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Abstract—3D single-photon LiDAR imaging plays an impor-
tant role in numerous applications. However, long acquisition
times and significant data volumes present a challenge for LiDAR
imaging. This paper proposes a task-optimized adaptive sampling
framework that enables fast acquisition and processing of high-
dimensional single-photon LiDAR data. Given a task of interest, the
iterative sampling strategy targets the most informative regions of a
scene which are defined as those minimizing parameter uncertain-
ties. The task is performed by considering a Bayesian model that is
carefully built to allow fast per-pixel computations while delivering
parameter estimates with quantified uncertainties. The framework
is demonstrated on multispectral 3D single-photon LiDAR imaging
when considering object classification and/or target detection as
tasks. It is also analysed for both sequential and parallel scanning
modes for different detector array sizes. Results on simulated and
real data show the benefit of the proposed optimized sampling
strategy when compared to state-of-the-art sampling strategies.

Index Terms—Adaptive sampling, 3D multispectral imaging,
single-photon LiDAR, Bayesian estimation, Poisson statistics,
robust estimation, classification, target detection.

I. INTRODUCTION

L IGHT detection and ranging (LiDAR) used with time-
correlated single-photon detection is receiving significant

interest as an emerging approach in numerous applications such
as Defence, automotive [1], [2], environmental sciences [3],
long-range depth imaging [4]–[9], underwater [10], [11] or
through fog [12] depth imaging, and multispectral imaging [13]–
[15]. Such a single-photon LiDAR system operates by illumi-
nating the scene using a pulsed laser source, and recording
the arrival times of the reflected photons with respect to the
time of laser pulse emission. By performing this measurement
repeatedly over many laser pulses, it is possible to form a timing
histogram from which a high resolution measurement of the pho-
ton time-of-flight can be made. By measuring the time-of-flight
at each pixel location, it is then possible to make a depth estimate

Manuscript received July 16, 2021; revised December 3, 2021; accepted
January 25, 2022. Date of publication February 14, 2022; date of current
version February 28, 2022. This work was supported in part by the U.K.
Royal Academy of Engineering under Research Fellowship Scheme under
Grant RF/201718/17128 and in part by EPSRC under Grants EP/T00097X/1,
EP/S000631/1, and EP/S026428/1. The associate editor coordinating the review
of this manuscript and approving it for publication was Prof. Henry Arguello.
(Corresponding author: Mohamed Amir Alaa Belmekki.)

The authors are with the School of Engineering and Physical Sciences,
Heriot-Watt University, EH14 4AS Edinburgh, U.K. (e-mail: mb219@hw.
ac.uk; r.tobin@hw.ac.uk; g.s.Buller@hw.ac.uk; s.mclaughlin@hw.ac.uk;
a.halimi@hw.ac.uk).

Digital Object Identifier 10.1109/TCI.2022.3150974

at each part of the scene. This can be done by scanning pixels
sequentially, or more efficiently by considering state-of-the-art
Single-Photon Avalanche Diode (SPAD) detector arrays which
allow the parallel photon acquisition of all pixels [16]. The
resulting histograms of counts contain useful information re-
garding the presence/absence of an object, and allow a 3D model
of the observed target to be built using its estimated depth and
reflectivity profiles. This process can be repeated using different
laser wavelengths to obtain additional multispectral information
on the observed scene. Current limitations that preclude exten-
sive use of LiDAR in real world applications include the high
acquisition time necessary to collect enough target photons, in
addition to the high background level when imaging in ambient
light conditions, which affects the quality of the reconstructed
3D scene. Multispectral LiDAR can lead to large data volumes
which highlights the need to reduce measurement points and
only target informative regions. Indeed, reducing the target’s
laser power is also important due to eye safety constraints for
autonomous navigation, and to obtain energy efficient systems.
Minimising illumination levels is also important when consid-
ering medical applications such as single-photon microscopy
in which the observed cells are light sensitive and subject to
photostructural damage.

Many strategies have been proposed to circumvent the above
challenges either by improving the acquisition [17]–[21], or by
presenting advanced algorithms to restore damaged or sparse
photon data [14], [22]–[24] of multidimensional single-photon
LiDAR images. We distinguish two main approaches to improve
data acquisition using subsampling, those considering spatially
structured scanned points, and those based on random points.
Structured point scanning includes foveated based scanning,
which mimic the vision system found in the animal king-
dom [18], [25], [26]. Such systems consider a structured scan-
ning array (e.g., a circle) which allocates denser points in regions
of interest and sparser points in the remaining regions. The posi-
tion of the region of interest is updated dynamically based on the
observed scene. The second family includes random scanning
points which can be associated with a static or dynamic sampling
procedure. The static methods introduced in [19], [21] showed
satisfactory results under challenging conditions. Nonetheless,
they are still incompatible with real-time requirements and are
computationally expensive as they use reversible-jump Markov
chain Monte Carlo (RJ-MCMC) methods as an inference tool.
Random sampling was also considered in sparse-to-depth re-
construction using deep learning approaches. Methods such
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as [27]–[29] used random scanning to obtain dense depth maps
using sparse random measurements acquired from a LiDAR
sensor and an RGB image from a camera. However, these
approaches require an RGB guide to upsample the sparse map
into a dense one. In [20], a dynamic sampling scheme was
proposed showing significant improvement in depth restoration
over static sampling schemes. However, this algorithm assumes
a negligible contribution from ambient light photons which is
often not satisfied for real-life scenarios. Deep learning was
also investigated for adaptive depth acquisition. The authors
of [17] proposed a method that uses an RGB image to ap-
proximate the depth map and hence locate regions of interest,
which are re-scanned to refine the depth map. An improvement
was proposed in [30] by combining the robust reconstruction
algorithm [27] and an estimate of uncertainty using ensemble
learning to iteratively improve data sampling. However, learning
based algorithm requires the availability of the training data and
a guiding RGB image to improve performance, and could be
sensitive to the differences between training and testing data.
Furthermore, all the aforementioned deep learning approaches
are only optimized for a depth reconstruction task, and require
depth values as input instead of photons detected by the Lidar
system.

