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Annealed Score-Based Diffusion Model for MR
Motion Artifact Reduction

Gyutaek Oh, Jeong Eun Lee, and Jong Chul Ye, Fellow, IEEE

Abstract—Motion artifact reduction is one of the important
research topics in MR imaging, as the motion artifact degrades
image quality and makes diagnosis difficult. Recently, many
deep learning approaches have been studied for motion artifact
reduction. Unfortunately, most existing models are trained in
a supervised manner, requiring paired motion-corrupted and
motion-free images, or are based on a strict motion-corruption
model, which limits their use for real-world situations. To
address this issue, here we present an annealed score-based
diffusion model for MRI motion artifact reduction. Specifically,
we train a score-based model using only motion-free images,
and then motion artifacts are removed by applying forward and
reverse diffusion processes repeatedly to gradually impose a low-
frequency data consistency. Experimental results verify that the
proposed method successfully reduces both simulated and in vivo
motion artifacts, outperforming the state-of-the-art deep learning
methods.

Index Terms—MRI, motion artifact, score-based models, dif-
fusion models

I. INTRODUCTION

MAGNETIC resonance imaging (MRI) is an imaging
technique that provides various types of contrast im-

ages without radiation exposure or invasive procedure. Despite
many advantages, MRI requires a long acquisition time due
to its imaging physics. Furthermore, the long acquisition time
leads to motion artifacts due to the movement of the patient,
so the motion artifact is considered one of the main problems
of MRI.

In addition, the contrast agent injection may cause motion
artifacts in MRI. For example, gadoxetic acid (Gd-EOB-
DTPA) is one of the liver-specific MRI contrast agents that
can help the diagnosis of diseases such as hepatocellular
carcinoma, liver metastases [1], [2] by providing hepatobiliary
phase (HBP) imaging [3]. However, the administration of Gd-
EOB-DTPA can occur acute transient dyspnea, resulting in
transient severe motion (TSM) [4]. If TSM occurs, the image
quality of the arterial phase is degraded, and the accuracy
of diagnosis can be affected. So, an algorithm to correct the
motion artifact due to TSM is required.

There have been several attempts to reduce the motion
artifact of MRI by tracking the motion [5], [6], or changing
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sampling trajectory or imaging sequence [7]–[9]. However,
they require additional devices or scan time, and the types
of motion artifacts corrected by these methods are limited.

Motion artifact correction algorithms based on compressed
sensing (CS) [10]–[12] also have been investigated. CS-based
algorithms have shown high-quality results, but they have
limitations such as the difficulty of hyperparameter tuning
and high computational complexity. Furthermore, many CS
algorithms require raw k-space data, which are rarely obtained
in clinical environments due to storage limitations.

Recent studies for MRI motion artifact reduction are based
on deep learning methods [13]–[19]. Deep learning methods
have shown improved performance and reduced run time
compared to previous methods. However, most of the deep
learning methods are based on supervised learning approaches.
Since paired motion-free and corrupted data are difficult to
obtain, these methods usually utilize simulated motion artifact
images to train the networks. Therefore, it is difficult to apply
them to real motion-corrupted data.

To overcome the limitation of simulation-based deep learn-
ing methods, deep learning methods using unpaired data have
also been explored. Some methods interpret the motion artifact
reduction problem as image-to-image translation [20], [21],
and address them based on CycleGAN architecture [22].
Although they utilize real motion artifact data, the performance
of these algorithms is often limited because there is no explicit
motion artifact rejection mechanism.

Recently, we proposed an algorithm for MR motion artifact
reduction using bootstrap subsampling and aggregation [23].
Under the assumption that the motion artifact appears as k-
space outliers, the method removes the motion artifact by re-
jecting k-space outliers in a probabilistic manner. Although our
prior method outperforms other simulation-based or unpaired
deep learning methods, there exist limitations if the motion
artifact does not appear as sparse outliers in k-space.

Recently, score-based diffusion models [24]–[26] have
shown remarkable performance in the field of image gener-
ation. In score-based diffusion models, a network that esti-
mates the score, the gradient of the log probability density
function, is first trained, and then images can be generated by
solving the reverse-time stochastic differential equation (SDE).
Furthermore, it has been verified that unconditionally trained
diffusion models can be applied to solve various inverse
problems by adjusting sampling procedure using constraints
[27]–[31]. Importantly, the unconditionally trained diffusion
models do not require paired data, so it is possible to solve
inverse problems in an unsupervised manner.

Inspired by this, here we propose a novel MRI motion
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Fig. 1: The overall procedure of our method. xN ′ is generated from the motion-corrupted image x0 by the forward diffusion.
Then the MR image with reduced motion artifact x0 is sampled by solving the reverse-time SDE. y denotes the measurement
(k-space of motion-corrupted image), and it is used in the data consistency step to prevent the severe deformation of the output
image. The output goes through forward and reverse diffusion iteratively to obtain the final reconstructed image.

artifact reduction method using score-based diffusion models.
Fig. 1 shows the overall procedure of the proposed method.
During reverse diffusion, the low-frequency data consistency
is gradually imposed in an iterative manner so that the overall
structure of the original image is maintained and helps to
remove only motion artifact components.

