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Multiplexing: Optimality and Universality
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Abstract—The advancement of new digital image sensors has
enabled the design of exposure multiplexing schemes where a
single image capture can have multiple exposures and conversion
gains in an interlaced format, similar to that of a Bayer color filter
array. In this paper, we ask the question of how to design such
multiplexing schemes for adaptive high-dynamic range (HDR)
imaging where the multiplexing scheme can be updated according
to the scenes. We present two new findings.

(i) We address the problem of design optimality. We show that
given a multiplex pattern, the conventional optimality criteria
based on the input/output-referred signal-to-noise ratio (SNR) of
the independently measured pixels can lead to flawed decisions
because it cannot encapsulate the location of the saturated pixels.
We overcome the issue by proposing a new concept known as the
spatially varying exposure risk (SVE-Risk) which is a pseudo-
idealistic quantification of the amount of recoverable pixels. We
present an efficient enumeration algorithm to select the optimal
multiplex patterns.

(ii) We report a design universality observation that the
design of the multiplex pattern can be decoupled from the
image reconstruction algorithm. This is a significant departure
from the recent literature that the multiplex pattern should be
jointly optimized with the reconstruction algorithm. Our finding
suggests that in the context of exposure multiplexing, an end-to-
end training may not be necessary.

Index Terms—High Dynamic Range Imaging, Spatially Vary-
ing Exposure, Exposure Multiplexing, Computational Photogra-
phy

I. INTRODUCTION

D IGITAL image sensors today, at least for the majority of
them, pick and choose a global exposure and conversion

gain across the entire pixel array to control the amount of
photon flux reaching the sensor. For high dynamic range
(HDR) scenes, this global configuration requires the camera
to capture a bracket of exposures and use post-processing
algorithms to fuse an HDR image. However, in the presence
of motion and noise, HDR fusion is known to be difficult.

Approximately two decades ago, Nayar and Mitsunaga
proposed the idea of spatially multiplexing the exposure and
conversion gain [1]. The argument was that we could capture
multiplexed exposures like color filter arrays in a single-shot
to avoid the motion problem. The reduction of the spatial
resolution can be, in principle, recovered by an appropriately
designed interpolation algorithm. Nayar and Mitsunaga’s idea
led to a series of very interesting work in coded exposures,
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Fig. 1. Given an HDR scene, the choice of spatially-varying exposure
pattern significantly influences the quality of the reconstructed image. We
propose a new risk estimator to determine the optimal exposure pattern
for capturing high dynamic range scenes. [Left] HDR scene reconstruction
using an arbitrary spatially-varying exposure pattern. [Right] HDR scene
reconstruction using the optimal exposure pattern for the scene.

including adaptive control schemes [2], hardware multi-bucket
sensor designs [3], and some of the most recent works in
co-optimizing the multiplex pattern and the reconstruction
algorithm via deep learning [4], [5].

Despite the large number of prior work, we seldom ask
the question of how to design the multiplex pattern. This is a
meaningful question, because a poorly chosen multiplex pat-
tern can produce a substantially worse image than the optimal
one, as illustrated in Figure 1. However, if we want to choose
the optimal pattern, we must first answer the question:

What is the optimality criteria for exposure multiplex?

“Optimality criteria” may seem trivial — just pick a pattern
that maximizes the signal-to-noise ratio (SNR)! But SNR of
what? If it is the SNR of the measured pixel values, then
we need a way to quantify the locations of the saturated
pixels: a group of sparsely located saturated pixels are easy to
recover (think about the color filter arrays) whereas a group of
densely concentrated pixels are hard to recover (think about
inpainting a large hole in an image). How about the SNR of
the reconstructed image? This seems more plausible because if
a final reconstruction has the highest PSNR, then the pattern
is optimal. However, to compare the final reconstruction of
every pattern, we need to first capture the scene using every
possible pattern. This exhaustive capturing and reconstruction
approach defeats the purpose of finding a good multiplex
pattern; if one already has all possible captures and associated
reconstructions, why bother finding the pattern to be used?
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Therefore, as we can see, the above seemingly easy task can
quickly evolve into a challenging research problem.