This paper proposes a new framework for task-optimized
adaptive sampling (AS) of the scene to jointly improve both
the acquisition and processing of single-photon sensing systems
without making use of any other imaging modality. Based on
a selected task, the data acquisition step can be optimized by
dynamically sampling the most informative locations of a scene
as in [20], [31]. As indicated in Fig. 1, the proposed scene-based
sampling strategy is based on three main steps, (i) select the
points to scan and their dwell time, (ii) use scanned points to
perform a task using a statistical framework with uncertainty
quantification, (iii) construct a map of regions of interest (ROI)
to define the next set of scanning points. In this paper, we
demonstrate this framework on a LiDAR 3D imaging application
and focus on the task of target detection based on object spectral
signatures. A Bayesian framework is adopted to perform this
task since (i) it allows regularization of the ill-posed problem
resulting from the scene sub-sampling, (ii) it benefits from
marginalisation tools that lead to fast analytical estimates of the
parameters of interest, and (iii) it quantifies parameter uncer-
tainties which will be used to define the ROI map. The proposed
model accounts for data Poisson statistics and parameter prior
information, to build a posterior distribution of the parameters
of interest. These parameters include spatial labels to locate
pixels with or without a reflective surface, the class of each pixel
based on a known spectral library, and depth estimates for pixels
having an object. The proposed AS framework and Bayesian
algorithm are analysed when considering both structured and
random sampling scenarios (pixel wise or array scanning), and
validated on sparse data with high background levels. The study
shows promising results when compared to static or dynamic
sampling strategies.

To summarize the main contributions of the paper are:
� The use of a scene-based sampling approach that is opti-

mized for multiple tasks in the context of single-photon

Fig. 1. Representation of the proposed adaptive sampling process. ROI stands
for region of interest.

LiDAR imaging. This sampling approach allows fast data
acquisition by sampling the most informative regions to
perform a task on a particular scene.

� A new computationally efficient Bayesian algorithm to
perform multispectral classification, depth estimation and
target detection.

The paper is structured as follows. Section II presents the
task-based adaptive sampling approach. The Bayesian model
for the classification task and the associated estimation strategy
are presented in Sections III and IV, respectively. Results on
simulated and real data are analysed in Sections V and VI. The
Conclusions and future work are finally reported in Section VII.

II. TASK-OPTIMIZED ADAPTIVE SAMPLING

Single-photon LiDAR acquire histograms of counts for each
pixel location leading to large data volumes as we increase the
spatial resolution (range resolution represented by the number of
time bins, or cross-range resolution represented by the number of
pixels) and/or the spectral resolution. For instance, a data set with
100× 100 pixels, 1000 time bins, and 32 wavelengths can yield
an excessively large number of data samples (>108) which will
lead to a significant computational load and prohibitive memory
requirements. Adaptive sampling appears as a promising strat-
egy to reduce data volume [17], [20], [25], [26], [30] by focusing
the scanning on pixels containing target’s returns, and scanning
less those only containing background reflections.

The proposed adaptive sampling framework is summarized
in Fig. 1. Assuming the presence of a high-resolution (HR)
sampling grid of N pixels, the approach aims to iteratively
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sampleNs pixels to progressively improve the performance of a
pre-defined task (e.g., depth estimation, classification, etc). The
location of these Ns pixels is subject to different constraints
based on the scanning scenario considered. Indeed, theNs pixels
could be non-uniformly located in the scene when considering
pixel-wise scanning of the scene, or have a spatial structure
when considering an array scanning system. Both scenarios
will be investigated in the following section. Assuming no prior
information about the scene of interest, the first iteration will
scanNs pixels uniformly spaced across the scene. The collected
samples are then used to perform a specific task such as target
detection, classification, depth estimation, etc. The HR sampling
grid of size N is constructed by an inpainting process using
the cumulative scanned samples and a non-linear operator (in
this paper a median filter). The uncertainty of the estimated
parameters are then used to establish a map of regions of
interest that will serve as a basis for defining the positions and
the acquisition times of the new sampled pixels. This iterative
procedure will continue until convergence, as indicated in Algo.
1 where i represents the current iteration. The next subsections
describe in detail each of these steps.

Algorithm 1: Task-Optimized Adaptive Sampling.
1: Initialization
2: Initialize: Ns, pixel locations ν(1)Ns

, pixels acquisition

times are t(1)νNs
, N , conv=0

3: while conv= 0 do
4: Scan Ns pixels with locations ν(i)Ns

and acquisition

times t(i)νNs

5: Processing step: Fast and robust task performance
(object detection, classification, depth estimation,
etc)

6: Regions of interest: Computation of a probability
map of ROI

7: Update sampling step: Generation of new positions

ν
(i)
Ns

(using a MH algorithm) and acquisition times

t
(i)
νNs

8: Convergence: conv= 1, if the stopping criteria are
satisfied.

9: end while

A. Fast and Robust Task Performance

Sensing aims to collect information regarding some phenom-
ena and to perform a pre-defined task, such as depth estimation in
LiDAR, cell detection in microscopy, target tracking in defence,
etc. This step of the algorithm performs this pre-defined task by
solving an inverse problem. In this work, we adopt a Bayesian
approach (detailed in Section III) that leads to the estimation
of M parameters of interest for the nth scanned position, de-
noted θn = (θn,1, . . . , θn,M ), together with a measure of their
uncertainties εn = (εn,1, . . . , εn,M ), where both θn and εn are
extracted from the estimated parameter posterior distributions.
These estimates are only available on scanned pointsNs, which
represent a subset of the high-resolution grid composed of

N pixels. To obtain a high-resolution ROI map, the obtained
sub-sampled estimates should be spatially extended to cover
more space in the HR grid. This leads to an inpainting problem,
in which the parameters and uncertainties of an nth unavailable
pixel (i.e., unscanned pixels or scanned pixels without photon
detection) can be inferred from scanned neighbours pixels, as
follows θn = hp(θψn

), and εn = hu(εψn
)whereψn represents

the 3Wind × 3Wind window of neighbours of the nth location,
and hp, hu represent non-linear inpainting operators on the
parameters and uncertainties, respectively. In this paper, we are
interested in fast operators allowing efficient AS iterations, and
thus adopt the median filter for both hp, hu in what follows.
Other advanced optimization or learning based algorithms could
be considered as in [27]–[29], which is beyond the scope of this
paper. The resulting HR estimates and uncertainties will be used
to build the region of interest (ROI) map, as described in the
following section.

