
IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING, VOL. 7, 2021 837

Polyblur: Removing Mild Blur by
Polynomial Reblurring

Mauricio Delbracio , Member, IEEE, Ignacio Garcia-Dorado, Sungjoon Choi, Damien Kelly,
and Peyman Milanfar, Fellow, IEEE

Abstract—We present a highly efficient blind restoration method
to remove mild blur in natural images. Contrary to the mainstream,
we focus on removing slight blur that is often present, damaging
image quality and commonly generated by small out-of-focus,
lens blur, or slight camera motion. The proposed algorithm first
estimates image blur and then compensates for it by combining
multiple applications of the estimated blur in a principled way. To
estimate blur we introduce a simple yet robust algorithm based
on empirical observations about the distribution of the gradient in
sharp natural images. Our experiments show that, in the context
of mild blur, the proposed method outperforms traditional and
modern blind deblurring methods and runs in a fraction of the time.
Our method can be used to blindly correct blur before applying
off-the-shelf deep super-resolution methods leading to superior
results than other highly complex and computationally demanding
techniques. The proposed method estimates and removes mild blur
from a 12MP image on a modern mobile phone in a fraction of a
second.

Index Terms—Efficient image deblurring, mild blur estimation,
mobile imaging.

I. INTRODUCTION

IMAGE sharpness is undoubtedly one of the most relevant
attributes defining the visual quality of a photograph. Blur is

caused by numerous factors such as the camera’s focus not being
correctly adjusted, objects appearing at different depths, or when
relative motion between the camera and the scene occurs during
exposure. Even in perfect conditions, there are unavoidable
physical limitations that introduce blur. Light diffraction due
to the finite lens aperture, integration of the light in the sensor
and other possible lens aberrations introduce blur leading to a
loss of details. Additionally, other components of the image pro-
cessing pipeline itself, particularly demosaicing and denoising,
can introduce blur.

Removing blur from images is a longstanding problem in im-
age processing and computational photography spanning more
than 50 years [1]–[3]. Progress has been clear and sustained.
From image enhancement algorithms [4], [5], blind and non-
blind deconvolution methods [6]–[9] where sophisticated priors

Manuscript received March 9, 2021; revised June 4, 2021; accepted July 12,
2021. Date of publication July 30, 2021; date of current version August 12, 2021.
(Corresponding author: Mauricio Delbracio.)

The authors are with Google Research, Mountain View, CA 94043 USA (e-
mail: mdelbra@google.com; ignaciod@google.com; sungjoonc@google.com;
damienkelly@google.com; milanfar@google.com).

This article has supplementary downloadable material available at https://doi.
org/10.1109/TCI.2021.3100998, provided by the authors.

Digital Object Identifier 10.1109/TCI.2021.3100998

Fig. 1. Mild blur, as shown in these examples, can be efficiently (42 ms/MP on
a mid-range smartphone CPU) removed by combining multiple applications of
the estimated blur. Readers are encouraged to zoom-in for better visualization.

are combined with optimization schemes, to very recent years
with the incipient application of deep neural models [10]–[16].

Many of these methods are capable of processing significantly
degraded images revealing previously unseen image details. The
gain in quality is in many cases extraordinary, but impractical.
These methods make extensive use of prior information (learned
or modeled) producing images that are often unrealistic. This
is mainly because the inverse problem they tackle is seriously
ill-posed.

In this work, we detach ourselves from the current trend
and focus on the particular case where the blur in the image

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0001-7539-2991
mailto:mdelbra@google.com
mailto:ignaciod@google.com
mailto:sungjoonc@google.com
mailto:damienkelly@google.com
mailto:milanfar@google.com
https://doi.org/10.1109/TCI.2021.3100998

838 IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING, VOL. 7, 2021

Fig. 2. The deblurred image is generated by combining multiple re-applications of the estimated blur (polyblur).

is small. As we show in our experimental results, for this
case, the vast majority of existing methods generate notorious
image artifacts in addition to requiring great computational
power. This is mainly because most of the algorithms were not
specifically designed for this very common and practical use
case. We introduce a highly efficient blind image restoration
method that removes mild blur in natural images. The proposed
algorithm first estimates image blur and then compensates for
it by combining multiple applications of the estimated blur in
a principled way (Figure 2). The method is inspired by the fact
that the inverse of an operator that is close to the identity (e.g.,
mild blur), can be well approximated by means of a low-degree
polynomial on the operator itself. We design polynomial filters
that use the estimated blur as a base and approximate the inverse
without neglecting that image noise can get amplified.

The removal of blur commonly leads to the introduction of
halos (oversharpening) mostly noticeable near image edges. To
address this, we present a mathematical characterization of halos
and propose a blending mechanism to render an artifact-free final
image. This step, which is also highly efficient, is important to
achieve consistent high quality.

Experiments with both real and synthetic data show that,
in the context of mild blur in natural images, our proposed
method outperforms traditional and modern blind deblurring
methods and runs in a fraction of the time. The simplicity of
the polynomial filter, together with the choice of the Gaussian
function as blur the model, enables a highly efficient imple-
mentation. The method runs at interactive rates so it can be
used on mobile devices. Polyblur can estimate and remove
mild blur on a 12MP image on a modern mobile phone in a
fraction of a second. Additionally, we show that Polyblur can
be used to blindly correct blur on an image before applying
an off-the-shelf deep super-resolution method. Learning-based
single image super-resolution algorithms (SISR) are usually
trained on images where the degradation operator has been
modeled in an over-simplistic way (typically by bilinear or
bicubic blur). Polyblur in combination with a standard deep
SISR network leads to superior results than other highly complex
and computationally demanding methods.
Contributions. We introduce a novel method to estimate and
remove mild blur (very common in mobile photography) that
is (i) highly efficient and simple, (ii) theoretically sound, and
(iii) produces competitive or better results while being orders of
magnitude faster. Additionally, our method can blindly correct
blur before applying off-the-shelf deep super-resolution meth-
ods leading to superior results vs. highly complex and compu-
tationally demanding techniques. Our algorithm’s components
are built in a principled way: from explicit, empirically verified

assumptions in the blur estimation, to mathematical models in
the polynomial deblurring and halo removal. Each component
is designed to maximize efficiency (12MP image processed in
milliseconds on a mobile CPU).

The remainder of the paper is organized as follows. In Sec-
tion II we discuss the closely related work, while in Section III
we present the polynomial approximation of the blur inverse and
the adopted polynomial deblurring family. Section IV introduces
the anisotropic Gaussian blur model and the necessary tools
that allow an efficient estimation of the parameters. Section V
summarizes the main components of the proposed blind estima-
tion and removal algorithm, and experimental results on real and
simulated data are shown in Section VI. Conclusions are finally
summarized in Section VII.

