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Abstract—Sparse-view Computed Tomography (SVCT) has
great potential for decreasing patient radiation exposure dose
during scanning. In this work, we propose a Self-supervised
COordinate Projection nEtwork (SCOPE) to reconstruct the
artifact-free CT image from the acquired SV sinogram by
solving the inverse problem of tomography imaging. To solve the
under-determined inverse imaging problem, we first introduce
an implicit neural representation (INR) network to constrain the
solution space via image continuity prior. And inspired by the
relationship between linear algebra and inverse problems, we
propose a novel re-projection strategy to generate a dense view
sinogram from the initial solution, which significantly improves
the rank of the linear equation system and produces a more
stable CT image solution space. Specially, the desired CT image is
represented as an implicit function of the two-dimensional spatial
coordinate to directly approximate the SV sinogram through
the CT imaging forward model. Then, a dense-view sinogram is
generated from the fine-trained INR network. The final CT recon-
struction is reconstructed by applying Filtered Back Projection
(FBP) to the generated dense-view sinogram. Additionally, we
integrate the recent hash encoding into our SCOPE model, which
efficiently accelerates the model training process. We evaluate
SCOPE in parallel and fan X-ray beam SVCT reconstruction
tasks. Our experiment results demonstrate that the re-projection
strategy significantly improves the image reconstruction quality
(+3 dB for PSNR at least). The proposed SCOPE model provides
state-of-the-art reconstruction results compared to two latest
INR-based methods and two well-popular supervised DL methods
for the SV CT image reconstruction. The code for this work is
available at https://github.com/iwuqing/SCOPE

Index Terms—Sparse-View Computed Tomography, Inverse
Imaging Problem, Self-Supervised Learning, Implicit Neural
Representation

I. INTRODUCTION

X-ray Computed Tomography (CT) has been widely ap-
plied in clinical diagnosis, industrial non-destructive testing,
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and safety inspection [1], [2]. In recent years, CT played a
critical role in the auxiliary diagnosis and disease progress
monitoring of COVID-19 pneumonia [3]. However, the high-
level radiation exposure may increase the lifetime risk of
cancer, especially for patients undergoing disease monitoring
by frequent CT scans such as pneumonia and cancer [4], [5].
Therefore, reducing the radiation exposure of CT scans is an
urgent need for the current public health status.

Mathematically, the CT acquisition process can be formu-
lated as a linear forward model:

y = Ax+ n, (1)

where y ∈ RNy is the measurement data (also known as
sinogram), x ∈ RNx denotes the CT image to be constructed,
A ∈ RNy×Nx represents the CT forward imaging model (e.g.,
Radon transform operator for parallel X-ray beam CT), and
n ∈ RNy is the system noise. To reduce the imaging radiation
dose, one can decrease the dimension of measurement data, de-
noting as ys, an undersampling of sinogram y. To reconstruct
a CT image from the under-sampled sinogram ys is referred
to as Sparse-View (SV) CT reconstruction, a highly ill-posed
inverse problem.Analytical reconstruction algorithms, such as
Filtered Back-Projection (FBP) [6], results in severe streaking
artifacts on the constructed CT image [7], [8].

Many attempts have been made to eliminate the streaking
artifacts on the restructured CT images. Conventional itera-
tive reconstruction methods [13]–[16] formulate this under-
determined inverse imaging as a regularized optimization
problem. Explicit image prior assumptions (e.g., Total Vari-
ation (TV) [16] for inducing smoothness in CT image) are
adopted as a regularization term to provide an approximate so-
lution [17]. Recently, supervised Deep Learning (DL) methods
[18]–[24] have shown great potential for SVCT reconstruction.
Instead of directly solving this ill-posed inverse problem, a
supervised DL reconstruction mostly employs Convolutional
Neural Network (CNN) to learn an end-to-end mapping from
reconstructed low-quality CT images to the corresponding
high-quality images over a large dataset. For example, Jin et
al. [18] proposed FBPConvNet that trains a U-Net [25] to
learn the residual from artifact-corrupted inputs to artifact-free
outputs. It is known that the performance of the supervised
DL methods highly depends on the data distribution of the
image pairs in the training dataset (i.e., a large-scale training
dataset that covers more types of variations generally provides
better performance). However, the generalization issue is that
the hyperparameters would differ if the training SVCT images
are different. Differences in different training datasets, such
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TABLE I
COMPARISON OF THE PROPOSED SCOPE WITH EXISTING INR-BASED SVCT RECONSTRUCTION METHODS.

Methods Key Factors for SVCT Input Output Learning Target Main Objective Encoding Strategy

GRFF [9] INR Implicit Prior SV sinogram ys CT image x̂ CT image fΘ : (x, y) → x argminΘ L(AfΘ,ys) Fourier encoding

IntroTomo [10] INR Implicit Prior +
Explicit Prior SV sinogram ys CT image x̂ CT image fΘ : (x, y) → x argminΘ L(AfΘ,ys) Fourier encoding

NeRP [11] INR Implicit Prior +
Longitudinal Image Prior

A prior CT image +
SV sinogram ys

CT image x̂ CT image fΘ : (x, y) → x argminΘ L(AfΘ,ys) Fourier encoding

CoIL [12] DV Sinogram Generation SV sinogram ys DV sinogram ŷd Sinogram gΘ : (θ, ρ) → y argminΘ L(gΘ,ys) Linear encoding

SCOPE (Ours) INR Implicit Prior +
DV Sinogram Generation SV sinogram ys DV sinogram ŷd CT image fΘ : (x, y) → x argminΘ L(AfΘ,ys) Hash encoding

as SV undersampling schemes, beam types for measurement
data projection, different organs, would significantly affect the
performance of the trained networks.

The Implicit Neural Representation (INR) has recently been
proposed to model and represent 3D scenes from a sparse
set of 2D views using coordinate-based deep neural networks
in a self-supervised fashion. The core component in INR
is a continuous implicit function parameterized by a Multi-
Layer Perceptron (MLP). Benefiting from the image continuity
prior imposed by the implicit function and the neural network
architecture, INR has achieved superior performance in various
vision problems (e.g., surface reconstruction [26]–[28], view
synthesis [29]–[31], and image super-resolution [32], [33]).