In particular, our constraint is designed based on the ob-
servation that the motion artifacts in MRI usually occurred
in the high-frequency region of k-space. This is because k-
space acquisition is usually performed first in the center region
and motion occurs after a certain period after the start of
acquisition, so k-space samples that include motion artifacts
generally appear in high-frequency regions. Therefore, during
the reverse diffusion, the low-frequency region needs to be
maintained and only the high-frequency region should be
corrected by diffusion sampling. However, because the high-
frequency region of k-space also contains the information of
details, the detailed structures of images can be altered or van-
ished if the data consistency step in Eq. (9) is applied directly.
To address this issue, we propose an annealed reverse sampling
procedure where the data consistency step is gradually applied
in a repeated manner to maintain high-frequency details of
measurements.

The remaining parts of the paper are constructed as follows.
Section II introduces backgrounds of score-based diffusion
models. Section III contains the key idea of the proposed
method. The experimental setting is explained in Section IV,
and qualitative and quantitative results are shown in Section
V. Section VI and VII contains the discussion and conclusion
of our paper.

II. BACKGROUNDS

A. Score-Based Diffusion Models

A continuous diffusion process can be represented as
{x(t)}1t=0, where t ∈ [0, 1] denotes the time variable. Here,
x(0) ∼ pdata where pdata is the data distribution, and

x(1) ∼ p1 where p1 refers to the noise distribution which
is commonly set to Gaussian distribution. Then, the diffusion
process can be modeled by the solution of the following
stochastic differential equation:

dx = f(x, t)dt+ g(t)dw, (1)

where f : Rd → Rd is a drift coefficient, g : R → R
is a diffusion coefficient, and w denotes a standard Wiener
process. By solving Eq. (1), it is possible to transmit a sample
from the data distribution to that of the noise distribution
through the forward diffusion process.

If it is possible to reverse the diffusion process in Eq.
(1), then we can obtain samples of the data distribution from
samples of the noise distribution. In [32], it was shown that the
reverse process is also a diffusion process that can be modeled
by following reverse SDE:

dx = [f(x, t)− g(t)2∇x log pt(x)]dt+ g(t)dw̄ (2)

where w̄ is also a standard Wiener process from time 1 to
0, and ∇x log pt(x) denotes the score function. Therefore, if
the score function can be estimated, it is possible to derive
the reverse diffusion process and generate samples of data
distribution from random Gaussian noise.

Among the many possible choices of f and g, we choose
variance exploding SDE (VE-SDE) [26], where f and g are
defined by

f = 0, g =

√
d[σ2(t)]

dt
, (3)

and

σ(t) = σmin

(
σmax

σmin

)t
. (4)

Then, the reverse SDE in Eq. (2) can be rewritten as:

dx = −d[σ2(t)]

dt
∇x log pt(x)dt+

√
d[σ2(t)]

dt
dw̄. (5)



3

Algorithm 1 CCDF with PC sampler

Require: x0, y, N ′, {σi}N
′

i=1, {εi}N
′

i=1, sθ
1: z ∼ N (0, I)
2: xN ′ ← x0 + σN ′z . Forward diffusion
3: for i = N ′ to 1 do
4: x′i−1 ← xi + (σ2

i − σ2
i−1)sθ(xi, σi)

5: z ∼ N (0, I)

6: xi−1 ← x′i−1 +
√
σ2
i − σ2

i−1z . Predictor
7: xi−1 ← Data consistency(xi−1,y)
8: . Data consistency
9: z ∼ N (0, I)

10: xi−1 ← xi−1 + εisθ(xi, σi) +
√

2εiz . Corrector
11: xi−1 ← Data consistency(xi−1,y)
12: . Data consistency
13: end for

Here, the time index t is usually discretized uniformly into N
intervals, and xi and σi can be defined as

xi := x(t)|t= i−1
N−1

, σi := σmin

(
σmax

σmin

) i−1
N−1

. (6)

The score function ∇x log pt(x) is generally estimated by
training a neural network sθ(x(t), t) with denoising score
matching [33]. The training of the score-based model with
denoising score matching can be done by minimizing the
following objective function:

min
θ

Et
{
λ(t)Ex(0)Ex(t)|x(0)

[
∥∥sθ(x(t), t)−∇x(t) log p0t(x(t)|x(0))

∥∥2

2

]}
.

(7)

After training the neural network and plugging it into Eq. (5),
the reverse SDE can be solved by numerical SDE solvers or
predictor-corrector (PC) samplers [26].

