
1

Learned Full Waveform Inversion Incorporating
Task Information for Ultrasound Computed

Tomography
Luke Lozenski, Student Member, IEEE, Hanchen Wang, Member, IEEE, Fu Li Student Member, IEEE,

Mark Anastasio Senior Member, IEEE, Brendt Wohlberg, Fellow, IEEE,
Youzuo Lin, Member, IEEE, and Umberto Villa

Abstract—Ultrasound computed tomography (USCT) is an
emerging imaging modality that holds great promise for breast
imaging. Full-waveform inversion (FWI)-based image reconstruc-
tion methods incorporate accurate wave physics to produce high
spatial resolution quantitative images of speed of sound or other
acoustic properties of the breast tissues from USCT measurement
data. However, the high computational cost of FWI reconstruc-
tion represents a significant burden for its widespread application
in a clinical setting. The research reported here investigates the
use of a convolutional neural network (CNN) to learn a mapping
from USCT waveform data to speed of sound estimates. The CNN
was trained using a supervised approach with a task-informed
loss function aiming at preserving features of the image that are
relevant to the detection of lesions. A large set of anatomically
and physiologically realistic numerical breast phantoms (NBPs)
and corresponding simulated USCT measurements was employed
during training. Once trained, the CNN can perform real-
time FWI image reconstruction from USCT waveform data.
The performance of the proposed method was assessed and
compared against FWI using a hold-out sample of 41 NBPs
and corresponding USCT data. Accuracy was measured using
relative mean square error (RMSE), structural self-similarity
index measure (SSIM), and lesion detection performance (DICE
score). This numerical experiment demonstrates that a supervised
learning model can achieve accuracy comparable to FWI in terms
of RMSE and SSIM, and better performance in terms of task
performance, while significantly reducing computational time.

Index Terms—Ultrasound Computed Tomography, Convolu-
tional Neural Networks, Data-Driven Image Reconstruction, Task
Informed Image Reconstruction, Computer-simulation Study

I. INTRODUCTION

Ultrasound computed tomography (USCT) is an emerging
medical imaging technology that can provide high-resolution
estimates of tissue acoustic properties by utilizing ultrasound
and tomographic principles. Image formation in USCT is
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based on the interaction of acoustic wave signals with bi-
ological tissues. Quantitative reconstructions of a tissue’s
acoustic properties from USCT data can then be achieved
via a variety of computational methods [1], providing high-
resolution images of breast tissue acoustic properties of sig-
nificant diagnostic value for breast cancer [2]–[4].

Full waveform inversion (FWI) is an image reconstruction
method that estimates high-resolution maps of breast tissue
acoustic properties from measurements of pressure distribu-
tions. FWI models the propagation of an ultrasound signal
in biological tissues by numerical solution of wave equation.
By incorporating accurate wave-physics in the implementation
of the imaging operator, FWI allows for superior accuracy
and resolution compared to geometric reconstruction meth-
ods for USCT, such as bent-ray methods [5]–[10]. However,
this comes at the cost of a significant computational burden
compared to geometric reconstruction methods. A single 3D
reconstruction can take hours or days to compute and requires
a high-performance, possibly GPU accelerated, computer [11],
[12]. This computational expense is a limiting factor for the
widespread applications of FWI in a clinical setting where
fast reconstruction methods are highly desired. Furthermore,
the need for a powerful computer increases the cost of USCT
and prevents its adoption in developing areas.

This work proposes a learned FWI method utilizing con-
volutional neural networks (CNNs) for accelerated recon-
structions. Neural networks have demonstrated the ability
to construct inverse mappings of nonlinear imaging opera-
tors [13], [14], including some promising methods for USCT
reconstruction [15]–[19]. A key contribution of this work is
to acknowledge and leverage the fact that USCT is often used
for specified diagnostic tasks, such as tumor detection and
localization. To this aim, a novel loss function is proposed
that includes task-specific information using a model of tumor
segmentation provided by a U-Net numerical observer [20].
Specifically, the proposed loss function consists of a weighted
sum of the commonly-used mean square error loss in the image
domain and a novel task-informed objective based on features
extracted by the U-Net observer. A second contribution of this
work is the use of source encoding, a common technique used
in FWI to reduce computational cost, within a learned recon-
struction method. By exploiting redundancies in data, source
encoding can reduce complexity of the CNN architecture and
accelerate training of the learned FWI method. It is also worth

ar
X

iv
:2

30
8.

16
29

0v
1 

 [
ee

ss
.I

V
] 

 3
0 

A
ug

 2
02

3



noting that the proposed method is developed with the use of
anatomically realistic training and testing sets that are relevant
to breast imaging [21], [22].

Four simulation studies are performed to demonstrate the
feasibility of the proposed method. The first study assesses the
role of source encoding as a means of data reduction. Source
encoding involves the application of linear combinations of
sources and corresponding measurement data to reduce the
overall size and complexity of the learned FWI network.
This study compares different source encoding methods and
assesses the resulting accuracy of the learned reconstruc-
tion methods after a fixed number of training epochs. The
second study assesses the role of incorporating task-specific
information into a learned reconstruction method. Here, the
specific task chosen is tumor detection and localization. Task
information is incorporated into training with a task-informed
objective function, which includes a term based on features
extracted from a U-Net observer. In this study, multiple learned
reconstruction methods are trained using a sequence of loss
functions that pose increased emphasis on the task-informed
loss. The third study assessed the robustness of the learned
reconstruction with respect to noise. In this study, the learned
reconstruction methods constructed in the second study were
reassessed using measurements with a higher level of added
noise than they were trained on. The fourth study assessed
the generalizability of the learned reconstruction method. In
this study, the training and testing sets were separated into
distinct distributions and the accuracy of the trained CNN was
assessed for reconstruction of underrepresented populations in
the training set.