For SVCT imaging, an early attempt was made by Tancik
et al. [9] indicated that INR could be applied to recover
the CT image from the collected SV sinogram without using
any external data. Since then, a few INR-based works [10]–
[12], [34]–[36] have emerged for the reconstruction of CT
images. We summarize the recent works that solve the inverse
problem of tomography imaging using INR-based methods in
Table I, to compare the design ideas and characteristics of
various methods more clearly. Sun et al. [12] proposed CoIL
that trains an INR to represent the SV sinogram and predicts
the accordance Dense-View (DV) sinogram based on the
continuous nature of INR. The CT image reconstruction is then
processed by applying user-chosen reconstruction methods
(e.g., FBP [6]) on the predicted DV sinogram. However, the
coordinate space of the sinogram does not follow the intuitive
orthogonal assumption of Fourier spatial encoding in the INR
model. Thus the performance of CoIL for CT reconstruction is
not comparable with supervised DL methods. Shen et al. [11]
proposed NeRP to utilize a series of longitudinal CT scans of
the same subject to build CT image from SV sinogram. The
INR is firstly trained on a high-quality DV CT scan then used
as an image prior to generate the high-quality CT images from
the acquired SV sinograms. However, longitudinal CT scans
from the same patient are not always available. Zang et al.
[10] proposed IntroTomo that combines a sinogram prediction
module with a geometry refinement module. The former
module used INR to reconstruct the CT image from the SV
sinogram, while the latter module combines explicit priors (TV
and non-local mean) via an optimization framework to refine
CT images. The two modules are trained iteratively to improve
the CT image quality but severely prolong reconstruction time.

Compared with the works in Table I, our proposed method

is most related to in that Refs. [9], [12]. However, there are
two major limitations unsolved in those works: 1) The INR es-
timated the desired CT image by minimizing the loss between
the network-predicted sinogram and the acquired sinogram.
Thus the paradigm is more efficient in sinogram generation
rather in CT image reconstruction. Due to the highly sparse
sinogram, the MLP tends to approach an implicit function that
may overfit the SV sinogram, which manifests as noisy INR-
represented CT images; 2) Due to the heavy computation of
the coordinate-based based deep MLP, the image-specific INR-
based CT reconstructions generally performs poorly on time-
efficiency.

In this paper, we propose a Self-supervised COordinate
Projection nEtwork (SCOPE) to reconstruct the high-quality
artifact-free CT image from the acquired SV sinogram by
solving the ill-posed inverse problem of tomography imaging
without any external data. We first introduce an implicit neural
representation (INR) network to constrain the solution space
via image continuity prior to achieve an initial solution of
the CT image. Compared with existing related works [9]–
[12], one of our key contributions is a simple and effsective
re-projection strategy that significantly improves the quality
of reconstructed CT images. This strategy is inspired by the
relationship between linear algebra and inverse problems. We
consider the SVCT inverse imaging problem as an under-
determined system of linear equations. The total number of
X-rays involved in all sinograms is equivalent to the number
of independent linear equations (i.e., the rank of a matrix A
in Eq. 1). Thus the number of free variables in the linear
equations largely increases with the decrease of the matrix A’s
rank in the SV sinogram. By introducing the INR, the solution
space of image x is efficiently constrained in a continuous
space, resulting a satisfied inverse CT reconstruction from
a highly sparse sinogram. However, the reconstructed signal
intensity of the CT image is ambiguous, which can be easily
affected by network overfitting to the SV sinogram. Here,
we propose a novel re-projection strategy to build a DV
sinogram from this initial CT reconstruction. Benefiting from
the continuous nature of the INR represented CT image, this
process is equivalent to generating a high-rank linear equation
system. Our experiment results demonstrate that through this
re-projection strategy, the image noise is further suppressed
with preserved image details in the reconstructed CT images,
resulting in an improved image quality (+3 dB for PSNR at
least). In addition, learning high-frequency signals via simple
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MLP is practically very difficult due to the spectral bias
problem [37], [38]. Existing INR-based methods have low
reconstruction efficiency since they mostly use deep MLPs
with pre-defined encoding modules (e.g., Fourier encoding
[11]) to learn the implicit function. To accelerate the model
training, we integrate the recent hash encoding [39] into our
SCOPE model, enabling shallow (three-layers) MLP achieve
superior fitting ability (about 1 minute). We evaluated our pro-
posed method on two public datasets (AAPM and COVID-19).
Both qualitative and quantitative results indicate that SCOPE
provides state-of-the-art reconstruction results compared to
two recent INR-based methods (CoIL [12] and GRFF [9]) and
two well-known supervised CNN-based models (FBPConvNet
[18] and TF U-Net [19]). To the best of our knowledge, the
proposed SCOPE is the first self-supervised method that out-
performs the supervised DL models for SVCT reconstruction.
The main contributions of this work are summarized as below:

1) We propose SCOPE that recovers the high-quality CT
image from acquired SV sinogram without involving any
external data.

2) We propose a simple and effective re-projection recon-
struction strategy that significantly improves the quality
of reconstructed CT images.

3) We integrate the hash encoding [39] into our SCOPE,
which greatly accelerates the model training and thus
improves the model practicability.

II. METHODOLOGY

A. Overview

In the proposed SCOPE model, we represent the desired CT
image x as a continuous function parameterized by a neural
network:

I = fΘ(p), (2)

where Θ denote the trainable parameters (weights and biases)
of the network, p = (x, y) ∈ R2 is any 2D spatial coordinate
in the imaging plane, and I ∈ R is the corresponding image
intensity at the position p in the image x. Based on the
acquired SV sinogram ys, we then optimize the network to
approximate the implicit function using a back-propagation
gradient descent algorithm to minimize the objective as below:

Θ̂ = argmin
Θ

L(ŷs,ys), with ŷs = AfΘ, (3)

where ŷs represents the predicted SV sinogram and L is
the loss function that measures the discrepancy between the
predicted SV sinogram ŷs and the acquired SV sinogram ys.