The goal of this paper is to clarify the difficulties and
propose solutions. Our two contributions are:
• We introduce the concept of spatially varying exposure

risk (SVE-Risk). SVE-Risk is customized to measure the
usefulness of a multiplex pattern. It is universal in the sense
that the risk does not require knowledge about a particular
image reconstruction algorithm but can still be used to
predict what pattern will likely yield the optimal final image
for the given scene. We also propose efficient computation
methods for SVE-Risk and demonstrate practicality of using
our suite of algorithms for multiplex pattern selection.

• We discover, through large-scale experiments, that a mul-
tiplex pattern and the image reconstruction algorithm do
not need to be co-optimized. This is a departure from prior
work that argue the necessity of co-optimization. We hope
that our finding can stimulate discussions about the future
sensor-algorithm co-design problems.

II. PROBLEM STATEMENT AND RELATED WORK

In this section we define notations, state the problem, and
comment on the related work.

A. Problem Statement and Notations

We let θ = [θ1, . . . , θN ] ∈ RN be the ground truth image
denoting the incoming photon flux, and let y ∈ RN be the
observed photoelectric signal produced by the sensor. If the
sensor uses a global exposure τ and a global gain α to capture
the image y, then y can be simulated according to the equation

y(α, τ) = ADC {Clip {CRF {(P[τθ · QE] + τµdark) · α}}
+N (0, σ2

read)
}
. (1)

We regard Eq. (1) as the first order approximation to the actual
image sensor. The symbols we used here are defined in Table I.

TABLE I
IMAGE SENSOR MODEL PARAMETERS

Symbol Meaning Typical Value
ADC Analog-digital 10˜12-bit
Clip Full well limit 5000 e-
τ Exposure 10ms, 20ms, 40ms
µdark dark current 0.002 e-/s
QE Quantum efficiency 80%
α Conversion gain 1
σread Read noise 0.3 e-
CRF Camera Response Function
P Poisson distribution
N Gaussian distribution

The concept of multiplexing is to assign, periodically, an
exposure pattern and a gain pattern such that each pixel will
be subject to a different exposure and gain. Mathematically,
for a 2× 2 exposure and gain pattern, we define

τ = {τℓ} =
[
τ1 τ2
τ3 τ4

]
α = {αℓ} =

[
α1 α2

α3 α4

]

where each τℓ is sampled from a set of exposure levels, e.g.,
{1, 2, 4, 8, ...}. The same holds for the gain αℓ.

The core research question we ask in this paper is the choice
of τ and α.

Given the scene radiance θ, how do we select τ = {τℓ}
and α = {αℓ} to generate a y such that the reconstructed
image θ̂(y) has the highest PSNR?

Why limit to 2 × 2 patterns? We limit the scope of this
paper to 2×2 multiplex patterns. Readers may say: This is too
restrictive. Why not analyze 4×4 or 16×16? Our short answer
is that 2 × 2 patterns are more hardware friendly than other
options.1 However, even so, the purpose of this paper is not
to argue that 2×2 is the best option. Instead, the question we
ask is that given the problem of using 2×2, how to determine
the optimal one? Our analysis on 2× 2 can be generalized to
other pattern sizes.

What other options do we have for exposure control?
The theme of this paper is exposure and gains controls. In the
literature, there are three mainstream approaches:
A) One fixed pattern for all. Mount a static mask with

spatially-varying light transmittance on top of the sen-
sor array. This requires minimal/no additional circuit
as compared with traditional CMOS sensors. However,
the spatially-varying exposure pattern is then fixed and
cannot be changed to adapt to the scene. Most traditional
work on spatially-varying exposure image reconstruction
explicitly/implicitly use this approach [1], [6]–[12].