B. Come-Closer-Diffuse-Faster (CCDF)

The main drawback of score-based diffusion models is
their slow sampling time. Because the sampling starts from
the random Gaussian noise and usually requires thousands
of steps, the sampling time of score-based diffusion models
is too long. In the prior work [28], the authors proposed a
method called Come-Closer-Diffuse-Faster (CCDF) to reduce
the sampling time of diffusion models when solving inverse
problems. Specifically, instead of starting sampling from ran-
dom Gaussian noise, the forward diffusion is first applied from
the initial reconstruction, leading to only few steps of reverse
diffusion to get the final reconstruction.

More specifically, Algorithm 1 shows the CCDF sampling
procedure using the PC sampler, where y denotes the initial
measurement, and N ′ = Nt′ is the number of reverse diffusion
steps where t′ ∈ [0, 1]. Here, the data consistency step
should be non-expansive to maintain the stochastic contraction
mapping nature of reverse diffusion sampling [28]. With a
better initialization followed by one-step forward diffusion,
CCDF largely reduces the reverse sampling time for solving
inverse problems [28].

Fig. 2: The data consistency step of the proposed method.

III. MAIN CONTRIBUTION

A. Motivation

In our prior work [23], we solved the motion artifact
reduction problem by regarding motion artifacts as sparse
outliers in k-space. Specifically, if the motion is occurred by
translation or rotation, it is assumed to result in k-space phase
shift or rotation at the specific phase encoding lines:

ŷ(kx, ky) =

{
F {Rαx}e−jΦ, ky ∈ K
F {x}, otherwise,

(8)

where ŷ denotes the motion-corrupted k-space with the indices
along the frequency encoding direction kx and phase encoding
direction ky , and x is the motion-free image, F denotes the
Fourier transform, Rα denotes the rotation operation with the
angle α, Φ is the displacement in radian, and K is the phase
encoding indices where the rotation or translation occurred.

Based on this assumption, the network is trained to recon-
struct fully sampled motion-free images from randomly sub-
sampled images along the phase encoding direction in which
the corrupted k-space data can be removed in a probabilistic
manner. Although this method does not require simulated
motion artifact images and shows improved performance, it
has a limitation in that it is difficult to apply when the motion
artifacts cannot be considered as sparse outliers in k-space.
Furthermore, because the index of outliers is not known, some
outliers that are not removed by subsampling can remain in
the reconstructed image.

B. Proposed Method

Rather than using the sparse outlier assumption in Eq. (8),
our method is based on a more relaxed assumption that the
motion artifacts in MRI mainly occur in the high-frequency
region of k-space. This is because k-space acquisition is
usually performed first in the center region and motion occurs
after a certain period after the start of acquisition so that k-
space samples with motion artifacts generally appear in high-
frequency regions. Therefore, the high-frequency region of k-
space should be corrected to remove the motion artifact.

The application of CCDF in Algorithm 1 starts from the
one-step forward diffusion from the initialization. Then, a
näive way of using data consistency for reverse diffusion
would be to impose the low-frequency region consistency:

xi−1 = (I − F−1PΩF )x′i−1 + F−1PΩy, (9)
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Algorithm 2 MR Motion Artifact Reduction

Require: x0, y, N ′, {σi}N
′

i=1, {εi}N
′

i=1, {λi}N
′

i=1, sθ
1: for j = 1 to M do
2: z ∼ N (0, I)
3: xN ′ ← x0 + σN ′z . Forward diffusion
4: for i = N ′ to 1 do
5: x′i−1 ← xi + (σ2

i − σ2
i−1)sθ(xi, σi)

6: z ∼ N (0, I)

7: xi−1 ← x′i−1 +
√
σ2
i − σ2

i−1z . Predictor
8: xi−1 ← (1− λi)(I − F−1PΩF )xi−1

9: +λiF
−1(I − PΩ)y + F−1PΩy

10: . Data consistency
11: z ∼ N (0, I)
12: xi−1 ← xi−1 + εisθ(xi, σi) +

√
2εiz . Corrector

13: xi−1 ← (1− λi)(I − F−1PΩF )xi−1

14: +λiF
−1(I − PΩ)y + F−1PΩy

15: . Data consistency
16: end for
17: end for

where PΩ is the operator that samples only the low-frequency
region of k-space. In other words, during reverse diffusion,
the low-frequency region is maintained so that only the high-
frequency region is corrected by the diffusion model.

However, because the high-frequency region of k-space also
contains the information of details, the detailed structures of
images can be altered or vanished if the data consistency step
in Eq. (9) is applied directly. To address this issue, we propose
an annealed data consistency step to maintain high-frequency
details of measurements as illustrated in Fig. 2:

xi−1 = (1− λi)(I − F−1PΩF )x′i−1

+ λiF
−1(I − PΩ)y + F−1PΩy,

(10)

where λi ∈ [0, 1] is the annealing hyperparameter to control
the weight of high-frequency components of the measurement.
Furthermore, as shown in Algorithm 2, we choose relatively
small N ′, and repeat forward and reverse processes M times
so that the high-frequency components of the measurement are
gradually added at each data consistency step.