B. Regions of Interest

In this subsection the algorithm generates a probability map
m ∈ RN (withmn ≥ 0 and

∑
nmn = 1) of regions of interest,

where regions with higher values will be scanned more fre-
quently. This ROI is closely related to the targeted task and
the nature of the parameters of interest. Based on an estimation
task, the method in [20] aims to improve depth estimates and
defined the ROI based on depth gradients, while the method
in [31] introduced additional features based on the distance
between scanned points. In a target detection scenario, where
a target is defined as the presence of a reflective surface in
the single-wavelength case or an object with a specific spectral
signature in the multispectral case, the AS procedure would
focus on scanning regions having a target and spending less
resources on other regions in the scene. This paper assumes
the presence of uncertainty measures ε in addition to parameter
estimates θ, and proposes to build a ROI probability map m
such as m = hr(θ, ε), where hr is a chosen nonlinear function.
The latter formulation allows the combination of multiple tasks,
and to take advantage of the available uncertainty measures. For
example, if we are interested in reconstructing the depth profile
of an object with a specific spectral signature. In this case, the
parameters θ could gather a depth estimate and a spatial label
that classifies pixels based on their spectral signatures, and the
ROI map should highlight pixels belonging to that object and
give a particular interest to pixels with high depth uncertainty.
Finally, it should be noted that pixels with no estimates after the
inpainting process have the highest uncertainty and will receive
a high probability for sampling, in contrast to pixels that have
reached the maximum acquisition time and which would be
excluded from the next sampling iteration.

C. Generation of New Locations and Acquisition Times

The proposed strategy is based on samplingNs pixels at each
adaptive sampling iteration. The locations of scanned points are
subject to physical constraints due to the sampling scenario,
i.e., pixel-wise scanning or array based sampling as shown in
Fig. 2. Single-photon pixel-wise scanning has been widely used
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Fig. 2. Illustration of different acquisition scenarios where gray objects rep-
resent regions of interest. Ns pixels (red dots) are scanned in each iteration
of adaptive sampling (Ns = 16 in this example) using sequential or parallel
scanning, with different array sizes (r = 1 and r = 2). Some pixels are outside
the ROI to explore all parts of the scene.

as it allows eye-safe imaging even at km-range distances [19],
[32], [33]. With recent technological advances, array scanning
is possible by moving a detector array spatially to scan a large
field of view [18], [26], [34], [35]. In this paper, we study
both scanning cases, and investigate the scenarios of sequential
scanning (i.e., when scanning one pixel/array at a time) and
parallel scanning when scanning all pixels in one shot (e.g., using
a binary mask to select pixels or by activating electronically
some pixels of an array of detectors, as illustrated in Fig. 2).
Given the ROI probability map, we can select the next locations
to scan (Ns/r2 locations when scanning using r × r array, i.e.,
Ns locations in pixel-wise scanning) by selecting those with the
highest probabilities. As stated in [20], this strategy prevents the
exploration of the full scene which might lead to missing small or
dynamic objects. Consequently, given the ROI probability map,
the new locations will be randomly sampled according to the dis-
tribution m using the Metropolis-Hastings algorithm [36] with
a uniform proposal distribution on the HR grid. It is worth noting
that array scanning requires selecting Ns/r

2 array positions
together with the associated array sizes, i.e., distance between
points that mimic an array zoom-in or zoom-out. These array
sizes are fixed using multi-scale information of the ROI map m.
Finally, it can be seen from Fig. 2 that the dwell time depends
on the scenario and the acquisition time per shot. For example,
consider a fixed acquisition time per step t0, the sequential array
scanning will require Nst0/r2, while parallel scanning could
be done in one shot requiring acquisition time t0. Each new
location (to be sampled from Ns or Ns/r2) will be assigned an
acquisition time ranging from t0 to ct0, where t0 is a user defined
acquisition time step and c is the importance level of a shot.
During the iterative process, the defined acquisition time step
is updated to ensure that the proportion of scanned pixels with
photon detections is between [0.7, 0.9]. This will avoid working
with too small time steps leading to low photon detections, or
wasting resources by using unnecessary long time steps.

D. Stopping Criteria

Many stopping criteria can be considered for Algo. 1. The first
criterion compares the two last depth parameter estimates and

stops the algorithm if their root mean square error is smaller than
a given user-defined threshold, that is: RMSE(d(t+1), d(t)) ≤ ξ,
where RMSE(d(t+1), d(t)) denotes the root mean square error
between the depth estimates at the iteration t+ 1 and t. Other
criteria can be considered such as reaching a pre-defined maxi-
mum acquisition time-per-pixel, a maximum number of scanned
points and/or a maximum number of iterations.

III. HIERARCHICAL BAYESIAN MODEL FOR CLASSIFICATION

STRATEGY

The proposed adaptive sampling strategy is optimized for
a predefined task. In this paper, we are interested in a target
detection task based on a known object spectral signature. More
precisely, we propose a spatial classification algorithm that la-
bels pixels based on their spectral signatures, which then allows
concentrating scanning samples on pixels of interest. Due to data
sub-sampling during acquisition, the resulting histograms are of-
ten sparse and some pixels might be empty, leading to an under-
determined problem to perform the task. The latter is solved
using a Bayesian approach that performs the classification task
on multispectral LiDAR data. Adopting a Bayesian framework,
the unknown parameters will be assigned prior distributions that
will allow inclusion of additional information and regularization
to the ill-posed problem. In addition to parameter estimates, this
approach will also provide uncertainty measures regarding the
estimated parameters, as required by the AS strategy. The next
subsections introduce the likelihood summarizing data statistics,
and the considered parameter prior distributions, which are
combined to obtain the parameters joint posterior distribution.
Note that the parameter’s posterior distributions are evaluated
in a pixel-wise fashion only on the scanned pixels, i.e., for
n ∈ {1, . . ., Ns}.

A. Likelihood

We consider a 3-dimensional cube of histograms Y of Li-
DAR photon counts of dimension N × L× T , where N , L
and T are the number of pixels, spectral wavelengths and time
bins, respectively. Let Y n = [yn,1,yn,2, . . .,yn,L]

T be an L×
T matrix where yn,l = [yn,l,1, yn,l,2, . . ., yn,l,T ]

T . According
to [22], [37], each photon count yn,l,t, where n ∈ {1, . . ., N},
l ∈ {1, . . ., L} and t ∈ {1, . . ., T}, is assumed to follow a Pois-
son distribution given by:

yn,l,t|rn,l, dn, bn,l ∼ P[rn,l gl(t− dn) + bn,l], (1)

where P(.) denotes a Poisson distribution, rn,l ≥ 0 is the re-
flectivity observed at the lth wavelength, dn ∈ {1, 2, . . ., T}
represents the position of an object surface at a given range
from the sensor, bn,l ≥ 0 is the constant background level as-
sociated with dark counts and ambient illumination and gl(.) is
the system impulse response function (IRF), whose shape can
differ between wavelength channels (see Fig. 3), assumed to be
known from a calibration step and normalized

∑T
t=1 gl(t) = 1.

