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Abstract—In this study, a novel restoration model for the data
of optical coherence tomography (OCT) is proposed. An OCT
device acquires a tomographic image of a specimen at the scale
of a few micrometers using a near-infrared laser and has been
frequently adopted to measure the structures of bio-tissues. In
certain applications, OCT devices face the problem of extremely
weak reflected light and require the help of image processing
to estimate the distribution of reflected light hidden in various
noises. OCT identifies tomographic structures by searching for
peak interference locations and their intensities. Therefore, the
challenge of OCT data restoration involves the problem of
identifying the interference function and its deconvolution. In
this study, a restoration method is given by reducing the problem
to a regularized least-squares problem with a hard constraint
for the latent refractive index distributions, and an algorithm
is derived using a primal-dual splitting (PDS) framework. The
PDS has the advantage of requiring no inverse matrix operation
and is able to handle high-dimensional data. The significance
of the proposed method is verified through simulations using
artificial data, followed by an experiment conducted using actual
observation of 64× 64× 5000 sized voxels.

I. INTRODUCTION

IMprovements in sensing technology used in extreme en-
vironments are indispensable for the development of sci-

ence and medicine. In addition to hardware devices, physical
models and signal-processing algorithms need to cooperate
with each other. To measure the vibration of the sensory
epithelium in vivo and contribute to the treatment of deafness,
we are developing a multifrequency swept (MS) en-face op-
tical coherence tomography (OCT) device that instantaneously
captures the X-Y plane and acquires a tomographic image by
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Fig. 1. The MS en-face OCT device uses a broadband super-luminescent
diode (SLD) light source, where a Fabry-Perot resonator is used to generate
a multi-wavelength optical comb. The interference peak position is scanned
in the Z-direction by controlling the frequency interval of the spectrum comb
with a piezo actuator. The optical comb is divided into reference and sample
beams using a beam splitter. The field of view is enlarged by the objective
lenses, and the reflected light is formed on the CMOS sensor. The interference
between the reference and sample beams is acquired.

optically scanning the Z-direction [1]. Fig. 1 briefly shows the
configuration of the MS en-face OCT device.

OCT is a tomographic technique with a spatial resolution of
a few micrometers using a near-infrared laser [2]. The structure
of the target object is measured based on the interference
between the reference light and the light reflected by the
object. Typical OCT techniques, such as Doppler spectral
domain (SD) OCT [3]–[6], acquire tomographic data in the Z-
direction at a point on the X-Y plane and require mechanical
2-D scanning in the X- and Y-directions to construct 3-D
volumetric data. Compared with other approaches, MS en-face
OCT is able to observe a dynamic tomographic structure [7].
However, light is broadened by an interference microscope;
hence, the light intensity of the image sensor becomes quite
weak. As a result, the acquired interference is prone to hiding
under severe noise. In [8], [9], Choi et al. adopted filtering in
the FFT domain to extract high-energy spectral bands in the
frequency domain through a manual operation to restore large-
scale 3-D OCT data. However, an automated optimization is
demanded to improve the efficiency and quality of the process.

The denoising of the OCT volumetric data is modeled as a
signal restoration problem. In [10], we proposed a denoising
method for OCT data using an iterative hard-thresholding
algorithm. In [11], Cheng et al. proposed a method for solving
OCT volumetric data restorations by modeling them as the
sum of the underlying clean measurements and noise. In [12],
Fang et al. proposed a super-resolution technique and speckle
denoising method for retinal SD-OCT. In [13], Zaki et al.
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demonstrated a noise adaptive wavelet thresholding algorithm
that exploits the difference in noise characteristics in different
wavelet sub-bands. In [14], Shamouilian et al. model speckle
noise as a mixture of salt-and-pepper noise and additive
white Gaussian noise (AWGN), and achieve speckle noise
removal by preprocessing based on median filters and solving
a Z-directional total variation (TV) regularized least squares
problem. In addition, in [15], Hu et al. proposed a method
of restoration using a variance-stabilizing transform called an
Anscombe transform and 3-D Shearlets. However, none of
these techniques considered the measurement process, that
is, observation through interference. The restoration problem
involves the removal of the measurement process as well as
noise. Therefore, the identification of the coherence function
must be considered.

In [16], we proposed a method based on the primal-dual
plug-and-play (PDPnP) method [17] to restore the OCT data
by considering the measurement process and the range of
reflection ratio. PDPnP relies on the PDS algorithm [18], [19]
and has an advantage of requiring no inverse matrix opera-
tions. Meanwhile, alternating direction method of multipliers
(ADMM) [20], [21], which is a popular alternative to the PDS
algorithm [22], works using a matrix inversion. Although the
PDS requires a relatively large number of iterations, it is highly
versatile and suitable for processing high-dimensional data,
such as tomographic images. However, challenges remain in
setting the reflectance constraints and spatial correlation of
biological tissues in its application of the OCT restoration.

In this paper, we propose the introduction of a refractive
index distribution into the model to obtain more sophisticated
prior knowledge. The contributions of our study are summa-
rized as follows:

a) Optical synthesis model: We provide a model that
reflects the refractive index distribution of biological tissues
as prior knowledge, which can be attributed to a convex
optimization problem.

b) Measurement process model: We compensate the
sampling interval to count for the non-linearity of the piezo-
electric element, and then identify the coherence function as
a convolutional kernel.

c) Algorithm: We develop a PDS-based algorhitm to
solve a regularized least-squares problem with a hard con-
straint for the latent refractive index distributions, and use the
PDS-based one to recover high-dimensional volumetric data.

Note that our proposed model is not limited to MS en-face
OCT and can also be applied to other OCT configurations.

This paper reorganizes our previous study [23] by enhancing
the derivation process of the algorithm and by focusing on
the identification of the measurement process; theorems are
extended, proofs are detailed, and performance evaluations
are refined to consider the actual measurement process. We
conduct parametric tuning to improve the observation model,
which considers nonlinear characteristics owing to the piezo-
electric element. It should be mentioned here that speckle
denoising is a challenging issue for OCT. For the speckle
noise removal, we adopt the model developed in the literature
[14], which divides speckle denoising into salt-and-pepper
denoising and regularized Gaussian denoising, the latter is

(a) (b) (c)

Fig. 2. Discrete model of coherence function defined by (2a), where the
amplitude, X-Y axis standard deviation, Z-axis standard deviation, angular
frequency, and scale factor are set to αp = 1, σxy = 2, σz = 30, ωp = 0.3π,
and bp = 0.05, respectively. (a) X-Y slice at the center of Z, (b) Y-Z slice
at the center of X, and (c) Z only at the center of X and Y.

mainly addressed in this paper, focusing on the effects of
introducing an optical synthesis model.

The remainder of this paper is organized as follows. Section
II describes the OCT observation model and summarizes the
challenges of OCT model restoration. Section III proposes
a problem setting for OCT volumetric data restoration and
to solve the problem yields an algorithm based on the PDS
framework. Section IV evaluates the significance of the pro-
posed method through artificial simulations, and Section V
demonstrates experimental results with real observation data
on the sensory epithelium of mouse, which were acquired
through the MS en-face OCT. Finally, Section VI provides
some concluding remarks regarding this research.

II. REVIEW OF THE OCT OBSERVATION MODEL

In this section, we review the models of the OCT mea-
surement process and noise. We then discuss the relationship
between the synthesis model and the refractive-index distri-
bution. In the following discussion, we assume that the light
travels along the Z-axis.