B) (This paper) Periodic 2 × 2, updated on-the-fly. Use
different signal lines to control the transfer timing (and
hence control the exposure time) of different pixels. This
approach allows the spatially-varying exposure pattern to
be set on-the-fly and adapt to the scene. However, the
number of signal lines increases linearly with the number
of independent controls, and so the number of signal
lines needs to be small. Overall, it is more functionally
versatile than mounted static mask at the cost of some
additional circuitry.

C) Per-pixel or per-block, updated on-the-fly. Add in-
pixel latches/flip-flops/logic circuit (also called digital
pixel sensor as compared with traditional active pixel
sensor). This setup allows maximal level of flexibility.
Usually, the exposure of each pixel can be independently
controlled. The downside of this approach is that the
required additional circuitry is gigantic and that it results
in a low fill factor (as low as 6% [13]) as well as higher
circuit noise. Most of the focal plane coded exposure
work adopt this approach [13]–[20].

Among the three options, we do not prefer Option A because
if we want it to be applicable to all images, then it must
optimize for the average case. This will very likely lead to a
periodic pattern. Option B is preferred over Option C because
its hardware requirement is lower.

1An analogy worth mentioning is the color filter arrays: While we all agree
that the 2 × 2 Bayer pattern is sub-optimal, today we only see a handful of
non-Bayer color filters in camera products. Even the latest 4-cell Quad-Bayer
patterns by Sony, Samsung and OmniVision are just variants of Bayer.
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B. Related Work

Our work stands at the intersection of spatially-varying-
exposure (SVE) imaging and HDR imaging exposure control.
Some existing works are worth noting.

SVE Imaging: After Nayar and Mitsunaga [1], a number of
methods have been proposed to: improve image reconstruction
quality [6], improve reconstruction speed as well as robustness
against non-uniform noise strength [7], [21], adapt the applica-
tion of SVE HDR imaging from a single image to videos [8],
leverage the higher single frame dynamic range advantage of
SVE imaging to tackle motion registration problem of HDR
video capturing [9], extend the original concept of SVE to
the idea of generalized assorted pixel [10], in which image
resolution, dynamic range, and spectral profile can be balanced
post-capture by imaging with an optimized complex SVE
mask.

Among these SVE imaging works, [10] is closest to our
problem and we emphasize the difference between their prob-
lem setting and ours in Table II.

TABLE II
COMPARISON OF PROBLEM SETTINGS

Yasuma et al. [10] Ours
Pattern fixed adjustable on-the-fly
Optimization optimal for the average optimal for every single

over all lighting scenarios scene
Objective obtain a universal pattern select best for current scene

HDR Exposure Control: Exposure bracketing is a very
popular HDR imaging technique, which fuses multiple LDR
images exposed at different levels to form one HDR image,
for example, imaging with dual sampling sensors [22], on-
chip fusion [23], and recently using deep networks [24]–[32].
Despite its popularity, few studies focus on selecting proper
exposure levels for the LDR frames. These exposure control
algorithms devised for exposure bracketing mostly fall into
two groups: (1) algorithms focusing on design simplicity and
efficiency so as to be deployed on imaging devices [33]–[36],
and (2) image formation modeling based algorithms focusing
on optimality, i.e., to find the optimal set of exposures by
some metric for reconstructing the scene [37], [38]. A recent
work also demonstrates the possibility of using reinforcement
learning to train an exposure bracketing selection network
[39]. In terms of design, our SVE pattern selection algorithm
is an image formation modeling based algorithm; however,
methods like [37], [38] cannot be migrated to our problem
without significant changes, in that spatial multiplexing and
pixel interpolation are not within their problem scopes. Imag-
ing with other types of image sensors, e.g., Quanta Image
Sensors (QIS) [40]–[42] and Single-Photon Avalanche Diode
(SPAD) [43], are also candidate solutions to HDR imaging. It
is further suggested by [44], [45] that low bit-depth sensors
provide wider dynamic range. In this work, we use a general
sensor model Eq. (1).

III. SVE PATTERN SELECTION FOR HDR

In this section we present the core idea of this paper, which
is the concept of SVE-Risk and efficient methods to evaluate
the SVE-risk.