Here, Eq. (10) can be written as

xi−1 = T (xi−1) := Ax′i−1 + b,

where
A = (1− λi)(I − F−1PΩF ),

b = λiF
−1(I − PΩ) + F−1PΩ.

Since
∥∥I − F−1PΩF

∥∥ ≤ 1 [28], it is also true that ‖A‖ =∥∥(1− λi)(I − F−1PΩF )
∥∥ ≤ 1. Therefore, T is a non-

expansive mapping, so it can accelerate the reverse diffusion
process through the CCDF principle [28].

C. Implementation Details

In our implementation, we choose VE-SDE, which results
in the following one-step forward sampling:

x(t) = x(0) + σ(t)z (11)

where z ∼ N (0, I) and x(0) is the clean training data. By
plugging this in Eq. (7), we have the following cost function
[26]:

min
θ

EtEx(0)Ex(t)|x(0)

[
∥∥∥∥σ(t)sθ(x(t), t)− x(t)− x(0)

σ(t)

∥∥∥∥2

2

]
.

(12)

Here, we choose the number of discretized steps N = 1000,
and σmin and σmax in Eq. (6) are set to σmin = 0.01 and σmax =
50, respectively. We train the score model for 1.3M iterations
and follow [30] for the setting of other hyperparameters such
as optimization, batch size, learning rate, gradient clipping, or
exponential moving average.

In addition, for N ′, M and λi in Algorithm 2, we choose
N ′ = 10, M = 3, and

λi =
λN ′

N ′ − 1
(i− 1), (13)

where λN ′ = 0.01. In other words, λi linearly decreases to 0
as i goes to 1, so the weight of high-frequency components
of the measurement decreases as reverse diffusion proceeds.

In CCDF [28], it was shown that a better initialization pro-
vides faster reverse sampling. Accordingly, the neural network
(NN) initialization could be utilized if available as it is better
than the original artifact-corrupted images. Accordingly, we
also employed NN initialization with [20] for the brain dataset,
and [23] for the liver dataset.

IV. METHODS

A. Experimental Data

In our experiments, we use two MR datasets. The first
dataset is the human connectome project (HCP) dataset which
is the public dataset that contains human brain MR images.
This dataset is acquired by Siemens 3T system with 3D spin
echo sequence, and the scan parameters are as follows: TR =
3200 ms, TE = 565 ms, echo train duration = 1105, matrix
size = 320×320, voxel size = 0.7×0.7×0.7 mm3, and phase
encoding direction = anterior-posterior. Because the HCP
dataset does not contain motion-corrupted images, it is used
for quantitative evaluation with motion artifact simulation. The
score model is trained with 3000 motion-free MR images from
150 subjects, and other 800 images from 40 subjects are used
for testing.

The second dataset is collected from Chungnam National
University Hospital (CNUH), and it includes Gd-EOB-DTPA-
enhanced liver MR images. It is obtained by a 3T Philips
Achieva MR system with the following scan parameters: TR =
3.1 ms, TE = 1.5 ms, flip angle = 10◦, field of view = 256×256
mm2, slice thickness/intersection gap = 2/0 mm, acquisition
matrix = 320×192, and phase encoding direction = anterior-
posterior. Also, dynamic imaging including various phases
was obtained, but only arterial phase images are used for
experiments because TSM usually occurs during the arterial
phase. The liver dataset consists of two groups, motion-free
images, and motion-corrupted images. For the training of the
score model, 3097 motion-free images from 18 subjects are
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used. After training, 444 simulated motion-corrupted images
from 5 subjects are selected for the quantitative evaluation,
and 38 MR volumes with in vivo motion-corrupted images
are used for qualitative and radiologist evaluations.

B. Artifact Simulation

For the quantitative evaluation, we used simulated motion
artifacts. The simulation was performed similarly to prior
works [16], [23]. The first type of motion artifact that we
simulate is random translation and rotation. We simulate the
first type of motion artifact with the HCP brain dataset. The
motion artifact with random translation and rotation can be
simulated by Eq. (8) with

(α,Φ) =

{
(αky , ky∆ky + kx∆kx), |ky| > k0

(0, 0), otherwise,
(14)

where αky denotes the rotation angle, ∆ky and ∆kx denote
the degree of motion along x and y direction, respectively,
and k0 is the delay time of the phase error due to the centric
k-space filling. In our simulation, k0 is fixed to π/10, αky is
randomly sampled from [−2◦, 2◦], ∆ky and ∆kx are sampled
from [−1cm, 1cm] and [−0.5cm, 0.5cm], respectively, at each
k-space line.