A. Observation Model

OCT devices, in general, acquire tomographic images us-
ing the interference between the reference and the sample
laser beam. A discrete model of the OCT observation data
{t[n]}n ⊂ RΩv is modeled as follows:

t[n] = b[n] +
∑
k∈Ωr

r[k]p[n− k] + w[n], n ∈ Ωv, (1)

where n = [nx, ny, nz]
⊺ ∈ Ωv and k = [kx, ky, kz]

⊺ ∈ Ωr are
the array indexes of 3-D volumetric data. Each element cor-
responds to the position of the horizontal, vertical, and depth,
respectively [24]. In addition, Ωr,Ωv ⊂ Z3 represent the index
domains1. In this paper, the superscript ’⊺’ denotes the trans-
position. Here, {b[n]}n represents bias and trend component
in the Z-direction that does not contribute to the interference.
In addition, {w[n]}n denotes the noise component, which
is assumed to be an additive; {p[m]}m is the interference
waveform (i.e., the coherence function) representing the OCT
measurement process; and {r[k]}k ⊂ RΩr corresponds to the
reflectance distribution of the target object.

1 Ω = {0, 1, · · · , Nx−1}×{0, 1, · · · , Ny−1}×{0, 1, · · · , Nz−1} ⊂
Z3 is an example of index domain. In this case, RΩ is also expressed by
RNx×Ny×Nz instead.
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Fig. 3. Effect of the broadening factor bp for pz[mz] in (2c), where |Pz(ωp)|
is the amplitude frequency response of pz[·], ωp = 0.3π and σz = 30.

Fig. 2 shows an example of the coherence function
{p[m]}m. The coherence function has a spatial spread in the
X-Y directions and a shape similar to the cosine modulated
Gaussian function windowed by a sinc function in the Z-
direction. The coherence function is modeled as follows:

p[m] = αppxy[mx,my]pz[mz], m ∈ Z3, (2a)

pxy[mx,my] = exp

(
−
m2

x+m2
y

2σ2
xy

)
, mx,my ∈ Z, (2b)

pz[mz] = exp

(
−m2

z

2σ2
z

)
cos (ωpmz) sinc(bpmz), mz ∈ Z,

(2c)

where sinc(x) is defined as 1 for ω = 0 and sin(πx)/πx for
ω ̸= 0; m = [mx,my,mz]

⊺; αp, σxy, σz, ωp, and bp denote
the amplitude, standard deviation in the X-Y plane, standard
deviation along the Z-axis, angular frequency, and broadening
factor, respectively. We define (2a) by generalizing a typical
interference function model in two respects [24, §3.1.3]. In
order to reflect the features of MS en-face OCT shown in
Fig. 1, the first is to model the blurring in the X-Y plane with
a 2-D Gaussian function in (2b), and the second is to model
the broadband SLD features with the sinc function in the Z-
direction. Fig. 3 illustrates the effect of the broadening factor
bp of (2c) in the frequency domain.

The reflectance distribution {r[k]}k is unknown and should
be restored from the observation {t[n]}n by removing the
bias {b[n]}n, additive noise {w[n]}n, and local oscillation
through {p[m]}m. Among these degradation factors, the bias
component {b[n]}n can simply be removed using a high-pass
filter because {b[n]}n is a constant or a ramp component with
a slight slope in the Z-direction at each position in the X-
Y plane, where the removal of bias {b[n]}n is achieved by
subtracting a Z-directional moving average filtering result from
the original {t[n]}n. Thus, we adopted the following signal:

v[n] = t[n]− b[n], n ∈ Ωv (3)

as a restoration target.

Fig. 4. Relationship among latent refractive index distribution u, reflectance
distribution r and interference response Pr.

B. Reflectance and Refractive Index

The reflectance is related to the refractive index. The reflec-
tion ratio R at the boundary of different refractive indices is
obtained as follows:

R =
|n1 − n2|(n1 − n2)

(n1 + n2)2
, n1, n2 ∈ [0,∞), (4)

where n1 and n2 are the refractive indices of the light incident
and opposite sides, respectively. In (4), the phase shift is
also considered, where the sign is determined based on their
relationship. The refractive indices of the bio-tissues were
assumed to have a spatial correlation and be within the range
of approximately 1.00–1.50.

C. Challenges of OCT Volumetric Data Restoration

A restoration model is set to obtain the reflectance dis-
tribution {r[k]}k in (1) from the observation {v[n]}n in
(3). This is an inverse problem. Although it appears to be
simple, the inverse problem involves a large number of 3-
D volumetric data. Consequently, the number of calculations
and the memory consumption have become a serious problem.
Therefore, an algorithm that does not use inverse matrices and
consumes less memory is required. The following summarize
some issues in the OCT volumetric data restoration.

• There is no method that reflects the refractive index
distribution as prior knowledge.

• Owing to the non-linearity of the piezoelectric element,
the sampling interval should be compensated.

• The algorithm should be applicable to high-dimensional
volumetric data.

III. PROPOSED RESTORATION MODEL AND ALGORITHM

We propose a novel model for restoring the reflectance
distribution {r[k]}k from OCT observation data {v[n]}n by
applying the relation to the latent refractive index distribution.

A. Observation Model of the OCT Device

We consider a latent refractive index distribution {u[k]}k
as the source array for OCT observation {v[n]}n. Now, let
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u ≜ vec({u[k]}k) ∈ [a, b]N ∈ RN (0 < a < b < ∞),
r ≜ vec({r[k]}k) ∈ RN , v ≜ vec({v[n]}n) ∈ RM , and
w ≜ vec({w[n]}n) ∈ RM , as the vector representations of
the latent source, estimation target, observation, and noise,
respectively, where N = |Ωr| and M = |Ωv|. For these vector
notations, a system with a coherence function {p[m]}m is
represented by matrix P ∈ RM×N , where we temporarily
assume a linear convolution. Fig. 4 shows the relationship
between latent refractive index distribution u, reflectance
distribution r and interference response Pr. From (1) and (3),
the observation model is represented as

v = Pϕ(u) +w, s.t. u ∈ [a, b]N , a, b ∈ [0,∞), (5)

where u is the distribution of the latent refractive index, [a, b]N

denotes the range of u, and ϕ : [0,∞)N → (−1, 1)N maps
the refractive index to that of the reflectance according to the
relation in (4), that is, r = ϕ(u).

We can further assume the generation process of the latent
distribution u using a synthesis dictionary D ∈ RN×L and a
coefficient vector s ∈ RL as

u = Ds. (6)

As an advantage of this new model, hierarchical sparsity
regularization can be applied to r and s with a hard constraint
simultaneously placed on u. Although it is not trivial to know
the actual refractive index distribution, if the distribution has
some spatial structure, the hypothetical distribution serves as
an additional regularization.

From (4), a definition of ϕ(·) is given as

ϕ(u) = abs(∆zu)⊙ (−∆zu)⊘ (Azu)
◦2, (7)

where ∆z and Az ∈ RN×N are the difference and addition
operators in the Z direction, respectively, and ⊙, ⊘, and the
superscript ◦ denote the Hadamard (element-wise) product,
division, and power, respectively (see Appendix A) . For ∆z

and Az in (7), we adopt the following convolutional operators
with an impulse response:

dz[m] ≜ Z−1

{
(zx + 2 + z−1

x )(zy + 2 + z−1
y )(zz − z−1

z )

32

}
,

which is an extension of a 2-D Sobel operator into 3-D, and

az[m] ≜ Z−1

{
(zx + 2 + z−1

x )(zy + 2 + z−1
y )(zz + z−1

z )

32

}
,

which adds adjacent values in the Z-direction, where Z−1{·}
denotes the 3-D inverse Z-transform. Note that ∆⊺

z = −∆z

and A⊺
z = Az hold.

B. Problem Setting of OCT Data Restoration

Assuming sparseness in the Z-direction difference ∆zu of
the refractive index u = Ds, where ∆zu as an approximation
of the reflectance r = ϕ(u)2, and the source coefficient s

2Although ∥ϕ(u)∥1 = ∥∆zu∥1 is not met, ∥ϕ(u)∥0 = ∥∆zu∥0 holds,
where ∥ · ∥0 is the pseudo ℓ0-norm, i.e., the number of nonzero elements.

