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Abstract—TOP-CT (Trajectory with Overlapping Projections
X-ray Computed Tomography) is a new class of CT scanning
geometries for high throughput industrial CT scanning. In TOP-
CT multiple objects move with a constant spacing over the
same trajectory between a stationary X-ray source and detector.
The projections of multiple objects can overlap, which provides
additional flexibility when designing CT scanning geometries.
Reconstruction algorithms were developed to reconstruct objects
one by one from the overlapping projection data as soon as the
objects move out of the field of view of the scanning setup. This
makes it possible to make reconstructions while new objects with
overlapping projections keep being added.

The forward problem of TOP-CT is linear with a band block
Toeplitz structure, and the matrix of the forward problem can
be constructed from multiple copies of a non-overlapping CT
projection matrix, so existing software toolkits can be used for
TOP-CT with only a small modification. Simulation experiments
and a real life experiment were performed on a U-turn TOP-
CT geometry. One experiment showed that reconstructions from
an overlapping projection setup have a slightly higher SSIM
(0.828 vs 0.811) and similar PSNR (33.50 vs 33.34) compared to a
non-overlapping setup, using the same scan time per object and
the same reconstruction algorithm (SIRT). Another experiment
showed that a reconstruction algorithm making reconstructions
one by one using only local projection data performed without
loss of quality compared to a baseline reconstruction method
using all projection data.

Index Terms—computed tomography (CT), CT scanning ge-
ometry, overlapping X-ray projections, non destructive testing
(NDT), iterative methods, block Toeplitz matrix

I. INTRODUCTION

X -RAY computed tomography (CT) is widely used in
industry to inspect the inside of objects in 3D without

destroying them [3, 20, 24]. In the context of smart factories
and industry 4.0, CT could also be used for quality control in
factories by scanning every product after production [1]. To
meet the high throughput demands of factory applications, CT
scanners need to have a short acquisition time per object.

In a CT scanner a series of 2D X-ray projection images
are acquired from multiple directions, and these images are
combined to reconstruct a 3D representation of the inside of
the object. The way in which the object, the X-ray source and
the detector move relative to each other is called the geometry
of a scanner. To achieve a good reconstruction quality over the
entire object it is important that there is enough variation in
the directions from which the projection images are acquired.
This is formalized in a completeness condition by Tuy [25]

This paper has supplementary downloadable material available at
http://ieeexplore.ieee.org, provided by the authors. The material is a video
illustration of the U-turn geometry in motion. This material is 1.5MB in size.
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Fig. 1. Comparison of different X-ray tomography geometries. For every
geometry an illustration of the geometry is given on the left and an example
of a projection image obtained from the geometry is given on the right. Top:
Standard circular cone beam geometry with a rotating object, Middle: Rotation
and translation geometry, where objects rotate while they move over a line.
Bottom: One example of the class of geometries presented in this paper.

and Smith [23]. However, some geometries do not meet
the completeness condition but still obtain acceptable results
in practice [6, 18]. To distinguish these slightly incomplete
scanning geometries, measures have been derived that provide
a completeness indication between zero and one over the space
of an object [13, 15].

A CT scanner on a production line should have a geometry
that is sufficiently complete to be able to perform the desired
inspection tasks while also having a low acquisition time
per object. For the application of scanning logs in a sawing
plant a CT scanner is commercially available where the logs
move through a rotating gantry [26, 7, 8]. The X-ray source
and detector are attached to the gantry which is rotating at
high speed to quickly obtain images from different angles.
A similar setup is used in medical CT scanners. Another
high-throughput scanner is commercially available for the
application of explosives detection in luggage [16]. Instead
of a rotating gantry it uses multiple multi-focus sources and
detectors in a ring around the conveyor belt, making it possible
to acquire similar data to a rotating gantry with a stationary
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setup.
Depending on the type of object, applying additional move-

ment to the object while the source and detector are stationary,
can be a simpler alternative to acquire a sufficiently complete
set of projection data. In the rotation and translation geometry
[4] each object moves in a straight line parallel to a large flat
panel detector while each object also rotates around its vertical
axis. Further research on this geometry has improved the
computation time [12]. Moreover, the reconstruction results
when using a low number of projections were improved by
assuming a limited number of attenuation levels within the
object, and by using the outer shape of the object, which could
be acquired by other sensors, i.e. optical sensors [19].

The throughput of a rotation and translation geometry is
determined by two parameters: the spacing between objects,
and the translation speed. The spacing between objects is
limited by the fact that projections of two adjacent objects
should not overlap. Moreover, if the translation speed is
increased, the rotation speed or detector size should also be
increased to still acquire a complete set of projection images.
Increasing the translation speed or rotation speed has the
downside of introducing motion blur and vibrations in the
objects, while increasing the detector size increases the cost
of the setup.