An equivalent model can be considered as in [38] using the
signal-to-background ratio (SBR), defined as the ratio of the
useful detected photons rn,l and the total number of background
photons in the histogram bn,lT , i.e.:wn,l =

rn,l

bn,lT
withwn,l ≥ 0.
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Fig. 3. (Top) The considered Lego scene used in section VI, (middle) spectral
signatures of the spectral classes associated with Lego scene, (bottom) the
normalized IRFs associated with the wavelengths 473, 532, 589 and 640 nm [19]
used in Section VI.

Thus, (1) can be written in the following form

yn,l,t|ωn,l, dn, bn,l ∼ P{bn,l [wn,l T gl(t− dn) + 1]}. (2)

This formulation allows an easy marginalization of the pos-
terior distribution with respect to (w.r.t.) the background noise
parameter as indicated in Section IV. The joint likelihood, when
assuming the observed pixels, wavelengths and bins mutually
independent, is then given by

p(Y |Ω,d,B) =

L∏
l=1

T∏
t=1

p(yn,l,t|ωn,l, dn, bn,l) (3)

where d = (d1, . . . , dN ) and Ω, B are two matrices gathering
ωn,l, ∀n, l, and bn,l, ∀n, l, respectively.

B. Prior Distributions

A LiDAR histogram can either result from background counts
(in the absence of a target photons due to rn = ωn = 0) or
a mixture of target and background counts (when rn ≥ 0 or
ωn ≥ 0). Assuming the presence of K spectral signatures, the
classification problem aims to associate a pixel with a target to
one of theK spectral classes. The reflectivity prior accounts for
this effect by considering a mixture of K + 1 distributions as
follows

P(rn,l|un, αrk,l, βrk,l,K) = δ(un)δ(rn,l)

+
K∑
k=1

δ(un − k)G(rn,l;αrk,l, βrk,l)

(4)

where un ∈ {0, 1, . . .,K} is a latent variable that indicates the
absence of target if un = 0, otherwise, it indicates the label
of the class, δ(.) is the Dirac delta distribution centred in 0,
G(rn,l;αrk,l, βrk,l) represents a gamma density whose shape and
scale hyperparameters (αrk,l, β

r
k,l) are fixed based on the K

known spectral signatures. This prior is inspired by the spike-
and-slab prior used in [38]. It accounts forK + 1 cases, the first
represents the absence of a target in the nth pixel and is obtained
for un = rn,l = 0, hence the use of a Dirac distribution (the
spike part). The slab part accounts for the presence of one of
the K signatures by using a gamma distribution. Thanks to the
use of many wavelengths, this prior extends the object detection
problem in [38] to a class detection problem using the spectral
signature of each class. Considering the non-negativity of bn,l,
∀n, l and its continuous nature, the background level will be
modelled with a gamma distribution as in [39]:

P(bn,l|αbl , βbl ) = G(bn,l, αbl , βbl ) (5)

whereαbl and βbl are background hyper-parameters. Considering
that only dozens of distinctive wavelengths will be used, we will
consider the channels to be uncorrelated to keep the estimation
strategy tractable. Since we are interested in using the model
described in (2) instead of (1), assuming that the reflectivity
and the background noise are independent and by applying a
random variable change, the resulting joint prior distribution will
yield:

p(ωn, bn|un,φ,K) =

L∏
l=1

p(ωn,l, bn,l|un, φl)

=

L∏
l=1

[
δ(un)δ(ωn,l)G(bn,l, αbl , βbl )

+

K∑
k=1

δ(un − k)Ck,l(ωn,l)

× G(bn,l, α+
l,k, β

+
l,k(ωn,l)

]
(6)

with

Ck,l(ωn,l) =
(βbl )

αb
l (βrk,l)

αr
k,lTα

r
k,l

B(αrk,l, α
b
l )

ω
αr

k,l−1

n,l

β+
l,k(ωn,l)

α+
l,k
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α+
l,k = αbl + αrk,l

β+
l,k(ωn,l) = βbl + βrk,lTωn,l

where B(.) is the beta function and φ = (φ1, φ2, . . ., φl) with
φl = (αrk,l, β

r
k,l, α

b
l , β

b
l ), k ∈ {0, . . .,K}.

As we assume no prior knowledge about a pixel’s class, the
parameter un is assumed to be drawn from a uniform distribu-
tion, i.e.: p(un = k) = 1

K+1 , where k ∈ {0, . . .,K}. However,
This non-informative class prior can be changed in the pres-
ence of additional information regarding the classes. The depth
parameter dn is assigned a non-informative uniform prior as
follows:

p(dn = t) =
1

T
, ∀t ∈ {1, . . ., T}. (7)

Nonetheless, this can be modified in case of additional infor-
mation regarding the target position.

C. Joint Posterior Distribution

From the joint likelihood in (3) and the prior distributions
specified in Section III-B, we can obtain the joint posterior
distribution for ωn, bn, dn and un given the 3D histograms
Yn and the hyperparameters φ and K. Using Bayes rule and
assuming that dn and un are independent from ωn and bn, the
joint posterior distribution of the proposed Bayesian model can
be formulated as follows:

p(Θn|Yn,φ,K) ∝ p(Yn|Θn)p(Θn|φ,K) (8)

where

Θn = (ωn, bn, dn, un)

p(Θn|φ,K) = p(ωn, bn, dn, un|φ,K)

= p(ωn, bn|φ, un,K)p(dn)p(un). (9)

IV. ESTIMATION STRATEGY

The posterior distribution in (8) reflects our knowledge of
the unknown parameters to be estimated given the photon
data and the available prior knowledge. In this paper, we are
interested on estimating the depth and label parameters, i.e.,
M = 2 and θ = (d,u). The Bayesian estimator to be consid-
ered, both for the depth and class parameter, is the maximum
a posteriori (MAP) estimator as in [13], [40]. From (8), we
marginalize the background noise and signal-to-background pa-
rameters to get the joint depth and class marginal probability as
follows:

p(un, dn|Yn) =

∫ ∫
p(ωn, bn, dn, un|Yn)dbn dωn. (10)

A. Class Estimation

The decision rule adopted to determine the pixel label is

Hn = argmax
k∈{1,...,K}

p(un = k |Yn) (11)

with

p(un|Yn) =

T∑
dn=1

∫ ∫
p(ωn, bn, dn, un|Yn)dbn dωn (12)

where Hn represents the class of the nth pixel. Note that for
K = 1 and L = 1, we end up with a target detection decision
rule as in [38]. We demonstrate that the marginal probability
p(un|yn) is :

p(un = 0|Yn) =
L∏
l=1

p(un = 0|yn,l)

=
L∏
l=1

p(un = 0)Γ(ȳn,l + αbl )

(T + βbl )
(ȳn,l+αb

l ) γl
(13)

p(un = k|Yn) =
T∑

dn=1

∫ ∞

0

L∏
l=1

[
p(un = k)p(dn)Dn,l,kγ

−1
l

Fn,l,k (ωn,l, dn)dωn,l] (14)

with

γl =
Γ(αbl )

(βbl )
αb

l

T∏
t=1

yn,l,t!