Algorithm 1 Primal-dual splitting (PDS) algorithm [18]
Input: x(0), y(0)

Output: x(n)

1: n← 0
2: while A stopping criterion is not satisfied do
3: x(n+1) = proxγ1g

(
x(n) − γ1(∇f(x(n)) + L⊺y(n))

)
4: y(n+1) = proxγ2h∗

(
y(n) + γ2L(2x

(n+1) − x(n))
)

5: n← n+ 1
6: end while

of the refractive index distribution u, the problem setting is
formulated as follows:

ŝ = arg min
s∈RL

1

2
∥Pϕ(Ds)− v∥22 + λ∥s∥1 + η∥∆zDs∥1,

s.t. u = Ds ∈ [a, b]N , (8)

where ∥ · ∥2 and ∥ · ∥1 are the ℓ2-norm and the ℓ1-norm,
respectively; a, b ∈ (0,∞) are the lower and upper bounds
of the voxels in u; and λ, η ∈ [0,∞) denote the regularization
parameters. The reflectance distribution r can be estimated as
r̂ = ϕ(Dŝ).

C. Linear Approximation of ϕ(·)
Although the original ϕ(·) in (7) is differentiable (see

Appendix A), it is nonlinear and may violate the convexity of
the problem in (8). Thus, we propose a linear approximation of
ϕ(·) for the domain that is assumed to be the refractive index.
Our linear approximation of ϕ(·) is expressed as follows:

ϕ1(u) = −β1(a, b)∆zu, (9)

where β1(a, b) = 2|b− a|/(b+ a)2, which is derived from (4)
and the spectrum norm of {dz[m]}m. Equation (9) guarantees
that the response is null when n1 = n2 and r = ϕ1(u) ∈
(−1, 1)N .

The derivative of ϕ1(·) with respect to u is given as

∂ϕ1

∂u
= −β1(a, b)∆z = β1(a, b)∆

⊺
z , (10)

where [∂f/∂x]n,m ≜ ∂[f ]n/∂[x]m. In addition, [·]n and [·]n,m
denote the n-th element of the vector, and the (n,m)-th
element of the matrix, respectively.

D. Restoration Algorithm

The main contribution of this study is the attribution of (8)
to a convex optimization problem by means of the approxi-
mation in III-C. Consequently, solvers can be obtained from
both PDS and ADMM. We mainly adopt the PDS algorithm
to solve the problem in (8) because inverse matrix operations
are not requested. Although the proximal gradient method also
does not require an inverse matrix operation, it is not adopted
because the last regularization term in (8) is not proximable.

The PDS algorithm can solve problems in the following
form:

x̂ = arg min
x∈RL

f(x) + g(x) + h(Lx), (11)

where f : RL → R ∪ {∞}, g : RL → R ∪ {∞}, and
h : RK → R ∪ {∞} are the proper lower semi-continuous
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Algorithm 2 PDS for solving the problem in (8)

Input: s(0), y(0)
1 , y(0)

2

Output: s(n)

1: u(0) = Ds(0), n← 0
2: while A stopping criterion is not satisfied do
3: t← D⊺(∇F(u(n)) +∆⊺

zy
(n)
1 + y

(n)
2 )

4: s(n+1) = Gλ∥·∥1(s
(n) − γ1t, γ

1
2
1 )

5: u(n+1) = Ds(n+1)

6: q← 2u(n+1) − u(n)

7: y
(n)
1 ← y

(n)
1 + γ2∆zq

8: y
(n)
2 ← y

(n)
2 + γ2q

9: y
(n+1)
1 = y

(n)
1 − γ2Gη∥·∥1(γ

−1
2 y

(n)
1 , γ

− 1
2

2 )

10: y
(n+1)
2 = y

(n)
2 − γ2P[a,b]N (γ−1

2 y
(n)
2 )

11: n← n+ 1
12: end while
13: r̂ = ϕ1(Ds(n))

convex functions; ∇f(·) is µ-Lipschitz continuous; and L ∈
RK×L.

Algorithm 1 shows the steps of the PDS [18], where
proxG(·) and proxG∗(·) denote the proximal maps of the
function G and its convex conjugate G∗, respectively. The
symbols γ1 and γ2 are the step size parameters set to satisfy
γ−1
1 − γ2(σmax(L))

2 ≥ µ/2, where σmax(L) is the maximum
singular value of L [18]. To apply the PDS algorithm to the
problem in (8), let

f(x) = F(Dx) =
1

2
∥Pϕ1(Dx)− v∥22 , (12a)

g(x) = λ∥x∥1, (12b)
h(Lx) = η∥y1∥1 + ı[a,b]N (y2), (12c)

Lx =

[
y1

y2

]
=

[
∆zD
D

]
x, (12d)

where ıC(x) denotes the indicator function defined as 0 for
x ∈ C and ∞ for x /∈ C. We then obtain the PDS steps
with hierarchical sparsity with a hard constraint, as shown
in Algorithm 2 (see Appendix B). If synthesis dictionary D
satisfies the Parseval tight property, i.e., DD⊺ = I [25], [26],
then σmax(L) = σmax

([
∆z

I

])
holds, where I denotes the

identity matrix. For example, orthonormal transforms, such as
the discrete cosine transform, the undecimated Haar transform
(UDHT) [27], and non-separable oversampled lapped trans-
form [28] satisfy the tight Parseval condition. Once we have
the estimation of coefficients ŝ, the reflectance distribution r
is estimated as r̂ = ϕ1(Dŝ).

In Algorithm 2, Gc∥·∥1
(x, σ) and P[a,b]N (x) denotes the

soft-thresholding and metric projection, which are defined as
follows:[

Gc∥·∥1
(x, σ)

]
n
≜ sgn([x]n)max

{
|[x]n| − cσ2, 0

}
(13)

and [
P[a,b]N (x)

]
n
≜ min{max{[x]n, a}, b}. (14)

The gradient of F(·) is obtained using the chain rule as

∇F(u) =

(
∂ϕ1

∂u

)⊺
P⊺(Pϕ1(u)− v)

= β1(a, b)∆zP
⊺(β1(a, b)P∆⊺

zu− v). (15)

The Lipschitz constant of ∇f(·) is determined by µ =
(β1(a, b)σmax(P∆zD))2 from (10). Especially, µ =
(β1(a, b)σmax(P∆z))

2 for a Parseval tight dictionary D.
We can also derive a solver for (8) using ADMM. For the

detail, see Appendix C.

E. Identification of the Measurement Process

In the previous discussions, we assumed that the measure-
ment process P is known. However, the characteristics are
highly dependent on the measurement device, and we need
to identify the parameters before solving the problem in (8).
The quantitative estimation of the measurement process P is
essential to achieve high-quality restoration.

We reduce the identification problem to the search for
optimal parameters in (2). The parameter set is expressed by

θ ≜ [αp, σxy, σz, ωp, bp]
⊺ (16)

and identified for a known simple array of {r[k]}k, for
example, a glass substrate.

Note that we also have to consider the nonlinear sampling
process owing to the frequency variation of the piezoelectric
elements. We need to adjust the variable sampling interval
in the Z-direction. We obtained the frequency variation using
a known sample with a simple structure and a continuous
reflectance distribution. In the following section, we present
specific experiment results.

IV. PERFORMANCE EVALUATION

In this section, we verify the significance of the proposed
model through simulations conducted on artificial data before
showing the experimental results in V. First, to confirm the
effectiveness of introducing a latent refractive index distribu-
tion, we present some results for 1-D sequences in the Z-
direction only. The validity of the proposed model is verified.
In addition, convergence properties and computation time of
the algorithm will be discussed. Next, we proceed to evaluation
of the proposed method using 3-D volumetric data.

A. Model validation

Let us validate the effectiveness of the proposed model with
latent refractive index distribution u. Comparisons are made
with a reference model that does not take u into account. The
reference model adopts 1-D TV for reflectance distribution r
in the Z-direction and the problem setting is given as follows:

r̂ = arg min
r∈(−1,1)N

1

2
∥Pr− v∥22 + η ∥Dzr∥1 , (17)

where Dz is the linear operator with the first-order difference
filter, i.e., (1 − z−1

z ) in the transfer function expression. The
last term in (17) means the 1-D TV regularization in the Z-
direction. (17) is motivated by the model adopted in [14].