The key insight behind Eq. 3 is using the image continuity
prior imposed by the implicit function and the neural network
architecture to regularize the inverse imaging problem of
SVCT and thus obtaining the desired solution. After the
network training, the optimal image x̂ is theoretically fΘ̂.
However, due to the highly under-determined inverse imaging
problem, the network tends to approach an implicit function
that overfits the SV sinogram ys and thus fails to approximate
the desired implicit function well, which manifests as severe
noise on the reconstructed CT image x̂ = fΘ̂.

Fig. 1. A toy example of different types of sample points in SVCT: Black
sample points are scanned by multiple X-rays, whose pixel intensities are well
constrained in the inverse imaging problem; Gray sample points are scanned
by a single X-ray; White sample points are not scanned by any X-ray. The
gray and white points are examples of free variable pixels, whose intensities
are not tightly constrained in the inverse problem.

To this end, we propose a re-projection reconstruction
strategy, in which the learned function fΘ̂ is used to generate
a DV sinogram ŷd. Then the final high-quality CT image
x̂ is reconstructed by applying FBP [6] on ŷd. An essential
insight is that the INR network overfitting on the SV sinogram
results in unexpected pixel intensity mutations in the CT image
reconstruction. Fig. 1 illustrates a toy example of different
types of sample points in SV reconstructed CT. For example,
the black sample points are scanned by multiple X-rays,
which can be considered as constrained by multiple linear
equations. Thus the INR network can accurately recover its
image intensity through the constraints of the cross projections.
For the gray and white sample points scanned only by few, or
even no X-rays, the pixel intensities are not tightly constrained
in the inverse problem. These pixel intensities are mostly
approximated by the image continuity prior imposed by the
implicit function and are easily affected by the overfitting
effected towards the sparse measurements of the sinogram.
Therefore, the learned function fΘ̂ may output pixel intensity
mutation at those free variable positions due to the overfitting
problem. Although these mutations manifest similarly to image
noise, they do not follow any typical distribution, thus the
performance of inserting common denoising regularization
term is limited [10]. The most effective strategy to suppress
free variable mutations is thus to generate a higher-rank linear
equation system that tightly constrains the pixel intensities in
the CT image and produces the same solution space with the
SV sinogram. The generation of a DV sinogram ŷd from fΘ̂ is
thus proposed. The workflow of the proposed SCOPE model
is shown in Fig. 2.

B. Learning the Implicit Function

Fig. 2 A demonstrates the pipeline of learning implicit func-
tion by a neural network. Given a SV sinogram ys ∈ RK×M ,
where K and M are the number of projection views and X-
rays per view respectively, we first build a total number of
K ∗ M X-rays Ls from the K sparse projection views (i.e.,
M X-rays per view). Next, we feed the spatial coordinates
p of sample points along the SV X-rays Ls into the implicit
function to produce the corresponding image intensities I =
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A. Learning the Implicit Function

B. Re-projection Reconstruction

Projection 
Swapping

Fig. 2. Workflow of the proposed SCOPE model. A. Learning the Implicit Function: The network parameterizing implicit function fΘ takes the coordinate
p of sampling points along SV X-rays Ls as input and predicts the image intensity I = fΘ(p) at these positions. Then, the projections ŷs(θ, ρ) of the
X-rays Ls are calculated by the summation operator (Eq. 4). Finally, we optimize the network by minimizing the loss between the predicted projections
ŷs(θ, ρ) and real projection ys(θ, ρ) from acquired SV sinogram. B. Re-projection Reconstruction: The coordinates p of sample points along DV X-rays
Ld are fed into the well-trained network to estimate the corresponding image intensity I = fΘ̂(p). Similarly, the projections ŷd(θ, ρ) of the X-rays Ld

are computed by the summation operator. Next, we apply a projection swapping operator to combine the generated projections with the actual SV sinogram,
producing the final DV sinogram. The CT image is then reconstructed using FBP [6] applied to the DV sinogram.

fΘ(p). Finally, we compute the predicted projection ŷs(θ, ρ)
of each one l(θ,ρ) : y sin θ + x cos θ = ρ in the X-rays Ls by
a summation operator as below:

ŷs(θ, ρ) =
∑

p∈l(θ,ρ)

fΘ(p), (4)

where θ = {θi}Ki=1 are the sparse projection views and ρ =
{ρj}Mj=1 are the positions of X-rays in the detector.

Since the summation operator (Eq. 4) is differentiable, the
neural network used for parameterizing the implicit function
fΘ can be optimized by using back-propagation gradient
decent algorithm to minimize the loss between the predicted
projection ŷs(θ, ρ) and the real projection ys(θ, ρ) from the
SV sinogram ys. In this work, we employ ℓ1 norm as the loss
function, which is defined as below:

L =
1

k ∗m

k∑
i=1

m∑
j=1

|ys(θi, ρj)− ŷs(θi, ρj)| , (5)

where k and m are respectively the number of sampled
projection views and the sampled X-rays per view at each
training iteration.

C. Re-projection Reconstruction

Fig. 2 B shows the workflow of the proposed re-projection
reconstruction strategy, in which the learned implicit function
fΘ̂ is used to generate the DV sinogram ŷd ∈ RKd×M then
the final high-quality CT image x̂ is reconstructed from the
DV sinogram. More specifically, we first build Kd ∗M X-rays
Ld from Kd dense projection views (i.e., M X-rays per view).
Then, the spatial coordinates p of the sample points along the
DV X-rays Ld are fed into the learned function to predict
the corresponding image intensities I = fΘ̂p. Similarly, the
projection ŷd of the X-rays Ld are also calculated by the
summation operator (Eq. 4). The DV sinogram ŷd is thus

Projection
Swapping

Fig. 3. Pipeline of the projection swapping operator.

generated. Inspired by the data consistency used in MRI
acceleration reconstruction [40], we combine the estimated DV
sinogram ŷd with the acquired SV sinogram ys to generate
the final DV sinogram, as shown in Fig. 3. In particular, we
replace the projection profiles at the corresponding views in
the DV sinogram ŷd with the acquired SV sinogram ys. The
effectiveness of the projection swapping operator is discussed
in the supplementary material. Finally, we apply FBP [6]
on the final DV sinogram to reconstruct the artifact-free CT
image.