The remainder of this paper is structured as follows. In
Section II, the USCT imaging operator in its continuous
and discretized form as well as the full waveform inversion
(FWI) method are reviewed. This section also provides a brief
discussion on task-based assessment of image quality and
its role in USCT. In Section III, a solution method utilizing
a specific CNN architecture, InversionNet [23], is presented
with particular emphasis on the implementation of source
encoding and the proposed task-informed loss function. In
Section IV, the design of four numerical studies is presented:
the first study compares multiple methods of source encoding
for use with InversionNet; the second study assesses the use
of a task-informed loss function with varying weights on task
information; the third study assesses the proposed methods
robustness with measurement noise; the fourth study analyzed
the ability of the proposed method to reconstruct new unseen
objects from an underrepresented population in the training set.
In Section V, the results of the numerical studies are presented.
Section VI presents the conclusions drawn from these results
and discusses future extensions.

II. BACKGROUND

A. Imaging Operator

USCT data is formed by measuring acoustic signals re-
sulting from a series of ultrasonic excitation pulses emitted
from multiple tomographic views surrounding the object to
be imaged. These ultrasound waves generated from these

excitation pulses then interact with the object according to
the tissues’ acoustic properties. The reflected and scattered
ultrasound waves then propagate outside of the object where
they are recorded by a set of receiving transducers surrounding
the object, often with water as a coupling medium between the
object and the measurement surface.

In this work, the USCT imaging operator is modeled by
solving the acoustic wave equation. This work assumes a non-
lossy medium with homogeneous density [24] and a spatially
varying speed of sound c = c(r), where r ∈ Rd (d = 2 or 3)
is a point in the spatial domain. For pressure measurements
collected on an aperture S surrounding the object, the rela-
tionship between the measurements and the speed of sound c
can be expressed as a continuous to continuous (C-C) imaging
operator defined as

Hcsi := pi(r, t) (r, t) ∈ S × [0, T ], (1)

for i = 1, . . . , I where T denotes the acquisition time for a
single shot, I denotes the total number of emitting transducers,
si = si(r, t) and pi = pi(r, t) denote the excitation pulse and
the acoustic pressure field generated when the i-th emitter
is fired. Above, the notation Hc is used to underline the
dependence of the imaging operator on the medium speed
of sound c. Under the assumption of a non-lossy propagation
medium with homogeneous density, the acoustic pressure field
pi satisfies the wave equation

1
c(r)2

∂2

∂t2 pi(r, t)−∆pi(r, t) = si(r, t) (r, t) ∈ Rd × [0, T ]

pi(r, 0) = 0 r ∈ Rd

∂
∂tpi(r, 0) = 0 r ∈ Rd.

(2)
Assuming that J idealized point-like transducers are dis-

tributed along the measurement aperture at locations rj ∈ S
(j = 1, . . . J), the sampling operator M mapping the pressure
p(r, t) to the vector g ∈ RKJ is defined as

[Mp]k+(j−1)K := [g]k+(j−1)K = p(rj , k∆T ), (3)

where k = 1, . . . ,K; ∆T = T/K is the sampling interval;
and K is the number of pressure samples measured over the
acquisition interval [0, T ].

Using the continuous-to-discrete imaging operator MHc,
the USCT data acquisition process is modeled as

di = MHcsi + ni i = 1, . . . , I, (4)

where ni ∈ RK×J is additive noise [25].
Finally, with the introduction of a Cartesian grid consisting

of Q pixels, the imaging operator can be approximated with an
analogous discrete-to-discrete (D-D) imaging operator. Denot-
ing the center of the qth pixel with rq , the finite-dimensional
vectors c ∈ RQ and si ∈ RKJ are defined as

[c]q = c(rq), [si]k+(q−1)K = si(rq, k∆T )
q = Q, . . . , N ; k = 1, . . . ,K.

(5)

With the above notation, the D-D USCT model is given by

di = MHcsi + ni i = 1, . . . , I, (6)

where M : RKQ 7→ RKJ is the discrete counterpart of
the sampling operator M defined via nearest neighbor in-
terpolation of transducer coordinates to the pixel centers of
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the Cartesian grid, Hc : RKQ 7→ RKQ stems from finite
difference approximation of the C-C imaging operator Hc,
and ni (i = 1, . . . , I) represents measurement noise.

B. Full Waveform Inversion

Full waveform inversion (FWI) [26] is a method for high-
resolution reconstruction of the speed of sound map c given
pressure traces d popularly used in the geophysics community.
FWI utilizes the D-D imaging model in Eq. (6) and seeks a
speed of sound estimate ĉ such that

ĉ := argmin
c∈RQ

1

2

I∑
i=1

∥di −MHcsi∥2 . (7)

This discrete optimization problem can be solved using a
gradient-based method to update estimates of c. However,
each evaluation of the objective function and its gradient
require the solution of I forward and adjoint wave equations.
Source encoding is a technique that, by leveraging the linearity
of the imaging operator Hc with respect to the excitation
pulse s, allows for a drastic reduction in the computational
cost [5], [11], [27]. In the source encoding method, the
deterministic minimization problem in Eq. (7) is reformulated
as the stochastic optimization problem