II. RELATED WORK

Image blur is generally modeled as a linear operator acting
on a sharp latent image. If the blur is shift-invariant then the
blurring operation amounts to a convolution with a blur kernel.
This implies,

v = k ∗ u+ n, (1)

where v is the captured image, u the underlying sharp image, k
the unknown blur kernel and n is additive noise. In what follows
we review the different families of methods that remove image
blur.
Blind deconvolution and variational optimization. The typi-
cal approach to image deblurring is by formulating the problem
as one of blind deconvolution where the goal is to recover the
sharp image u without knowing the blur kernel k [2], [3], [17].
Most blind deconvolution methods run on two steps: a blur
kernel k is first estimated and then a non-blind deconvolution
technique is applied [6], [18]–[22]. Fergus et al. [6] is one of the
best examples of the blind deconvolution variational family that
seeks to combine image priors, assumptions on the blurring oper-
ator, and optimization frameworks, to estimate both the blurring
kernel and the sharp image [8], [9], [22]–[27]. Estimating the
blur kernel is easier than jointly estimating the kernel and the
sharp image together. Levin et al. [7], [28] show that it is better to
first solve a maximum a posteriori estimation of the kernel than
the latent image and the kernel simultaneously. Notwithstanding,
even in non-blind deblurring, the significant attenuation of the
image spectrum by the blur and model imperfections, lead to an
ill-posed inverse problem [29], [30].
Sharpening methods. Sharpening methods aim to reduce mild
blur and increase overall image contrast by locally modifying the
image. Unsharp masking, arguably the most popular sharpening

DELBRACIO et al.: POLYBLUR: REMOVING MILD BLUR BY POLYNOMIAL REBLURRING 839

algorithm is very sensitive to noise and generally leads to over-
sharpening artifacts [31], [32]. Zhu and Milanfar [33] propose
an adaptive sharpening method that uses the local structure
and a local sharpness measure to address noise reduction and
sharpening simultaneously. Bilateral filtering [34], and its many
variants/adaptations [4], [5], [35], [36] can be used to enhance
the local contrast and high frequency details of an image. The
overall idea is to proceed similarly to that of unsharp masking:
the input image is filtered and then a proportion of the residual
image is added back to the original input. This procedure boosts
high-frequencies that are removed by the adaptive filter. Since
sharpening methods do not explicitly estimate image blur, their
deblurring performance is limited. In fact, sharpening algorithms
are strictly local operators and do not have access to additional
information from outside the local neighborhood. Whereas de-
blurring algorithms like ours use the estimation of blur, which
in general is global or done on a larger neighborhood, to remove
the blur.
Deblurring meets deep-learning. In the past five years, with
the popularization of deep convolutional networks several image
and video deblurring methods have been introduced [10]–[14],
[16], [37]–[42]. Most of these methods target strong motion
blur and are in general trained with large datasets with realis-
tically synthesized image blur. Efficient deblurring using deep
models is a very challenging task [43] particularly on mobile de-
vices [44]. In fact, one major difficulty for training deep deblur-
ring models is the challenge of collecting sharp and blurry paired
image data needed for supervised training. To bypass this costly
process, different techniques have been employed, from directly
simulating motion blur kernels [37], [40], or using high frame
rate videos and averaging successive frames mimicking a longer
capture exposure [13], [38]. Most methods are trained to predict
the sharp image using the blurry image as the only input and
target minimizing some pixel or perceptual loss. In [45], authors
present a video deblurring framework that jointly estimates the
optical flow and the latent sharp frames, enforcing a reblurring
consistency model that takes into account the estimated optical
flow and the sharp images. Other techniques have exploited the
use of adversarial training as a loss function [11], [12], [15],
[39] and also to generate synthetic realistic data [15].

Blind deconvolution methods do a remarkable job when the
image is seriously damaged and manage to enhance very low
quality images. However, their performance in the particular
case where blur is mild is limited since they introduce, in general,
noticeable artifacts and have a significant computational cost.
At the other extreme, adaptive sharpening methods do a fine
job boosting image contrast when the input image has very
little blur. Since they do not incorporate any explicit measure
of the blur, their deblurring capabilities are restricted. Deep
learning based methods require high computational cost, making
them impractical in many contexts. This work focuses on the
problem of estimating and removing slight blur. As we show
in the experimental part, in this setting, the proposed method
produces superior results to blind deconvolution techniques and
other popular adaptive sharpening algorithms, and similar results
vs. advanced deep networks while being significantly more
efficient.

III. DEBLURRING WITH POLYNOMIAL FILTERS

A. Approximating the Blur Inverse

Let us first assume that we have an estimation of the blur
kernel k. To recover the image u we need to solve an inverse
(deconvolution) problem. If the blur kernel is very large, the
inversion is significantly ill-posed and some form of image prior
will be required. In this work, we assume that the image blur
is mild (see examples on Figure 1) so, as we will show in
the experimental section, there is no need to incorporate any
sophisticated image prior. Instead we proceed by building a
linear restoration filter constructed from the estimated blur. An
interesting observation [46]–[48] is that by carefully combining
different iterations of the blur operator on the blurry image we
can approximate the inverse of the blur.

One way to illustrate this is as follows.
Lemma 1: Let K be the convolution operator with the blur

kernel k and I the identity operator, then if ‖I −K‖ < 1 under
some matrix norm, K−1 the inverse of K exists and,

K−1 =
∞∑
i=0

(I −K)i. (2)

The proof is a direct consequence of the convergence of the
geometric series. If we assume circular boundary conditions
for the convolution, then the eigenvectors of the matrix K are
the Fourier modes of k. This implies that (I −K)i = FH(I −
D)iF , where F is the Fourier basis, FH is the Hermitian
transpose of F , andD is a diagonal matrix with the eigenvalues
of K.

In particular, the series converges if the kernel Fourier coef-
ficients k̂(ζ) satisfy |k̂(ζ)− 1| < 1. In the case of blur filters
that conserve the overall luminosity, a reasonable hypothesis is
that k(x) ≥ 0, and

∫
k(x)dx = 1. This implies that |k̂(ζ)| ≤ 1

which is not enough to guarantee convergence.
Polynomial filters. According to Lemma 1 we can approximate
the inverse with a polynomial filter using the blur kernel as a
base. For instance, if we truncate the power series and keep up
to order 3, the polynomial approximate inverse of K is,

K inv
3 = 4I − 6K + 4K2 −K3. (3)

This motivates the use of more general polynomials

p(K) =
d∑
i=0

aiK
i, (4)

where the order d and coefficients (a0, . . . , ad) can be designed
to amplify or attenuate differently depending on how the blur is
affecting a particular component.
Symmetric filters with non-negative Fourier coefficients. Let
us first assume that the blur filter k(x) is symmetric k(x) =
k(−x), and has non-negative Fourier coefficients. We will later
show how we can generalize the approach to any filter. In this
setting, k̂(ζ) the Fourier coefficients of the filter k are in [0,1].
The Fourier coefficients of the polynomial filter are related with
the ones from the base filter through the same polynomial,

840 IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING, VOL. 7, 2021

Fig. 3. Polynomial filters can be analyzed directly on the Real line. We
present examples of the proposed p3,α,b family, the third order polynomial
approximation of the inverse given by Eq. (3) (poly-inverse3). Following
Eq. (5) a polynomial filter can be analyzed in the Fourier domain by looking into
how x ∈ [0, 1] is mapped by the polynomial. This reflects how the differently
attenuated Fourier components get amplified or attenuated by the polynomial
filter. The left figure can be thought of as essentially the magnitude frequency
response of the proposed filters.

that is,

p̂(k)(ζ) =
d∑
i=0

aik̂(ζ). (5)

A polynomial filter can be analyzed in the Fourier domain
by looking into how the interval I = [0, 1] is mapped by the
polynomial. This reflects how the differently attenuated Fourier
components get amplified or attenuated by the polynomial filter.
In Figure 3 we show a plot of different example polynomials
p(x) when applied to a signal x ∈ I .