D. Network Architecture

As shown in Fig. 4, the network used for learning the
implicit function fΘ consists of an encoding module (via hash
encoding [39]) and a three-layers MLP. The network maps the
input coordinate p to a feature vector v ∈ RL∗F and then
converts the feature vector v to the image intensity I . This
process can be expressed as below:

I = Mϕ(v), v = Hφ(p), (6)

where ϕ and φ represent respectively the trainable parameters
of the MLP and hash encoding. They are simultaneously
optimized to estimate the implicit function fΘ.
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Hash
Encoding MLP

Fig. 4. The architecture of the neural network used for parameterizing the
implicit function fΘ, which consists of the hash encoding [39] and a three-
layers MLP.

1) Hash Encoding: The universal approximation theorem
[41] proved that a pure MLP could approximate any compli-
cated function theoretically. However, fitting high-frequency
signals via the pure MLP is practically very difficult due to the
spectral bias problem [37], [38]. To alleviate the issue, many
encoding strategies [9], [12], [29], [39] have been proposed
to map low-dimensional inputs into high-dimensional feature
vectors, which allows the subsequent MLP to capture high-
frequency components easily and thus reduce approximation
error. In SCOPE, we adopt recent hash encoding. Unlike pre-
defined encoding rules (e.g., position encoding [29]), hash
encoding assigns a trainable feature for each input coordinate.
This adaptive encoding strategy is task-specific, which benefit
from using a shallow MLP while achieving powerful fitting
ability. For a coordinate grid of N × N , hash encoding first
builds multi-resolution of L levels feature maps {Vi}Li=1.
Here Vi ∈ RNi×Ni×F is the feature map at the i-th level,
where each element is a trainable feature vector of F length.
Then, each feature map Vi is mapped into a hash table
of T size to reduce memory footprint. After the hash table
construction, given input coordinate p, we compute its feature
vector vi ∈ RF at the i-th level via trilinear interpolation.
Then, we concatenate L feature vectors {vi}Li=1 to produce
the final feature vector v ∈ RL∗F . In our SCOPE model,
the hyper-parameters of the hash encoding are set as follow:
L = 8, T = 224, F = 8, Nmin = 2, and b = 2. More details
about the hash encoding can be found in Ref. [39].

2) Three-Layers MLP: After the hash encoding, the 2D
input coordinate p ∈ R2 is encoded to the high-dimensional
feature vector v ∈ RL∗F . Then, a three-layers MLP is used to
convert the feature vector v to the image intensity I . The two
hidden layers in the MLP have 64 neurons and are followed
by ReLU activation function and the output layer is followed
by Sigmoid activation function.

E. Training Parameters

For the training of the proposed SCOPE model, at each
iteration, we first randomly sample 3 ones (i.e., k = 3 in Eq.
5) from sparse projection views {θi}Ki=1 and then randomly
sample 10 ones (i.e., m = 10 in Eq. 5) from M X-rays per
view. We adopt Adam optimizer [42] to minimize the ℓ1 loss
function and the hyper-parameters of the Adam are as follows:
β1 = 0.9, β2 = 0.999, ϵ = 10−8. The initial learning rate is
10−3 and decays by a factor of 0.5 per 500 epochs. The total

TABLE II
HYPER-PARAMETERS OF THE FOUR BUILT-IN FUNCTIONS IN MATLAB

R2021B USED FOR DATA SIMULATION.

Function Hyper-parameter Value

radon theta {(i− 1)× 180/k}ki=1

iradon
theta {(i− 1)× 180/k}ki=1
output size h× w

fanbeam
D

√
h2 + w2

FanRotationIncrement 360/k
FanSensorSpacing 0.1

ifanbeam

D
√
h2 + w2

FanRotationIncrement 360/k
FanSensorSpacing 0.1
OutputSize h× w

⋆ k is the number of projection views and h × w are the size of
raw slice.

number of training epochs is 5000, which only takes about
5 minutes on a single NVIDIA RTX 3060 GPU. It is worth
noting that all the training parameters above are the same for
different cases, such as different types of X-ray beam and input
views.

III. EXPERIMENTS

A. Dataset & Pre-processing

1) AAPM dataset: Based on the normal dose part of the
2016 low-dose CT challenge AAPM dataset1 that consists of
twelve 3D CT volumes acquired from twelve subjects, the
AAPM dataset used in our experiments is built. Specifically,
we extract 1171 2D slices from the 3D CT volumes on axial
view and then split these slices into three parts: 1069 slices
from ten subjects in training set, 98 slices from one subject in
validation set, and 4 slices from one subject in test set. The
training and validation sets are only prepared for optimizing
two supervised CNN-based baselines (FBPConvNet [18] and
TF U-Net [19]), while other methods (FBP [6], CoIL [12],
GRFF [9], and our SCOPE) directly recover the corresponding
high-quality CT image from the single SV sinogram.

2) COVID-19 dataset: COVID-19 dataset [43] is a large-
scale CT dataset, which consists of 3D CT volumes from
1000+ patients with confirmed COVID-19 infections. A 3D
CT volume of the COVID-19 dataset is employed as additional
test data. We select 4 slices from the volume on axial view as
4 test samples.

3) Dataset Simulation: For the parallel and fan X-ray beam
SVCT reconstruction, we follow the strategies in [18], [19],
[22] to simulate the pairs of low-quality and high-quality
CT images. Specifically, we first generate the sinograms of
different views (720, 120, 90, and 60) by projecting the raw
slices using the built-in functions radon and fanbeam in
MATLAB R2021b, respectively. Then, we transfer the sino-
grams back to CT images using the built-in functions iradon
and ifanbeam in MATLAB R2021b, respectively. Detailed
hyper-parameters of the four functions are demonstrated in
Table II. The images reconstructed from 720 views are used for
Ground Truth (GT), while the images reconstructed from 120,

1https://www.aapm.org/GrandChallenge/LowDoseCT/
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TABLE III
QUANTITATIVE RESULTS (PSNR/SSIM) OF THE DV SINOGRAMS

GENERATED BY DIFFERENT METHODS ON THE COVID-19 DATASET FOR
parallel AND fan X-RAYS BEAM SVCT OF 60, 90, AND 120 VIEWS. THE

BEST PERFORMANCES ARE HIGHLIGHTED IN BOLD.