Dn,l,k =
Γ(ȳn,l + αbl + αrk,l)(Tβ

r
k,l)

αr
k,l

Γ(αrk,l)

Fn,l,k (ωn,l, dn)

=
exp{∑T

t=1 yn,l,t ln[ωn,l Tgl(t− dn) + 1]}
ω
1−αr

k,l

n,l {βbl + [T (1 + ωn,l(1 + βrk,l))]}α
+
l,k+ȳn,l

(15)

where ȳn,l =
∑T
t=1 yn,l,t. In the event of no target, we can

see that the integral is available in its analytical form thanks
to the conjugacy between the model (2) and the priors (6).
The marginal distribution in (14) is, however, intractable in
presence of a target. One way to simplify it is to consider that
the depth captured is different across all the spectral wave-
lengths. This simplification improves the tractability of the
marginal class probability and will transform (14) into (16) as
follows:

p(un = k|Yn) =

L∏
l=1

T∑
dn,l=1

[
p(un = k)p(dn,l)Dn,l,kγ

−1
l

∫ ∞

0

Fn,l,k (ωn,l, dn,l)dωn,l

]
. (16)

The resulting integral with respect to ωn,l in (16) can be nu-
merically approximated with a quadrature method. The matched
filter in (15) can be computed with O(T logT ) using the fast
Fourier transform (FFT) leading to an overall complexity of the
integral per-pixel in (16) given by O(KLJT logT ), where K
is the number of classes considered, L is the number of wave-
lengths, J is the computational cost of the evaluated integrand
and T is the number of the temporal bins.

B. Depth Estimation

The depth estimate can be obtain as follows

d̂n = argmax
d∈{1,...,T }

p(dn |Yn) (17)
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where

p(dn|Yn) =

K∑
k=1

L∏
l=1

[
p(un = k)p(dn)Dn,l,kγ

−1
l

∫ ∞

0

Fn,l,k (ωn,l, dn)dωn,l

]
. (18)

Although ω can be integrated out from (18), this might lead to
a high computational cost. In this paper, we choose to estimate
the depth given the easily computed marginal map estimateωmap

n,l

using the simplified model introduced in Section IV-A, leading
to

d̂n = argmax
d∈{1,...,T }

p(dn |Yn,ω
map
n ). (19)

The proposed approach allows for the evaluation of the full
marginal depth posterior. In addition to the depth point estimate,
this distribution will allow uncertainty quantification (i.e., to
quantify our confidence regarding the estimates). In this paper,
we evaluate the depth uncertainty by considering the depth
negative log-cumulative marginal posterior around the MAP

estimate, i.e., NCD = −log[
∑d̂n+ε

d̂n−ε p(dn |Yn,ω
map
n )], where ε

is a user fixed constant. Note that a small NCD indicates a high
confidence about the estimate, while a large one would be an
indication of low confidence.

V. RESULTS ON SIMULATED DATA

This section evaluates the performance of the proposed adap-
tive sampling framework and classification algorithm on sim-
ulated data. We first evaluate the performance of the Bayesian
classification algorithm using simulated multispectral data with
L = 4wavelengths when varying the signal-to-background ratio
(SBR) and the average signal photons per pixel. Then, we com-
pare different adaptive sampling scenarios based on sequential
and parallel scanning modes for different array sizes. Finally,
we compare the proposed adaptive sampling strategy with other
static and dynamic sampling schemes from the literature. Except
for network based algorithms which were trained on a server
equipped with an RTX 3090 GPU and 128 GB RAM, all other
simulations were performed using Matlab 2020a on an Intel Core
i7-8700@3.2 GHz, 16 GB RAM and results are averaged based
on three Monte Carlo realisations.

A. Comparison Algorithms and Evaluation Criteria

The proposed approach (denoted AS) is compared against
various sampling strategies, namely:

1) Static sampling strategies: Including uniform (US) and
random (RS) sampling strategies that only scan a ratio
of the N pixels (we considered 30% and 60% of pixels
for random sampling). The maximum likelihood estimate
(MLE) in the absence of background counts is considered
to estimate the depth parameter [33], which reduces to
the maximum of the correlation between the log-IRF and
each histogram (denoted by Xcorr for cross-correlation).
For multispectral data, the depth estimate reduces to max-
imizing the sum of the cross-correlations between each
log-IRF and its corresponding histogram channel-wise,

which is the maximum likelihood estimator in absence of
background counts.

2) Fast adaptive sampling (FAS) strategy [20]: This algo-
rithm adopts the same framework as in Section II while
considering a depth estimation task. Depth is estimated
from histograms using a cross-correlation with a Gaussian
IRF (i.e., approximate MLE) leading to fast analytical
computations. The ROI map is generated based on depth
variations over pixels (i.e., depth’s gradient).

3) Learning-based Adaptive Sampling (LAS) strategy using
Ensemble Variance [30]: This is an iterative algorithm to
perform adaptive sampling. Within each iteration (phase),
few depth points are initially scanned, then depth com-
pletion is performed using a deep learning algorithm that
estimates an ensemble M of depth maps to approximate
depth uncertainty. The latter is then used to define the
next informative pixels to sample. Note that the proposed
Bayesian algorithm is applied to the histogram data to
obtain the depth estimates required by this algorithm.
In this paper, the LAS algorithm will not use an RGB
guide, as it is not always available for real data. This
algorithm was trained on a server equipped with an RTX
3090 GPU using the KITTI data suggested by the authors
and described in [30] with the following parameters: 4
phases, M = 5, batch size of 4, an 18-layer architecture,
and a maximum of 7 training epochs.

