The benefits of multiscale reconstructions could be consid-
erable for CryoGAN, given the extremely difficult imaging
conditions that prevail in single-particle cryo-EM and that make
the convergence of optimization algorithms to good solutions
particularly challenging.

Volume Regularization. Many cryo-EM reconstruction pack-
ages include some regularization of the volume itself, for
instance, the smoothness prior used in Relion [75]. The same

could be easily included in CryoGAN, provided that the regu-
larization function is amenable to gradient descent.

Improved Forward Model. The performance of the cryo-
EM physics simulator should also improve hand-in-hand with
our computational ability to precisely model the physics that
govern single-particle cryo-EM. At the moment, CryoGAN
assumes that the noise is additive in its image-formation
model. One could alternatively consider a Poisson-noise-
based forward model [55], [56]. This would however require
backpropagation through a Poisson distribution, a nontrivial
operation.

Bypassing Particle Picking. Another interesting extension
of the simulator would be to directly simulate the patches of
nonaligned micrographs or frames (rather than the individual
projections) and match their distribution to that of the raw
dataset. Doing so would allow CryoGAN to bypass particle
picking. Some reconstruction approaches [76], [77] have already
attempted to bypass the particle-picking procedure, but with
limited success so far.

Learning the Pose Distribution. Similar to likelihood-based
methods, the CryoGAN algorithm requires the specification of
the distribution of poses. In the case of CryoGAN, one could
also parameterize this distribution and learn its parameters dur-
ing the reconstruction procedure, along the lines of [35]. The
same approach could be used to calibrate the distribution of the
translations of the projections.

Extensions of the Mathematical Theory. On the theoretical
side, we currently have mathematical guarantees on the recovery
of volumes for which the assumed distribution of poses (be
it uniform or not) matches the distribution of the real data.
We have prior mathematical indications that this can also be
achieved when there is a certain mismatch between the assumed
distribution of poses and the actual one, given that an appropriate
GAN loss is used.

Removal of Corrupt Particles. Like all reconstruction algo-
rithms, CryoGAN can fail if the dataset contains too many
corrupted particle images, typically those with broken struc-
tures or strong optical aberrations. Several solutions could be
deployed to handle excessive outliers in the data distribution.
One approach would be to include a step that automatically spots
and discards corrupted data so that the discriminator never gets to
see them. Recent deep-learning-based approaches able to track
outliers in data could prove useful in this regard [46].

APPENDIX

A PROOF OF THEOREM 1

We prove the Theorem in three steps. First, we consider
the case when the forward model consists only of random
projections but lacks corruption by noise and CTF. The recovery
guarantee in this case has been given in [28, Theorem 3.1]; its
main concept will be used in the second part. In the second
step, we prove the recovery when the forward model consists of
random projections and CTF but lacks corruption by noise. In
the third step, we prove recovery for the full forward model that
includes noise.
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A. Notations and Preliminaries

We begin by introducing notations, for which we follow [28].
Let SO(3) be the space of the special orthonormal matrices

and D be the Borel σ−algebra induced using the standard
Riemannian metric on SO(3). Then, (SO(3),D) describes the
measurable space of orthonormal matrices. Let ΔW

N = {x ∈
RN : ‖x‖2 ≤ W} for some W ∈ R+. By (L2,B), we denote
the measurable space of all the square-integrable functions sup-
ported in ΔW

2 with Borel σ−algebra B induced by the L2-norm.
We denote by F the set of all the functions supported in ΔW

3 ,
which are nonnegative and essentially bounded.

For brevity, we use in the next two steps of the proof general
f ∈ F and g ∈ F instead of ftrue and frec, pθ instead of ptrueθ

and precθ , and pc instead of ptruec and precθ . Note that, by the
assumptions of Theorem 1, ptrueθ = precθ and ptruec = precc .

For any f ∈ F and A ∈ SO(3), we denote y = PA{f} =∫∞
−∞ Af(x1, x2, x3) dx3, whereAf(x) = f(A−1x). Let pA be

a probability density on the space (SO(3),D). Note that there
is a bijective mapping from θ in Theorem 1 and A. In fact,
A represents the rotation matrix associated with the projection
angle θ. In this way, pA is directly associated with the pose
distribution pθ .