The second type of simulated motion is respiratory motion,
which appears as a sinusoidal function in k-space [16], [23]:

(α,Φ) =

{
(0, ky∆ky sin(mky + n)), |ky| > k0

(0, 0), otherwise,
(15)

where ∆ky , m, and n denote the amplitude, period, and
phase shift of the sinusoidal function, respectively. Because
the respiratory motion appears in abdominal MR images, we
simulate it with the liver MR image dataset. Parameters for
the simulation are sampled as follows: k0 ∼ U [π/10, π/5],
∆ky ∼ U [1cm, 1.5cm], m ∼ U [0.1, 5.0], and n ∼ U [0, π/4],
where U [a, b] denotes the uniform distribution with the interval
[a, b]

C. Comparison Methods

We compared our method with three state-of-the-art meth-
ods to verify the performance of the method. The first com-
parison method is MARC [16], a method for reducing liver
MRI motion artifacts. Because it is a supervised method, we
train MARC models using simulated motion-corrupted images
with Eqs. (14) and (15).

The second comparison method is Cycle-MedGAN V2.0
[20], an unpaired deep learning method based on CycleGAN
[22]. Cycle-MedGAN V2.0 can be trained with both simulated
or in vivo motion-corrupted data, but we train it with only
simulated motion-corrupted data because the training of Cycle-
MedGAN V2.0 was unstable when using in vivo data.

We also employed the bootstrap subsampling and aggre-
gation method in [23] as a comparison method. Because
this method requires only motion-free images during training,
simulated or in vivo motion-corrupted images were not used
during training.

D. Evaluation Methods

For the quantitative evaluation, we used the peak signal-to-
noise ratio (PSNR) and the structural similarity index metric
(SSIM). Because there is no ground truth matched with in
vivo motion-corrupted images, the quantitative evaluation was
performed with simulated motion-corrupted images.

In addition, we also conducted a clinical evaluation with
the results using in vivo motion-corrupted data. Specifically,
a radiologist with 13 years of experience in abdominal MR
imaging performed an analysis of the results of various
methods. The image analysis was conducted from various per-
spectives. First, the performance in reducing motion artifacts
is rated using a 5-point scoring system: 1 = non-diagnostic
(severe artifacts causing impaired diagnostic capability of the
readers); 2 = substantial artifacts with image quality decrease,
but diagnostic performance impairment; 3 = mild artifacts, no
significant (only mild) image quality disturbance; 4 = minimal
artifacts, sharp image; 5 = no artifacts. The image noise level
is also evaluated with the following scoring system: 1 = non-
diagnostic (severe noise causing impaired diagnostic capability
of the readers); 2 = substantial noise with image quality
decrease, but diagnostic performance impairment; 3 = mild
noise, no significant (only mild) image quality disturbance;
4 = minimal noise; 5 = no noise. Next, the blurring can be
induced when reducing the motion artifact, so the rating of
image blurring level is performed: 1 = non-diagnostic (severely
pixelated texture causing impaired diagnostic capability of the
readers); 2 = substantially pixelated, artificial sensation with
concerns about the loss of normal texture, without diagnostic
performance impairment; 3 = mildly pixelated, artificial sensa-
tion, without image quality decrease; 4 = minimal alteration of
image texture; 5 = no alteration of image texture. Furthermore,
because the hepatic artery (HA) on the arterial phase should
be visualized clearly, the vessel clarity is evaluated with a
scoring system: 1 = not delineated due to motion or low
signal-to-noise ratio (SNR); 2 = blur or decreased SNR; 3 =
clear common hepatic artery (CHA) and proper hepatic artery
(PHA), but blurred HA and gastroduodenal artery (GDA); 4
= entire HA is clearly visible, clear CHA, GDA, bilateral
HA; 5 = strong contrast-to-noise ratio with score 4. Last, the
overall image quality is assessed by following scoring system:
1 = non-diagnostic; 2 = not satisfactory image quality, but re-
examination is not needed; 3 = acceptable image quality (im-
age quality may not be very good, but clinically acceptable); 4
= good image quality without significant artifact; 5 = excellent
image quality without artifact and good spatial resolution. The
score is rated for each volume in all assessments. Also, the
results were presented to the radiologist in a random order
without any labeling for a fair comparison.

V. RESULTS

A. Results with Simulated Data

Fig. 3 shows the motion artifact reduction results of various
methods with random simulated motion-corrupted data. As
shown in Fig. 3(a), it is hard to recognize detailed structures of
brains due to motion artifacts. MARC [16] reduces the motion
artifact but the output images of MARC are too blurry or
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Fig. 3: The simulated random motion artifact reduction results with the HCP brain dataset: (a) motion-corrupted input image,
(b) MARC [16], (c) Cycle-MedGAN V2.0 [20], (d) bootstrap subsampling and aggregation [23], (e) the proposed method, and
(f) motion-free label image. The difference maps show the difference between each image and the label image. PSNR and
SSIM values of each image are shown in the corner of the images.