If we apply the polynomial filter to an image v that has been
affected by the same base blur k as the one used to build the
polynomial filter, we get

p(K)v = p(K)Ku+ p(K)n, (6)

where it becomes evident that there is a trade-off between
inverting the blur (i.e., p(K)K ≈ Id.) and avoiding noise am-
plification, i.e., p(K)n ≈ 0. Our goal is to design polynomials
that (i) try to invert the effect of blur in the frequencies that have
not been significantly attenuated, and (ii) avoid over-amplifying
frequencies affected by the blur. The right plot in Figure 3
shows p(x)x, which can be interpreted as the combined effect
of applying the polynomial on a signal that has been attenuated
by the same blur.

B. Designing Deblurring Polynomial Filters

We want to build a polynomial filter p(K)K ≈ Id, whenK is
close to the identity, or in terms of the polynomial, p(x) ≈ 1/x
if x ≈ 1. Note that a Taylor expansion of 1/x at x = 1 of degree
d, leads to the polynomial filter from truncating (2) to degree d.
This polynomial does a good job approximating the inverse, but
significantly amplifies noise, particularly in the most attenuated
components. Instead, we propose to approximate the inverse but
have better control of how noise is amplified. Let us assume we
design a polynomial of degree d, i.e., we need to define the
d+ 1 coefficients. We will approximate the inverse by forcing
the polynomial to have equal derivatives at the ones of the inverse

Fig. 4. Effect of using different polynomials from the p3,α,b family. Increas-
ing α boosts mid-frequencies (first row), increasing b leads to more sharper
but slightly noisier results. Readers are encouraged to zoom-in for better
visualization.

function at x = 1. This is done up to order d− 2,

p(i)(x = 1) = (−1)i i!, (7)

for i = 1, . . . , d− 2. We also have the additional constraint
that p(x = 1) = 1 (no change in luminosity). The remaining
two degrees of freedom are left as design parameters. We can
control how the mid-frequencies get amplified by controlling
p(d−1)(x = 1) = α, and also, how noise is amplified at the
frequencies that are completely attenuated by the blur, by con-
trolling p(x = 0) = b. This system of d+ 1 linear equations
leads to a (closed-form) family of polynomials, pd,α,b. The value
of α and b should vary in a range close to the one given by the
truncated power series, i.e., α = (−1)dd! and b = d+ 1.

The polynomial computational cost is proportional to the
order, so the lower, the better. We choose order three since it is
the lowest order to control both mid-frequencies boosting (α),
and noise amplification (b). The impact of using a low-order
polynomial is that in a single application of the filter blur may
still remain. However, the remaining blur may be removed by
repeated applications of the filter as we show in the experimental
results. The polynomial filter family of degree d = 3 is

p3,α,b(x) = (α/2− b+ 2)x3 + (3b− α− 6)x2

+(5− 3b+ α/2)x+ b. (8)

In Figure 3 we show different polynomials and how their shape
is affected by the design parameters α and b. All the results
presented in this article are with polynomials of this third order
family. As an illustration, we show in Figure 4 the behavior using
different coefficients in the polynomial deblurring.

C. Generalization to Any Blur Filter

Kernels with negative or complex Fourier coefficients (as the
one shown in Fig. 5 a) cannot be directly deblurred using our
Polynomial filtering (Fig. 5 b). A way around this restriction is
to apply a correction filter ck(x) to the input image so that total
blur kernel h = ck ∗ k has non-negative Fourier coefficients and
the solution to the deblurring problem remains the same,

v = u ∗ k =⇒ veq = v ∗ ck = u ∗ k ∗ ck = u ∗ keq. (9)

DELBRACIO et al.: POLYBLUR: REMOVING MILD BLUR BY POLYNOMIAL REBLURRING 841

Fig. 5. Kernels with negative or complex Fourier coefficients (as the one shown
in blue) need to be compensated before applying our polynomial deblurring. In
blue the input blur kernel k, in orange each respective correction filter ck , while
in red corrected kernels h = ck ∗ k used in the Polynomial deblurring (b-d).

Filtering the image with the flipped kernel, i.e., ck(x) = k(−x)
will lead to h(x) having real non-negative Fourier coefficients
ĥ(ζ) = |k̂(ζ)|2. However, this correction filter introduces addi-
tional blur to the image, making the deblurring problem more
ill-posed than the original one (Fig. 5 c). An alternative correc-
tion filter is to compensate for the phase but without introducing
any additional attenuation of the spectra. This can be done by

the pure phase filter, ĉk(ζ) =
¯̂
k(ζ)/|k̂(ζ)|, where ¯̂

k(ζ) denotes
the complex conjugate of k̂(ζ). ck is a pure phase filter, i.e., it
has a constant Fourier magnitude of one at all frequencies.

In practice, given v we can estimate k, and compute ck. Then,
we compute veq and keq. The solution u, to veq = u ∗ keq is the
same as in the original problem but keq has non-negative Fourier
coefficients allowing us to apply our polynomial deblurring.
Note that in the Gaussian blur case no correction is needed.
As can be shown in the example in Figure 5 d, phase correction
leads to a deblurred artifact-free image.

IV. PARAMETRIC MILD BLUR MODEL AND ESTIMATION

Since we target mild-blur removal, there is not much gain in
having a very fine model of the blur. We thus propose to model
the blur kernel with an anisotropic Gaussian function, specified
with three parameters: σ0, the standard deviation of the main
axis, ρ = σ1/σ0, the ratio between the the principal axis and the
orthogonal one standard deviations, and θ, the angle between the
major axis and the horizontal. Thus, the Gaussian blur kernel at
pixel (x, y) is:

k(x, y) = Z exp
(−(a0x

2 + 2a1xy + a2y
2)
)
, (10)

where a0 = cos(θ)2

2σ2
0

+ sin(θ)2

2ρ2σ2
0

, a1 = sin(2θ)
4σ2

0
(1
ρ2 − 1), a2 =

sin(θ)2

2σ2
0

+ cos(θ)2

2ρ2σ2
0

and Z is a normalization constant so the area
of the kernel is one. Although this is a rough model for arbitrary
blur in images, if the blur is small, either directional or isotropic,
the anisotropic Gaussian parameterization is reasonable. Fig-
ure 6(left) shows examples of Gaussian blur kernels.

A. From Natural Image Model to Blur Estimation

Estimating a blur kernel given only an image is a challenging
ill-posed problem. It is necessary to make some assumptions,
for instance by using an image prior (learned from data or

Fig. 6. Gaussian blur model and examples (left). The middle plot shows the
relationship between the computed gradient feature fθ and σ0 on simulated
images (each point represents an image), and the calibrated model (Eq. (13), red
curve). The right plot shows the error on the estimation of the blur angle θ, as
a function of ρ. Angle estimation error is very low for anisotropic (directional)
kernels (low ρ value). The color in middle and right panels represents the density
of points, low density in blue, high density in yellow.

from a statistical or any kind of mathematical model). In this
work, we focus on efficiency and require that the estimation
of the blur is very fast. Thus, variational models, for instance
those typically involved in blind-deconvolution approaches are
prohibitively expensive. Instead, we will rely on the following
rough observations about the image gradient distribution.

Assumption 1: In a sharp image, the maximum value of the
image gradient in any direction is mostly constant and roughly
independent of the image.

Assumption 2: If a sharp image is affected by Gaussian blur,
the blur level in the direction of the principal axis will be linearly
related to the inverse of the maximum image gradient in the
principal directions.