It is worth noting that depth completion (i.e., filling unscanned
pixels) is performed using a median operator hp when consid-
ering US, RS, FAS and the proposed AS approach, while LAS
used a sparse-to-depth approach developed in [27].

To evaluate the performance of the proposed algorithm against
the approaches stated above, we use the root mean square error
(RMSE) and the accuracy to evaluate the depth estimation
and class estimation, respectively. The RMSE is defined as

RMSE =
√

1
N ||dref − d̂||2, where dref is obtained from sam-

pling the whole scene with the maximum acquisition time and
under a negligible background illumination (see the second
column of Fig. 4). The accuracy in percentage is defined as
ACC = TP+TN

TP+TN+FP+FN , where TP, TN, FP and FN represent:
true positive, true negative, false positive and false negative
probabilities, respectively.

B. Datasets

One simulated scene and two real single-photon data sets have
been used to assess the performance of the proposed algorithm.
The first synthetic scene is the cluttered Art scene Fig. 4 (top-left
image) extracted from the Middlebury dataset.1 This scene is
commonly used as a standard scene for algorithms evaluation in
many LiDAR imaging experiments [15], [22]. It contains N =
123× 155 depth and grayscale images that are used to simulate
histograms of photon counts according to the model in (1), when
considering a real impulse response function, T = 164 bins and
a 16 ps time bin resolution. Note that the scene is truncated in
depth to simulate pixels without target returns as represented in

1[Online]. Available: http://vision.middlebury.edu/stereo/data/

http://vision.middlebury.edu/stereo/data/
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Fig. 4. From top to bottom: The Art scene, the Mannequin head and the Lego
scene. From left to right column: the scene of interest, reference depth estimation
(in time bins) and class detection map with maximum acquisition time per-pixel
in absence of illumination.

Fig. 4. The second scene is the life-sized mannequin head shown
in Fig. 4 (middle-left image). This data was acquired at a standoff
distance of 40 m using a time-of-flight scanning sensor, based on
a time-correlated single-photon counting system (TCSPC) (the
reader is referred to [32], [33] for more information regarding
the transceiver system and data acquisition hardware used for
this work). The spatial, spectral and temporal dimensions for
the mannequin head are N = 142× 142 pixels, L = 1 wave-
length and T = 191 bins (bin width of 16 ps). Each pixel was
acquired for 30 ms acquisition per-pixel in a dry and clear sky
environmental conditions leading to an SBR around ω = 70. In
all simulations using the Art scene and the mannequin head data,
we consider φl = φ = (αr, βr, αb, βb) = (2, 2

rM
, 1, T

rM
) with

rM being the average number of signal photons per pixel. These
hyper-parameter values are relatively non-informative for both
the reflectively and the background noise parameters.

The third scene is the Lego data depicted in Fig. 3 and
bottom-left of Fig. 4 (the reader is referred to [19] for more
detail). The object, of size 42 mm tall and 30 mm wide, was
scanned at a standoff distance of 1.8 m using a TCSPC module
for an acquisition time per-pixel of 160 ms (40 ms acquisition
time per pixel using four wavelengths where the system IRFs
gl(.), ∀l are shown in Fig. 3-bottom). The size of the spatial,
spectral and temporal dimension of the single-photon Lego data
are, respectively, N = 200× 200 pixels, L = 4 wavelengths
and T = 1500 bins with a timing bin size of 2 ps. Two versions
of the Lego data are used in the experimental section. The first
version was acquired in absence of background illumination
(SBR= ω = 66) and the second one was acquired with presence
of ambient illumination leading to an SBR of ω = 1.3. In all
simulations, the Lego exhibits three classes of interest (K = 3)
whose spectral signatures (related to αr and βr) are extracted
from pixels acquired considering a negligible background con-
tribution and after maximum acquisition time per-pixel (see
signatures in Fig. 3). αbl and βbl are relatively non-informative
such that (αbl , β

b
l ) = (1, T

rMl
)with rMl being the average number

of signal photons per pixel for the l th spectral wavelength.

Fig. 5. (Top) Depth RMSEs and (bottom) Classification accuracy of the sub-
sampled Lego data w.r.t. signal-to-background ratio (SBR) and the average signal
photons.

C. Evaluation of the Classification Algorithm

In this section, we will evaluate the performance of the
classification algorithm (according to metrics described in Sec-
tion V-A) by simulating data based on the real multispectral
single photon Lego data described in Section V-B. We consider
a spatially sub-sampled data to analyse the behavior of the
algorithm w.r.t. SBR and photons levels. The subsampled data
hasN = 40× 40pixels,L = 4wavelengths andT = 1500 time
bins (bin width of 2 ps), and is corrupted so that the SBR varies
from 0.01 to 100. Fig. 5 represents the RMSE in meters (top)
and the class accuracy (down) w.r.t SBR and the average signal
photons. These two figures provide the user with the required
number of useful photons (which is proportional to the scanning
time) needed to have a given depth precision and accuracy for
different SBR levels. Table I depicts the confusion matrix for
an SBR of magnitude ω = 0.6 and after 5 ms of acquisition
time per-pixel (which corresponds to signal photons per-pixel
≈ 42). In this table, the bold values exhibit the number of pixels
of each predicted class, and bellow them their percentages w.r.t
the total number of pixels (here 402 pixels). The last horizontal
and vertical lines of this table represent the precision and the
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Fig. 6. Depth RMSEs and classification accuracy w.r.t. acquisition times for different SPAD array resolution when the acquisition mode is done (a) sequentially,
or (b) in parallel. (c) Depicts the sampling pattern for different array sizes.

TABLE I
CONFUSION MATRIX OF THE SUB-SAMPLED LEGO DATA (40× 40 PIXELS) FOR

SBR = 0.6 AND 5 MILLISECONDS OF DWELL TIME PER-PIXEL AND PER

WAVELENGTH (SIGNAL AVERAGE PHOTONS PER-PIXEL ≈ 42)

recall, respectively. This table highlights a good classification
accuracy for these SBR and photon levels. Considering previous
parameters and for maximum acquisition time, the average com-
putational time per-pixel of the proposed classification algorithm
is ≈ 55 ms, while it should be noted that per-pixel operations
are independent allowing parallel processing.