In this paper a new class of geometries is introduced called
TOP-CT (Trajectory with Overlapping Projections X-ray Com-
puted Tomography). In a TOP-CT scanner multiple objects
move over the same trajectory between a stationary source and
detector, and the projections of multiple objects overlap. By
allowing projections to overlap, the spacing between objects
can be reduced to zero, which increases the throughput of a
scanner. Moreover the trajectory of the objects can be modified
so that an object passes the same part of a detector more
than once. This makes it possible to reduce the detector size,
without changing the throughput, rotation speed, or translation
speed. An illustration of what differentiates TOP-CT from
existing geometries is given in Figure 1. One way to realize
the TOP-CT U-turn geometry from Figure 1 would be to use a
hanging overhead conveyor, because in such systems objects
rotate with the curve of the conveyor track, just like in the
illustration.

Reconstructing objects from overlapping projections has
been investigated before [14]. Their method was intended to be
used with projection data acquired at a synchrotron beamline,
so it assumed a parallel beam source. The objects were placed
on a line between the source and detector, and each object
was rotated individually. For the reconstruction algorithm to be
able to distinguish individual objects, small offsets in position
were applied to each object that differ for every projection
image acquired. An important difference between TOP-CT
and [14] is the way in which new objects are introduced.
In [14] objects are scanned in batches, so the projections of
objects only overlap within a batch. In TOP-CT new objects
are introduced at a constant rate, resulting in overlapping
projections between all adjacent objects. While this makes
the reconstruction problem more complicated, it simplifies the
mechanical setup because objects on a production line can
maintain a constant speed while going through the scanner

and it eliminates the time required to replace the batch, during
which the detector is not utilized.

The contributions of this paper are as follows: In Section II
a mathematical formulation is given for the TOP-CT forward
problem. It is shown to be a linear problem, where the matrix
has a block-Toeplitz structure, and it can be constructed from
multiple copies of the projection matrix of a single object.
In Section III four reconstruction methods for TOP-CT are
presented. One method uses all projection data similarly to
[14], while the other methods only use local projection data,
enabling on-line reconstructions. In Section IV the reconstruc-
tion quality of the different methods is evaluated experimen-
tally, with the on-line submatrix method reaching the same
reconstruction quality as the baseline together method. Finally
a discussion and conclusion are given in Sections V and VI.

II. FORWARD PROBLEM

In this section first the forward problem of CT scanning
a single object is reviewed. This formulation is extended to
include multiple objects. When all objects move over the same
conveyor belt the problem has a block matrix structure which
is also investigated.

A. Single object

A CT scanner consists of a source, a detector and some
kind of stage or conveyor moving an object. Conventional X-
ray scanners rotate the object, or rotate the source and detector
around the object, but many scanning geometries are possible.

The source emits high energy photons in the direction of the
object. Within the object some of these photons are absorbed
or scattered in a different direction, and the other photons
are captured by the detector. The detector is a flat panel,
consisting of many pixels. At a fixed frequency in time, each
pixel measures how many photons have arrived within the
pixel area since the previous measurement. By changing the
relative positions of the source, detector and object over time
many measurements of the inside of the object are collected.
According to the Beer-Lambert law each measurement can be
represented as the exponent of a line-integral over the line
segment from the source to the detector pixel:

Id = I0 exp

(
−
∫
R
x(s+ tη)dt

)
. (1)

In the above formula I0 is the number of photons emitted
by the source and Id is the number of photons reaching
the detector. x(p) is a function representing the attenuation
coefficient of the object at position p. s and η represent
the starting position and direction of the photons. For further
computations the measurements are preprocessed to make the
right hand side of the equation linear:

y = − log

(
Id
I0

)
=

∫
R
x(s+ tη)dt. (2)

The domain of the absorption function x can be discretized
to obtain a vector x ∈ Rn consisting of n = Nh×Nv×
Nd (horizontal, vertical, depth) voxels. All the preprocessed
measurements can be bundled into a vector y ∈ Rm consisting
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of m =Mh×Mv×Mt (horizontal and vertical detector pixels
and the number of time steps) measurements. Together they
can be used to form a matrix vector equation:

y = Ax. (3)

In this equation A ∈ Rm×n describes how the measurements
in y relate to the attenuation coefficients x over the volume.
The entries of A are determined by how the object, source
and detector move over time.

B. Multiple objects with overlapping projections

When multiple objects are positioned between the source
and detector the projections of these objects overlap on the
detector. An example of a scanning geometry where this
happens is given in Figure 1 (bottom).