The validity of these assumptions is discussed in Appendix A.
Based on these assumptions we proceed as follows. We first
estimate the maximum magnitude of the image derivative at all
possible orientations and then take the minimum value among
them. This leads to

fθ = min
ψ∈[0,π)

fψ = min
ψ∈[0,π)

max
x

|∇ψv(x)|, (11)

where v(x) is the input image, and ∇ψf(x) = ∇v(x) ·
(cosψ, sinψ), is the directional derivative of v at direction ψ.
Then, the blur kernel parameters are

θ = arg minψ∈[0,π)fψ, σ0 =
c

fθ
and σ1 =

c

fθ⊥
, (12)

where c is a coefficient controlling the assumed linear relation
between the gradient feature and the level of blur.
Observation. The estimation of the image gradient at any given
image pixel introduces additional blur (since some sort of inter-
polation is needed). This will be in addition to the image blur
that the image already has. Let us assume the blur estimation
introduces an isotropic Gaussian blur of strength σb, then the
total blur of the image will be approximately σ2

0T
= σ2

b + σ2
0

(due to the semigroup property of Gaussian function). This leads
to

σ0 =

√
c2

f2θ
− σ2

b , σ1 =

√
c2

f2θ⊥
− σ2

b , (13)

where c and σb are two parameters to be calibrated.

842 IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING, VOL. 7, 2021

B. Model Calibration.

To calibrate the parameters c and σb we proceed as follows.
Given a set of sharp high quality images, we simulateK = 1000
random Gaussian blurry images, by randomly sampling the blur
space and the image set. The Gaussian blur kernels are generated
by sampling random values for σ0 ∈ [0.3, 4] and ρ ∈ [0.15, 1].
Additive Gaussian white noise of standard deviation 1% is added
to each simulated blurry image.

For each of the blurry images we compute the gradient fea-
tures and the maximum and minimum values according to (11).
The parameters c and σb are estimated by minimizing the mean
absolute error. Figure 6 presents the calibration results. Addi-
tional details are included in Appendix A.

V. POLYBLUR IMPLEMENTATION DETAILS

In this section we describe a Polyblur implementation to allow
us to achieve the performance to deblur a 12MP image on a mod-
ern mobile platform in a fraction of a second. The core parts of
the algorithm are implemented using the language Halide [49].
Halide separates the algorithm implementation from its execu-
tion schedule (i.e., loop nesting, parallelization, etc) enabling us
us to more easily fuse pipeline stages for locality and to make
use of SIMD and thread parallelism. Note that despite of this
choice, most part of the algorithm can run in parallel and a
parallel implementation could take full advantage of the parallel
processing power of modern GPUs.
Blur estimation. We follow Sec. IV-A to estimate the blur. As
the first step we normalize the image using quantiles (q = 0.0001
and 1− q) to be robust to outliers. From the image gradient we
compute the directional derivative at m = 6 angles uniformly
covering [0, π). The maximum direction of the magnitude at each
angle is found and among the m maximum values, we find the
minimum value and angle (f0, θ0) through bicubic interpolation.
Using (13) we compute σ0 and σ1. More details about the blur
estimation, as long as a pseudo-code for the blur estimation step,
are included in Appendix B.
Deblurring step. The deblurring filter has a closed form given
by the estimated blur and the polynomial in (8). In the case of
using a third order polynomial, the restoration filter support is
roughly three times the one of the estimated base blur. Large
blur kernel convolutions can be efficiently computed in Fourier
domain. If the Gaussian blur is separable, the convolution can be
efficiently computed in-place. In this case, we do not compute
the polynomial filter and directly apply and accumulate repeated
applications of the Gaussian blur as follows:

v0 = adv, vi = k ∗ vi−1 + ad−iv, for i=1, . . . , d, (14)

where v is the input blurry image, k the estimated blur kernel,
and a0, . . . , ad the deblurring polynomial coefficients, and vd
the deblurred output image. Non-separable Gaussian filtering
can also be efficiently computed by two 1D Gaussian filters in
non-orthogonal axis. This can further optimize our procedure.
Halo detection and removal. Halos can be generated due to
misestimation of blur or more generally due to model mismatch.
Halos appear at pixels where the blurry image and restored
image have opposite gradients (gradient reversal). Let v(x) be

Fig. 7. Halo Removal (HR). Top row shows a crop for the input image, the
deblurred one, and the final merge with the halo removal step. In the bottom we
show a profile (and a zoom-in on the right) of the insensitive values orthogonal
to the balloon boundary (orange segment). The gradient reversal has been
eliminated.

the blurry image and v̄(x) the deblurred one. Pixels with gradient
reversal are those whereM(x) = −∇v(x) · ∇v̄(x), is positive.

Let us compute a new image v̄z(x) formed as a per pixel
convex combination (blending) of the input image v(x) and the
deblurred one v̄(x) using a weights z(x) ∈ [0, 1],

vz(x) = z(x)v(x) + (1− z(x))v̄(x). (15)

We want to avoid halos in the final image vz(x), but keep as
much as possible of the deblurred one v̄(x). If z(x) does not
change too fast, then

∇vz(x) = z(x)∇v(x) + (1− z(x))∇v̄(x). (16)

To avoid halos on the final image we require∇v(x)·∇vz(x)>0.
Then, we get that for pixels where M(x) > 0, having

z(x) ≤ M(x)

‖∇v(x)‖2 +M(x)
,

leads to a new image that does not have any gradient reversal
introduced in the deblurring step. To keep as much as possible of
the deblurred image, z(x) should be as small as possible. Then
the final image is generated by adopting

z(x) = max

(
M(x)

‖∇v(x)‖2 +M(x)
, 0

)
, (17)

in the convex combination given by (15). Figure 7 shows an
example of a filtered image and the halo correction.
Polyblur iterated. To remove some remaining image blur, we
can re-apply Polyblur. This implies re-estimating the image blur
on the previous deblurred image, and applying a new polynomial
deblurring. In the next section we present some results when
iterating polyblur multiple times.

VI. EXPERIMENTS

We carried out a series of experiments to evaluate Polyblur and
compare against other blind deblurring [12], [14], [50]–[53] and
sharpening methods [33], [54]. The comparison is threefold: we
compare traditional metrics such as PSNR, SSIM and perceptual
ones such as LPIPS [55]; we do a visual inspection of artifacts
(qualitative); and we report processing times. We also present
results on images in the wild having mild blur. Finally, we show
how Polyblur can be used to remove blur before applying an
off-the-shelf image superresolution deep method. Table I shows

DELBRACIO et al.: POLYBLUR: REMOVING MILD BLUR BY POLYNOMIAL REBLURRING 843

TABLE I
TIMES IN MS RUN ON DESKTOP (MOBILE). DESKTOP: INTEL XEON HASWELL

2.3 GHZ, MOBILE: SNAPDRAGON 855

TABLE II
MILD DEBLURRING ON THE SYNTHETIC DATASET GENERATED FROM DIV2K.
LOWER LPIPS VALUES IMPLY BETTER QUALITY. POLYBLUR-N IT INDICATES

APPLYING POLYBLUR N TIMES, AND NOHR INDICATES POLYSHARP WITHOUT

THE HALO-REMOVAL STEP. CONVDEB [51]∗ DID NOT PRODUCE REASONABLE

RESULTS IN 32/100 IMAGES (AVERAGE VALUES ARE COMPUTED IN THE REST).
TIMES ARE IN MS (FOR A 1MP IMAGE), AND WE PRESENT THEM HERE AS AN