ĉ := argmin
c∈RQ

1

2
Ew∼Γ ∥dw −MHcsw∥2 , (8)

where w ∈ RI is the stochastic encoding vector sampled
according to the distribution Γ with zero mean and identity
covariance matrix, and dw =

∑I
i=1[w]idi, sw =

∑I
i=1[w]isi

denote the superimposed (encoded) measurement data and
excitation source, respectively. Previous studies have used a
Rademacher or a normal distribution to sample the indepen-
dent identically distributed components [w]i of the encod-
ing vector. The stochastic optimization problem in Eq. (8)
is then often solved using stochastic gradient descent, thus
requiring the solution of only one forward and one backward
wave equation for iteration. However, even when acceleration
techniques, such as Nesterov [28] or momentum [29], or
modern stochastic optimization methods, such as ADAM [30],
are applied, convergence is still slow and reconstructions for
individual images may take several minutes or hours.

C. Task-Based Assessment of Image Quality

In biomedical imaging, the reconstructed image is often
utilized to inform a specific task, with the image itself being
of secondary interest. Such tasks can include but are not
limited to, classification, segmentation, registration, detection,
and decision planning. However, in many cases, metrics of
task performance may not be directly correlated to physical
metrics of image quality [31], [32], such as the mean square
error or the structural similarity index. Furthermore, designing
an image reconstruction strategy focusing purely on image
quality may have the unintended consequence of reducing
task performance [33]. For improved task performance, task-
based information must be included in the design of an
image reconstruction strategy [34], [35]. These tasks are often

automated using a numerical observer, which are mathematical
models that identify the task-relevant features in an image and
estimate the resulting task outcome [36]. Examples of numeri-
cal observers include Luenberger observers and Kalman filters
for control tasks [37], library and model-based dose estimation
for treatment planning tasks [38], and Hotelling observers (or
channelized versions) and machine learning based observers
for signal detection tasks [39]. With a numerical observer, task
based-assessment of large sets of images can be done quickly
and used to design a reconstruction method for optimal task
performance.

III. METHOD

This section presents the main contribution of this work:
the development of a task-aware learned USCT reconstruction
method utilizing CNNs. Once fully trained, this CNN acts
as an inverse mapping from the set of pressure traces to the
corresponding speed of sound map. The specific CNN archi-
tecture used here is InversionNet [23], which was originally
developed for FWI of seismic waveform data in geophysics.
Both seismic and USCT imaging problems are focused on
reconstructing speed of sound based on acoustic wave models
but have a few key differences. First, measurements in seismic
imaging are sparse and expensive to acquire while USCT
measurements can be quite dense. This work explores utilizing
source encoding for reducing data complexity in USCT data
and accelerating training. Second, seismic and USCT have
very different image priors. A learned USCT reconstruction
method then requires application-relevant training and testing
sets. This work utilizes medically realistic, stochastically gen-
erated acoustic breast phantoms to construct the training and
testing sets [22]. Third, the end goal for seismic imaging in
geophysics is often to understand geological structures based
on acoustic properties, whereas USCT imaging is often fo-
cused on a medically specific task with structural information
being a secondary concern. This work then explores utilizing a
task-based objective function to train a learned reconstruction
method tailored for tumor/lesion detection and localization.

A. Learned FWI via InversionNet
InversionNet utilizes an end-to-end trained encoder-decoder

structure. In this scheme, pressure traces are encoded to a high-
dimensional latent space and then decoded to the space of
images. Specifically, the input to InversionNet is a 3-D tensor
D ∈ RI×K×J where [D]ijk = [di]k+(j−1)K corresponds to
the measurement data from the i-th source, j-th receiver, and
k-th time sample and its output is a 2-D tensor C ∈ RQx×Qy

(with Q = Qx × Qy) corresponding to pixel values of speed
of sound estimates over the field of view.

The parameters ξ ∈ RW of the InversionNet Φξ are then
trained by minimizing the loss function

min
ξ∈Rp

1

2N

N∑
n=1

∥Φξ(D
n)−Cn∥2, (9)

where {(Cn,Dn)}Nj=1 are data pairs consisting of the speed
of sound maps and corresponding USCT measurements. Here
the ℓ2 norm is implemented in the training loss; however, other
choices of loss are possible [23].
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B. Source Encoding

USCT data often contains several redundancies and a large
memory footprint for measurements collected at multiple
receivers over a long sampling period when multiple sources
are sequentially excited one at a time. Furthermore, Inver-
sionNet was originally designed for seismic reconstruction
in geophysics in which measurements are collected with
sparse spatial coverage. Nevertheless, InversionNet demon-
strates sufficient performance on these sparse measurements.
This observation, together with the large success in applying
source encoding methods to accelerate FWI reconstruction of
USCT data, is the key motivation to explore methods to reduce
the dimensionality of the measurement data provided as input
to InversionNet.

This work proposes utilizing a fixed source encoding ap-
proach to reduce the dimensionality of the data. Exploiting
redundancies in the data, not only allows for to reduce memory
footprint of InversionNet, but it also has the potential of
improving the performance of the learned method [40].