Fig. 4: The simulated respiratory motion artifact reduction results with the CNUH liver dataset: (a) motion-corrupted input
image, (b) MARC [16], (c) Cycle-MedGAN V2.0 [20], (d) bootstrap subsampling and aggregation [23], (e) the proposed
method, and (f) motion-free label image. The difference maps show the difference between each image and the label image.
PSNR and SSIM values of each image are shown in the corner of the images.

smoothed (Fig. 3(b)). In the results of MARC, the boundary
between gray matter and white matter is not clear (the first
row in Fig. 3(b)), and the structure of the choroid plexus is not
properly restored (the second row in Fig. 3(b)). Next, in Fig.
3(c) and (d), Cycle-MedGAN V2.0 [20] and bootstrap sub-

sampling and aggregation [23] remove random motion artifacts
significantly and show increased quantitative results compared
to input images. However, there are some differences between
label images and outputs of Cycle-MedGAN V2.0 as shown in
difference maps, and bootstrap subsampling and aggregation
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[23] shows blurrier edge details compared to label images. On
the other hand, as shown in Fig. 3(e), the proposed method
shows the best qualitative and quantitative results among all
methods. Especially, the proposed method shows the sharpest
boundary between gray and white matters among methods as
shown in the first row of Fig. 3.

Next, we compare motion artifact reduction methods using
simulated respiratory motion-corruption data. In Fig. 4(a), the
vasculature of the liver is damaged or blurred due to motion
artifacts. Especially, artifacts appear most severe around blood
vessels. MARC removes motion artifacts and achieves high
quantitative metric values, but the blood vessels still look
blurry as shown in Fig. 4(b). On the other hand, Cycle-
MedGAN V2.0 [20] sharp reconstructed results but the PSNR
of results of Cycle-MedGAN V2.0 is lower than that of
input images (4(c)). It is maybe because Cycle-MedGAN
V2.0 changes image intensity or details. Results of bootstrap
subsampling and aggregation [23] are shown in Fig. 4(d),
resulting in images with reduced motion artifacts and improved
quantitative metrics compared to input images. However, some
motion artifacts near the blood vessels remain (the first row
of Fig. 4(d)), and it is hard to recognize the vessel due
to blurring and remaining artifacts (the second row of Fig.
4(d)). Meanwhile, the proposed method shows the most similar
restoration results to the label images as shown in Fig. 4(e)
and (f). Specifically, the vascular structure is most clearly and
accurately restored by the proposed method. Furthermore, our
method significantly reduces motion artifacts around the blood
vessels compared to other methods.

TABLE I shows the quantitative metric values of motion
artifact reduction methods. In experiments using simulated
random motion-corrupted data, the proposed method achieves
the highest PSNR and SSIM, and it is consistent with the
qualitative results in Figs. 3 and 4. On the other hand, MARC
shows the highest quantitative results when using simulated
respiratory motion-corrupted data. However, as confirmed in
Figs. 3 and 4, reconstructed images by MARC are extremely
blurred, so the detailed structures are indistinguishable. Com-
pared to MARC, the proposed method removes the motion
artifacts without losing information on image details. Further-
more, the quantitative metric value of our method is the highest
among that of unpaired/unsupervised methods.

TABLE I: Quantitative results of various methods with sim-
ulated motion-corrupted data (Cycle: Cycle-MedGAN V2.0,
BSA: Bootstrap Subsampling and Aggregation).

Method PSNR (dB) SSIM

Brain
Random motion

Input 27.83 0.751
MARC [16] 29.29 0.891
Cycle [20] 28.79 0.894
BSA [23] 30.18 0.839
Proposed 31.40 0.916

Liver
Respiratory motion

Input 36.15 0.912
MARC [16] 37.87 0.947
Cycle [20] 35.54 0.926
BSA [23] 36.45 0.932
Proposed 37.01 0.940

Fig. 5: The in vivo motion artifact reduction results with the
CNUH liver dataset: (a) motion-corrupted input image, (b)
MARC [16], (c) Cycle-MedGAN V2.0 [20], (d) bootstrap sub-
sampling and aggregation [23], and (e) the proposed method.
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B. Results with In Vivo Data

Because the simulated motion artifacts only consider rigid
motion artifacts, it should be verified that the method can also
be applied to non-rigid in vivo motion artifact removal. In
Fig. 5(a), motion artifacts due to transient dyspnea degrade
the quality of liver MR image. We attempt to remove motion
artifacts in Fig. 5(a), and results are shown in Fig. 5(b) to
(e). Again, MARC removes not only motion artifacts but also
detailed structures of blood vessels, so the reconstructed image
is extremely blurry (Fig. 5(b)). Conversely, in Fig. 5(c), Cycle-
MedGAN V2.0 makes the image sharper, but it also amplifies
motion artifacts or noise in the input image. Next, the bootstrap
subsampling and aggregation method also fails to remove the
motion artifacts. Specifically, as shown in the yellow and green
boxes of Fig. 5(d), motion artifacts around the blood vessels
remain in the output image. Unlike comparison methods, the
proposed method successfully removes the motion artifacts
and reduces the noise level of the input image. Furthermore,
our method reconstructs detailed structures. For example, in
the yellow box of Fig. 5(e), the sharpness of the lesion
increased as the motion artifact disappeared. Also, the vascular
structure is recovered due to the reduction of motion artifacts
as shown in the green box of Fig. 5(e). Through the experiment
using in vivo motion-corrupted data, we confirmed that the
proposed method also removes in vivo motion artifacts that
contain the non-rigid motion of patients.