INDICATIVE REFERENCE. † INDICATES

GPU

average execution times for each step in the Polyblur algorithm.
Our method can process a 12MP image on a modern mobile
platform in 600 ms.
Comparison on simulated blur. We generated a mild-blur
dataset by artificially blurring sharp images from the DIV2K
validation dataset. Mild blur is simulated by applying a random
Gaussian kernel of different sizes, shapes, and orientations
(σ0 ∼ U [0.3, 4]). Additive white Gaussian noise of standard
deviation 1% is added on top. More details are included in the
supplementary material. Polyblur produces the best results in
terms of PSNR and MS-SSIM while being significantly faster
than most of the other deblurring methods (Table II). As shown in
Figure 8, Polyblur leads to naturally pleasant images, while most
of the compared methods introduce artifacts. The visual quality
of the output results is similar to highly complex methods such
as DeblurGAN-v2 [12]. Our CPU implementation of Polyblur
is still 50% faster than the highly optimized mobile version of
DeblurGANv2 that runs on GPU.

Re-applying Polyblur produces slightly worse quantitative
results on the simulated Gaussian blur dataset (Table II) but in
general leads to better qualitative results on real images where
blur might not be perfectly Gaussian (e.g., Figures 23–27 in the
supplemental material).
Dealing with noise and compression artifacts. If compu-
tational resources are available, a prefiltering step separating

Fig. 8. Comparison of Polyblur with other deblurring and adaptive sharpening
methods on synthetically blurred DIV2K dataset.

noise-like structure from the rest can be applied. If the input
image is very noisy or has compression artifacts, this prefiltering
step will keep Polyblur from amplifying artifacts present in the
image. Since the residual image can be added back at the end,
this step does not need to be carried out by a state-of-the-art
denoiser. Fig. 9 shows an example of Polyblur on a noisy and
compressed image. We evaluated two alternatives, the Pull-Push
denoiser [56] and the Domain Transform [57] edge-preserving
filter. In both cases we achieve the desired deblurring, and a
pleasant result.
Results on images in the wild. In Figure 1 we present a se-
lection of results of Polyblur applied to some images in the
wild. As shown, Polyblur manages to remove mild blur, as
the one present in most images, without introducing any new

844 IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING, VOL. 7, 2021

Fig. 9. Pre-filtering. When the input image presents noise and other artifacts,
Polyblur can amplify artifacts. As a pre-step, we may apply any filter that
separates high-frequency texture and other details [56], [57], apply Polyblur
(α=6, b=1), and finally add back the residual.

TABLE III
4X SUPER-RESOLUTION ON DIV2KRK DATASET [60]. POLYBLUR-N IT

INDICATES APPLYING POLYBLUR N TIMES. PSNR AND SSIM VALUES ARE

DIRECTLY TAKEN FROM [60], [61]. IN RED FONT THE BEST METHOD, IN BLUE

THE SECOND BEST

artifacts. Please refer to the supplemental material for com-
parison with other state-of-the-art deblurring and sharpening
methods.

Deblurring before super-resolution. Single image super-
resolution has seen remarkable progress in the last few years
mostly due the use of deep models trained on image datasets.
The common practice [58] is to simulate low-resolution train-
ing images by simply applying a bicubic downsampling op-
erator. Unfortunately, inference performance suffers signifi-
cantly if images do not tightly follow the training distribu-
tion. We evaluate the performance of applying Polyblur as a
pre-step before using an off-the-shelf deep network for doing
4× image upscaling. We trained from scratch an EDSR [59]
network with 32 layers and 64 filters using DIV2K training
dataset. We compare against KernelGAN [60] and the Cor-
rection filter introduced in [61]. Figure 10 shows examples of
applying Polyblur before upscaling the image. Table III shows
a quantitative comparison of our approach and the competi-
tors. Polyblur produces the best quantitative and qualitative
results.

VII. CONCLUSION

We introduced a highly efficient algorithm for estimating
and removing mild blur that is ubiquitously present in many
captured images (especially on handheld devices). A parametric
blur kernel is first estimated using simple gradient features that
encode the direction and intensity of the blur. The estimated blur
is then removed by combining multiple applications of the blur

Fig. 10. Image 4× super-resolution using an off-the-shelf deep SISR model
with unknown PSF (EDSR [59]). More results are given in the supplementary
material.

kernel in a well founded way that allows us to approximate the
inverse while controlling the noise amplification. Our method
successfully handles blurs that are reasonably well captured by
an anisotropic Gaussian of standard deviations 0.3–3.0. This
includes small unidirectional motion blur (e.g., shown in Fig. 1
middle panel), lens blur, and slight defocus blur that are very
common in mobile photography. Since we approximate the in-
verse with a low-order polynomial, the algorithm fails gracefully
without introducing jarring artifacts. The most severe failure
case is due to kernel mismatch, in which case the algorithm
either fails to remove all blur in the image, or over-sharpens the
image. The halo removal is designed to handle the latter case
(real example in Figure 6). The current blur estimation is global:
one blur kernel per image. If there is non-uniform (shift-variant)
blur, the algorithm removes the blur common to all regions,
acting conservatively. As future work, we would like to explore
how to extend our method to address stronger and non-uniform
blurs while maintaining the high efficiency of the algorithm. Our
experiments show that, in the context of mild blur, the algorithm
produces similar or better results than other state-of-the-art
image deblurring methods while being significantly faster. The
whole deblurring process runs in a fraction of a second on a
12MP image on a modern mobile platform. Our method can be
used to blindly correct blur before applying an off-the-shelf deep
super-resolution model leading to superior results than other
computationally demanding techniques.

DELBRACIO et al.: POLYBLUR: REMOVING MILD BLUR BY POLYNOMIAL REBLURRING 845

Fig. 11. Gaussian Blur kernel examples and distribution of simulated
parameters.

Fig. 12. Gaussian blur model calibration. Error in the estimation of σ0 and
σ1 (and ρ).

APPENDIX A
BLUR MODEL VALIDATION AND CALIBRATION

The Gaussian blur estimation presented in Section IV is
based on computing gradient features. To calibrate c and σb,
we proceed as follow. Given a set of 50 sharp high quality
images, we simulateK = 1000 random Gaussian blurry images,
by randomly sampling the blur space and the image set. The
Gaussian blur kernels are generated by sampling random values
for σ0 ∈ [0.3, 4] and ρ ∈ [0.15, 1]. Additive Gaussian white
noise of standard deviation 1% is added to each simulated blurry
image.

Examples of simulated Gaussian blur kernels are shown in
Figure 11. For each of the blurry images we compute the gradient
features according to (11). The parameters c andσb are estimated
by minimizing the mean absolute error (MAE). The calibrated
parameters are c = 89.8 and σb = 0.764. Note that the values of
c andσb are implementation dependent (e.g., the finite difference
scheme used to compute image gradient).

Figure 12-left shows the relation between the inverse of the
estimated gradient feature (i.e., 1/fθ) and the simulated blur
kernel σ0 value. Each of the blur points represents one simulated
image. As we can see, sharp images that have very low blur

Fig. 13. Blur model calibration. Error in estimated parameters. Calibrated
parameters are c = 89.8, σb = 0.764.

values (σ0 1) have very similar feature values. The same
analysis holds for the gradient feature at the orthogonal direction,
and its relation to σ1 = ρσ0 (Figure 12-middle). This validates
our Assumption 1.