If an X-ray first passes through object x1 and then through
object x2 the line integral for calculating the the intensity of
the ray at the detector will also contain both volumes:

Id = I0 exp

(
−
∫
R
x1(s+ tη) + x2(s+ tη)dt

)
. (4)

These measurements can be preprocessed in the same way as
in equation 2 and all measurements can again be bundled into
a vector yc, where the c stands for combined projection data.
This makes it possible to formulate the forward problem as a
matrix vector equation:

A1x1 +A2x2 = y1 + y2 = yc. (5)

The sum of two matrix vector products can be described as a
single matrix vector product. The geometry matrices A1 and
A2 can be combined into combined geometry matrix B and
volume vectors x1 and x2 can be stacked into one combined
volume vector xc:

Bxc = A1x1 +A2x2 = yc. (6)

The same principle can also be applied for more than two
objects. Streams of any length can be represented in the above
form.

C. Noise

The physical processes causing the noise in overlapping
projection data are the same as for conventional CT [28]. A
common way to model the noise is to assume Poisson noise
on the detector measurements before preprocessing Id [9].
Given a sufficiently high Id, noise in the projection data can
be modelled with an additive noise vector ε ∈ Rm with a
Gaussian distribution:

yc = Bxc + ε. (7)

D. Structure of matrix B

When all objects are moving on the same conveyor belt,
the only difference between A1 and A2 is the starting time
of the object. Therefore these matrices have a very similar
structure. If the projection data vector y is ordered in such a
way that all measurements of projection image j are before
projection image j + 1 and the spacing in time between two

objects entering the scanner is an integer number of time steps
k, all matrices Ai can be constructed by adding zero padding
around the matrix for one object A. This can be achieved by
multiplying A with a shifting matrix T i in the following form:

T i =

 0(i×Mh×Mv×k)×m

Im×m

0remaining

 . (8)

The first and the last block are matrices consisting of zeros
and the middle block is an m×m identity matrix. Multiplying
A with T i shifts it by k× i projection images, because every
projection image contains Mh ×Mv measurements (one for
every detector pixel). 0remaining pads the result with zeros
until the end of the sequence.

The combined matrixB then consists of blocks ofA and for
the rest zeros. In the example below three projections overlap,
so every row in the matrix crosses three blocks of matrix A:

Bxc =



. . .
...

...
...

...

A
A

A
A

...
...

...
...

. . .





...
xi

xi+1

xi+2

xi+3

...


= yc

(9)
=
∑
i

T iAxi.

Each block column T iA of B can be divided vertically into
blocks with a height of Mh×Mv×k. The next block column
T i+1A can be obtained from the current block column T iA
by adding an extra block of zeros on top and discarding the
last block. This means B is a (band) block Toeplitz matrix.
Moreover, because matrix B for q objects is the sum of q
blocks that are shifted versions of matrix A, there is an upper
bound on the rank given by:

Rank (B) ≤ q × Rank (A) . (10)

This means that when A is underdetermined B is also
underdetermined.

Equation 9 holds for all conveyor belt shapes, as long
as all objects follow the same trajectory and the spacing in
time between objects is constant. For example S-turns or 3D
trajectories are also possible. Two suggestions are illustrated
in Figure 2.

Source

Detector

Source

Detector

Fig. 2. Suggestions for TOP-CT scanning geometries.
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III. RECONSTRUCTION METHODS

In this section several methods to making reconstructions
from overlapping projection data are described. The first
method solves the inverse to the full forward problem, so a
reconstruction of all objects is found in one go by applying
this method. The other methods are approximation methods
that can be used to reconstruct objects one by one as they exit
the scanner. Each method is given a name, which will be used
in the results section. A small example problem is used to
illustrate the steps of each method. This problem consists of
a conveyor belt with 4 objects and a scanner where 2 objects
have overlapping projections.

A. Similarities with reconstruction methods for non-
overlapping data

The forward problems for CT imaging of a single object
(Eq. 3) and of multiple objects with overlapping projections
(Eq. 6) are very similar. Both are underdetermined linear for-
ward problems affected by the same type of noise. Therefore
the reconstruction methods for these problems are similar as
well.

Because of the large size of both the projection data and the
reconstruction data A may be too large to store in memory.
However elements of A can be calculated on-the-fly whenever
a vector matrix multiplication with A or AT needs to be
calculated [10]. Matrix vector multiplications with B or BT

can be written as sums of matrix vector multiplications with
A, AT , T i and T T

i , which can all be calculated on-the-fly.
Therefore matrix vector multiplications with B or BT can
also be performed without needing the whole matrix B to be
stored in memory.

The Simultaneous Iterative Reconstruction Technique
(SIRT) [5] can be used to reconstruct a volume using this on-
the-fly representation of the projection matrix. Other iterative
methods could be used as well. Matrix B has structure that
can potentially be used to solve the inverse problem in a more
computationally efficient way. To highlight this structure for
future research, the normal equations are written out in block
matrix form for every method in this section.