X-ray Method 60 Views 90 Views 120 Views

Parallel

Linear 34.64/0.9502 37.83/0.9723 40.33/0.9832
Cubic 34.38/0.9470 37.59/0.9710 40.13/0.9826
CoIL [12] 47.29/0.9915 51.94/0.9968 55.00/0.9985
SCOPE 53.27/0.9977 58.42/0.9993 60.60/0.9995

Fan

Linear 30.86/0.9124 33.96/0.9426 36.38/0.9613
Cubic 30.61/0.9046 33.75/0.9381 36.20/0.9588
CoIL [12] 40.83/0.9734 45.30/0.9869 48.66/0.993
SCOPE 56.52/0.9989 59.86/0.9995 61.37/0.9996

Cubic

SV Sinogram

Linear

GTCoIL SCOPE

025.0

34.52 34.25

52.69 PSNR47.33

Fig. 5. Quantitative results (PSNR/SSIM) of the DV sinograms generated
by different methods on a test sample (#90) of the COVID-19 dataset for
parallel X-ray beam SVCT of 60 views.

90, and 60 views are used for input images corresponding to
three different factors 6×, 8×, and 12×. Note that the parallel
and fan X-ray beam SVCT are considered as two independent
reconstruction tasks. Thus, all the training and test processes
are solely conducted.

B. Compared Methods & Evaluation Metrics

1) Compared Methods: We compare the proposed SCOPE
model with five SVCT reconstruction methods: 1) FBP [6],
a classical analytical reconstruction algorithm; 2) CoIL [12],
an INR-based method. Since the output of CoIL is the DV
sinogram. we thus apply FBP on the generated DV sinogram to
reconstruct the CT image; 3) GRFF [9], an INR-based method
with Gaussian random Fourier feature encoding strategy; 4)
FBPConvNet [18], a supervised DL method based on U-Net
[25]; 5) TF U-Net [19], a supervised DL method based on
Tigh Frame U-Net. We train FBPConvNet and TF U-Net on
the training set of the AAPM dataset through Adam optimizer
[42] with a mini-batch of 8. The learning rate starts from
10−3 to 10−6, which gradually decreases over each training
epoch. The total training epochs are set as 500 and the best
model is saved by checkpoints during the training process. The
two INR-based methods (CoIL and GRFF) are implemented
following the original papers.

Fig. 6. Quantitative results of the SCOPE model with two reconstruction
strategies (no re-projection and re-projection of different numbers of projec-
tion views Kd) on the COVID-19 dataset for parallel (left) and fan (right)
X-ray beam SVCT of 60, 90, and 120 views.

2) Evaluation Metrics: To quantitatively measure the per-
formance of the compared methods, we calculate Peak Signal-
to-Noise Ratio (PSNR) and Structural Similarity Index Mea-
sure (SSIM) [44]. PSNR is defined based on pixel-by-pixel
distance and SSIM measures structural similarity using the
mean and variance of images.

C. Effectiveness of Re-projection Reconstruction

To validate the effectiveness of the re-projection strategy,
based on the COVID-19 dataset [43], we conduct three studies
for the re-projection strategy: 1) Evaluation of DV sinograms;
2) Re-projection views, i.e., the number of projections in
the generated DV sinograms; 3) Downstream reconstruction
methods for recovering the final CT images from the DV
sinograms.

1) Evaluation of DV sinograms: We evaluate the perfor-
mance of our SCOPE model and three other methods for
generating the DV sinograms: 1) Linear interpolation; 2) Cubic
interpolation; 3) CoIL [12].

Table III shows the quantitative performance referred to the
GT DV sinogram. The results show that the SCOPE model
outperforms the three baselines in all cases, with PSNR im-
provements of 18.63 dB (53.27 vs. 34.64), 18.89 dB (53.27 vs.
34.38), and 5.98 dB (53.27 vs. 47.29) respectively, comparing
with Linear interpolation in different number of views as input.
Qualitative comparisons of the sinograms are shown in Fig. 5,
where it can be observed that the DV sinogram generated by
the SCOPE model exhibits clear global structures and local
details, and is the closest to the ground truth sinogram.

2) Re-projection Views: We compare the following two
strategies to recover the final CT image: 1) No Re-projection,
we feed all the coordinates into the MLP to produce the
corresponding image intensities; 2) Kd Re-projection Views,
we use the MLP to generate the different views of DV
sinograms (360, 480, 640, 720, and 1440 views) and then
apply FBP [6] to recover the CT images.

Fig. 6 shows the quantitative results. Overall, the re-
projection strategy significantly improves performance for all
the cases. For example, PSNR improves by about 3 dB for
fan X-ray beam SVCT of 60 views. More importantly, there
is a common trend in all the cases: The model performance
gradually increases when the re-projection views increase from
36w0 to 720 but slightly decreases when the re-projection
views increase from 720 to 1440. Our explanation is: 1) The
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GT

No Re-pro.

00.06

43.32 PSNR43.69

38.48 42.5737.47

Fig. 7. Qualitative results of the SCOPE model with two reconstruction
strategies (no re-projection and re-projection of different number of projection
views Kd) on a test sample (#80) of the COVID-19 dataset for fan X-ray
beam SVCT of 120 views.

Fig. 8. Quantitative results of the SCOPE model with three downstream
reconstruction methods on the COVID-19 dataset for parallel X-ray beam
SVCT of 60, 90, and 120 views.

projections of views less than 720 are not dense enough.
Although the intensity mutations of the highest frequency
are completely removed, the image details of the sub-high
frequency are also partially lost; 2) The projections of views
more than 720 are over-dense, which results in incomplete
removal of the intensity mutations and thus obtains the sub-
optimal performance. Therefore, the re-projection view Kd is
set as 720 in this work, but it may need to be adjusted for
specific cases. Fig. 7 shows the qualitative results. The image
by the direct reconstruction (i.e., No. Re-pro.) contains a lot
of the intensity mutations caused by the overfitting problem,
while the resulting image includes some streaking artifacts due
to the under-sampling when Kd is 360. The results are very
clear and close to the GT image when Kd increases up to 640.