D. Pixel and Array Based AS

This section analyses the performance of the proposed AS
strategy when considering different scanning scenarios as indi-
cated in Fig. 2. More precisely, we study sequential and parallel
sampling, when considering different array sizes. For all cases,
we evaluate the depth and class accuracy with respect to acqui-
sition time. As indicated in Section II-C, the acquisition time
per one iteration of AS will depend on the considered sampling
scenario (e.g., equal to Nst0/r2 for sequential scanning and to
t0 for parallel scanning, when assuming t0 dwell time per shot
and r × r array). The parameters considered for this section are
Ns = 322, t0 = 300μs.

First, we fix SBR= 66 and study the effect of varying array
sizes as follows r ∈ {1, 4, 8, 16, 32}. Fig. 6(a) and (b) shows
the variation of depth RMSE and classification accuracy w.r.t.
acquisition time. As expected, these figures show faster con-
vergence for parallel acquisition reaching millisecond levels as
opposed to seconds in sequential scanning. Considering sequen-
tial scanning, Fig. 6(a) highlights faster convergence for larger

array systems as they acquire r2 samples in parallel. For parallel
scanning, large arrays impose spatial constraints on the sampled
locations, hence, better performance is obtained by small arrays
as they better approximate the scene features. This effect is
highlighted in Fig. 6(c) showing the sampled points, where
smaller arrays allow fine scene scanning by locating more points
on the Lego shape (i.e., dense and focused scanning pattern) than
larger arrays.

Second, we evaluate the effect of SBR and the size of the
object of interest within the field of view, when considering a
sequential acquisition and r ∈ {1, 32}. To change the target size,
we compare a large ROI obtained when targeting the full Lego
(i.e., the K = 3 classes are the target) and the case where the
target of interest are the green pixels in Fig. 3 (i.e., the target is
only one classK = 1). Fig. 7(a) and (b) show depth and accuracy
performance for different SBR∈ {1.3, 66} and object sizes. As
expected, the proposed AS approach shows faster convergence
for smaller regions of interest (i.e., dashed lines better than
continuous lines), and/or for larger SBR values (i.e., blue curves
are similar or slightly better than red ones). Fig. 7(c) shows the
sampled patterns for the different cases, indicating finer scanning
for r = 1 compared to coarse results when considering r = 32.

E. Comparison With Static and Dynamic Sampling Algorithms

This section evaluates the performance of the proposed frame-
work on the simulated Art scene when considering static (US,
RS) and dynamic (FAS, LAS) sampling strategies. In both
cases, performance is compared by evaluating depth RMSE w.r.t.
average scanned photons. For this section, we consider a sequen-
tial scanning system with r = 1 and the sampling parameters
Ns = 475 pixels, and t0 = 900μs. Fig. 8 (left) shows results
when comparing AS to static sampling strategies for high and
low SBR. It highlights the benefit of the proposed algorithm as it
converges faster than other approaches regardless of the scenario
considered. While the factor of improvement is around two in
absence of illumination, the potential of the proposed approach
appears when the level of background is high. For example,
at SBR= 0.79 and for an RMSE= 0.02˜m, the proposed AS
algorithm outperforms static sampling strategies by a factor of
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Fig. 7. Depth RMSEs and classification accuracy w.r.t. acquisition times for two SBR levels for multispectral target detection (K = 1) and spectral classification
(K = 3) using a (a) 1× 1 pixel scanning system, (b) 32× 32 array scanning system. (c) Depicts the sampling pattern obtained for r ∈ {1, 32} when considering
the full Lego as a target (i.e., K = 3) or only the green region (i.e., K = 1). Similar patterns are observed for high or low SBR.

Fig. 8. Comparison of depth RMSEs using the proposed approach w.r.t.
average total photons against: (left) static sampling strategies, (right) Dynamic
sampling strategies. Solid and dashed lines represent: SBR > 40 (absence
of illumination) and SBR = 0.79, respectively. Results are obtained with 3
Monte-Carlo realizations.

≈ 5, highlighting the efficiency of the proposed statistical model
and sampling strategy. Fig. 8 (right) compares the proposed
AS to dynamic sampling algorithms. This figure highlights the
robustness of the AS approach when compared to FAS which
assumes the absence of background counts in the data. The LAS
is more robust than FAS, however, it shows limited performance
and seems to converge to a relatively high constant RMSE level.
This could be due to differences between the training and test
data. This is illustrated in Fig. 12 (top-row) which shows the
obtained depth maps at low SBR when considering the different
sampling strategies. This figure confirms best results with the
proposed AS algorithm and highlights the sensitivity of FAS to
background counts as it shows the worst depth map.

VI. RESULTS ON REAL DATA

This section evaluates the proposed strategy on two experi-
mental data sets, namely the monochromatic mannequin head
and the multispectral Lego scene. In both cases, we compare the
proposed adaptive sampling strategy against static and dynamic
sampling strategies and highlight its benefits for range estima-
tion, both in absence and presence of ambient illumination cases.
Finally, the system that will be used is a pixel-wise SPAD system
(r = 1) and the acquisition mode is sequential.

TABLE II
CONFUSION MATRIX OF THE LEGO SCENE (200× 200 PIXELS) IN (TOP)
ω = 66 AND 3 SECONDS OF ACQUISITION TIME PER WAVELENGTH (≈ 26

SIGNAL PHOTONS PER-PIXEL) AND (BOTTOM) ω = 1.3 AND 2.55 SECONDS OF

ACQUISITION TIME PER-PIXEL AND PER WAVELENGTH (≈ 22 SIGNAL

PHOTONS PER-PIXEL AND PER WAVELENGTH))

A. Evaluation of AS on the Mannequin Head

This subsection compares the proposed AS approach to static
and dynamic sampling strategies when considering a real
monochromatic dataset. We consider the mannequin head scene
and focus on the particular case where the number of wavelength
and classes of interest are respectively L = 1 and K = 1. This
reduces the classification algorithm to a target detection algo-
rithm. The proposed algorithm estimates the parameters of inter-
est (depth and class) in a pixel-wise fashion, thus we report pixel-
wise values as the processing can be parallelized. We compare
for two SBR levels, a high SBR= 70 with almost no background
light in Fig. 9(a), and a noisy case with SBR = 0.48 and SBR
= 0.18 in Figs. 9(b) and (c), respectively. The accuracy of all
SBR levels are reported in Fig. 9(d). In any of the above figures,
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Fig. 9. Depth RMSEs of the full mannequin head target for different sampling strategies w.r.t. (top) dwell time and (bottom) total time when (a) ω = 70,
(b) ω = 0.48, (c) ω = 0.18. (d) Target accuracy of the full mannequin head target for different sampling strategies w.r.t. (top) dwell time and (bottom) total time
for three SBR levels.