A. Limitations of SNR

To motivate the definition of the SVE-Risk, we first discuss
the limitations of the per-pixel output-referred2 signal-to-
noise ratio (SNR). In the context of our problem and image
formation model, the SNR at pixel i is

SNRi =

{ (αiτi)θi√
α2

i (τiθi+µdark)+σ2
read

, (αiτi)θi ≤ Vmax,

0, (αiτi)θi > Vmax,
(2)

where Vmax is the maximum voltage allowed by the ADC.
Intuitively, the SNR highlights two aspects of the expo-

sure/gain: (i) If the pixel is not saturated, then the SNR will
increase with αi and τi. (ii) If the pixel is saturated (so the
signal received by ADC exceeds Vmax), then the SNR is zero.
The two cases are consistent with the classical model in [1].

With the per-pixel SNRi defined, it is straightforward to
define the risk of adopting a particular (α, τ ) for capturing a
given scene using average SNR of all pixels:

SNR-Risk(α, τ ) =

(
1

N

N∑

i=1

SNRi

)−1

, (3)

where the reciprocal is used to convert the SNR to a risk.
SNR-Risk has two major drawbacks:

(i) SNR-Risk is agnostic to how saturated pixels distribute
in the image. Consider the example shown in Figure 2.
While the two patterns will give exactly the same SNR,
only pattern A is recoverable because neighboring pixels
are available. Pattern B contains a large region of satu-
rated pixels, which is very difficult to recover.

Fig. 2. Two arrangements of saturated pixels share the same SNR-Risk;
however, the image captured with arrangement A can be recovered by
interpolation while it is more challenging to recover that with arrangement B.

(ii) SNR is a pixelwise calculation without considering its
neighbors. Therefore, if there is a bright region, all four
control elements of the 2 × 2 pattern will try to match
the scene without coordinating among themselves. The
consequence is that SNR-Risk will choose an all bright
or all dark pattern.

2In this paper we are interested in full-well capacities that are sufficiently
large. For pixels with extremely small full-well capacity, e.g., Quanta Image
Sensors (QIS), one needs to use the more general formula known as the
exposure-referred SNR. We refer to the article by Chan [46] for details.
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The SNR-Risk computes the risk for a pixel depending
solely on one pixel. This is in contrast to the fact that practi-
cal image reconstruction algorithms almost always aggregate
spatial information before predicting a pixel’s output value.
Hence, SNR-Risk tends to over-estimate the risks associated
with easily recoverable pixels. To overcome this issue, we want
to design a risk with the neighborhood relations of pixels taken
into consideration. To summarize, SNR-Risk is not a good
metric because of the following.

SNR-Risk cannot comprehend the local structure of the
exposure, hence it cannot tell us whether the acquired
image is recoverable.

B. SVE-Risk

After explaining why SNR is not a good metric to assess
the multiplex patterns, in this subsection we introduce a new
concept called spatially varying exposure risk (SVE-Risk).

We first consider the definition of an ideal risk. Let y be
the sensor readout and estimator θ̂ = [θ̂1, . . . , θ̂N ] be the
reconstruction mapping that produces an estimate θ̂(y,α, τ )
of θ = [θ1, . . . , θN ]. The ideal risk is

Risk(α, τ ) = inf
θ̂

Ey

[
1

N

N∑

i=1

(
θ̂i(y,α, τ )− θi

θi

)2]
, (4)

where θi and θ̂i(·) denote the i-th element of the ground truth
radiance θ and the estimate θ̂(·), respectively. Note that if
the estimator θ̂ is a pixel-wise maximum likelihood (ML)
estimator using the forward model defined in Eq. (1), then
the squared ratio in Eq. (4) is exactly the inverse of pixel-
wise output-referred SNR for non-overflow pixels. From this
perspective, the SNR-Risk can be deemed as a special case of
the ideal risk, in which the estimator is predetermined to be a
pixel-wise ML estimator.