3) Downstream Reconstruction Method: We employ three
reconstruction methods to generate the final CT images from
the synthesized DV sinograms: 1) SIRT [45], a simultaneous
iterative reconstruction method; 2) FBPConvNet [18], a su-
pervised DL model; 3) FBP [6], an analytical reconstruction
algorithm. FBPConvNet is trained on the AAPM dataset.

FBPConvNet SIRT

FBP GT

00.10

PSNR

40.15

40.40

38.00

Fig. 9. Qualitative results of the SCOPE model with three downstream
reconstruction methods on a test sample (#88) of the COVID-19 dataset
for parallel X-ray beam SVCT of 90 views.

The quantitative results are presented in Fig. 8. It can be
observed that both FBP and SIRT exhibit good performance
for input views in all cases. This can be attributed to two
factors. Firstly, when the input sinogram is densely sampled,
FBP and SIRT tend to produce similar performances due to
the stable constraint of the CT solution space. Secondly, the
sinograms generated by the SCOPE model closely approxi-
mate the ground truth sinograms.

In addition, the FBPConvNet demonstrates the best perfor-
mance for 60 input views, but the worst performance for 90
and 120 input views. The FBPConvNet is an end-to-end CNN-
based denoiser that takes low-quality CT images generated
from SV sinograms using FBP as inputs and outputs high-
quality CT images. In our study, the inputs to FBPConvNet
are the CT images obtained from DV sinograms, which are
the results of the SCOPE model and FBP. The lower input
view CT images with 60 views may match the FBPConvNet’s
training scenario, resulting in better performance than FBP
and SIRT. However, for the CT images with relatively higher
quality with 90 and 120 input views, FBPConvNet instead
results in a loss of image details in the input CT images,
thus degrading the model’s performance. Fig. 9 shows the
qualitative comparison of the three reconstruction methods.
It can be observed that SIRT and FBP produce CT images
that are very close to the ground truth, while FBPConvNet
produces an over-smoothed image.

To sum up, traditional reconstruction methods (including
analytical and iterative methods) generally perform stable and
similar on DV sinograms generated from SCOPE. Considering
the computational cost, we choose FBP as the downstream
reconstruction method.

D. Effectiveness of Hash Encoding

To validate the effectiveness of the hash encoding [39],
based on the COVID-19 dataset [43], the SCOPE models
with three different encoding modules are compared: 1) No
encoding, a pure 9 layers of MLP; 2) Position encoding, 9
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GT (Epochs)
Whole Recon. Time

Hash En. (5K)
5.6 min.

Hash En. (1K)
1.1 min.

Pos. En. (5K)
12.7 min.

No. En. (5K)
11.5 min.

00.50

41.41 PSNR39.74

25.43 39.60

Fig. 10. Qualitative results of the SCOPE model with three encoding modules
on a test sample (#95) of the COVID-19 dataset for fan X-ray beam SVCT
of 90 views.

TABLE IV
QUANTITATIVE RESULTS (PSNR/SSIM) OF THE SCOPE MODEL WITH
THREE ENCODING MODULES ON THE COVID-19 DATASET FOR parallel
AND fan X-RAYS BEAM SVCT OF 60, 90, AND 120 VIEWS. THE BEST

PERFORMANCES ARE HIGHLIGHTED IN BOLD.

X-ray Encoding 60 Views 90 Views 120 Views

Parallel
No En. 27.52/0.8378 28.48/0.8632 29.30/0.8831
Pos. En. 35.19/0.8870 38.65/0.9207 40.05/0.9294
Hash En. 35.36/0.9512 40.57/0.9807 43.09/0.9872

Fan
No En. 24.10/0.7256 25.97/0.7828 26.51/0.8017
Pos. En. 36.27/0.9539 39.56/0.9760 41.73/0.9839
Hash En. 37.93/0.9727 41.76/0.9854 43.62/0.9888

layers of MLP with position encoding [29]; 3) Hash encoding,
3 layers of MLP with hash encoding [39].

Table IV shows the quantitative results. From the results,
we see that, compared with no encoding, both the position
encoding and hash encoding significantly improve the model
performance in terms of all three metrics for all the cases.
For example, PSNR respectively improves by 13.59 dB (39.56
vs. 25.97) and 15.79 dB (41.76 vs. 25.97) for fan X-ray
beam SVCT of 90 views. This is due to the spectral bias
problem [37], [38], i.e., a pure MLP is biased toward learning
low-frequency signals during the practical training. Therefore,
encoding modules are critical for improving the MLP’s ability
to learn high-frequency signals. Besides, we observe that the
hash encoding slightly outperforms the position encoding in
most cases. E.g., PSNR improves by 1.66 dB (37.93 vs.
36.27) for fan X-ray beam SVCT of 60 views. Fig. 10 shows
the qualitative results on a test sample (#95) for fan X-ray
beam SVCT of 90 views. Overall, hash encoding achieves
the best image quality and the fastest reconstruction speed
benefiting from its adaptive encoding and the shallower MLP.
Numerically, hash encoding takes only about 1.1 min to obtain
the same performance as position encoding. However, position
encoding takes 12.7 mins, which is about 12× time cost.
We also show the performance curves of the three encoding
modules over training epochs in Fig. 11. Obviously, hash

Fig. 11. Performance curves of the SCOPE model with three encoding
modules over training epochs on a test sample (#95) of the COVID-19 dataset
for fan X-ray beam SVCT of 90 views.

encoding produces the best performance.

E. Disentangling Re-projection versus Hash Encoding

To disentangle the effect of the re-projection reconstruction
versus hash encoding [39] for the resulting image quality,
we train two versions of SCOPE models (positional encoding
[29] and hash encoding) on the COVID-19 dataset [43]. Then,
based on the well-trained models, we use two reconstruction
strategies (w/o and w/ re-projection strategy) to generate the
final CT images.