B. Reconstructing all objects together (together)
When all projection data is available for a finite stream

of objects, an inverse problem can be formulated using the
full forward problem. For the example with 4 objects the full
forward problem would be:

Bxc =


A

A
A

A



x0

x1

x2

x3

 = yc

= T 0Ax0 + T 1Ax1 + T 2Ax2 + T 3Ax3.

(11)

In this case SIRT can be applied directly on the projection
data.

Algorithm 1 Reconstruct objects using the together method
1: xc ← SIRT(B,yc)

The normal equations for this problem are:

BTBxc = B
Tyc with BTB = (12)

ATA ATV 1A 0 0

ATV −1A ATA ATV 1A 0

0 ATV −1A ATA ATV 1A

0 0 ATV −1A ATA



and BT =


AT

AT

AT

AT

 =


ATT T

0

ATT T
1

ATT T
2

ATT T
3

 .
Within BTB there are blocks ATT T

i T jA. On the main
diagonal i = j and T T

i T i = I , so those blocks are
ATA. Moving away from the main diagonal T T

i T j =
V j−i, which is only determined by the difference between
i and j. When |j − i| is larger or equal to the maxi-
mum number of objects in view then V j−i = 0 and oth-
erwise Rank (V j−i) ≤Mh ×Mv × (Mt − (|j − i| ∗ k))), so
the rank of the blocks is decreasing with their distance to the
main diagonal. Moreover V T

j = V −j .
The BTB matrix has a band block Toeplitz structure, and

is by construction positive semi-definite. This remains true
for different stream lengths or numbers of objects whose
projections are overlapping. The width of the band depends
on the number of objects with overlapping projections, with
blocks ranging from ATV −(p−1)A to ATV p−1A for p
objects with overlapping projections.

Because the together method requires the projection data
of all objects with overlapping projections it can not start as
long as new objects with overlapping projections are being
scanned. This makes the together method infeasible for the
long streams of objects expected in an industrial setting, but
it is useful as a baseline to compare the other methods to.

C. Reconstruct one object and ignore the overlap (ignore)
To reconstruct object xi as soon as it exits the scanner

a crude approximation to the forward problem of Equation
11 would be to approximate B with T iA and treat the
overlapping projections as noise. This results in the following
forward problem:

T iAxi ≈ yc, (13)

and after multiplying both sides with T T
i :

Axi ≈ T T
i yc. (14)

Therefore, any existing reconstruction method that is available
for the geometry of A can be used after doing this approxi-
mation. However, results are likely to contain errors because
of the missing T jAxj(j 6= i) terms.

Algorithm 2 Reconstruct objects using the ignore method
1: for all objects i do
2: xi ← SIRT(A,T T

i yc)
3: end for

The normal equations for this approximation are:

ATAxi = A
TT T

i yc. (15)
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D. Reconstruct one object by taking a submatrix of matrix B
(submatrix)

A more accurate approximation of the forward problem for
reconstructing object xi is to take a horizontal slice of matrix
B where xi is included:

Bsmxsm i =

[
A

A
A

] xi−1

xi

xi+1

 = T T
i yc (16)

= V −1Axi−1 +Axi + V 1Axi+1.

In contrast to Equation 13 this equation holds exactly, because
it is a part of the full matrix B. SIRT can still be used
to iteratively find a solution to Equation 16. For xi−1 and
xi+1 not all available projection data is used, which results in
limited angle artefacts. Because of this only the result for xi

is used and the rest of xsm i is discarded. The result for xi is
also slightly different as when it would have been calculated
using the together method.

Algorithm 3 Reconstruct objects using the submatrix method
1: for all objects i do
2: xsm ← SIRT(Bsm,T

T
i yc)

3: xi ← middle subvector(xsm)
4: end for

The normal equations for this problem are:

BT
smBsmxsm i = B

T
smT

T
i yc with BT

smBsm = (17) ATV T
−1V −1A ATV 1A 0

ATV −1A ATA ATV 1A

0 ATV −1A ATV T
1 V 1A



and BT
sm =

 AT

AT

AT

 =

 ATV T
−1

AT

ATV T
1

 .
E. Subtract already reconstructed objects from the projection
data (subtract)

When reconstructing all objects on a conveyor belt using
the submatrix method, each volume will be reconstructed
multiple times. In the running example each object would
be reconstructed three times, because the projections of each
object overlap with two other objects, and this would be more
in scanning geometries where the projections of more objects
overlap. One approach to reduce the amount of double recon-
struction work would be to backproject each reconstruction
and subtract that from the projection data yc. This removes the
projection data of each object after it has been reconstructed
so each object can be assumed to be the first of a stream,
resulting in the following forward problem:

Bstxst i =

[
A

A

] [
xi

xi+1

]
= T T

i ys i (18)

= Axi + V 1Axi+1.