Additionally, Figure 12 shows the almost linear relation (with
some spread) between the inverse of the gradient feature 1/fθ
and the blur level σ0. This is exactly Assumption 2.

Our model contemplates for slight blur that the gradient
operator may have introduced when computing the gradient
features (σb). This is further analyzed at the end of this appendix
for a synthetic image.

In Figure 12-right we show a plot of the real ρ value of the
simulated blur kernel and the estimated one. Although there are
some outliers, the estimation is in general close to the real value
(MSE(ρ) = 0.121).
Estimation of blur direction θ. The estimation of the blur
direction is done by computing the angle θ with minimum
gradient feature value in Eq. (11). Figure 13 shows the error
on the estimation of the angle for each simulated blur. As we
can see, the error in the angle is quite low for blur kernels highly
directional (ρ < 0.5). For large values of ρ (e.g., ρ ∈ [0.75, 1.0],
the kernels are almost isotropic, and the estimation is inaccurate.
Nevertheless, being almost isotropic, the kernel shape is not
affected by the angle value in this case.
Error metrics on estimated kernel values. The ultimate goal
in blur estimation is to estimate a blur that is close to the real
one. In Figure 14 we present the distribution of two different
error metrics that evaluate the distance between the estimated
kernel and the simulated one directly on the kernel space. The
first metric is the kernel similarity, which is the normalized cross
correlation:

ksim(k, k̂) =
1

‖k‖‖k̂‖
∑
i

kik̂i. (18)

When both kernels are equal the kernel similarity is 1. The
second metric we compute is the 	1 norm between estimated
kernel values. To give an idea of the range of both metrics,
we also present the error distribution of the real kernel and
an average kernel.1 This shows the estimations are accurate.
Concentric circles: A synthetic example. We generated a

1The average kernel is defined as the isotropic kernel having standard devia-
tion the central value of the simulated range [0.35, 4.0].

846 IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING, VOL. 7, 2021

Fig. 14. Kernel error metrics on the simulated data. Top-row shows the
histogram of the kernel similarity between estimated kernels and the respective
ground-truth one (left), and between the ground-truth kernels and a fixed
isotropic Gaussian kernel (denoted by kmean) having standard deviation the
mid-value on the simulated range (right). Bottom-row shows the histogram of
the �1 difference between the estimated kernels and the respective ground-truth
one (left), and between the ground-truth kernels and kmean.

Fig. 15. Blur model on concentric circles (synthetic image).

family of synthetic images with concentric circles at different
distances (controlled by a parameter s ∈ [5, 50], see Figure 15
a and blurred them with isotropic Gaussian blur of intensity
(σ0 ∈ [0.3, 5]). In Figure 15 b we show the computed gradient
feature (fθ) for the different blurry images (different σ0) on
each simulated pattern (s = 5 to s = 50). We calibrated the
blur model (i.e., estimated c and σb values) using the s = 50
synthetic pattern image. The model is highly accurate when the
circular rings are separated enough so the image can be locally
considered a step-edge (s ≥ 20). However, when the concentric
circles are very close (e.g., s = 5), the model is not accurate and
the blur estimation is biased.

For comparison purposes we also fit a purely linear model
that directly maps the inverse of the gradient feature to the sigma
value. The linear model (which is the proposed model with σb =
0) is very close to the proposed model except in low sigma values.
This is because the proposed model takes into account the (very
little) blur σb that the gradient operator introduces, leading to a
more precise estimation.

APPENDIX B
BLUR ESTIMATION IMPLEMENTATION DETAILS

In Algorithm 1 we present the pseudo-code for our estimation
of Gaussian blur. We follow Section 4 to estimate the blur.
As the first step the input image is normalized using quantiles
(q = 0.0001 and 1− q) to be robust to outliers. From the image
gradient (ux, uy) we compute the directional derivative at nangles

(usually nangles = 6) uniformly covering [0, π). The maximum
direction of the magnitude for each sample angle is found.
Among the nangles maximum values, we find the minimum value
and angle (f0, θ0) through bicubic interpolation. Using Eq. 13
we compute σ0 and σ1 (and compute ρ = σ1/σ0).

The gradient features can be efficiently computed in parallel
not just between different angles but also between each different
pixel. Computing the maximum can be represented as a gather
operation that can be optimized using shared memory and tiling.
Within our pipeline this represents around 40− 53% of the com-
putation, this comes from the fact that we compute a maximum
magnitude nangles times.

REFERENCES

[1] L. S. Kovásznay and H. M. Joseph, “Image processing,” in Proc. IRE,
vol. 43, no. 5, pp. 560–570, 1955.

[2] D. Kundur and D. Hatzinakos, “Blind image deconvolution,” IEEE Signal
Process. Mag., vol. 13, no. 3, pp. 43–64, May 1996.

DELBRACIO et al.: POLYBLUR: REMOVING MILD BLUR BY POLYNOMIAL REBLURRING 847

[3] W.-S. Lai, J.-B. Huang, Z. Hu, N. Ahuja, and M.-H. Yang, “A comparative
study for single image blind deblurring,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit., 2016, pp. 1701–1709.

[4] K. He, J. Sun, and X. Tang, “Guided image filtering,” in Euro. Conf.
Comput. Vis., Springer, 2010, pp. 1–14.

[5] H. Talebi and P. Milanfar, “Fast multilayer laplacian enhancement,” IEEE
Trans. Comput. Imag., vol. 2, no. 4, pp. 496–509, Dec. 2016.

[6] R. Fergus, B. Singh, A. Hertzmann, S. T. Roweis, and W. T. Freeman,
“Removing camera shake from a single photograph,” in Proc. ACM
SIGGRAPH, 2006, pp. 787–794.

[7] A. Levin, Y. Weiss, F. Durand, and W. T. Freeman, “Understanding and
evaluating blind deconvolution algorithms,” in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit., 2009, pp. 1964–1971.

[8] D. Perrone and P. Favaro, “Total variation blind deconvolution: The devil is
in the details,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2014,
pp. 2909–2916.

[9] Q. Shan, J. Jia, and A. Agarwala, “High-quality motion deblurring from a
single image,” ACM Trans. Graph., vol. 27, no. 3, pp. 1–10, 2008.

[10] H. Gao, X. Tao, X. Shen, and J. Jia, “Dynamic scene deblurring with
parameter selective sharing and nested skip connections,” in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit., 2019, pp. 3848–3856.

[11] O. Kupyn, V. Budzan, M. Mykhailych, D. Mishkin, and J. Matas, “Deblur-
gan: Blind motion deblurring using conditional adversarial networks,” in
Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2018, pp. 8183–8192.

[12] O. Kupyn, T. Martyniuk, J. Wu, and Z. Wang, “Deblurgan-v2: Deblurring
(orders-of-magnitude) faster and better,” in Proc. IEEE Int. Conf. Comput.
Vis., 2019, pp. 8878–8887.

[13] S. Su, M. Delbracio, J. Wang, G. Sapiro, W. Heidrich, and O. Wang, “Deep
video deblurring for hand-held cameras,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit., 2017, pp. 1279–1288.

[14] X. Tao, H. Gao, X. Shen, J. Wang, and J. Jia, “Scale-recurrent network
for deep image deblurring,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit., 2018, pp. 8174–8182.