Although the measurement process P is not considered
in the article [14], (17) considers P. In this validation, 1-D
signals in the Z-direction are tentatively dealt with. Therefore,
for this validation only, the following settings are temporarily
adopted.
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TABLE I
1-D SIMULATION SPECIFICATIONS, WHERE THE “PHANTOM” FUNCTION

OF MATLAB R2022A IS USED FOR GENERATING THE 1-D SOURCE u
WITH THE OPTION “MODIFIED SHEPP-LOGAN.” THE LINE AT THE CENTER

OF THE VERTICAL DIRECTION WAS EXTRACTED AS A Z-DIRECTION
SEQUENCE AND THE INTENSITY WAS SCALED TO THE RANGE OF a = 1.00
AND b = 1.50. EVALUATION POINTS OF λ AND η ARE LOGARITHMICALLY

SPACED BETWEEN THE INDICATED RANGE IN THIS TABLE AND ρ FOR
ADMM WAS EXPERIMENTALLY SET.

Ref. w/ PDS Prop. w/ PDS Prop. w/ ADMM

Source u 1-D sequence in [1.00, 1.50]256

Target r ϕ(u) in (−1, 1)256

σw {0.01, 0.02, 0.03, 0.04, 0.05 }
η 16 points in [2.51e-02, 2.51e-01]
λ - 16 points in [1.58e-04, 1.58e-01]
µ 100 1.817 -

σmax(L)2 4 2 -
γ1 2/1.05µ -
γ2 (1/γ1 − µ/2)/1.05σmax(L)2 -
ρ - - 0.016

# of iterations 1000
# of trials 10

Measurement process P
ωp 0.3π
σz 30
bp 0.05

Synthesis dictionary D
Type - 1-D Parseval tight UDHT

# of tree levels - {1, 2, 3, 4, 5}

• P: Convolution with kernel {pz[mz]}mz
in (2c)

• D: 1-D Parseval tight UDHT
• ∆z: Convolution with kernel Z−1{(zz − z−1

z )/2}
• Az: Convolution with kernel Z−1{(zz + z−1

z )/2}
Here we compare the following three methods:
• Algorithm 2 with proposed model (Prop. w/ PDS)
• Algorithm 4 with proposed model (Prop. w/ ADMM)
• Algorithm 5 with reference model (Ref. w/ PDS)

For the derivation of Algorithm 5, see Appendix D.
Tables I and II summarize the simulation specifications and

the results, respectively. The 1-D source u is generated by
the phantom function of MATLAB R2022a with the option
“Modified Shepp-Logan,” where the line at the center of the
vertical direction was extracted as a Z-direction sequence and
the intensity was scaled to the range of [a, b] = [1.00, 1.50]. In
this simulation, we generated the observed signal 10 times with
random noise and tried to restore the reflectance distribution
r. Sweeping λ and η, the average MSEs of the restored results
were evaluated, and only the best results for each noise level
and each method are shown. From Table II, we see that the
proposed model generally achieves higher quality restoration
than the reference model. As for the comparison between PDS
and ADMM for the proposed model, the performances are
competitive.

Fig. 5 illustrates example distributions of the simulation
results, where σw is set to 0.05 and the tree level of the
dictionary D is set to 3. The values of λ and η from Table II
were used and the other settings are in Table I. From Fig. 5, we
see that the restoration results of the proposed method shown
in (f) and (h) fit the original reflectance distribution r better
than that of the reference method shown in (d), which is also
confirmed by the MSE values. In order to estimate the original

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 5. Examples of 1-D simulation results by Ref. w/ PDS, Prop. w/ PDS
and Prop. w/ ADMM with σw set to 0.05 and the tree level of the dictionary
D set to 3, where the values of λ and η from Table II were used. Other
settings are shown in Table I. (a) is the source refractive index distribution
u, (b) is the reflectance distribution r, (c) is the observed signal v, (d) is the
result of restoring r by Ref. /w PDS, (e) and (f) are the results of restoring u
and r by Prop. w/ PDS, respectively, (g) and (h) are the results of restoring
u and r by Prop. w/ ADMM, respectively. The dashed lines in (d), (f), and
(h) indicate the original r, and the dashed lines in (e) and (g) indicate the
original u.

signal r from the observed signal v hidden in the noise shown
in (c), we can validate the effectiveness of assuming latent
refractive index distribution shown in (a) as a prior. Fig. 5
(e) and (g) show that the refractive index distribution u is
also estimated; the tendency for u to be underestimated is due
to the higher sensitivity of the approximation ϕ1(·) than the
original ϕ(·).

Fig. 6 compares the computational complexities among Ref.
w/ PDS, Prop. w/ PDS and Prop. w/ ADMM. Fig. 6 (a) and
(b) show the convergence characteristics and processing time
per iteration required to obtain the simulation results shown in
Fig. 5, respectively. From Fig. 6 (a), we see that the proposed
methods have better restoration performance than the reference
method, and in particular, the ADMM approach converges
faster for iterations. However, Fig. 6 (b) shows that the
reference method is lightweight, while the proposed methods
require more computation in an iteration. In particular, the
ADMM approach is computationally expensive. Although it
highly depends on the implementation method, especially of
the inverse operation by Q−1 in (38), we must be careful in its
application to volumetric data. Hereafter, we will adopt Prop.
w/ PDS, which offers an appropriate balance between quality
and computational cost.
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TABLE II
SIMULATION RESULTS OF 1-D REFLECTANCE RESTORATION IN TERMS OF AVERAGE MSE, WHERE “LV.” DENOTES THE NUMBER OF TREE LEVELS OF
UDHT. THE BOLDFACE HIGHLIGHTS THE BEST VALUES AT EACH NOISE LEVEL. TABLE I SUMMARISES THE SPECIFICATIONS OF THIS SIMULATION.

σw 0.01 0.02 0.03 0.04 0.05

Method Lv. MSE λ
η MSE λ

η MSE λ
η MSE λ

η MSE λ
η

Ref. w/ PDS - 1.80e-05 −
6.31e−02 2.47e-05 −

1.00e−01 3.94e-05 −
1.17e−01 5.16e-05 −

1.58e−01 6.49e-05 −
1.85e−01

Prop.

w/ PDS

1 2.28e-06 3.98e−03
5.41e−02 3.40e-06 2.51e−03

5.41e−02 4.89e-06 3.98e−03
5.41e−02 1.10e-05 2.51e−03

6.31e−02 1.70e-05 3.98e−03
6.31e−02

2 2.31e-06 3.98e−03
5.41e−02 3.22e-06 2.51e−03

5.41e−02 4.45e-06 3.98e−03
5.41e−02 1.05e-05 3.98e−03

6.31e−02 1.48e-05 3.98e−03
5.41e−02

3 2.41e-06 2.51e−03
4.64e−02 3.47e-06 2.51e−03

5.41e−02 5.14e-06 2.51e−03
4.64e−02 1.24e-05 2.51e−03

5.41e−02 1.66e-05 2.51e−03
5.41e−02

4 6.62e-06 6.31e−04
5.41e−02 9.31e-06 1.58e−03

3.41e−02 9.69e-06 1.58e−03
3.98e−02 1.54e-05 2.51e−03

5.41e−02 1.77e-05 2.51e−03
5.41e−02

5 6.18e-06 1.58e−03
3.98e−02 8.04e-06 1.58e−03

3.98e−02 9.10e-06 1.58e−03
3.98e−02 1.52e-05 2.51e−03

5.41e−02 1.57e-05 2.51e−03
5.41e−02

Prop.