Fig. 12 shows the qualitative results. It is shown that with-
out the re-projection, hash encoding produces a sharper CT
reconstruction image than positional encoding. The residual
map of positional encoding illustrates image detail loss along
tissue edges, which is not present in hash encoding. This is
consistent with previous studies [39], [46] indicating that hash
encoding enables more efficient learning for high-frequency
image content due to its adaptive encoding strategy. However,
the residual map of hash encoding indicates a few noise-
like image intensity mutations, which might be caused by
overfitting to the noise in the SV sinogram. When referring
to the quantitative comparison in Table V, it is notable that
the image quality is not improved based on hash encoding. For
example, hash encoding only enables 0.27 dB improvement on
PSNR from positional encoding in 90 views, and reduces 0.25
dB in 120 views. However, after performing the reprojection
process, both cases exhibit remarkable improvement in terms
of image quality and quantitative evaluations. The image
mutations are effectively suppressed in residual maps, and
the PSNR results are significantly increased. For instance, the
re-projection method contributes a 4.86 dB improvement in
PSNR compared to hash encoding in 90 views.

In summary, both the qualitative and quantitative results
indicate that compared with hash encoding, our re-projection
reconstruction strategy contributes more to the reconstructed
image quality.

F. Influence of Noises

During the CT acquisition, noises are inevitable due to
various factors (e.g., background noises). Based on the SV
sinograms ys of 90 views from the COVID-19 dataset [43],
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Hash En. Hash En. & Re.

00.10

41.68 PSNR36.94

36.96 40.14

Fig. 12. Qualitative results of four versions of the SCOPE models on a test
sample (#80) of the COVID-19 dataset for fan X-ray beam SVCT of 90
views.

TABLE V
QUANTITATIVE RESULTS OF FOUR VERSIONS OF THE SCOPE MODELS ON

THE COVID-19 DATASET FOR fan X-RAY BEAM SVCT OF 60, 90, AND
120 VIEWS. THE BEST PERFORMANCES ARE HIGHLIGHTED IN BOLD.

Modules 60 views 90 views 120 views

Pos.En. 34.62/0.9439 36.63/0.9661 37.71/0.9738
Hash En. 35.21/0.9616 36.90/0.9738 37.46/0.9769
Pos.En. & Re. 36.27/0.9539 39.56/0.9760 41.73/0.9839
Hash En. & Re. 37.93/0.9727 41.76/0.9854 43.62/0.9888

we simulate the measurement domain noise via a statistical
Poisson noise model [47], [48], which is defined as:

Y(θ, ρ) ∼ Poisson
{
b× e−ys(θ,ρ) + r

}
, (7)

where Y(θ, ρ) denotes the transmitted X-ray photon intensity,
b is the incident X-ray photon intensity, and r is the mean of
the background events and read-out noise variance.

We set the value of r to 10, and the value of b to 1.3×104,
4 × 104, and 4 × 105 to simulate three levels of noise (SNR
≈ 35 dB, 40 dB, and 50 dB) respectively. We then generate
noisy sinograms y′

s(θ, ρ) = − ln (Y (θ, ρ)/b) using a negative
logarithm. Two versions of the SCOPE model (with and
without re-projection) and five baseline models are compared
for recovering the CT images from the noisy sinograms.

Table VI shows the quantitative results. There are some
observations: 1) As the noise level increases, the performance

TABLE VI
UANTITATIVE RESULTS (PSNR/SSIM) OF DIFFERENT METHODS ON THE
COVID-19 DATASET FOR fan X-RAYS BEAM SVCT OF 90 VIEWS WITH

THREE LEVELS OF NOISES (SNR = 35 DB, 40 DB, AND 50 DB). THE BEST
PERFORMANCES ARE HIGHLIGHTED IN BOLD.

Method 35 dB 40 dB 50 dB

FBP [6] 15.90/0.2452 17.68/0.3018 18.73/0.3539
CoIL [12] 25.88/0.5919 27.59/0.6757 28.52/0.7284
GRFF [9] 30.48/0.8825 32.63/0.9177 35.46/0.9529
SCOPE (w/o Re.) 27.43/0.8282 30.33/0.9071 34.54/0.9664
SCOPE (w/ Re.) 29.94/0.8342 32.76/0.9172 36.85/0.9728

GT

FBP

00.50

CoIL GRFF

SCOPE (w/o Re.) SCOPE (w/ Re.)
32.43 PSNR30.17

27.47 32.3017.55

Fig. 13. Qualitative results of different methods on a test sample (#95) of
the COVID-19 dataset for fan X-rays beam SVCT of 90 views with the noises
of SNR ≈ 40 dB.

TABLE VII
QUANTITATIVE RESULTS (PSNR/SSIM) OF ALL THE COMPARED

METHODS ON THE AAPM AND COVID-19 DATASETS FOR parallel
X-RAYS BEAM SVCT OF 60, 90, AND 120 VIEWS. THE BEST

PERFORMANCES ARE HIGHLIGHTED IN BOLD.

Dataset Method 60 Views 90 Views 120 Views

AAPM

FBP [6] 19.98/0.2791 24.40/0.4328 28.30/0.5869
CoIL [12] 32.35/0.7548 36.52/0.8685 39.11/0.9276
GRFF [9] 35.99/0.9448 38.89/0.9664 39.71/0.9716
FBPConvNet [18] 38.66/0.9392 41.95/0.9557 44.14/0.9644
TF U-Net [19] 38.67/0.9388 41.74/0.9587 43.86/0.9688
SCOPE 38.05/0.9596 42.18/0.9794 44.33/0.9860

COVID-19

FBP [6] 22.53/0.4979 27.56/0.6722 31.60/0.8025
CoIL [12] 30.12/0.8075 34.54/0.9143 37.71/0.9519
GRFF [9] 33.76/0.9494 35.51/0.9676 35.95/0.9702
FBPConvNet [18] 32.87/0.9236 36.65/0.9563 38.40/0.9661
TF U-Net [19] 32.86/0.9297 36.59/0.9571 38.71/0.9675
SCOPE 35.36/0.9512 40.57/0.9807 43.09/0.9872

of all models decreases, which is expected. Since the noise
result in the SVCT inverse imaging problem being more
ill-posed and thus the models may produce local minimal
solutions; 2) The SCOPE model achieves the best performance
at the low noise level (50 dB SNR), while the GRFF model
performs best at the high noise level (35 dB SNR). Compared
with Fourier encoding in GRFF, hash encoding in SCOPE
tend to fit to high-frequency image content more efficiently,
while may cause overfitting to noise; 3) Our re-projection
strategy remarkably improves the model performance. Fig. 13
illustrates the qualitative results. SCOPE model with the re-
projection process produces the least error in residual map.