The caveat of Eq. (4) is that an oracle estimator θ̂ for a
scene is never known and it is also impossible to obtain the in-
fimum by enumerating all possible reconstruction algorithms.
To mitigate this issue, we approximate the risk by using a
hypothetical ideal local estimator. This hypothetical estimator
cannot be constructed in practice (any reconstruction algorithm
is likely to be worse than the hypothetical estimator), but it
can give us a meaningful approximation to the infimum.

Definition 1 (Local estimator): A local estimator θ̂i at the
pixel i is a function that maps the neighborhood observations
yi = {yj | j ∈ Bi} to an estimate θ̂i(yi), where Bi denotes
the neighborhood around pixel i. If yi is saturated, θ̂i uses the
neighborhood without yi, i.e., y−i = {yj | j ∈ Bi}\{yi}.

As we define this hypothetical local estimator, we assume
that it has the perfect knowledge about inter-pixel correlations
of its neighborhood. Therefore, it allows us to achieve two
things:
• When a pixel is not saturated, the estimator will return us

the same value as the SNR-Risk.
• When a pixel is saturated, the estimator will make an

interpolation. The interpolated pixel will have a risk no
higher than the largest risk within the neighborhood.

Based on these properties, we can define the SVE-Risk by
considering three situations:

The SVE-Risk of the i-th pixel is defined as

SVE-Riski(α, τ ) (5)

=





1
θ2
i |B∗

i |

[
(θi+µdark)

τi
+

σ2
read

α2
i τ

2
i

]
, unsaturated,

max
j∈Bi\{i}

1
θ2
j |B∗

j |

[
(θj+µdark)

τj
+

σ2
read

α2
jτ

2
j

]
, sat., ✓Bi,

(
Vmax
αiτi
− θi

)2
, sat., ×Bi,

where B∗i = Bi \ S is the neighborhood around pixel i
minus the set of saturated pixels S.

Let’s elaborate on the three cases in the definition:
• Unsaturated: If a pixel is unsaturated, the risk is defined as

the variance of the measurement (which is the denominator
of Eq. (2), squared and normalized). The normalization is
necessary for preventing bright regions in the image from
dominating darker region risks and is crucial for HDR
imaging. For unsaturated pixels, the risk calculated in Eq.
(5) is essentially SNR-Risk value scaled by the number of
observations in the neighborhood.
• Saturated, ✓Bi: The neighborhood contains pixels that can

be used for interpolation. In this case, the risk is defined
as the worst variance in the neighborhood. The intuition is
that since SVE-Risk uses neighboring pixels to determine
the risk, it can be deemed as an extension of the SNR-Risk
where we combine independent exposures.
• Saturated, ×Bi: The neighborhood does not contain any

useful pixels. The risk is defined as the squared error
between the cutoff Vmax

αiτi
and expected radiance θi. Note that

this risk is worse than the second case because, in the second
case, the substitution comes from one of the unsaturated
pixels. For the third case, the difference between Vmax

αiτi
and

θi can be very large if θi is far from the cutoff.
With pixel-wise SVE-Risk defined, we define overall SVE-

Risk by taking sum of each pixel’s risk.

The SVE-Risk of the whole image is defined as

SVE-Risk(α, τ ) =
N∑

i=1

SVE-Riski(α, τ ). (6)

C. Computing SVE-Risk

After defining the SVE-Risk, the next big question is how to
compute this seemingly “uncivilized” Eq. (5). However, before
we explain how we calculate the SVE-Risk, we first explain
the overall imaging pipeline outlined in Figure 3.