w/ ADMM

1 4.91e-06 6.31e−03
3.41e−02 6.18e-06 6.31e−03

4.64e−02 1.05e-05 6.31e−03
3.98e−02 1.71e-05 2.51e−03

7.36e−02 1.92e-05 6.31e−04
6.31e−02

2 5.58e-06 1.58e−03
6.31e−02 6.61e-06 6.31e−03

4.64e−02 1.04e-05 6.31e−03
3.98e−02 1.72e-05 2.51e−03

7.36e−02 1.92e-05 6.31e−04
6.31e−02

3 2.17e-06 3.98e−03
5.41e−02 2.63e-06 3.98e−03

5.41e−02 4.15e-06 3.98e−03
5.41e−02 8.99e-06 3.98e−03

6.31e−02 1.40e-05 3.98e−03
5.41e−02

4 8.47e-06 1.00e−03
4.64e−02 9.97e-06 1.00e−03

5.41e−02 1.17e-05 6.31e−04
4.64e−02 1.76e-05 6.31e−04

6.31e−02 1.86e-05 6.31e−04
6.31e−02

5 8.12e-06 1.00e−03
4.64e−02 9.50e-06 1.00e−03

5.41e−02 1.06e-05 1.58e−03
3.98e−02 1.59e-05 2.51e−03

5.41e−02 1.65e-05 2.51e−03
6.31e−02

(a)

(b)

Fig. 6. Comparison of computational complexities among Ref. w/ PDS, Prop.
w/ PDS and Prop. w/ ADMM. (a) and (b) show the convergence characteristics
and processing time per iteration required to obtain the simulation results
shown in Fig. 5, respectively, where MATLAB R2022a on a 64-bit Windows
platform with an Intel Core i7 CPU is used. The process by Q−1 in Step 3
of Algorithm 4 was realized by a linear process corresponding to (38).

B. Restoration Simulation

The flow of the restoration process applied during the sim-
ulations and experiments is shown in Fig. 7. In the following,
∆z and Az are reverted back to the original 3-D system
in III-A. In addition, a 3-D dictionary is adopted as the
synthesis dictionary D. The simulation was conducted under
the following conditions:

1) Sampling adjustment simulation for artificial opaque-
tape data with scattered reflection points

Fig. 7. Flow of the proposed restoration method. During the “sampling
adjustment” stage, the peak frequency is detected, which is distorted by
the piezoelectric element, applied as a constant. By adjusting the sampling
interval, the peak frequency of the STFT also becomes a constant. During
the “waveform estimation” stage, the interference waveform is estimated
based on the assumption that the peak frequency is constant. During the
“volumetric restoration” stage, contaminated 3-D volumetric data are restored
based on the parameters identified through experiments conducted to obtain
clear volumetric data from noisy data.

2) Interference waveform estimation with an artificial thin
glass substrate having two sharp reflection points in the
Z-direction

3) Restoration simulation with Modified Shepp-Logan vol-
umetric data as a refractive index distribution

A measurement process is shared by all of the following
simulations, and the observation is set to a size of 64×64×300
voxels.

1) Sampling adjustment: First, let us conduct simulations
on a sampling adjustment. In a real OCT device, the nonlinear-
ity of the piezoelectric actuator violates the constant interval
of the sampling points in the Z-direction. Thus, we have to
determine the misalignment and compensate for the inconstant
interval. The short-time Fourier transform (STFT) can be
used to identify the sampling interval in the Z-direction. In
principle, the angular frequency ωp in (2c) should be constant.
Thus, we can detect the misalignment from the variation in
the peak frequency of the monitored coherence function p[m].
Based on the identified sampling interval, we can compensate
the misalignment such that the peak frequency is constant. In
this study, the peak frequency variation was assumed to be
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(a) (b)

(c) (d)

(e) (f)

Fig. 8. Simulation results of the sampling adjustment are shown using the
STFT. The STFT was performed using a hamming window with a length of
100. (a), (c), and (e) OCT observations of opaque-tape data before a sampling
adjustment, where the angular frequencies ωp are set from 0.8π to 0.4π,
0.4π to 0.8π, and 0.3π to 0.9π, respectively, and the noise level σw was
set to 0.05. (b), (d), and (f) OCT observations after the sampling adjustment
from the results of (a), (c), and (e), respectively.

linear.
In the following simulation, the reflectance distribution of

the artificial opaque-tape was modeled as

r[k] = e[k] + c[k], (18)

where e[k] represents the edges

e[k] =

 0.3 kz = 75
−0.3 kz = 225
0 o.w.

(19)

and c[k] denotes the scatters modeled through a Gaussian
distribution with zero mean and a standard deviation of 0.1.
In addition, the angular frequency ωp was artificially set.

The simulation results for the artificial data are shown in
Fig. 8, where the “stft,” “polyfit” and “resampling”
functions in MATLAB R2022a were used. Fig. 8 shows that
the angular frequency remains almost unchanged after the
sampling adjustment. In addition, the error was approximately
1.5%.

2) Interference waveform estimation: Second, we con-
ducted a simulation on the interference waveform estimation.
The unknown interference waveform parameter set θ of (16) is

(a) (b)

(c) (d)

(e) (f)
Fig. 9. Simulation results of the interference waveform estimation. (a),
(c), and (e) Comparison between observations after sampling adjustment as
in Fig. 8 (c)(d), estimation and fit condition of the estimated interference
waveform, where the slopes ar = ar[1, 1]⊺ of the artificial glass surfaces in
(a), (c), and (e) are 0, 0.25, and 0.5, respectively. (b), (d), and (f) Observed
signals before the sampling adjustment, which are the artificial data used in
(a), (c), and (e), respectively.

identified using a known reflectance distribution with a simple
structure. In the identification, the gradient descent method is
used to search for an optimum parameter set (see Appendix E).
In this simulation, we assumed a slanted artificial thin glass
for the reflectance distribution and defined the model as

r[k] =

 0.5 kz = round(75 + arxkx + aryky)
−0.5 kz = round(150 + arxkx + aryky)
0 o.w.

,

(20)

where ar = [arx, ary]
⊺ is the inclination of the glass surface.

The interference waveform is estimated using the response
from this artificial glass data. The simulation configuration is
as follows:

• The root mean of the power spectrum in the Z direc-
tion was calculated for the sampling-adjusted observation
data, and its Gaussian fitting result is empirically used to
set the initial values of αp, ωp, and σz,

• the other parameters in θ are randomly initialized through
a uniform distribution with a mean value of the ground
truth with a ±50% range,

• θ is optimized using a gradient descent and
• the number of iterations is set to 1000.

The results of this simulation are shown in Fig. 9. From
Fig. 9, we can observe that the waveforms fit well. The
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Fig. 10. MSE validation for sparse regularization parameters λ and η. This
evaluation was conducted for an observation v of size 64×64×300 through
the oracle measurement process P with AWGN of standard deviation σw =
0.05, where αp = 1, σz = 30, σxy = 0.5, ωp = 0.6π, bp = 0.05,
γ1 = 2.86×10−1, γ2 ≃ 7.93×10−2, and the number of iterations was set
to 1000. In this simulation, the two-level UDHT was used as the dictionary
D. The best combination of λ∗ ≃ 2.51 × 10−3 and η∗ ≃ 1.26 × 10−2 is
indicated by the white asterisk in terms of the MSE.

TABLE III
SIMULATION RESULTS FOR VARIOUS NOISE LEVELS, WHERE “SAMPLING”
IN (A) DENOTES THE ERROR RATE [%] BETWEEN THE TARGET INTERVAL

AND ESTIMATED INTERVAL VALUE AND “WAVE” IN (A) DENOTES THE
ERROR RATE [%] BETWEEN THE TARGET VALUE OF THE INTERFERENCE

WAVEFORM PARAMETERS AND THAT IDENTIFIED THROUGH THE
SIMULATION. THE MEAN SQUARE ERROR (MSE) IN (A) INDICATES THE

RESTORATION QUALITY OF THE SIMULATION. THE VALUES WERE
EVALUATED BY AVERAGING 9 TRIALS. (B) SHOWS THE ERROR RATES FOR

INDIVIDUAL PARAMETERS IN THE WAVEFORM ESTIMATION.