As described in Section II, source encoding, originally
proposed for accelerated FWI in geophysics problems [27],
exploits the linearity of the imaging operator with respect
to the source term. Given an encoding vector w ∈ RI , the
superimposition of multiple sources in the D-D USCT model
in Eq. (6) gives

dw = MHcsw + nw, (10)

where dw =
∑I

i=1[w]idi, sw =
∑I

i=1[w]isi, and nw =∑I
i=1[w]ini denote the superimposed (encoded) measurement

data, excitation pulse, and measurement noise, respectively.
By use of L < I independent source encoding vectors wl,
the input D ∈ RI×K×J can be reduced to a smaller tensor
DW := WD ∈ RL×K×J , where W ∈ RL×I is the encoding
matrix with entries [W ]li = [wl]i. Above, DW = WD
denotes the matrix-tensor multiplication defined by saturation
of the last index of the matrix W with the first index of the
3D tensor D. That is, the entries of DW are given by

[DW ]lkj =

I∑
i=1

[W ]li[D]ikj , (11)

for l = 1, . . . , L; k = 1, . . . ,K; j = 1, . . . , J .
For a given (fixed) encoding matrix W , InversionNet is then

trained by solving the minimization problem

min
ξ∈Rp

1

2N

N∑
n=1

∥Φξ(WD)−Cn∥2.

An instance of InversionNet with a learned sourced encoder is
also considered and was trained by solving the minimization
problem

min
ξ∈Rp,W∈RL×I

1

2N

N∑
n=1

∥Φξ(WD)−Cn∥2.

C. Task-Informed Training

Medical imaging is typically performed for some specific
diagnostic task. A learned reconstruction method should there-
fore be assessed and optimized with respect to this task. In

particular, it is desirable to develop learned reconstruction
methods that can preserve task-relevant information in the
reconstructed images. This can be achieved by utilizing a
task-informed loss function during training. To this aim, the
following supervised training problem is considered

min
ξ∈Rp

1

2N

N∑
n=1

{
∥Φξ(WDn)−Cn∥2+

+ γ∥T (Φξ(WDn))− T (Cn)∥2
}
,

(12)

where the first term is the MSE loss and the second term
is the task-informed loss. Above, γ ≥ 0 is a weighting
factor balancing the trade-off between the two losses, and
T is a differentiable (possibly) non-linear map that extracts
the task-relevant features of the image. The map T can then
take a variety of forms depending on the task and should be
designed based on the numerical observer used. For example
T could be a linear mapping, such as the template of a
Hotelling observer [41] or a projector onto the linear subspace
spanned by channels of a channelized Hotelling observer [42],
[43], or a more general nonlinear mapping between an image
and task-relevant features, possibly learned by a CNN-based
approximation of the ideal observer [39].

Setting the task weighting factor γ to 0 recovers the original
supervised training problem and creates an image reconstruc-
tion strategy only focused on physical metrics of image quality.
Increasing γ places a greater emphasis on task performance.
Setting γ = ∞ (which means the MSE component is dis-
carded) creates an image reconstruction strategy that is only
driven by the task.

However, even though image quality and task performance
are not directly linked [33], [34], there is still an indirect
relationship. Therefore an image reconstruction strategy that
has the proper weighting between MSE and task information,
has the potential to outperform, both in terms of image quality
and task performance, the reconstruction strategies that are
only informed by image quality or task information. This
means that for a properly chosen task there is a selected value
of γ ∈ (0,∞) that maximizes both image quality and task
performance. It should be noted that T may have a null-space
or the nonlinearity of T may present a harder optimization
problem to solve with large values of γ. In practice this
issue can be alleviated by training with successively increasing
values of γ. This training process then allows the MSE
component to first drive the solution towards a good local
minima in terms of physical metrics of image quality and then
progressively incorporate more task information.

IV. NUMERICAL STUDIES

A. Construction of the Training and Testing Sets

The objects used in this study were anatomically realistic
numerical breast phantoms (NBPs) to which spatially varying
speeds of sound were stochastically assigned within feasible
ranges. These NBPs were developed and constructed by Li et
al [22] using tools adapted from the Virtual Imaging Clinical
Trial for Regulatory Evaluation (VICTRE) project at the US
Food and Drugs Administration [21] for use in USCT virtual
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Fig. 1. Four examples of the anatomically realistic numerical breast phantoms (NBPs), one from each of BI-RADS breast density types, used to train and
evaluate the proposed learned FWI method. NBPs present clinically relevant variability in size, tissue composition and structures, and speed-of-sound maps.
From left to right: Type A (almost all fatty), Type B (scattered fibroglandular density), Type C (heterogeneous density), and Type D (extremely dense).

imaging studies. Examples of these NBPs are available from
[44]. In particular, the generated NBPs are stratified based
on the four different levels of breast density (percentage
of fibroglandular tissue) defined according to the American
College of Radiology’s (ACR) Breast Imaging Reporting and
Data System (BI-RADS) [45]: A] almost all fatty breasts, B]
breasts with scattered fibroglandular density, C] breasts with
heterogeneous density, and D] extremely dense breasts. The
breast size and percentage of fibroglandular tissue of each
NBPs are randomly chosen based on the within the physio-
logical range for each breast density type. Then anatomically
realistic breast tissue structures are stochastically generated
by the use of the VICTRE tools and the speed of sound maps
corresponding to physiological variations in breast tissues are
stochastically generated [22]. Four NBPs, one from each of
the BI-RADs categories, are shown in Fig. 1. The training set
consisted of 1,353 NBPs while the testing test consisted of 41
NBPs.