We denote by Ψ the normalized Haar measure on (SO(3),D)
and by ΨA the measure associated with pA such that ΨA[·] =∫
(a∈·) pA(a)Ψ[ da].

For a given f ∈ F , the density pA induces a probability
measure Pproj(·|f) on the space (L2,B) through the mapping
PA{f} such that

Pproj(·|f) = ΨA[{A ∈ SO(3) : PA{f} ∈ ·}]. (15)

When pA is uniform on SO(3), one has that

Pproj(·|f) = Pproj(·|Rf), ∀f ∈ F and R ∈ O(3), (16)

where O3 is the space of all orthogonal matrices such that
detA ∈ {−1, 1}. The invariance in (16) is true since

Pproj(·|f) = Ψ[{A ∈ SO(3) : PA{f} = ·}]
= Ψ[{A ∈ SO(3) : PR−1A{Rf} = ·}]
= Ψ[{RA′ ∈ SO(3) : PA′ {Rf} = ·}]
= Ψ[{A′ ∈ SO(3) : PA′ {Rf} = ·}], (17)

where A′ = R−1A and the last equality follows from the right
invariance of Haar measure. We defineG{F} = {γA : A ∈ O3}
such that

(γAf)(·) = f(A−1·), ∀A ∈ O(3), f ∈ F . (18)

We define the shape [f ] as an orbit of f under the influence of
G such that [f ] = {γAf : γA ∈ G}. When pA is uniform, the
shape [f ] is composed of all the rotations and reflections of f .

B. Recovery in the Absence of CTF and Noise

We now consider a simple forward model consisting only of a
projection operation. The guarantee of recovery for this case was
given in [28, Theorem 3.1], which we now restate and discuss
briefly.

Theorem 2 ([28, Theorem 3.1]): Let pA be any bounded
distribution on SO(3) and let the assumptions of Theorem 1
be true; then, ∀f, g ∈ F ,

[f ] �= [g] ⇒ Pproj(·|f)⊥Pproj(·|g). (19)

Sketch of the Proof: Without loss of generality, we provide
the sketch of the proof for the case when pA is uniform. For the
case when pA is nonuniform the argument remains the same,
provided that ΨA associated with the nonuniform distribution
pA is absolutely continuous with respect to Ψ (ΨA � Ψ). This
has been stated in [28]. Since we assume pA to be bounded, this
condition is satisfied. The only difference here with respect to
the uniform distribution is that the orbit of f and g are more
restricted than O(3).

The proof first uses [78, Proposition 7.8] which we restate
here as Proposition 1.

Proposition 1 ([78, Proposition 7.8]): Let f ∈ F and let SA

be an uncountably infinite subset of SO(3). Then, f is deter-
mined by the collection {PA{f}}A∈SA

ordered with respect to
A ∈ SA.

Note that this proposition assumes that the angles of
the projections are known. Even though the angles are un-
known in our case, we shall see that this proposition remains
useful.

We now want to determine how different Pproj(.|f) and
Pproj(.|g) are for any given f and g. For this, we use the equality

TV(P1,P2) = 2 inf
γ∈Π(P1,P2)

E(y1,y2)∼γ [1y1 �=y2
], (20)

where TV is the total-variation distance and Π(P1,P2) is the set
of all the joint distributions γ(y1, y2) whose marginals are P1

and P2 [61]. In fact, E[1y1 �=y2
] is equal to the probability of the

event y1 �= y2. In our context, this translates into

TV(Pproj(.|f),Pproj(.|g)) = 2 inf
γ∈Ξ

Prob(y1 �= y2), (21)

where Ξ = Π(Pproj(.|f),Pproj(.|g)) and (y1, y2) ∼ γ. The op-
timum is achieved at the extrema, which are sparse joint distri-
butions and are such that the variable y2 is a function of y1. For
any arbitrary joint distribution (or coupling) of this form, the
proof then assigns a measurable function h : SO(3) → SO(3)
such that (y1, y2) = (PA{f},Ph(A){g}) for A ∼ pA.