[15] K. Zhang et al., “Deblurring by realistic blurring,” in Proc. IEEE/CVF
Conf. Comput. Vis. Pattern Recognit., 2020, pp. 2737–2746.

[16] P. Wieschollek, M. Hirsch, B. Scholkopf, and H. Lensch, “Learning blind
motion deblurring,” in Proc. IEEE Int. Conf. Comput. Vis., 2017, pp. 231–
240.

[17] T. F. Chan and C.-K. Wong, “Total variation blind deconvolution,” IEEE
Trans. Image Process., vol. 7, no. 3, pp. 370–375, Mar. 1998.

[18] S. Cho and S. Lee, “Fast motion deblurring,” in Proc. ACM SIGGRAPH
Asia, 2009, pp. 1–8.

[19] J. Pan, Z. Hu, Z. Su, and M.-H. Yang, “Deblurring text images via l0-
regularized intensity and gradient prior,” in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit., 2014, pp. 2901–2908.

[20] J. Pan, D. Sun, H. Pfister, and M.-H. Yang, “Deblurring images via dark
channel prior,” IEEE Trans. Pattern Ana. Mach. Intell., vol. 40, no. 10,
pp. 2315–2328, Oct. 2018.

[21] L. Xu and J. Jia, “Two-phase kernel estimation for robust motion deblur-
ring,” in Proc. Euro. Conf. Comput. Vis., Springer, 2010, pp. 157–170.

[22] L. Xu, S. Zheng, and J. Jia, “Unnatural l0 sparse representation for natural
image deblurring,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.,
2013, pp. 1107–1114.

[23] J.-F. Cai, H. Ji, C. Liu, and Z. Shen, “Blind motion deblurring from a
single image using sparse approximation,” in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit., 2009, pp. 104–111.

[24] L. Chen, F. Fang, T. Wang, and G. Zhang, “Blind image deblurring with
local maximum gradient prior,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit., 2019, pp. 1742–1750.

[25] M. Jin, S. Roth, and P. Favaro, “Normalized blind deconvolution,” in Proc.
Eur. Conf. Comput. Vis., 2018, pp. 668–684.

[26] D. Krishnan, T. Tay, and R. Fergus, “Blind deconvolution using a nor-
malized sparsity measure,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit., 2011, pp. 233–240.

[27] T. Michaeli and M. Irani, “Blind deblurring using internal patch recur-
rence,” in Proc. Euro. Conf. Comput. Vis., Springer, 2014, pp. 783–798.

[28] A. Levin, Y. Weiss, F. Durand, and W. T. Freeman, “Efficient Marginal
Likelihood Optimization in Blind Deconvolution,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit., 2011, pp. 2657–2664.

[29] J. Anger, G. Facciolo, and M. Delbracio, “Modeling realistic degradations
in non-blind deconvolution,” in Proc. 25th IEEE Int. Conf. Image Process.,
2018, pp. 978–982.

[30] D. Krishnan and R. Fergus, “Fast image deconvolution using hyper-
laplacian priors,” in Proc. Adv. Neural Inf. Process. Syst., 2009, pp. 1033–
1041.

[31] S. H. Kim and J. P. Allebach, “Optimal unsharp mask for image sharp-
ening and noise removal,” J. Electron. Imag., vol. 14, no. 2, p. 0 23005,
2005.

[32] A. Polesel, G. Ramponi, and V. J. Mathews, “Image enhancement via
adaptive unsharp masking,” IEEE Trans. Image Process., vol. 9, no. 3,
pp. 505–510, Mar. 2000.

[33] X. Zhu and P. Milanfar, “Restoration for weakly blurred and strongly noisy
images,” in Proc. IEEE Workshop Appl. Comput. Vis., 2011, pp. 103–109.

[34] C. Tomasi and R. Manduchi, “Bilateral filtering for gray and color images,”
in Proc. IEEE 6th Int. Conf. Comput. Vis., 1998, pp. 839–846.

[35] A. Buades, B. Coll, and J.-M. Morel, “A non-local algorithm for image
denoising,” in Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recog-
nit., 2005, vol. 2, 2005, pp. 60–65.

[36] P. Milanfar, “A tour of modern image filtering: New insights and methods,
both practical and theoretical,” IEEE Signal Process. Mag., vol. 30, no. 1,
pp. 106–128, Jan. 2013.

[37] A. Chakrabarti, “A neural approach to blind motion deblurring,” in Proc.
Euro. Conf. Comput. Vis., Springer, 2016, pp. 221–235.

[38] S. Nah, T. Hyun Kim, and K. Mu Lee, “Deep multi-scale convolutional
neural network for dynamic scene deblurring,” in Proc. IEEE Conf. Com-
put. Vis. Pattern Recognit., 2017, pp. 3883–3891.

[39] S. Ramakrishnan, S. Pachori, A. Gangopadhyay, and S. Raman, “Deep
generative filter for motion deblurring,” in Proc. IEEE Int. Conf. Comput.
Vis. Workshops, 2017, pp. 2993–3000.

[40] J. Sun, W. Cao, Z. Xu, and J. Ponce, “Learning a convolutional neural
network for non-uniform motion blur removal,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit., 2015, pp. 769–777.

[41] P. Wieschollek, B. Schölkopf, H. P. Lensch, and M. Hirsch, “End-to-end
learning for image burst deblurring,” in Proc. Asian Conf. Comput. Vis.,
Springer, 2016, pp. 35–51.

[42] W. Ren, J. Zhang, J. Pan, S. Liu, J. Ren, J. Du, X. Cao and M.H. Yang,
“Deblurring Dynamic Scenes via Spatially Varying Recurrent Neural
Networks,” IEEE Trans. Pattern Anal. Mach. Intell., early access, 2021.
doi: 10.1109/TPAMI.2021.3061604.

[43] S. Nah, S. Son, R. Timofte, and K. Mu Lee, “Ntire 2020 challenge on image
and video deblurring,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern
Recognit. Workshops, 2020, pp. 416–417.

[44] C.-M. Chiang et al., “Deploying image deblurring across mobile devices:
A perspective of quality and latency,” in Proc. IEEE/CVF Conf. Comput.
Vis. Pattern Recognit. Workshops, 2020, pp. 502–503.

[45] H. Chen, J. Gu, O. Gallo, M.-Y. Liu, A. Veeraraghavan, and J. Kautz,
“Reblur2deblur: Deblurring videos via self-supervised learning,” in Proc.
IEEE Int. Conf. Comput. Photography, 2018, pp. 1–9.

[46] J. Kaiser and R. Hamming, “Sharpening the response of a symmetric
nonrecursive filter by multiple use of the same filter,” IEEE Trans. Acoust.,
Speech, Signal Process., vol. 25, no. 5, pp. 415–422, Oct. 1977.

[47] P. Milanfar, “Rendition: Reclaiming what a black box takes away,” SIAM
J. Imag. Sci., vol. 11, no. 4, pp. 2722–2756, 2018.

[48] X. Tao, C. Zhou, X. Shen, J. Wang, and J. Jia, “Zero-order reverse filtering,”
in Proc. IEEE Int. Conf. Comput. Vis., 2017, pp. 222–230.

[49] J. Ragan-Kelley, A. Adams, S. Paris, M. Levoy, S. Amarasinghe, and F.
Durand, “Decoupling algorithms from schedules for easy optimization of
image processing pipelines,” ACM Trans. Graph., vol. 31, no. 4, pp. 1–12,
2012.