Each subproblem can again be solved using SIRT, resulting in
the following algorithm:

Algorithm 4 Reconstruct objects using the subtract method
1: yst 0 ← yc

2: for all objects i do
3: xst ← SIRT(Bst,T

T
i yst i)

4: xi ← top subvector(xst)
5: yst i+1 ← yst i − T iAxi

6: end for

The normal equations for this problem are:

BT
stBstxst i = B

T
stsT

T
i yc with BT

stBst = (19)[
ATA ATV 1A

ATV −1A ATV T
1 V 1A

]

and BT
st =

[
AT

AT

]
=

[
AT

ATV T
1

]
.

F. Runtime

In all methods presented in this section most of the com-
putational work is done when calling SIRT. Within SIRT
the most computationally expensive steps are performing the
forward and backward projections. Therefore the runtime of
the different methods is compared by looking at the number
of forward and backward projection pairs that have to be
performed. In the non overlapping case, performing t iterations
of SIRT results in t forward and backward projections. When
using the ignore method, SIRT is called in the same way,
so t forward and backward projections are also performed per
object. In the together method adding one object to the stream
to be reconstructed would also result in t extra forward and
backward projections. In the submatrix and subtract methods
the number of forward and backward projections depend on
the number of objects p that are visible on the detector at the
same time. In the submatrix method 2p− 1 objects are being
reconstructed, but except for the middle object all objects
are only visible in some of the projection images. Because
each projection image includes at most p objects, t iterations
of SIRT can be performed using a number of calculations
equivalent to at most tp full forward and backward projections.
In the subtract method objects are gradually being added. In
the first 1

p of the projections one object is visible. In the second
1
p of the projections two objects are visible etc. This results in∑p

i=0
i
p = p+1

2 objects being visible on average so the runtime
is equivalent to tp+1

2 full forward and backward projections.
An overview of the number of projections of the presented
methods is presented in Table I.

TABLE I
FORWARD AND BACKWARD PROJECTIONS WHEN DOING t ITERATIONS OF

SIRT WITH AT MOST p OBJECTS VISIBLE ON THE DETECTOR

Method Full forward and backward projections
per reconstructed object

SIRT without overlap t
Together (per object) t

Ignore t
Submatrix tp

Subtract t p+1
2
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IV. EXPERIMENTS

To compare the proposed methods and to study the ef-
fect of overlapping projections, three experiments have been
performed. The first two experiments use simulated data,
and were performed to compare the image quality between
the different methods, and between overlapping and non-
overlapping projection data, measured by the peak signal to
noise ratio (PSNR) and the structural similarity index metric
(SSIM) [27]. In addition, the methods have been tested on a
real data-set to verify the problem formulation and to test the
robustness to realistic noise.

A. Reconstruction strategies with overlapping projections

The goal of this experiment was to compare the recon-
struction quality of the reconstruction methods introduced in
Section III, and to see how the one by one methods perform in
comparison to the together method. An overlapping projection
dataset was simulated which was used as the input for each
method. Because the projection data was simulated, the input
volumes to the simulation could be used as a ground truth
to calculate performance metrics for all the reconstructed
volumes.

A dataset of CT reconstructions of apples was used as the
input to the simulations. A different subset of this dataset has
been shared before [2]. Apples naturally contain variations in
shape and size, features at different scales and both hard edges
and smooth transitions, making this a suitable benchmark
dataset. The dataset was preprocessed so that a mask of each
apple was available and each mask would fit within a cylinder
with a diameter of 256 voxels and a height of 237 voxels. For
this experiment projection data from 68 apples was simulated
with a scanning geometry where the apples would move in
a U-turn between a fixed source and detector. On the curved
section of the U-turn the apples would rotate uniformly along
with the curve. This geometry is slightly incomplete in similar
ways as the circular cone beam geometry [6] so it does not
satisfy the Tuy-Smith condition [25, 23]. The geometry is
illustrated in Figure 3. Each apple would be visible for 400
projections and a new apple would enter the field of view
of the setup every 48 projections. Because of this at most 9
apples were visible in each projection image. The projection
images are 512×1030 pixels. Poisson noise was added to the
projection data with a photon count of 25000 photons. The
attenuation coefficient of all apples was divided by a factor
21.5 based on the results of the second experiment.