We can then write that

Ψ[{A ∈ SO(3) : Ph(A){g} ∈ ·}] = Pproj(·|g). (22)

The task now is to estimate Prob(y1 �= y2), where (y1, y2) =
(PA{f},Ph(A){g}) for A ∼ pA.

When h is continuous, Proposition 1 implies that, if [f ] �= [g],
then

Ψ[{A ∈ SO(3) : ‖PA{f} − Ph(A){g}‖2 > 0}] = 1. (23)

When the function h is discontinuous, the proof uses Lusin’s
theorem to approximate h by a continuous function. Lusin’s
theorem states that, for any δ > 0, there exists an hδ such that
h(A) = hδ(A), ∀A ∈ Hδ and Ψ[SO(3)|Hδ] < δ. This then



772 IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING, VOL. 7, 2021

leads to

Ψ[{A ∈ SO(3) : ‖PA{f} − Ph(A){g}‖2 > 0}] ≥ Ψ(Hδ)

≥ 1− δ.
(24)

Since δ is arbitrarily small, the event {PA{f} �= Ph(A){g}} has
probability 1.

In conclusion, for any arbitrary coupling, the event
{PA{f} �= Ph(A){g}} has probability 1 if [f ] �= [g]. This im-
plies that, when [f ] and [g] are not the same, the total-variation
distance between Pproj(·|f) and Pproj(·|g) is 2. This ensures that
the two probability measures are mutually singular, meaning
that the intersection of their support has zero measure. This
concludes the proof.

C. Recovery in the Presence of CTF and Absence of Noise

We now extend the previous result to the case when the CTF
is also present in the forward model. For the sake of simplicity,
we do not take into account shifts in the forward model. Note
that it is trivial to generalize the results to shifts since they do
not affect the information content in the projections, only their
location.

We assume that c ∼ pc such that the support of pc is in
some bounded region C ⊂ R3. We denote by Ψc[·] the measure
associated with pc on the space C.

We denote by (SO(3)× C) the product space of SO(3) and
C, and by ΨA,c the measure on this product space. We then
define

Pproj,CTF(·|f) =
ΨA,c[{(A, c) ∈ (SO(3)× C) : Cc ∗ PA{f} ∈ ·}], (25)

where Cc is the space-domain CTF given in the Supplementary
Materials.

Theorem 3: Let pA be a bounded probability distribution on
SO(3), pc be a distribution of the CTF with parameters c ∈ C,
and let the assumptions of Theorem 1 be true; then, ∀f, g ∈ F ,

[f ] �= [g] ⇒ Pproj,CTF(·|f)⊥Pproj,CTF(·|g). (26)

Proof: Similarly to the previous proof, we show that the
TV distance between Pproj,CTF(·|f) and Pproj,CTF(·|g) is 2
when [f ] and [g] are distinct. For simplification, we assume
that pA is uniform. (The proof essentially remains the same
when this is not the case.) We need to show that Prob(y1 �=
y2) = 1, where (y1, y2) ∼ γ for any arbitrary coupling γ of
Pproj,CTF(·|f) and Pproj,CTF(·|g). For an arbitrary coupling
γ such that Prob(y1 �= y2) is minimum, we again assign h :
(SO(3)× C) → (SO(3)× C) such that

(y1, y2) = (Cc ∗ PA{f}, Ch1(A,c) ∗ Ph0(A,c){g}), (27)

where A ∼ pA, c ∼ pc, and where h0 : (SO(3)× C) →
SO(3) and h1 : (SO(3)× C) → C are such that h(A, c) =
(h0(A, c), h1(A, c)). This implies that

Pproj,CTF(·|g) = ΨA,c[{(A, c) ∈ (SO(3)× C)

: Ch1(A,c) ∗ Ph0(A,c){g} ∈ ·}]. (28)

We now show that, for any h, the event {y1 �= y2} has
probability 1.

We first assume that h is continuous and follow the strategy
of [28, Theorem 3.1]. Since SO(3) is transitive, we can write
that h(A, c) = (AΓA,c, h1(A, c)).