[50] A. Goldstein and R. Fattal, “Blur-kernel estimation from spectral
irregularities,” in Proc. Eur. Conf. Comput. Vis., Springer, 2012,
pp. 622–635.

[51] M. S. Hosseini and K. N. Plataniotis, “Convolutional deblurring for natural
imaging,” IEEE Trans. Image Process., vol. 29, pp. 250–264, 2019.

[52] J. Pan, Z. Hu, Z. Su, and M.-H. Yang, “l0-Regularized intensity and
gradient prior for deblurring text images and beyond,” IEEE Trans. Pattern
Ana. Mach. Intell., vol. 39, no. 2, pp. 342–355, Feb. 2017.

[53] H. Zhang, D. Wipf, and Y. Zhang, “Multi-image blind deblurring using a
coupled adaptive sparse prior,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit., 2013, pp. 1051–1058.

[54] K. He, J. Sun, and X. Tang, “Guided image filtering,” IEEE Trans. Pattern
Ana. Mach. Intell., vol. 35, no. 6, pp. 1397–1409, Jun. 2013.

[55] R. Zhang, P. Isola, A. A. Efros, E. Shechtman, and O. Wang, “The
unreasonable effectiveness of deep features as a perceptual metric,” in
Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2018, pp. 586–595.

[56] J. R. Isidoro and P. Milanfar, “Pull-push non-local means with guided
and burst filtering capabilities,” in Denoising Photographic Images Video.
Springer, 2018, pp. 267–294.

[57] E. S. Gastal and M. M. Oliveira, “Domain transform for edge-aware image
and video processing,” in Proc. ACM SIGGRAPH, 2011, pp. 1–12.

https://dx.doi.org/10.1109/TPAMI.2021.3061604.

848 IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING, VOL. 7, 2021

[58] W. Yang, X. Zhang, Y. Tian, W. Wang, J.-H. Xue, and Q. Liao, “Deep
learning for single image super-resolution: A brief review,” IEEE Trans.
Multimedia, vol. 21, no. 12, pp. 3106–3121, Dec. 2019.

[59] B. Lim, S. Son, H. Kim, S. Nah, and K. Mu Lee, “Enhanced deep residual
networks for single image super-resolution,” in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit. workshops, 2017, pp. 136–144.

[60] S. Bell-Kligler, A. Shocher, and M. Irani, “Blind super-resolution kernel
estimation using an internal-gan,” in Proc. Adv. Neural Inf. Process. Syst.,
2019, pp. 284–293.

[61] S. A. Hussein, T. Tirer, and R. Giryes, “Correction filter for single im-
age super-resolution: Robustifying off-the-shelf deep super-resolvers,” in
Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., 2020, pp. 1428–
1437.

Mauricio Delbracio (Member, IEEE) received the
B.Sc. degree in electrical engineering from Universi-
dad de la República, Montevideo, Uruguay, in 2006,
and the M.Sc. and Ph.D. degrees in applied math-
ematics from École Normale Supérieure de Cachan,
France, in 2009 and 2013, respectively. He is currently
a Research Scientist with Google Research. Before
joining Google in 2019, he was an Assistant Profes-
sor with the Department of Electrical Engineering,
Universidad de la República. From 2013 to 2016, he
was a Postdoctoral Researcher with the Department

of Electrical and Computer Engineering, Duke University, Durham, NC, USA.
His current research interests include algorithms, data analysis and applications
of machine learning to image and signal processing. In 2016, he was awarded
the Early Career Prize from the Society for Industrial and Applied Mathematics
(SIAM) Activity Group on Imaging Science in 2016 for his important contribu-
tions to image processing.

Ignacio Garcia-Dorado received the M.S. degree
in electrical engineering from Universidad Politéc-
nica de Madrid, Madrid, Spain, the M.S. degree in
computer engineering from Lund University, Lund,
Sweden, and the M.S. and Ph.D. degrees in computer
science from Purdue University, West Lafayette, IN,
USA, in 2008, 2014, and 2015, respectively. From
2008 to 2010, he was a Computer Engineer with
ESA, Noordwijk, The Netherlands. From January to
May 2010, he was a Research Assistant with McGill
University, Montreal, QC, Canada. During this time,

he was a Research Intern with NVidia during the Summer of 2013 and as a
Research Assistant with the University of California, Berkeley, Berkeley, CA,
USA, during the Summer of 2014. After his Ph.D. defense in October 2015,
he moved to Mountain View to work with Computational Photography Team
with Google Research. After this, he was awarded the Fulbright Scholarship to
initiate Ph.D. studies.

Sungjoon Choi received the B.S. degree in computer
science and engineering from Seoul National Univer-
sity, Seoul, South Korea, in 2007, and the M.S. and
Ph.D. degrees in electrical engineering from Stanford
University, Stanford, CA, USA, in 2012 and 2015, re-
spectively. From 2008 to 2010, he was with Microsoft,
Redmond, WA, USA. In 2015, he joined Google, to
work on spatial perception in computer vision where
his current research interests include computational
photography, image processing, and machine learn-
ing. He was the recipient of the Samsung Scholarship

for graduate studies. He was also a finalist of the ACM-ICPC World Finals in
2002 and 2006.

Damien Kelly received the B.A./B.A.I. degree in
computer & electronic engineering from Trinity Col-
lege Dublin, Dublin, Ireland, in 2005 and the Ph.D.
degree in 2010. Since then, he has been a Research
Fellow with Media Processing Group, Trinity College
Dublin and with Green Parrot Pictures Ltd. Develop-
ing software tools for video enhancement. In 2011,
he joined Google and has worked in the Chrome
Media, and YouTube Video Infrastructure teams on
VR audio, audio or video transcoding, and quality
enhancement. In 2018, he joined the Computational

Imaging Team with Google Research and is currently working on image or video
super-resolution and enhancement.

Peyman Milanfar (Fellow, IEEE) received the
undergraduate education in electrical engineering
and mathematics from the University of California,
Berkeley, Berkeley, CA, USA, and the M.S. and
Ph.D. degrees in electrical engineering from the Mas-
sachusetts Institute of Technology, Cambridge, MA,
USA. He is currently a Principal Scientist Director at
Google Research, where he leads the Computational
Imaging Team. Prior to this, he was a Professor of
electrical engineering with the University of Califor-
nia, Santa Cruz, from 1999 to 2014. From 2012 to

2014, he was an Associate Dean of research with the School of Engineering.
From 2012 to 2014, he was on leave with Google-x, where he helped develop
the imaging pipeline for Google Glass. Most recently, his team at Google
developed the digital zoom pipeline for the Pixel phones, which includes
the multi-frame super-resolution (Super Res Zoom) pipeline, and the RAISR
upscaling algorithm. In addition, the Night Sight mode on Pixel 3 uses Super
Res Zoom technology to merge images (whether you zoom or not) for vivid
shots in low light, including astrophotography. He holds 15 patents, several of
which are commercially licensed. He founded MotionDSP, which was acquired
by Cubic Inc. (NYSE:CUB). He is a Keynote Speaker at numerous technical
conferences, including the Picture Coding Symposium (PCS), SIAM Imaging
Sciences, SPIE, and the International Conference on Multimedia (ICME). Along
with his students, he has won several Best Paper Awards from the IEEE Signal
Processing Society. He is a Distinguished Lecturer of the IEEE Signal Processing
Society.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