This dataset was used as the input to the four reconstruction
methods introduced in section III. SIRT was used with a non-
negativity constraint and a cylindrical reconstruction mask.
The optimal number of SIRT iterations was determined every
time when SIRT was executed by comparing the reconstruc-
tions with the original volumes from the apple dataset using
the PSNR inside the mask of the apple. SIRT was stopped
if the PSNR of a reconstruction after a SIRT iteration was
worse than the previous PSNR for 30 consecutive iterations.
While comparing to a ground truth is not possible in practice
it makes sure that the number of SIRT iterations is tuned in the
same way for the different methods, so they can be compared

source detector distance = 10.451

detector

width = 

4.015

straight section length = 1

curved section radius = 2reconstruction volume

(diameter = 1)

source to path

distance = 6

Fig. 3. Illustration of the scanning geometry used in the first experiment.
Each circle represents the reconstruction volume of one object, and at most
9 objects can be in view at a given time. Each object moves 1

400
th of the

trajectory between two projections, so for each object 400 projections are
made and after that they leave the scanning setup. Every 48 projections a
new object starts on the left end of the trajectory.

in a fair way. Moreover, the ignore method was also tested
at a fixed number of 100 iterations, because according to the
PSNR the optimal number would be only one iteration.

For every reconstruction the PSNR and SSIM over vertical
slices were calculated. The metrics from first and last 9 apples
were discarded because the projections of these apples were
not fully overlapping, so 50 apples were included in this
experiment. The results are presented in Table II and Figure
4.

TABLE II
RESULTS OF THE EXPERIMENT COMPARING DIFFERENT RECONSTRUCTION

STRATEGIES FOR RECONSTRUCTING OVERLAPPING PROJECTION DATA.

Method PSNR Mean SSIM Iterations
Together 33.48(±0.17) 0.830(±0.005) 551

Submatrix 33.56(±0.17) 0.832(±0.004) 611(±28.7)
Subtract 32.59(±0.20) 0.808(±0.006) 318(±15.5)

Ignore (1 it.) 19.15(±0.57) 0.745(±0.012) 1
Ignore (100 it.) 17.40(±0.47) 0.722(±0.012) 100

The together, submatrix and subtract methods performed
very similarly, both in the metrics as in the appearance of the
reconstructions. The submatrix method performed best overall,
but the performance increase compared to the together method
could be caused by the way the number of iterations was
tuned: In the submatrix method the number of SIRT iterations
was tuned per object, while only one number of iterations
could be tuned in the together method. The ignore method
doesn’t take into account the other volumes and because of
this the reconstructions have higher values. These artefacts
had a big impact on the PSNR scores, causing the optimal
iterations to be only 1 according to the PSNR. However, when
doing 100 iterations many details can be recognized in the
reconstructions. Despite the fact that the geometry does not
satisfy the Tuy-Smith condition no cone beam artifacts or
missing angle artifacts were observed in the reconstructions.

Because the subtract method uses the previous reconstruc-
tions, it could be possible that an error would accumulate
resulting in a lower reconstruction quality over time. A similar
effect might also occur in the together method with reconstruc-
tions close to either end of the stream potentially performing
better. To test how much the reconstruction quality of these
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Together

Submatrix

Subtract

Ignore (1 SIRT iteration)

Ignore (100 SIRT iterations)

Input data

Fig. 4. Comparison of reconstructions made with different strategies for
handling overlapping projection data. For every reconstruction method 3
orthogonal slices through the middle of the 32nd apple of the stream are
displayed. The same color map was used on all images in this figure for
easier comparison.

methods changes over time both methods were compared over
time with the submatrix method, which can not accumulate
error over time because it uses only local projection data.
The PSNR over time is plotted in Figure 5. In that figure

no time related performance changes could be observed on
both methods.

Fig. 5. PSNR over time using the submatrix, together and subtract methods.
The submatrix method can not have time related performance changes, and by
comparing the together and subtract methods to this method no time related
PSNR changes could be observed.

B. Overlapping and non-overlapping projection data

The goal of this experiment was to gain insight in the
effect of overlapping projections on reconstruction quality. To
investigate this, reconstructions were compared that were made
from equal amounts of total projection data over a stream of
objects with and without overlapping projections.

The attenuation coefficient within an object depends on
the voltage supplied to the X-ray source. The source voltage
is commonly tuned so that the projection data uses the full
dynamic range of the detector. When X-rays pass through
multiple objects they get attenuated within each object, re-
sulting in lower detector measurements in areas where the
projections of multiple objects overlap. Because of this the
optimal tube voltage for an overlapping setup is different than
for a non-overlapping setup. In this experiment the process
of tuning the tube voltage is approximated by multiplying the
attenuation coefficient in all voxels by a single value. This
makes it possible to compare overlapping and non-overlapping
geometries at their optimal range of detector values on the
same set of input objects.