(a)
Noise level Sampling (%) Wave (%) MSE

0.1 1.46 12.1 5.73× 10−6

0.2 1.45 12.3 5.80× 10−6

0.3 1.44 12.3 6.71× 10−6

0.4 1.42 12.3 6.93× 10−6

0.5 1.47 13.1 9.26× 10−6

(b)
σw αp (%) σxy (%) σz (%) ωp (%) bp (%)

0.01 13.47 27.82 8.18 0.61 11.47
0.02 13.05 27.92 7.15 0.75 13.50
0.03 13.57 27.88 5.84 0.75 13.15
0.04 13.16 28.66 5.18 0.77 12.30
0.05 12.38 28.36 5.00 0.72 13.03

results indicate that an unknown interference waveform can
be estimated from the observations of the glass specimen. The
numerical assessment is provided in Table III.

3) Volumetric data restoration: In the third stage, we con-
ducted a restoration simulation using both the above estimated
frequency fluctuation and the interference waveform. Fig. 10
shows the MSE validation of the restoration results for sparse
regularization parameters λ and η with an oracle measurement
process P. The simulation results are shown in Fig. 11 and
are summarized in Table III. The optimal value of λ results in
2.51× 10−3, where λ controls the sparsity of s. The optimal

(a) (b)

(c) (d)

(e) (f)

(g) (h) (i)
Fig. 11. Example set of artificial volumetric arrays. (Top) Y-Z slice at the
center of X. (Bottom) Z-direction sequence at the center of the X-Y plane.
(a) Latent refractive index distribution u, where the phantom function of
MATLAB R2022a is used with the option “Modified Shepp-Logan.” The
intensity was scaled to the range of a = 1.00 and b = 1.50. The Y-Z slice
was replicated in the X-direction. (b) Reflective distribution r derived from
u using the mapping ϕ(·) in (7). (c) Observation v, where the AWGN of the
zero mean and standard deviation of 0.03 is set as noise w. (d) Restoration
result, where MSE = 9.39×10−6 (e) Observation v, where the AWGN of the
standard deviation of 0.05 is set as noise w. (f) Restoration result, where MSE
= 9.46×10−6. (g) The 3-D reflective distribution r. (h) The 3-D observation
v with the AWGN of the standard deviation 0.05 (i) The restored result r̂. The
green and red voxels denote the positive and negative values, respectively. In
the restoration, γ1 ≃ 2.86× 10−1, γ2 ≃ 7.93× 10−2, λ = 2.51× 10−3,
and η = 1.26 × 10−2, and the number of iterations is set to 1000, where
the two-level UDHT is used as the dictionary D.

value of η results in 1.26 × 10−2, where η controls the total
variation of u in the Z-direction. If λ and η deviate from the
above optimal values, the restoration results worsen. It means
that both terms are essential to the proposed model as the
combination of the two regularization terms in (8) can provide
high quality restoration. Note here that the measurement
process P and noise level σw depend on the equipment
configuration, while the synthesis model depends on the target.
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It takes time to exhaustively search for parameters. However,
the regularization parameters may continue to be used, as long
as the characteristics of equipment and target do not change.
At present, there is no good practice to set λ and η, but
simulation results may be used as a reference. Figs. 11 (a)
and (b) illustrate the artificial refractive index distribution u
and reflectance distribution r, respectively, and Figs. 11 (c)
and (e) show two examples of observation v measured using
the coherence function shown in Fig. 2 and the frequency fluc-
tuation by the piezoelectric element, where the noise levels are
set to 0.03 and 0.05, respectively. Figs. 11 (d) and (f) are the
restoration results from (c) and (e), respectively. Figs. 11 (g)
and (h) display the 3-D observed signal v and reflectance
distribution r, respectively. The simulation configuration is as
follows:

• Dictionary D and Gaussian denoiser GR(·, σ):
– 3-D 2-level UDHT [27] and soft-thresholding in (13)

• Step-size parameters:
– µ ≈ 6.6651
– γ1 = 2/(1.05µ) ≈ 2.86× 10−1

– γ2 = (1.05ξ)−1(1/γ1 − µ/2)≈ 7.93× 10−2, where
ξ = (σmax(L))

2= 2

• The number of iterations is set to 1000.
Note that σmax(L) =

√
λmax(∆

⊺
z∆z) + 1 for a tight

Parseval dictionary D, such as UDHT, where λmax(·) denotes
the maximum eigenvalue.

V. EXPERIMENTAL RESULTS

We present experimental results for an observation array of
the sensory epithelium of the inner ear of a mouse measured
using an MS en-face OCT device, which we developed. The
process flow shown in Fig. 7 is adopted for the this experiment.
The regularization parameters were set to λ = c × 2.51 ×
10−3 and η = c× 1.26× 10−2, respectively, which were the
values used in IV with rescaling by a factor c of 6× 104 set
experimentally. Although it is difficult to evaluate the degree
of sparsity of the refractive index distribution, we assume that
some spatial correlation exists in the distribution and a sparse
representation is expected through dictionary D.

We attempt to restore an actual volumetric data observed by
an MS en-face OCT device. The sampling adjustment result
using STFT is shown in Fig. 12. Figs. 12 (a) and (b) show the
STFTs before and after a sampling adjustment, respectively. It
can be observed that, by adjusting the sampling interval, the
peak frequency is kept constant, as in the simulation.

The results of an interference waveform estimation is shown
in Fig. 13. Figs. 13 (a), (b), and (c) show the observed signal
of the glass, estimated reflectance distribution of the glass, and
a comparison between the observed signal and the estimated
interference waveform, respectively. As in the simulation for
artificial data, the observed signal and interference waveform
appear similar to each other, except for the width, indicating
that the interference waveform, especially the amplitude and
frequency, may be successfully identified.

The results of the volumetric data restoration are shown in
Figs. 14 and 15, respectively. For the observed data, the sam-
pling adjustment parameter was calculated by itself because

(a)

(b)
Fig. 12. Sampling adjustment result, where STFT is applied using a 100-
length humming window: (a) STFT of opaque-tape data before a sampling
adjustment, and (b) STFT after a sampling adjustment.

the measurement points of the opaque tape were different
and the misalignment affects to the adjustment. According
to [14], we applied the preprocessing based on median filters.
Fig. 14 shows an observation of the sensory epithelium of the
inner ear of a mouse3. Fig. 15 exhibits the restoration result
of the reflectance distribution for subjective evaluation, where
the problem setting similar to the simulation in Section IV-B is
adopted. The data size is 64× 64× 5000 voxels, which corre-
sponds to a physical dimension of 0.56×0.56×0.37 mm3. The
parameters of the measurement process P were taken from
the estimation results in Fig. 13 as α̂p = 878.4, σ̂xy = 0.269,

3The animal experiment was carried out in compliance with the protocol ap-
proved by the Institutional Animal Care and Use Committee and the President
of Niigata University (Permission Number: Niigata Univ. Res. SA00458). The
experiment was designed in accordance with the Japanese Animal Protection
and Management Law. One male CBA/NSlc mouse (23.9 g, 7 weeks of age;
SLC Inc., Hamamatsu Japan) were housed at the animal facility of Niigata
University and kept on a 12 h light/12 h dark cycle. Water and food were
available to the animal ad libitum. Animal handling and reporting complied
with the ARRIVE guidelines [29] A combination anesthetic was prepared with
0.3 mg/kg of medetomidine (Dorbene® Vet, Kyoritsu Seiyaku Corporation,
Japan), 4.0 mg/kg of midazolam (midazolam injection, Sandoz, Yamagata,
Japan), and 5.0 mg/kg of butorphanol (Vetorphale, Meiji Seika Pharma Co.,
Ltd., Tokyo, Japan). The mouse was anesthetized adequately with an intra-
peritoneal injection of the anesthetic. The toe pinch, corneal reflexes, and
respiratory rate were examined to evaluate the depth of anesthesia. When
anesthesia was insufficient, the anesthetic was additionally injected into the
animal. A tracheotomy was conducted for the maintenance of spontaneous
breathing [30]. A fenestra was surgically opened on the ventrolateral site of
the bulla in order to shine the low coherence light on the epithelium in the
basal turn of the cochlea through the intact transparent round window. The
imaging procedure of the sensory epithelium using MS en-face OCT was
described elsewhere [9]. 5,000 en-face images were acquired by scanning
within approximately 370µm in the axial direction. Acquisition time was
0.25 s.
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(a) (b)

(c)
Fig. 13. Waveform estimation results for real data: (a) Observation of thin
glass substrate, where the strong response along the Z direction is removed
by a high-pass filter as a bias and trend component as described in II-A, (b)
Estimation of the thin glass substrate by plane fitting, and (c) Comparison
between observation after sampling adjustment and estimation.