TABLE II: Clinical evaluation results of various methods with
in vivo motion-corrupted data (average ± standard deviation)
(Cycle: Cycle-MedGAN V2.0, BSA: Bootstrap Subsampling
and Aggregation). Higher scores indicate higher performance.

Method Motion artifact Noise Blurring Vessel clarity Overall quality
Input 3.03 ± 0.91 3.03 ± 0.68 3.92 ± 0.71 3.45 ± 1.20 3.00 ± 1.09

MARC [16] 3.37 ± 0.79 3.34 ± 0.81 2.29 ± 0.87 2.97 ± 1.15 2.50 ± 1.03
Cycle [20] 3.42 ± 0.92 3.13 ± 0.81 3.97 ± 0.94 3.47 ± 1.18 3.21 ± 1.09
BSA [23] 3.45 ± 1.22 3.39 ± 0.75 3.89 ± 1.06 3.45 ± 1.29 3.29 ± 1.18
Proposed 3.63 ± 1.10 3.58 ± 0.76 3.97 ± 0.91 3.71 ± 1.31 3.45 ± 1.25

C. Clinical Evaluation

Because it is impossible to quantitatively evaluate results
using in vivo motion-corrupted datasets due to the lack of
paired motion-free data, we evaluate motion artifact reduction
results by clinical evaluation.

TABLE II shows the scores by evaluating each method on
various criteria. MARC achieved scores of 3.37 and 3.34 in
terms of motion artifact and noise evaluation, respectively,
while input images score 3.03 in both evaluations. These
results indicate that MARC was good in motion artifact
improvement or noise reduction. However, MARC scored 2.29
in the blurring evaluation, which is lower than the score of
input images (score: 3.92). The blurring effect of MARC
also can be confirmed in Fig. 5(b). Therefore, the overall
quality score of MARC (score: 2.50) is lower than that of
input images (score: 3.00). On the other hand, Cycle-MedGAN
V2.0 got the highest score in the blurring evaluation (score:
3.97). However, Cycle-MedGAN V2.0 scored 3.13 in noise
evaluation, which is lower than the scores of other methods.
This high level of noise affects the image quality drop of

Cycle-MedGAN V2.0, so Cycle-MedGAN V2.0 gets only 3.29
points in terms of the overall image quality. As shown in Fig.
5 and TABLE II, the bootstrap subsampling and aggregation
method shows higher scores than the other existing methods
in most assessments. However, the outputs of the bootstrap
subsampling and aggregation method were slightly blurred,
so its score was lower than the input images in the blurring
evaluation.

While the other methods each showed drawbacks, the pro-
posed method achieved the highest performance in all evalua-
tions. First, in terms of motion artifact removal, the proposed
method achieves the highest score (score: 3.63) while other
methods get similar lower scores (score: 3.37-3.45). Next,
our method scored 3.58 and 3.97 in the noise and blurring
evaluations, respectively. From these results, we confirm that
our method does not amplify image noise level or blur output
images through the clinical evaluation. Moreover, the motion-
corrupted input images scored 3.45 in terms of vessel clarity.
The proposed method shows a significant improvement in
vessel clarity score (score: 3.71) while the vessel clarity of the
other three methods is similar to or lower than that of motion-
corrupted input images (score: 2.97-3.47). Finally, our method
gets the best score (score: 3.45) for overall image quality. To
sum up, the proposed method achieves the highest score in all
clinical evaluations, and this result indicates that our method
is useful in clinical practice.

VI. DISCUSSION

A. Comparison with Other Methods

In Section V, it was verified that MARC [16] generates
blurry outputs in both simulation and in vivo study. The
blurring results may be a limitation of methods based on su-
pervised learning. Because the supervised learning minimizes
the loss (e.g. L1, mean squared error (MSE)) between output
and label, it achieves high quantitative results as shown in
TABLE I. However, it can also lead to the loss of information
on image details because L1 or MSE losses do not assure the
perceptual quality of output images.

Unlike MARC, Cycle-MedGAN V2.0 [20] is an unpaired
method that does not require paired input and label im-
ages. Instead of using losses between input and label, it
translates an image from one domain to another domain by
utilizing cycle consistency loss and adversarial loss. Because
the discriminators of Cycle-MedGAN V2.0 distinguish real
and fake generated images, the generators of Cycle-MedGAN
V2.0 provide realistic images with sharp details. However, we
have confirmed that Cycle-MedGAN V2.0 also magnifies the
artifacts or noise of images. We conjecture that it is because the
networks of Cycle-MedGAN V2.0 consider resolution degra-
dation due to the motion artifacts to be the main difference
between the two image domains. Therefore, the networks of
Cycle-MedGAN V2.0 try to improve resolution rather than
eliminate motion artifacts.