To sum up, the performance of all the compared models is
limited by noise in the measurement domain and our SCOPE
model achieves the best performance in most cases.

G. Comparison with Other Methods

Finally, we compare the proposed SCOPE model with the
five baselines on the AAPM and COVID-19 datasets for
parallel and fan X-ray beam SVCT reconstruction of 60, 90,
and 120 input views. Since FBPConvNet [18] and TF U-
Net [19] are supervised DL methods, we train them on the
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FBP CoIL GRFF FBPConvNet TF U-Net SCOPE GT

27.66 34.73 35.71 36.75 36.53 40.93 PSNR

24.19 36.60 38.53 42.28 41.87 42.65 PSNR

Fig. 14. Qualitative results of all the compared methods on two test samples (#109 (Rows 1-2) and #90 (Rows 3-4)) of the AAPM dataset and COVID-19
dataset for parallel X-ray beam SVCT of 90 views.

training set of the AAPM dataset. Other four methods (FBP
[6], CoIL [12], GRFF [9], and our SCOPE model) are image-
specific and thus they direct reconstruct the corresponding
high-quality CT image from each SV sinogram. Note that
the parallel and fan X-ray beam SVCT are considered two
independent reconstruction problems and thus all the training
and test processes are solely conducted.

1) Parallel X-ray Beam SVCT: Table VII shows the quan-
titative results. On the AAPM dataset, the SCOPE produces
the best performance for most cases. Compared with the two
supervised DL methods (FBPConvNet [18] and TF U-Net
[19]), the SCOPE also obtains minor performance improve-
ments. For instance, PSNR respectively improves by 0.27 dB
(42.18 vs. 41.95) and 0.44 dB (42.18 vs. 41.74) when 90 input
views. On the COVID-19 dataset, we, however, observe that
FBPConvNet and TF U-Net suffer from severe performance
drops. This is mainly due to the domain shift problem, i.e.,
the training and test data do not share the same distribution.
In comparison, the SCOPE model still produces excellent
reconstruction results on the COVID-19 data because it is
image-specific. For example, the difference in PSNR between
SCOPE and FBPConvNet is up to +3.92 dB (40.57 vs 36.65)
when 90 input views. Fig. 14 shows the qualitative results on
two test samples (#109 and #90) of the AAPM and COVID-
19 datasets. On the test sample #109 from the AAPM dataset,
both FBP [6] and CoIL [12] can not produce satisfactory
results, which still include a lot of streaking artifacts. GRFF
[9] yields a smooth result that lost some image details. In
comparison, FBPConvNet, TF U-Net, and SCOPE all recover
the desirable images that are hardly distinguished from GT

images. On the test sample #90 from the COVID-19 dataset,
the two supervised models obtain sub-optimal results including
moderate streaking artifacts, while our SCOPE model still
produces a high-quality image that is closest to the GT image.

2) Fan X-ray Beam SVCT: Table VIII shows the quan-
titative results. We observe that the SCOPE and GRFF [9]
respectively produce the best and second-best performance in
terms of all three metrics for all the cases. For example, on the
AAPM dataset for 90 input views, SCOPE and GRFF respec-
tively achieve 40.92 dB and 37.54 dB, while TF U-Net [19]
only obtains 32.47 dB in terms of PSNR. It is not common that
FBPConvNet [18] and TF U-Net cannot produce a satisfactory
performance on the AAPM dataset although they are trained
on the AAPM dataset. We believe that, for learning the end-to-
end mapping as in the supervised DL methods, the fan X-ray
beam SVCT is a more difficult task than the parallel X-ray
beam SVCT when the same input views. In our experiments,
given the sinograms of the same projection views, the results
of the fan X-ray CT include more severe streaking artifacts
than that of the parallel X-ray CT after applying the FBP
algorithm [6]. While FBPConvNet [18] and TF U-Net [19]
directly learn the inverse mapping from the artifacts-corrupted
inputs to the artifacts-free outputs. Therefore, they are not
expected to perform as well in the fan X-ray CT as in the
parallel X-ray CT. In contrast, GRFF [9] and SCOPE train
MLP networks to learn the implicit function of the unknown
CT image by computing the loss on the SV sinogram (i.e., they
do not manipulate image information directly). Thus, they all
work well for different types of X-ray beams. Fig. 14 shows
the qualitative results on two test samples (#104 and #95)
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FBP CoIL GRFF FBPConvNet TF U-Net SCOPE GT

18.71 28.13 36.15 25.26 24.57 41.56 PSNR

16.36 29.31 37.72 31.78 32.29 41.56 PSNR

Fig. 15. Qualitative results of all the compared methods on two test samples (#104 (Rows 1-2) and #95 (Rows 3-4)) of the AAPM dataset and COVID-19
dataset for fan X-ray beam SVCT of 90 views.

of the AAPM and COVID-19 datasets. We see that the four
compared methods do not recover good results. The results
from FBP algorithm [6] and CoIL [12] include severe streaking
artifacts, while FBPConvNet [18] and TF U-Net [19] produce
the overly smooth results. GRFF [9] obtains the second-best
results that lost some image details. Only the proposed SCOPE
removes streaking artifacts greatly and preserves fine image
details well.

IV. CONCLUSION

In this work, we propose SCOPE, a self-supervised INR-
based method for SVCT reconstruction. Like previous INR
works [9]–[11], SCOPE represents the desired CT image as
an implicit continuous function and trains a neural network to
learn the implicit function by minimizing predicted errors on
the acquired SV sinogram. Benefiting from image continuity
prior imposed by the implicit function and neural network
architecture prior, the function can be estimated. However, the
solution is not optimal due to the overfitting problem. To this
end, we propose a simple and effective re-projection strategy
that greatly improves the resulting CT image quality. Besides,
we adopt the recent hash encoding [39] into our SCOPE
to accelerate the model training greatly. Experimental results
on two publicly available datasets indicate that the proposed
SCOPE model is not only superior to two last INR-based
methods, but also outperforms two well-known supervised
CNN-based methods, qualitatively and quantitatively.
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