Since our imaging goal is to dynamically control the expo-
sure, our decision on the 2 × 2 pattern needs to be fast. As
illustrated in Figure 3, the way we compute the SVE-Risk is
based on the histogram of the scene radiance. This histogram
does not need to be perfectly precise. Therefore, we can use
a lower resolution of the same scene, and we can use any
average 2× 2 pattern such as high-medium-medium-low. The
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Fig. 3. Our imaging pipeline is for dynamical control of the exposure. We
capture a low-resolution pilot image using a fixed 2 × 2 exposure pattern
(typically high-medium-medium-low) to construct a histogram. From the
histogram we compute the risk, and guide by the risk we capture the full
image. Since the SVE-Risk is calculated based on the histogram instead of
the image, its computational cost is very low.

purpose of the pilot capture is to construct a histogram so that
we can make decisions for choosing the 2×2 pattern. Once we
have the 2× 2 pattern determined, we perform a full capture
and image reconstructions.

We now discuss the histogram. Assume we have collected
a pilot image. We denote the distribution of the radiance as
p(θ). An example is shown in Figure 4. We stress again that
operating on the radiance distribution rather than individual
pixels is more efficient, because, once the histogram is built,
the complexity of pattern risk estimation becomes proportional
to the number of bins in the histogram (order of magnitude is
hundreds to thousands) instead of the number of pixels (order
of magnitude is hundreds of thousands to millions).

Fig. 4. An example radiance histogram. The overall radiance histogram is
partitioned by the 4 exposures/gains into 5 intervals. For the unsaturated
pixels in intervals A to D, the risk associated with them corresponds to
the unsaturated case in Eq. (5). Pixels in the interval above the threshold
Vmax/τ0α0 (interval E) are all saturated and unlikely to be recovered. Their
risks are computed as the empirical mean squared error as the saturated,
×Bi case in Eq. (5). Risks of saturated pixels in intervals below Vmax/τ0α0

(intervals A to D) can be substituted with the worst risks of their neighbors,
which is the saturated, ✓Bi case in Eq. (5).

Given a pattern {(τℓ, αℓ) | ℓ = 0, . . . , 3}, without loss of
generality, we assume that the exposure/gains are sorted so
that α0τ0 ≤ α1τ1 ≤ α2τ2 ≤ α3τ3. The pattern gives us four
cutoff radiance levels Vmax

αℓτℓ
which partition the entire radiance

range into five intervals, as shown in Figure 4.
As shown in Figure 4, a radiance level θ saturates an expo-

sure/gain element (τl, αl) if it is greater than the corresponding
cutoff Vmax

αℓτℓ
. For θ > Vmax

α0τ0
(interval E), they saturate all

exposure/gain elements and it is very likely that the pixels

corresponding to these radiance levels are not recoverable by
any reconstruction algorithm. In this case, risk associated with
these radiance levels is, according to Case 3 in Eq. (5):

SVE-Risknonrecoverable(α, τ , θ) =

(
Vmax

α0τ0
− θ

)2

. (7)

Now consider a radiance level between two cutoffs Vmax
αℓτℓ

<

θ < Vmax
αℓ−1τℓ−1

(i.e., a radiance level in intervals B, C, D). The
radiance level θ saturates all exposure/gain elements below it;
however, since there are neighboring elements not saturated
by θ, it is likely that saturated pixels at this radiance level
can be recovered by exploring their neighbor pixels. The risk
associated with this radiance level is then, according to Case
1 and Case 2 in Eq. (5):

SVE-Riskrecoverable(α, τ , θ)

=
1

4




ℓ−1∑

j=0

1

Bjθ2

(
(θ + µdark)

τj
+

σ2
read

α2
jτ

2
j

)

︸ ︷︷ ︸
contribution from non-saturated elements

+
3∑

j=ℓ

1

B0θ2

(
(θ + µdark)

τ0
+

σ2
read

α2
0τ

2
0

)

︸ ︷︷ ︸
saturated, use risk of worst non-saturated neighbor



, (8)

where Bj is the number of non-saturated pixels within the
neighborhood (with predetermined size) of exposure/gain el-
ement (αl, τl). Note that, since we know how pattern is
tiled across the entire sensor array, Bl can be calculated
for each saturation scenario (i.e., 0, . . . , 3 exposure/gain
elements saturated) beforehand and be stored in memory (see
supplementary).

The risk is therefore the sum of Eq. (7) and Eq. (8).