B. Definition of the Virtual Imaging System

The measurements geometry consisted of a circular trans-
ducer array [5], [46] of radius R along which 256 transducers
(shown in blue and red) were equispaced and acted as re-
ceivers. Every fourth transducer (shown in red), 64 in total,
also acted as a transmitter and would emit an excitation pulse
in sequence. The i-th excitation pulse was of the form

si(r, t) = δ(r − ri) exp
(
− (t−t0)

2

2σ2

)
sin(2πf0t)

i = 1, . . . , I,

where ri is the location of the i-th emitter, f0 is the central
frequency, t0 = 3.2µs is the time shift, and σ = 2µs controls
the signal width. Measurements are collected by firing one
transmitter at a time and recording data at every receiver. This
is repeated for each transmitter and results in multi-channel
measurements.

To numerically simulate the pressure field generated by each
transmitter, the wave equation in Eq. (2) was solved using a
finite difference scheme (4th order in space and 2nd order in
time). A spatial grid of size Nx × Nx (Q = N2

x in Eq. (5)),
with Nx = 360, and a temporal grid with K = 400 samples

were employed for the discretization. Absorbing boundary
conditions were implemented to prevent wave reflections at
the boundaries of the computational domain [47]. Electronic
noise was modeled as additive white Gaussian noise with a
standard derivation of 4.3 · 10−6, corresponding to an SNR
of 30 dB. The imaging system parameters are summarized in
Table I.

C. Study Design

1) Study 1: Source encoding: The first numerical study
addressed the role of source encoding in training InversionNet.
This study investigates the use of source encoding as a method
of data reduction to accelerate training. In this study, four
different approaches for source encoding are considered. Four
instances of InversionNet were compared: 1) The Reference
instance (117,762,947 trainable parameters) was trained with
no source encoding and utilizing all 64 measurement channels;
2) The Subsample instance (117,686,147 trainable parameters)
was trained utilizing subsampling down to 16 measurement
channels, i.e. only keeping every fourth measurement channel;
3) The Random instance (117,686,147 trainable parameters)
was trained with fixed randomly chosen source encoding,
where the weights are drawn from a standard normal distribu-
tion, from 64 channels to 16 channels; 4) The Learned instance
(117,687,171 trainable parameters) was trained with by while
jointly learning the weights of a source encoding from 64
channels to 16 channels.

2) Study 2: Task-informed loss: The second numerical
study explored the impact of the task-informed loss function
in training InversionNet, where the chosen task was tumor
detection and localization. A numerical observer for this task
was implemented by use of a U-net, a specific neural network
architecture developed for the segmentation of medical images
[20]. The U-net is a multilevel architecture consisting of a
contractive path, which applies a sequence of convolutional
and downsampling layers to half the image size at each
level, and an expansive path, which restores the output to its
original size by use of transpose convolutional and upsam-
pling layers. Skip connections are used to concatenate feature
maps computed in the contractive path to the inputs of the
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TABLE I
VIRTUAL IMAGING SYSTEM AND DISCRETIZATION PARAMETERS

Ultrasound system Discretization
Number of receivers J 256 Grid size Nx 360
Number of transmitters I 64 Grid intervals δx 0.6 mm
Transducer radius R 110.4 mm Points per wavelength cmin

f0δx
5.0

Pulse frequency f0 0.5 MHz Number of time steps K 640
Sampling frequency 5 MHz Time steps δt 0.2 µs
Acquisition time (per source) 128 µs CFL Number cmaxδt

δx
0.53

corresponding layer in the expansive path. Specifically, the U-
net-based numerical observer was trained using the speed of
sound maps as input and corresponding binary segmentation
masks of tumor regions as outputs. More details can be found
in Appendix A. The task-relevant feature maps T were then
constructed by extracting and concatenating all feature maps
computed as an output of the convolutional layers at each level
in the contractive path of the U-Net.

Six versions of InversionNet were trained in succession, i.e.,
each network was initialized using the final trained state of the
previous version. These instances of InversionNet were trained
with varying task weights in the loss function in Eq. (12). The
selected task weights were γ = 0, 10−3, 10−2, 10−1, 1, 10,∞;
where γ = 0 corresponds to the original MSE loss function
and γ = ∞ corresponds to a task-only informed loss. The In-
versionNet reconstructions were then compared to a traditional
FWI method on the testing set utilizing a source encoding
stochastic descent method [5].

3) Study 3: Robustness w.r.t. noise: The third numerical
study explored the robustness of the learned reconstruction
method to an increased amount of noise. In this study, the in-
stances of InversionNet trained in the second study were used
to reconstruct USCT data corrupted by i.i.d. additive noise ten
times larger than that used while training the network. These
reconstructions from measurements with increased noise were
then compared to the results of the second numerical study
for the same objects in the testing set.

4) Study 4: Generalizability w.r.t. underrepresented groups:
The fourth numerical study explored the generalizability of the
proposed method when a group of objects is underrepresented
in the training set. In particular, the anatomically realistic
NBPs used to train and assess our method can be divided
in four groups based on the corresponding BI-RADS breast
density type. As shown in Fig. 1, NBPs from different groups
(density type) exhibit large differences in size and tissue
composition. For this study, a training set with 1,377 NBPs
(approximately the same number of training examples as that
used in the previous study) was employed. However, the
prevalence of type A (fatty breast) in the training set was only
6% (81 NBPs). An instance of InversionNet was then trained
on this unbalanced training set as described in Study 2 and
assessed using a testing set consisting of 81 NBPs from the
underrepresented group for reconstructing underrepresented
groups (BI-RADS breast density types) in the testing set.