σ̂z = 31.87, ω̂p = 1.351, b̂p = 0.049. In the article [8],
a bandpass filter was manually set up in the frequency do-
main for noise removal and interference waveform extraction.
Fig. 16 compares the reflectance distributions obtained through
the previous manual approach adopted in [8] and through the
proposed computational method. It can be observed that the
restoration results of the proposed method are clearer than
those of the previous approach. In addition, we observed the
sensory epithelial body, which was sandwiched between the
bones inside the cochlea.

Note that our proposed computational method changed the
bandpass filter setting in [8] to a setting of two parameters;
λ and η, which enabled us to handle high-volume OCT data
systematically with a high quality restoration.

VI. CONCLUSIONS

This paper proposed a restoration method for OCT volu-
metric data. We reduced the restoration problem to a sparsity-
aware least squares minimization problem with a hard con-
straint and constructed an algorithm based on the PDS frame-
work to solve the problem. The significance was verified
through simulations of the artificial data and an experiment
conducted on the actual MS en-face OCT measurement data.
Although the main motivation of this study is to overcome
the disadvantage of the MS en-face OCT device, the proposed
model is also applicable to other types of OCT devices. The
restoration based on the proposed model is expected to reduce
the laser power while maintaining the acquisition performance.

Finally, we summarize some open problems in the proposed
method.

a) Computational cost: As indicated in IV-A, the compu-
tational cost is high due to the additional regularization term.
Reducing the computational cost is an issue. For the PDS
approach, an acceleration method would be effective. Since
the convergence characteristic of ADMM is attractive, it is
expected to improve the efficiency of processing by the inverse
matrix Q−1, which requires considerable computational cost.

b) Observation process: The observation process in (5)
includes the measurement process P and AWGN w. Whether
the assumed observation model is equal to the actual obser-
vation is an important topic. In this study, we attempted to
identify the measurement process P from actual data taken
of a glass substrate. However, we have confirmed that the
initial values and parameter settings for optimization have
a significant impact. There is room for improvement in the
identification process and evaluation of its validity.

c) Synthesis process: A fixed synthesis dictionary D was
used in this study, although there is still room for consideration
in selecting a better dictionary to represent the refractive index
distribution more sparsely. Although training data for the target
refractive index distribution is required, it is a possible strategy
to provide dictionary D through training. In this case, knowing
the actual distribution is another important issue.

d) Mapping ϕ(·): In the proposal, the mapping ϕ(·)
from the refractive index distribution to the reflectance dis-
tribution is approximated linearly in order to sufficiently
guarantee that the optimization problem is convex. However,
we are unable to deny the possibility that there exists a better
nonlinear approximation method that guarantees a convex
optimization framework.

e) Regularization: Strategies for setting the regulariza-
tion parameters λ and η should be considered in practical
applications. Furthermore, the selection of the regularization
is another important topic. Steps 4 and 9 of Algorithm 2 used
the regularized Gaussian denoiser representation as GR(·).
For those denoising methods, we set up a typical ℓ1-norm
regularization and adopted a soft thresholding process derived
from the theory. However, plugging in other denoisers is also
an option to be considered.

f) Speckle noise removal: For addressing speckle noise,
this study adopted the assumptions of [14] and focused on
the AWGN removal problem. We consider that speckle noise
removal should also be incorporated into optimization for more
sophisticated processing.

g) Sampling adjustment: Regarding the frequency vari-
ation of the interference waveform, this paper assumed its
linearity. However, the variation is inherently nonlinear due
to the characteristics of the piezoelectric element. The slope
changes with depth, and there are also points that show both
increases and decreases. This positional dependence also needs
to be considered in both of the measurement and processing
phase.

This study provides a framework for various customiza-
tion, including the observation process P of OCT devices.
Our achievement could be an important contribution to OCT
imaging
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(a)

(b)

(c)

Fig. 14. The observation v of the sensory epithelium of an inner ear of a
mouse as measured using the MS en-face OCT device, where bias removal
was applied but not sampling adjustment: (a) 3-D representation of a 64×
64× 5000 sized voxel corresponding to the physical dimensions of 0.56×
0.56 × 0.37mm3, (b) Y-Z slice at the center of X, and (c) Z-direction
sequence at the center of X-Y.

(a)

(b)

(c)

Fig. 15. Restored reflectance distribution result r̂ = ϕ1(Dŝ) using Proposed
method with the PDS and two-level UDHT as D, where preprocessing based
on median filtering was applied according to [14]: (a) a 3-D representation,
where the number of iterations is set to 1000, (b) a Y-Z slice at the center
of X, and (c) Z-direction sequence at the center of X-Y.

APPENDIX A
MAP ϕ(·) AND ITS JACOBIAN

In (4), the pairwise operations of (n1 + n2), (n1 − n2),
and |n1 − n2| are described as Azu, −∆zu, and abs(∆zu),
respectively, for the vector representation u ∈ (0,∞)N of the
target volumetric data. Using the above notations, (4) can be
equivalently expressed as in (7).

This appendix shows the Jacobian matrix of ϕ(·) in (7) to
demonstrate its differentiability. Let us define χ(x) ≜ |x|x
and ζ(x) = x2 for x ∈ R, and dn(u) = [∆zu]n and an(u) =
[Azu]n for u ∈ (0,∞)N ⊂ RN . The n-th row of the Jacobian
matrix of ϕ(·) is then expressed as[

∂ϕ

∂u

]
n, :

=
∂[ϕ(u)]n

∂u
= − ∂

∂u

χ(dn(u))

ζ(an(u))
.

= −
∂χ(dn(u))

∂u ζ(an(u))− χ(dn(u))
∂ζ(an(u))

∂u

ζ(an(u))2
.

= −2
|[∆zu]n| [Azu]n[∆z]n, : − |[∆zu]n| [∆zu]n[Az]n, :

[Azu]3n

= −2
|[∆zu]n|
[Azu]3n

([Azu]n[∆z]n, : − [∆zu]n[Az]n, : ) , (21)

where [·]n, : indicates the n-th row vector of the argument,

and we apply the chain rule to derive the following relations:

∂χ(dn(u))

∂u
=

∂χ(dn)

∂dn

∂dn
∂u

= 2|dn|
∂dn
∂u

= 2 |[∆zu]n| [∆z]n, : , (22)

∂ζ(an(u))

∂u
=

∂ζ(an)

∂an

∂an
∂u

= 2an
∂an
∂u

= 2[Azu]n[Az]n, : . (23)

Finally, we have the Jacobian matrix

∂ϕ

∂u
=

− 2
diag(abs(∆zu))

diag(Azu)3
(diag(Azu)∆z − diag(∆zu)Az) .

(24)

APPENDIX B
DERIVATION OF ALGORITHM 2

This appendix shows the derivation process of Algorithm 2
through the PDS framework.
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(a) (b)

(c) (d)

Fig. 16. Comparison between the previous manual approach and proposed
computational approach. The restoration results are displayed as absolute
values of the reflectance distribution abs(r̂): (a) X-Z cross-section at nx = 30
and (b) Y-Z cross-section at ny = 30 using the previous method, and (c) X-Z
cross-section at ny = 30 and (d) Y-Z cross-section at nx = 30 using the
proposed method.