The same apple dataset as in the previous experiment
was used to generate simulated projection data. Two sets of
projection datasets were simulated from the first 38 apples
in the apple dataset, one with overlapping projections and
one with no overlap. For the overlapping projections the
same scanning setup was used as in the previous experiment
(Figure 3). For the non-overlapping projections the setup was
modified. Instead of moving 1

400 th of the trajectory between
two projections, each apple would move 1

48 th of the trajectory.
A new apple would still be added every 48 projections, so only
one apple would be in view in every projection image. This
resulted in fewer projections per apple, but the same number
of total projections over all apples. Again Poisson noise was
simulated with 25000 photons. 15 different versions of each
dataset were made, where the attenuation coefficient of all
apples was multiplied before projecting them. The attenuation
multipliers were taken over an exponential range between 2−5

and 22 with a multiplicative step size of
√
2.



IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING, VOL. 8, 2022. © 2022 IEEE 8

Reconstructions were made of each apple from both the
overlapping and non-overlapping projections for every atten-
uation multiplier. Like in the previous experiment the first
and the last 9 reconstructions were discarded in every stream
because their projections were not fully overlapping and the
remaining 20 reconstructions were compared based on the
PSNR and SSIM. For the overlapping dataset the together
method was used and for the non-overlapping dataset SIRT
was used without modifications. For all reconstructions SIRT
had the same settings as in the previous experiment, so it used
a non-negativity constraint, cylindrical reconstruction volumes,
and the number of iterations was selected to be optimal
according to the PSNR. How the PSNR and SSIM vary over
the attenuation coefficient multiplier is plotted in Figure 6.
An example of a reconstruction at the optimal attenuation
multiplier of both setups is shown in Figure 7.

Fig. 6. Comparison of reconstruction quality between two similar setups, one
with and one without overlapping projections. The attenuation coefficients of
the objects were multiplied over a range of values before simulating noisy
projections and making reconstructions.

No overlap

Overlapping

Fig. 7. Comparison of reconstructions made from overlapping projection data
to reconstructions from non-overlapping projection data. For both datasets 3
orthogonal slices through the middle of the 19th apple are displayed. The
same color map was used on all images in this figure for easier comparison.

As expected, the optimal reconstruction results are achieved
at a lower attenuation coefficient for the setup with overlap
than for the setup without overlap. The PSNR at the opti-
mum of both methods is almost the same (overlap: 33.50,
no overlap: 33.34), while the mean SSIM is higher for the
reconstructions from the overlapping setup (overlap: 0.828,
no overlap: 0.811). Visually the reconstructions from the

overlapping setup appear sharper which could be caused by
the fact that projection data from more angles is available in
the overlapping case. The reconstructions from the overlapping
setup also show repeating artifacts.

C. Real life dataset of overlapping mandarin projections

The goal of this experiment was to test if the methods from
Section III would also work on real life data. A scanning
geometry similar to a conveyor belt could be set up in a lab
scanner by using a few additional components and a custom
scanning protocol. The methods from Section III were applied
to the dataset acquired using this setup and the results were
compared visually.

A dataset of 23 mandarins was acquired in the FleX-ray
scanner at the CWI in Amsterdam [22]. This scanner does
not have a conveyor belt to move multiple samples at the
same time. Therefore we developed a method to acquire data
similar to a conveyor belt scanning setup without extensively
modifying the scanner. A wooden disk was attached on top
of the rotation stage and six evenly spaced object positions
were marked on the disk at a fixed distance from the center of
rotation. Pieces of cardboard tube were used as sample holders
to make sure the mandarins wouldn’t roll as the disk would
rotate and to raise them from the disk without attenuating too
much of the X-ray signal. The rotation stage was positioned
in such a way that over a full rotation of the disk, each
mandarin would be completely in view of the detector for
more than 180 degrees of the rotation, while there would also
be a position at which it would be completely out of view.
Figure 8 illustrates the whole geometry and Figure 9 shows a
picture of the mandarins on the disk.

detector

width = 

143.02mm

source center distance = 954.15mm

radius = 64mm

source detector distance = 1098mm

reconstruction volume

(diameter = 64mm)

center offset

= 33.23mm

Fig. 8. Illustration of the scanning geometry used in the real life experiment.
Each object moves 1

2400
of the circular trajectory between two projections.

After moving over the full circle each object is replaced with a new object
while it is out of view of the scanning setup.

The scan was performed in phases. Every phase 400 pro-
jection images were acquired, while rotating the disk for 60
degrees. This would rotate one of the positions out of view
of the scanning setup. Before the first 6 phases a mandarin
was added on the position that was out of view of the setup.
For the phases after that the position that would be out of
view would contain a mandarin that had rotated the full circle
so that mandarin was replaced with a new mandarin. At the
last 6 phases there would be no new mandarins left to add so
the mandarin that was out of view of the setup would only
be removed. The projection images acquired from each phase
were concatenated resulting in a dataset of 11200 projections
of 956x500 pixels. At most 5 mandarins were in view at a
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Fig. 9. Picture of the setup used for the acquisition of the mandarin dataset.
The first four mandarins have been placed on the rotating disk in front of the
detector.

given time. The X-ray tube was set to a peak voltage of 90kV
and a target power of 49.5W. Moreover, the exposure time
was 200ms and 0.1mm of copper was used to filter the source
spectrum. An example of a projection image is given in Figure
10.