D. Image Quality Assessment Criteria

Image quality was quantified in terms of ensemble average
relative mean square error (RMSE) and ensemble average

structural self-similarity index measure (SSIM) [48]. Task ac-
curacy was quantified using by a numerical observer. In partic-
ular, the area under the curve (AUC) of the receiver operating
characteristic (ROC) and a Dice coefficient for correct tumor
detection and localization (tumor-wise Dice coefficient) were
employed. The ROC curve for each reconstruction method was
constructed by plotting the tumor-wise true positive rate on the
y-axis and the pixel-wise false positive rate on the x-axis for a
range of thresholds. The AUC was then computed and used as
a figure of merit to assess the proposed learned reconstruction
method.

The ROC curves were also used to select a threshold
for tumor detection in the computation of the tumor-wise
Dice coefficient. In particular, the selected threshold parameter
corresponds to the upper left corner of the ROC. The tumor-
wise Dice coefficient was then computed as

Dice =
2NTrue Detections

NDetections +NTrue Tumors
, (13)

where NDetections is the number of detected tumors in the
reconstructed image, NTrue Tumors is the number of tumors
presented in the true image, and NTrue Detections is the number
of tumors that are correctly detected and localized by the
numerical observer applied to the reconstructed image.

V. RESULTS AND DISCUSSION

Simulation of USCT measurements and image reconstruc-
tion using the FWI with source encoding method were imple-
mented using Devito [49], a Python package for solving partial
differential equation using optimized finite difference stencils.
Each set of measurements was perturbed by additive white
Gaussian noise with standard deviation 4.3 × 10−6 (SNR =
30 dB) for the first, second, and fourth experiments while the
third experiment utilized measurements with a ten times larger
amount of noise (SNR = 20 dB). The FWI reconstructions
of the 41 test images used in the first three studies took
approximately 6 hours on a workstation with two Intel Xeon
Gold 5218 Processors (16 cores, 32 threads, 2.3 GHz, 22 MB
cache each), 384 GB of DDR4 2933Mhz memory, and one
NVidia Titan RTX 24GB graphic processing unit (GPU).

InversionNet was implemented in PyTorch, an open-source
machine learning framework [50], and trained for 1,000 epochs
with a batch size of 50 using Adam optimizer [30]. At each
training iteration, noise with a fixed SNR of 30 dB was added
online as a form of data augmentation, which is known to
improve training [51]. Training each instance of InversionNet
took approximately 10 hours on an HPC node with 512 GB
of memory and 4 NVidia Volta V100 graphic processing units
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(GPUs). Evaluation of an instance of InversionNet on the
testing set (41 examples) took approximately 1 second.

A. Study 1: Source Encoding

1) Qualitative Assessment: An example reconstruction of
a type C NBP from each instance of InversionNet in the
source encoding study is shown in Fig. 2. In this example,
the instances of InversionNet utilizing all sources (Reference)
or subsampling (Subsample) have the worst visual appearance
(blurred edges, lack of details) while the other instances
(Random, Learned) have better visual appearance (sharper
edges, finer details). However, several hallucinated features
(i.e. false structures that do not exist in the underlying object
but are introduced by the reconstruction method [52]) appear
in the images reconstructed by all instances. For example, the
estimates appear to be hallucinating, or overestimating, the
presence of a high speed of sound region in the middle of the
zoomed region.

2) Quantitative Assessment: Ensemble average RMSE and
SSIM figures of merits computed over the testing set are
illustrated in Fig. 3 for each of the four trained instances of
InversionNet. These results indicate that the Random instance
is able to achieve a statistically significant lower ensemble
average RMSE than the Reference (p-value 3.03e− 03%) and
comparable accuracy to the Subsample and Learned instances
(p-values 23.7% and 76.5% respectively). Similarly, the Ran-
dom instance is able to achieve a statistically significant higher
ensemble average SSIM than the Reference (p-value 0.214%)
and comparable SSIM to the Subsample and Learned instances
(p-values 45.5% and 72.4% respectively).

3) Discussion: While the Reference network has a larger
number of trainable parameters than the Random network and
thus a larger representation power, it performs worse than the
Random network. Similarly, the Learned network has a larger
representation power, but yields comparable performance to
the the Random network. This is possibly due to the fact
that all networks were trained on the same number of training
examples and for the same number of epochs. It is possible that
was a larger training set available and given longer training
times, the Reference and Learned networks would eventually
outperform the Random network.

B. Study 2: Task-informed Loss

1) Qualitative Assessment: An example reconstruction of a
type B NBP from the instances of InversionNet corresponding
to γ = 0, 10−2, 10−1, 1, 10,∞ and the FWI reconstruction in
the task informed experiment is shown in Fig. 4. The top row
of this figure displays the reconstructed images with a window
over a selected region of interest, the second row displays
a zoomed-in image on the windowed region of interest, and
the third row displays the resulting tumor segmentation based
on the estimated speed of sound. Tumor segmentation was
obtained by thresholding the output of the U-net observer
with a fixed threshold of 0.02, which was chosen based on
a receiver operator curve (ROC) curve analysis. The tumor
structures are shown in white for tumors that were correctly
detected and localized and in red for hallucinated structures.

In this example, there is a notable improvement in image
quality as the task-informed weight γ increases and peaks at
γ = 10−1. For values of γ equal to or larger than 1, there is
a stabilization in visual appearance. The FWI reconstruction
exhibits high-frequency artifacts, which can be clearly seen in
the zoomed portion. Tumor detection and localization improve
as the task weight increases.

2) Quantitative Assessment: The ROC curves and their
respective areas under the curve (AUC) are shown in Fig. 6.
These ROC curves were used to select the threshold for tumor
detection/localization. The selected threshold was 0.02, which
corresponds to the upper left corner of the ROC curve. For
γ ≥ 10−3, the learned reconstructions demonstrated a higher
AUC than the FWI method, with AUC increasing alongside
the task weight, with the exception of γ = 10.