As h is continuous, so is ΓA,c. Let {Am
n × Cm

n }nm=1 be
a collection of n disjoint sets which creates the partition of
(SO(3)× C). These partitions are such that for any m, there
exists a km such that {Am

n+1 × Cm
n+1} ⊂ {Akm

n × Ckm
n }. This

means that, as n increases, the partitions become finer. We now
define

hn(A, c) = (AΓm
n , hm

n,1(A, c)) ∀ (A, c) ∈ {Am
n × Cm

n },
(29)

such that

Γm
n = arg minΓ∈η min

(A,c)∈{Ām
n ×C̄m

n }
‖PA{f} − PAΓ{g}‖, (30)

where η = {ΓA,c : (A, c) ∈ {Ām
n × C̄m

n }}, Ām
n , and C̄m

n are
the closures of Am

n and Cm
n , respectively. The sequence hn

converges to h as n → ∞. We denote

K = {(A, c) ∈ (SO(3)× C)
: ‖Cc ∗ PA{f} − Ch1(A,c) ∗ PAΓA

{g}‖ > 0}, (31)

Kn = {(A, c) ∈ (Am
n × Cm

n )

: ‖Cc ∗ PA{f} − Ch1(A,c) ∗ PA{Γm
n g}‖ > 0}. (32)

Similarly to [28, Theorem 3.1], we can then show that

ΨA,d[K] = lim
n→∞

m=n∑
m=1

ΨA,d[Km]. (33)

We invoke Proposition 5, which gives that ΨA,c[Kn] =
ΨA,c[(Am

n × Cm
n )]. Therefore, ΨA,d[K] = ΨA,c[(SO(3)×

C)] = 1. This means that, when h is continuous, the event
{y1 �= y2} has probability 1 if [f ] �= [g].

When h is discontinuous, we can invoke Lusin’s the-
orem to claim the same, similarly to Theorem 2. This
means that, for any h, if [f ] �= [g], then the probability of
the event {y1 �= y2} is 1. Therefore, the TV distance be-
tween Pproj,CTF(·|f) and Pproj,CTF(·|g) is 2, yielding that
Pproj,CTF(·|f)⊥Pproj,CTF(·|g). This concludes the proof.

D. Recovery for the Full Forward Model

We now consider the case with the full forward model. The
proof for this case hinges on the result from Appendix A–C.
For clarity, we again bring back the notation used in Theorem
1. We denote the probability measure of yclean = Hϕftrue with
P true
clean(·|ftrue). Similarly, P rec

clean(·|frec) is obtained from frec.
(Recall that ϕ is a random vector that represents imaging pa-
rameters; therefore, yclean is also a random entity.) We shall
prove the following in sequence:

P (·|ftrue) = P (·|frec) ⇔ Pclean(·|ftrue) = Pclean(·|frec),
(34)
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and

Pclean(·|ftrue) = Pclean(·|frec) ⇔ frec = G(ftrue). (35)

For the first part, we progress by noting that y = yclean + n.
Recall that the characteristic function of the probability measure
associated to the sum of two random variables is the product
of their characteristic functions. Mathematically, P̂ (·|ftrue) =
P̂clean(·|ftrue)P̂ true

n and P̂ (·|frec) = P̂clean(·|frec)P̂ rec
n .

By Assumption 1), we can now write that

P̂clean(·|ftrue) = P̂(·|ftrue)

P̂ true
n

and P̂clean(·|frec) = P̂(·|frec)
P̂ rec
n

.

Then, given that P (·|ftrue) = P (·|frec) and P true
n = P rec

n , it
is easy to conclude that Pclean(·|ftrue) = Pclean(·|frec).

For the second part, we use Theorem 3 which is applicable to
the case when only noise is absent from the forward model. We
have that f = ftrue, g = frec, and Pproj,CTF = Pclean. Then,
given that ptruec = precc = pc and ptrueθ = precθ = pθ , Theorem 3
implies that Pclean(·|ftrue) �⊥ Pclean(·|frec) ⇒ [frec] = [ftrue].
Since Pclean(·|ftrue) = Pclean(·|frec) it follows that frec =
G(ftrue). This concludes the proof.
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