Compared to the previous two methods, bootstrap sub-
sampling and aggregation [23] showed stable qualitative and
quantitative results. Nevertheless, because [23] works under
the assumption that the motion artifact appears as sparse
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TABLE III: Ablation studies on hyperparameters with simu-
lated respiratory motion-corrupted data. The gray rows indi-
cate the hyperparameters that are selected in our experiments.

Hyperparameters PSNR (dB) SSIM Time/image (sec)

λN′
0 36.36 0.935 19.30

0.01 37.01 0.940 19.30
0.1 36.58 0.927 19.30

N ′
1 36.45 0.935 1.834

10 37.01 0.940 19.30
100 36.88 0.938 195.6

M
1 36.43 0.934 6.358
3 37.01 0.940 19.30
5 37.28 0.942 32.48

N ′ ×M
10 × 3 37.01 0.940 19.30
30 × 1 36.90 0.938 19.30

outliers in k-space, the performance of this method is degraded
if the assumption is not satisfied. For example, we simulated
the respiratory motion with Eq. (15), so the respiratory motion
appears as a continuous sinusoidal form in k-space. Because
the motion did not appear as sparse outliers, the performance
of [23] was dropped compared to when it works with simulated
random motion-corrupted data.

On the other hand, our proposed method presented out-
standing results compared to other comparison methods. The
proposed method successfully removes motion artifacts and
retrieves high-frequency image details in both simulation and
in vivo studies.

Nevertheless, our method is not free of limitations. Because
the score-based diffusion models require several steps of
reverse diffusion, it takes a long time to generate outputs. Al-
though we utilized the CCDF algorithm to reduce the inference
time, our method also requires several seconds as shown in
TABLE III. Therefore, the acceleration of the proposed method
should be done for clinical use.

B. Effects of Annealing Hyperparameters

In our method, we injected high-frequency components of
measurements (k-space of motion-corrupted images) with the
hyperparameter λN ′ to preserve detailed structures of MR
images. To confirm the effect of high-frequency component
injection, we conduct our method for simulated liver motion-
corrupted images with various λN ′ . As shown in TABLE
III, the proposed method with λN ′ = 0 shows lower quan-
titative results than the proposed method with λN ′ = 0.01.
It is because detailed structures such as vessels cannot be
reconstructed perfectly without high-frequency component in-
jection. When λN ′ = 0.1, the quantitative results drop again
compared to results with λN ′ = 0.01. We conjecture that it is
because the high-frequency component of measurements also
contains motion artifacts, and the remaining artifacts degrade
the quality of reconstructed images. Therefore, we choose to
inject high-frequency components with λN ′ = 0.01 in our
experiments.

Next, we also confirm the effect of the selection of N ′.
When N ′ = 1, the motion artifacts remain in output images,
so the quantitative results deteriorate. On the other hand, our
method also shows the degraded performance when N ′ = 100.
It may be because the structures that cannot be seen in the

input image were generated during the iterations of the reverse
diffusion process. Moreover, the required inference time of
the proposed method with N ′ = 100 is quite long as shown
in TABLE III, so we choose N ′ = 10 that shows the best
qualitative and quantitative performance.

Finally, the number of iterations of the reverse diffusion
process M is also one of the important hyperparameters of
our method. Through the experiments on M , we find that the
proposed method cannot completely remove motion artifacts
when M = 1. On the other hand, when M = 5, the required
inference time for one image is too long while the performance
gain is negligible compared to when M = 3. Therefore, M =
3 is selected in our experiments.

In addition, we also verify the effect of the combination
of N ′ and M . The proposed method shows different results
depending on the combination of N ′ and M as shown in
TABLE III, even if it takes the same inference time. The
proposed method with N ′ = 30, M ′ = 1 shows lower quan-
titative performance compared to the method with N ′ = 10,
M ′ = 3. It is because the motion artifacts cannot be removed
perfectly with only one iteration of the diffusion process even
though N ′ is large. Through the experiment, we verify that
the combination of N ′ = 10, M ′ = 3 is better than N ′ = 30,
M ′ = 1 for the performance of our proposed method.

VII. CONCLUSION

In this paper, we proposed a novel MRI motion artifact
reduction method using the annealed score-based diffusion
model. By applying the diffusion process iteratively and
gradually imposing data consistency with high-frequency in-
jection, the proposed method successfully reduced simulated
and in vivo motion artifacts in MR images. Furthermore, we
verified that our method provides higher-quality images and
more clinical meaning compared to other state-of-the-art deep
learning methods. We believe that our algorithm can be a
useful framework for MRI motion artifact reduction.
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