The RMSEs, SSIMs, and Dice coefficients for each of these
reconstruction methods across the testing set are illustrated in
Fig. 5. The learned reconstruction methods have a statistically
significant higher RMSE compared to the FWI method for all
weights γ (p-values less that 0.001%).

For certain task weights, there is no statistical difference
between the learned reconstruction methods and the FWI
method in terms of SSIM (p-values 32.6%, 57.3%, 25.1%,
12.0% for γ = 10−3, 10−2, 10−1, 1) while the learned methods
underperform with either no or a heavy weight on the task
information (p-values 0.601%, 3.70e − 02%, 1.68% for γ =
0, 10,∞). For low task weights(γ ≤ 10−2), the learned recon-
struction methods perform comparably to the FWI method in
terms of Dice coefficient (p-values geq11%) and statistically
significantly better for higher task weights (p-values ≤ 0.215%
for γ ≥ 10−1).

3) Discussion: Continuation over γ was needed in this
study to ensure that InversionNet converged to a “good” local
minima using the task-informed loss function. Preliminary
experiments showed that training a learned reconstruction with
a large task weight and without a good initialization led to
very poor image quality and task performance, most likely
due to the nonlinearity introduced by the numerical observer.
A possible limitation of this study is that no regularization was
used in the FWI reconstruction. However, the use of densely
samples data, absence of modeling error (discretization inverse
crime), and high signal to noise ratio mitigate this limitation.

C. Study 3: Robustness w.r.t. Noise

1) Assessment: An example reconstruction of a type B
NBP, the same from the previous study, from each instance
of InversionNet from the robustness experiment is shown in
Fig. 7. In this example there is not a noticeable drop in image
quality or a clear difference in tumor segmentation compared
to the low-noise reconstructions in the Section V-B. The ROC
curve for each reconstruction is plotted in Fig. 9, with the
corresponding AUC shown in the legend. The increased level
of noise results in a very slight decrease in AUC for all re-
construction methods, thus demonstrating observer robustness
with respect to noise. Furthermore, for γ ≥ 10−1 the learned
reconstruction methods demonstrate a higher AUC than the
FWI method. Figure 8 displays box plots of RMSEs, SSIMs,
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Fig. 2. Study 1: Examples of speed of sounds maps reconstructed by each instance of InversionNet in the source encoding study. From left to right are the
object and its estimates reconstructed using the reference instance without source encoding, the instance with subsampling, the instance with random source
encoding, and that with a learned source encoding. The bottom row is a zoomed-in feature for each image highlighting differences in image resolution and
hallucinated features. One notable hallucinated feature is annotated with a red arrow.

Fig. 3. Study 1: Boxplots of RMSEs and SSIMs across the testing set for reconstructions in the source encoding study. The instances of InversionNet utilizing
a fixed random source encoder (Random) and the learned encoder (Learned) demonstrate the lowest ensemble average RMSEs and highest ensemble average
SSIMs.

and Dice coefficients achieved by the proposed method with
γ = 0, 1,∞ as well as by FWI. For the FWI reconstructions,
a statistically significant increase in RMSE and decrease in
SSIM was noted in the high noise compared to low noise (Case
study 2) cases (p-values: 9.82e−09% and 9.26e−15, respec-
tively). No statically significant change in RMSE and SSIM
was noted for the learned reconstructions with γ = 0, 1,∞ (all
p-values ≥ 95%). Moreover, for each reconstruction method
(FWI, γ = 0, 1,∞), the reduction in Dice coefficient between
the low noise and high noise reconstructions is statistically
insignificant (p-values 44.1%, 84.1%, 75.1, and 96.1%).

2) Discussion: Performance in terms of RMSE, SSIM,
Dice coefficient, and AUC for the learned reconstruction meth-
ods decreases very slightly, statistically insignificantly, with
the presence of increased noise and maintains its comparative
performance with respect to the FWI method. This study
shows that the proposed learned reconstruction methods are
robust with respect to increased noise.

D. Study 4: Generalizability w.r.t. underrepresented groups

1) Assessment: An example reconstruction from each in-
stance of InversionNet from the generalization experiment is
shown in Fig. 10. In these images there is a drop in image
quality compared to the other experiments and the accuracy
of the tumor segmentation decreases. The ROC curve for
each reconstruction method is plotted in Fig. 12, with the
corresponding AUC shown in the legend. This displays that
the task-informed objective does not improve task performance
for underrepresented reconstructions. For a select few of
these reconstruction methods for both the training and testing
sets, the RMSEs, SSIMs, and Dice coefficients across the
testing set are illustrated in Fig. 11. The boxplots display a
significant decrease in image quality and task performance for
underrepresented data.

2) Discussion: In addition to the experiments reported here,
several instances of InversionNet were trained on a data set
consisting of only types B, C, D NBPs and then evaluated
on an out-of-distribution testing set consisting only of type
A NBPs. Results showed poor generalization performances
in this case and are not reported here. This decrease in
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Fig. 4. Study 2: Examples of speed of sound maps reconstructed by FWI and various instances of InversionNet trained with increasing weight γ of the task
informed loss. From left to right is the object, FWI reconstruction, InversionNet reconstructions with γ = 0, 10−2, 10−1, 10 and ∞. The middle row is
a zoomed-in feature for each image highlighting differences in image resolution and detected features. The bottom row is the resulting tumor segmentation
with the true tumor material shown in white and the hallucinated tumor materials shown in red. Speed of sound estimates reconstructed using FWI and the
instance of InversionNet without task-informed loss shows a large number of hallucinated tumors, while instances of InversionNet trained with γ ≥ 10−1

lead to accurate tumor segmentation masks.