1) Step 3 in Algorithm 1: From (12a) and (12d), we have

∇f(x) = D⊺∇F(Dx) (25)
L⊺y = D⊺(∆⊺

zy1 + y2) (26)

Because we can view a proximal mapping as a regularized
Gaussian denoiser, we use the following notation:

Gg(x,
√
γ) ≜ proxγg (x) = argmin

u

1

2γ
∥u− x∥22 + g(u).

(27)
We then have Steps 4–6 in Algorithm 2 from Step 2 in

Algorithm 1 and (12b).
2) Step 4 in Algorithm 1: From (12c) and (12d), Step 4 in

Algorithm 1 can be split into the following two steps:

y
(n+1)
1 = proxγ2h∗

1

(
y
(n)
1 + γ2∆zD(2x(n+1) − x(n))

)
,

(28)

y
(n+1)
2 = proxγ2h∗

2

(
y
(n)
2 + γ2D(2x(n+1) − x(n))

)
. (29)

Let u = D(2x(n+1) − x(n)). Then, Moreaus’ identity

proxγh∗(y) = y − γproxγ−1h(γ
−1y) (30)

allows us to express the above steps as

y
(n+1)
1 = y

(n)
1 + γ2∆zu− γ2proxγ−1

2 h1

(
γ−1
2 y

(n)
1 +∆zu

)
,

(31)

y
(n+1)
2 = y

(n)
2 + γ2u− γ2proxγ−1

2 h2

(
γ−1
2 y

(n)
2 + u

)
. (32)

As a result, Steps 5–10 in Algorithm 2 are derived from Step 4
in Algorithm 1 and (12c) with h1(·) = η∥ · ∥1 and h2(·) =
ı[a,b]N (·).

Algorithm 3 Alternating direction method of multipliers
(ADMM) [20], [21]
Input: z(0), d(0)

Output: x(n)

1: n← 0
2: while A stopping criterion is not satisfied do
3: x(n+1) = argminx f(x) + ρ

2
∥z(n) −Gx− d(n)∥22

4: z(n+1) = prox 1
ρ
g

(
Gx(n+1) + d(n)

)
5: d(n+1) = d(n) +Gx(n+1) − z(n+1)

6: n← n+ 1
7: end while

Algorithm 4 ADMM for solving the problem in (8)
Input: z(0), d(0)

Output: s(n)

1: y = (PΦ1D)⊺v, n← 0
2: while A stopping criterion is not satisfied do
3: s(n+1) = Q−1

(
y + ρG⊺(z(n) − d(n))

)
4: z

(n+1)
1 = Gρ−1∥·∥1

(
G1s

(n+1) + d
(n)
1 , λ

1
2

)
5: z

(n+1)
2 = P[a,b]N

(
G2s

(n+1) + d
(n)
2

)
6: d(n+1) = d(n) +Gs(n+1) − z(n+1)

7: n← n+ 1
8: end while
9: r̂ = ϕ1(Ds(n))

APPENDIX C
DERIVATION OF ADMM-BASED ALGORITHM

This appendix shows the derivation process of the ADMM
approach [20], [21]. ADMM can solve problems in the fol-
lowing form:

{x̂, ẑ} = arg min
(x,z)∈RL×K

f(x) + g(z) s.t. z = Gx, (33)

where f : RL → R∪{∞}, and g : RK → R∪{∞} are convex
functions; and G ∈ RK×L.

Algorithm 3 shows the steps of ADMM [20], [21]. The
parameter ρ > 0 determines the step size. To apply the ADMM
to the problem in (8), let

f(x) =
1

2
∥Pϕ1(Dx)− v∥22 , (34a)

g(z) = λ∥z1∥1 + ι[a,b]N (z2), (34b)

z =

[
z1
z2

]
=

[
G1

G2

]
x = Gx, (34c)

where, for λ > 0,

G1 =

[
I

ηλ−1∆zD

]
, G2 = D.

We then obtain the ADMM steps as shown in Algorithm 4,
where

Q = (PΦ1D)⊺PΦ1D+ ρG⊺G, (35)
Φ1 = −β1(a, b)∆z. (36)

Since G⊺G = I + (ηλ−1)2(∆zD)⊺∆zD +D⊺D is sym-
metric and consists of the identity matrix, it is guaranteed to
be nonsingular, so is Q.
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Algorithm 5 PDS for solving the problem in (17)
Input: r(0), y(0)

Output: r(n)

1: n← 0
2: while A stopping criterion is not satisfied do
3: t← P⊺(Pr(n) − v) +D⊺

zy
(n)

4: r(n+1) = P(−1,1)N (r(n) − γ1t)

5: q← 2r(n+1) − r(n)

6: y(n) ← y(n) + γ2Dzq

7: y(n+1) = y(n) − γ2Gη∥·∥1(γ
−1
2 y

(n)
1 , γ

− 1
2

2 )
8: n← n+ 1
9: end while

10: r̂ = r(n)

By performing the convolution operation in a circular man-
ner, the DFT coefficient product can be used instead. Then,
we have

Q = ρI+D⊺(ρI+W−1S⊺diag(ȟ)SW)D, (37)

where W is the DFT matrix, ȟ is the vector with the non-zero
entries of the frequency response of the circular convolution
operator ∆⊺

z (β1(a, b)
2P⊺P + ρ(ηλ−1)2I)∆z, and S is the

subsampling matrix to extract the non-zero coefficients.
For a Parseval tight synthesis dictionary D, DD⊺ = I holds,

and the Woodbury matrix identity gives us

Q−1 =
1

ρ
I−

D⊺
(

1

2ρ
I+

1

4ρ2
W−1S⊺

(
1

2ρ
I+ diag(ȟ)−1

)−1

SW

)
D.

(38)

For low-dimensional problems, Q−1 can be pre-computed.
However, it is not suitable for volumetric data with high
dimensionality. Instead of precomputing Q−1, we can realize
the linear process by (38) by combining the synthesis operator
D, analysis operator D⊺, DFT W, its inverse W−1, subsam-
pling S and zero-value insertion S⊺. However, even the latter
approach requires a huge amount of memory and computation
for volumetric data.

APPENDIX D
REFERENCE METHOD

Algorithm 5 shows the PDS steps for the reference method
motivated by [14]. The following summarizes the derivation
process.

(17) is equivalently represented by

r̂ = arg min
r∈RN

1

2
∥Pr− v∥22 + ι(−1,1)N (r) + η ∥Dzr∥1 . (39)

To apply PDS to the problem in (39), let

f(x) =
1

2
∥Px− v∥22 , (40a)

g(x) = ı(−1,1)N (x), (40b)

h(Lx) = η∥y∥1, (40c)
Lx = y = Dzx (40d)

where L = Dz. We then obtain the PDS steps as shown in
Algorithm 5.

It is lightweight because it does not require analysis or
synthesis processing within iterations, but only a combina-
tion of convolutional operations, metric projection, and soft
thresholding.

APPENDIX E
INTERFERENCE WAVEFORM ESTIMATION

This appendix describes a method for identifying the coher-
ence functions in (2). The identification of the measurement
process is based on thin glass substrate data, making it easier
than biological tissue to reveal the impulse response as the
measurement process. For the identification problem, the least-
squares method with the gradient descent algorithm was used
after detecting the position and slope of the glass surfaces by
plane fitting. The formula for the identification is set to

θ̂ = argmin
θ

E(θ), (41a)

E(θ) =
1

2
∥Pθrg − vg∥22, (41b)

P̂ = Pθ̂, (41c)

where rg ∈ RN is assumed to have only two nonzero coef-
ficients in the Z direction, vg ∈ RM denotes the observation
data of the thin glass substrate, Pθ ∈ RM×N is a measurement
process with parameter set θ = [θi]i = [αp, σxy, σz, ωp, bp],
as in (2). The gradient of the error function E(θ) in (41) is
derived analytically as

[∇θE(θ)]i =

(
∂Pθ

∂θi
rg

)⊺
(Pθrg − vg), (42)

and θ is optimized using this gradient.
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