Fig. 10. Results of the proposed algorithm on the Lego data w.r.t acquisition time (dwell time) and total time compared to static sampling strategies for number
of classes and two SBR levels targeting (a) 3 classes and (b) 1 class in the absence of background illumination, (c) 3 classes and (d) 1 class under the presence of
background illumination.

the top subplots evaluate performance w.r.t. the acquisition time
(dwell time) used to scan the data. We also evaluate performance
while accounting for the total time of the AS process which
includes: the dwell time, the per-pixel processing time to perform
the task, the time to build the ROI map and the time to move the

scanning mirrors (one move is approximated by 150μ s). Under
high SBR, Figs. 9(a) show that depth performance are similar
for the different sampling strategies, although the proposed algo-
rithm provides additional classification information. The benefit
of the proposed framework becomes clear in the noisy case,
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where an improvement factor of 
 100 is observed compared
to other sampling strategies using Xcorr (at depth RMSE equal
to 15 mm in Fig. 9(c)). Note that the FAS algorithm is sensitive
to background and performs poorly in noisy cases. Note also
that LAS converges to approximately the same RMSE value for
different noise levels, which indicates its robustness to noise.
Fig. 9(d) shows a target accuracy higher than 97% at the very
beginning of the sampling process regardless of the SBR level
indicating the robust restoration strategy performed by hp, hu
using the median operator. Finally, Fig. 12 (middle-row) shows
the mannequin depth maps obtained with the different sampling
strategies indicating best performance with the proposed AS
framework.

B. Evaluation of AS on the Multispectral Lego Scene

This subsection evaluates the proposed strategy on the full
multispectral Lego data described in Section V-B (see Fig. 3
(top)). The approach is compared to different sampling strategies
while considering two tasks: (i) classification based on spectral
signature, (ii) signature based object detection.

1) AS for MS Classification: The first study consider a classi-
fication task, where the sensing aims to detect pixels with target,
and to classify them intoK = 3 classes based on known spectral
signatures (see Fig. 3). Fig. 10(a) and (c) shows depth RM-
SEs for negligible (ω = 66) and high background illumination
(ω = 1.3), respectively. In this case, the region of interest is large
and occupies most of the HR image, which reduces the benefit
of the proposed targeting approach. Nonetheless, Fig. 10(a)
and (c) show a noticeable improvement by the proposed AS
strategy especially for low SBR (e.g., In Fig. 10(c) and for
RMSE = 1.25 mm, we observe an improvement factor of 80
and 18 based on dwell or total times, respectively). Table II
shows the classification confusion matrix for the considered
Lego scene for an average acquisition time of 75μs per-pixel
and per wavelength (less than 3 seconds of total acquisition
time per wavelength). This table highlights good classification
results with an accuracy ≥ 0.9 even at low SBR. Finally, Fig. 11
illustrates the visual performance of the algorithm on the Lego
data (ω = 1.3) with respect to iterations. This figure indicates
that most samples are located in the Lego region as promoted
by the ROI map, and that both depth and classification maps
improve with iterations.

2) AS for Signature Based Object Detection: Being a scene
dependent approach, adaptive sampling is sensitive to the struc-
ture and the distribution of objects of interest in a particular
scene. So far, the objects of interest that we tested occupy an
important portion of scene (where the ROI map occupies more
than 50% of the HR grid). To simulate a real world scenario,
where targets are usually occupying a smaller portion of the
scene, the algorithm is run using the samples Lego data, but
targeting a single class corresponding to the green blocks on
both sides of the Lego (see top sub-figures of Fig. 3). In addition
to their small size, the green blocks have low reflectivity, hence
present high uncertainty. Thanks to the ROI map, the algorithm
will be able to scan this region and reduce the uncertainty
measure by scanning more around that region. This task is

Fig. 11. Illustrative results of the AS algorithm with respect to iterations. The
columns represent the process at a particular iteration and the rows represent from
top to bottom: scanned samples, robust depth estimation using spatial correlation
between pixels, robust class detection using spatial correlation between pixels
and the ROI map where yellow regions indicate important regions to sample
(ω = 1.3, Ns = 322, t0 = 250μs, T = 1500).

akin to target detection where the target is a single class of
interest. Figs. 10(b) and (d) show the resulting depth RMSEs
for ω = 66 and ω = 1.3, respectively. The latter figure reflects
an interesting and challenging real-world scenario as we are
most likely to be interested in locating: i) objects that occupy a
small portion of a scene, ii) with a specific spectral signature,
and iii) within an adverse environment (low SBR). In that case,
AS shows a significant improvement in acquisition time when
compared to other strategies, reaching an improvement factor of
10 and 200 at RMSE= 1mm for high and low SBR, respectively.
Finally, Fig. 12 (bottom-row) compares the proposed AS to
other algorithms on the Lego scene. This figures confirms best
performance with the proposed AS framework.

VII. CONCLUSION

This paper has presented a task optimized adaptive sampling
framework for multispectral single-photon LiDAR data. The
iterative approach samples new points to reduce the uncertainties
of the parameters of interest and hence improve their estimates.
We demonstrated the framework when considering two tasks:
(i) a classification task where the goal is to improve the labeling
of pixels based on their spectral signatures, and (ii) signature
based object detection. In both cases, pixels only containing
background photons are ignored to concentrate on informative
pixels with target reflections. A new Bayesian model was pro-
posed to perform these tasks by providing the parameter pos-
terior distributions, which contain parameter estimates together
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Fig. 12. Reconstructed depth maps using the studied sampling strategies for different scenes. The FAS algorithm is not applied to the multispectral Lego data as
it assumes monochromatic data.

with a measure of their uncertainties. Several experiments on
simulated and real data were performed showing the clear benefit
of the proposed framework when compared to static sampling
strategies. More precisely, we demonstrated faster convergence
of the depth estimate especially in realistic scenarios involving
a high background, and/or spatially small targets of interest.
We have also studied the use of different detector array sizes,
together with scanning modes that can be sequential or parallel.
As expected, it was observed that parallel scanning allows for
faster acquisition. While large arrays allows faster scanning, it
was also shown that small arrays allow finer sampling and hence
the targets shape. Future work will investigate a new Bayesian
formulation based on photon events to avoid building histograms
of counts as in the current approach. Generalizing the proposed
Bayesian model to account for multiple peaks per pixel and for
recursive parameter prior distributions will also be the subject
of future work.
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