Fig. 5. Study 2: Boxplots of RMSEs, SSIMs, and Dice coefficients across the testing set for reconstructions from the task-informed study. Using the task-
informed loss reduces RMSEs and increases the SSIMs and Dice coefficient. Best performance is achieved for the task informed weight γ = 10−1. The
iterative FWI method outperforms the InversionNet in terms of RMSE but underperforms in terms of SSIM. With the proper task-informed weight (γ ≥ 10−1)
the InversionNet demonstrates better task performance than the iterative FWI methods as quantified by the Dice coefficient.

performance was expected as it is known that deep learning
methods that map between different input/output domains tend
to perform worse, be more difficult to train, and generalize
poorly compared to methods that map between input/outputs
in the same domain [53]. This means that InversionNet is at a
disadvantage for achieving accurate performance compared to
other methods that combine a learned image (or data) trans-
lation/correction and an approximated physics-based mapping
between the data and image domains [19], [54].

VI. CONCLUSION

This work presents a deep-learning image reconstruction
method for ultrasound computed tomography (USCT). In
particular, the InversionNet architecture, originally proposed
for seismic imaging, was extended to produce quantitatively
accurate speed of sound maps of breast tissues from simulated
USCT data, without the computational burden of model-based
iterative methods, such as full waveform inversion (FWI).
The proposed deep learning image reconstruction method was

illustrated in four virtual imaging studies using a large set
of anatomically and physiologically realistic numerical breast
phantoms.

The first study assessed different source encoding ap-
proaches for InversionNet. The source encoding study showed
that random source encoding results in lower RMSE and
higher SSIM compared to a subsampling. Furthermore, the
network trained using random source encoding performed
better than the reference network (no source encoding) and
the one with learned source encoder. A reason for this is that
all networks were trained on the same training set and for
the same number of epochs. While it is expected that—given
a sufficiently large training set and training time—using no
source encoding or a trained encoder would eventually lead
to better performance, this study demonstrates that a fixed
random source encoder is able to reduce data complexity and
simplify training, leading to improved accuracy when training
data is limited.

The second study assessed the role of a task-informed
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Fig. 6. Study 2: Receiver operator characteristic (ROC) curve for FWI and
various instances of the task-informed InversionNet. Higher values of the task-
informed weight γ lead to higher AUC. Instances of InversionNet trained with
γ ≥ 10−3 outperform FWI in terms of AUC.

loss function in training InversionNet and its effect on task
performance. In this study, increasing the weight of the
task-informed loss in the loss function used during training
increased image quality both in terms of RMSE and SSIM
until it was competitive with an FWI reconstruction despite
being three orders of magnitude faster than FWI. Furthermore,
network trained with a task-informed objective demonstrated
better task performance in terms of Dice coefficient compared
to the FWI reconstruction. Broadly, this study shows that a
learned reconstruction can be tailored for a specific task and
that task information can improve image quality.

The third study assessed the proposed method robustness
with respect to additive noise levels. In this study, the learned
FWI networks trained in the second study were used to
reconstruct unseen data which were corrupted using a ten
times higher noise level. This study exhibited minimally
diminished accuracy compared to the second study. These
results demonstrate that the proposed method has robustness
with respect to measurement noise.

The fourth study assessed InversionNet’s ability to recon-
struct out-of-distribution images. In this study, an instance of
InversionNet was trained using a dataset for which BI-RADS
type A (fatty breast) NBPs were severely underrepresented,
with only one-fifth the number of examples as the other
categories. The network achieved only slightly diminished
accuracy (compared with that achieved in the second study)
and then tested on a testing set consisting of only BI-RADS
type A NBPs. These results demonstrate that InversionNet
is able to generalize for reconstruction on underrepresented
populations in the training sets. Nevertheless, the diminished
accuracy of this underrepresented population highlights the
need for a large distribution of representative training images
for highly accurate results.

In summary, this work established the feasibility of employ-
ing a learned FWI reconstruction method employing CNNs
from USCT data and demonstrated reduced computational

burden and the ability to leverage task-specific information.
Future work will include the application of these learned
reconstruction methods to clinical data. For this application,
several additional challenges will need to be addressed. Pri-
marily, the forward model implemented will be extended
to a 3D wave physics model and a 3D ring array USCT
imaging system [25]. Additionally, future works will address
the lack, rarity, or ground truth images by implementing a
self-supervised training method [55].
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APPENDIX A
TRAINING A U-NET OBSERVER

The numerical observer used in the tumor detection and
localization task study utilized a U-Net architecture. Mathe-
matically, the U-Net observer can be represented as an operator
P = Ψξ(C), with trainable parameters ξ ∈ Rp′

that maps a
speed of sound image C ∈ Rq to an image P ∈ [0, 1]Q

those pixel values represent the probability that a tumor is
present in that location. The U-Net observer was then trained
in a supervised manner with a pixelwise cross-entropy loss
function that compares the output of Ψξ with the truth tumor
segmentation maps. A training set consisting of all the 1,435
available speed of sound NBPs and corresponding tumor
segmentation maps was used to train the U-net observer. The
area under the receiver operator characteristic curve was 0.941.
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