Fig. 10. Example projection image from the real life dataset of overlapping
mandarin projections.

Reconstructions were made from this dataset with the
together, submatrix and subtract methods using 100 iterations
of SIRT with a non-negativity constraint. An example of a
reconstruction of each method is shown in Figure 11.

Like in the simulation experiment, the results from the
together and submatrix methods are almost identical. Some
unsharpness and artifacts can be observed in the reconstruc-
tions of both methods. We expect that this was caused by
a mismatch between the geometry that was used in the
reconstruction algorithm and the real geometry. A manual
adjustment to the center offset parameter (Fig. 9) already
reduced these errors and we expect further improvements
are possible by fully calibrating the geometry. The subtract
method appears to be more sensitive to calibration errors as
the reconstructions made with this method contain a lot more
artifacts in this experiment.

Together

Submatrix

Subtract

Fig. 11. Orthogonal slices of the reconstruction of the thirteenth mandarin
from the real life dataset of overlapping mandarin projections. The same color
map was used on all images in this figure for easier comparison.

D. Implementation and dataset

The code for all experiments is available on Github [21]
and the mandarin dataset is available on Zenodo [22].

To represent matrix A the Operator class from the
Tomosipo library [10] was used. To represent matrix B and
it’s variants a MultiOperator class was implemented that
had mostly the same interface as a Tomosipo Operator. This
made it possible to use the same implementation of SIRT for
both A and B.

V. DISCUSSION

By allowing overlapping projections, an extra degree of
freedom is added to the design space of industrial CT scanners.
Future research could be aimed at speeding up the recon-
struction process and finding the optimal designs for different
practical applications.

Firstly, the computation time required to make 3D recon-
structions with SIRT might be too long for real time appli-
cations. Replacing SIRT with Nesterov accelerated gradient
descent [17] might result in fewer iterations being required.
Another direction for developing faster reconstruction algo-
rithms would be to look for a fast approximation to the effects
of overlap. The fact that the ignore method already produced
visually recognizable results while completely ignoring the
overlap suggests that this might be possible. The ignore
method itself might be sped up by employing an (approximate)
backprojection type reconstruction algorithm instead of SIRT.
Moreover, deep learning could be used to speed up the
reconstruction by replacing the iterative algorithm with fewer
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iterations in an unrolled iterative scheme or by reducing the
artifacts from the ignore method. Alternatively, applications
where acquisition time is expensive, but computation time is
abundantly available could be investigated, such as scanning
objects in a synchrotron.

Secondly, more advanced reconstruction methods could be
used that make use of more prior information to get better
reconstruction results using the same projection data. Currently
only a non-negativity constraint and early stopping are used
as regularization, but results could be improved by adding
additional regularization such as Total Variation(TV) [14], or
by adding a neural network as a post-process. Given that
on many conveyor belts the objects are very similar, neural
networks for improving the reconstruction quality can be
trained to use domain knowledge of the specific type of object
on the conveyor belt.

Thirdly, when designing a scanner a trade-off needs to
be made between the throughput, reconstruction quality and
cost of the setup, which is highly application dependent. All
geometries used in this paper consist of a U-turn movement.
However, the same formulations can be used to represent
different geometries as well. Optimization algorithms could
be used to find optimal geometries similarly to how robot arm
CT geometries are optimized [11]. Apart from the geometry
the trade-off between other parameters could be further in-
vestigated and optimized such as: the number of overlapping
objects, the number of projections, detector size, tube current,
tube voltage and exposure time.

VI. CONCLUSION

A new class of geometries for high throughput industrial
CT scanning called TOP-CT was investigated. The main con-
clusions are: TOP-CT can be formulated as a linear forward
problem with a band block Toeplitz structure (Section II). The
inverse of this forward problem can be solved completely
or object by object using existing iterative methods such as
SIRT, requiring only a small modification to existing software
toolkits (Section III). For a U-turn geometry objects can be
reconstructed as soon as they exit the scanner using the subma-
trix method without loss of reconstruction quality compared to
the baseline together method (Section IV). With overlapping
projection data a similar (PSNR) or slightly better (SSIM)
reconstruction quality can be achieved as with non-overlapping
projection data acquired over the same time. To get the
best results with overlapping projection data the attenuation
of the objects should be lower than with non-overlapping
projection data, which may be achieved by changing the source
voltage (Section IV). This new approach to CT scanning can
simplify the mechanical design of high throughput industrial
CT scanners and reduce the detector size, which may help
realize the vision of industry 4.0.
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