To numerically compute the SVE-Risk, we construct
the radiance histogram (like Figure 4), and calculate

SVE-Risk(α, τ )

=

∫ ∞

Vmax
α0τ0

SVE-Risknonrecoverable(α, τ , θ)p(θ) dθ

+

∫ Vmax
α0τ0

0

SVE-Riskrecoverable(α, τ , θ)p(θ) dθ,

where p(θ) is the radiance histogram of the pilot capture.

We show a comparison of the run time of calculating the
SVE-Risk and the SNR-Risk in Table III. Since SVE-Risk is
calculated using the histogram, it is insensitive to the image
resolution. In contrast, since SNR needs to evaluate every
single pixel, its computation grows with the number of pixels.

D. Efficient Pattern Enumeration

There is one final design question we need to answer before
using the SVE-Risk. It is the problem of candidate patterns
to evaluate. Suppose we have 9 exposure levels for a 2 × 2
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TABLE III
COMPARISON OF RISK ESTIMATOR RUN TIME FOR SENSORS OF DIFFERENT

RESOLUTIONS. NUMBERS SHOWN ARE RUN TIME OF EVALUATING THE
CORRESPONDING RISK OF 495 PATTERNS AVERAGED OVER 100

EXECUTIONS.

Resolution Runtime for Runtime for
calculating SVE-Risk calculating SNR-Risk

512x896 0.20±0.01 sec 0.69±0.01 sec
1024x1792 0.27±0.01 sec 6.13±0.22 sec
2048x3584 0.52±0.01 sec 27.35±0.12 sec

pattern, we will have a total of 94 = 6561 candidates. It will
be too much computation if we need to calculate the SVE-
Risk for each candidate pattern. Therefore, in this subsection,
we present a method to eliminate low priority patterns.

To remove the low-priority patterns, we made an obser-
vation that the majority of all candidate patterns are redun-
dant. For example, from the reconstruction point-of-view, an
exposure pattern τ = {1, 10, 10, 10} is almost identical to
patterns {10, 1, 10, 10}, {10, 10, 1, 10}, and {10, 10, 10, 1}. To
justify this claim, we experiment with three representative
reconstruction algorithms on sensor readouts synthesized with
these four patterns. We test on a dataset containing 46 images
and show the results in Figure IV. Across the four exposure
patterns, the reconstruction results are identical for any fixed
algorithm.

TABLE IV
µPSNR (DB) OF THE RECONSTRUCTED IMAGES FOR THE FOUR

EQUIVALENT MULTIPLEX PATTERNS. THE PSNR IS AVERAGED ACROSS 46
TEST IMAGES AND ROUNDED TO FIRST DECIMAL PLACE.

ADMM-TV [47] 31.1dB 31.1dB 31.1dB 31.1dB
Restormer [48] 30.0dB 30.0dB 30.0dB 30.0dB

LPA [7] 29.7dB 29.7dB 29.7dB 29.7dB

Based on the observations above, we define the concept of
pattern equivalence: two patterns are equivalent for capturing
a scene if they are permutations of each other. Our proposed
strategy is to enumerate on pattern equivalence classes and
compute canonical form of each class. The canonical pattern is
the one with maximum variation in the 2×2 grid. Specifically,
if the input pattern is τ = [τ1, τ2, τ3, τ4], we sort the sequence
to obtain sort(τ ) = {τ[1], τ[2], τ[3], τ[4]} where τ[1] ≤ τ[2] ≤
τ[3] ≤ τ[4]. The canonical pattern is then defined as

canon(τ ) =

[
τ[1] τ[3]
τ[4] τ[2]

]
.

The intuition here is that since sort(τ ) is already sorted, the
alternating allocation of the exposure values will maximize
the variation within the 2×2 grid. For example, the canonical
forms of the patterns τ = [8, 32, 1, 10] and τ = [1, 10, 1, 10]
are

canon(τ ) =

[
1 10
32 8

]
and canon(τ ) =

[
1 10
10 1

]
,

respectively. Once all the patterns are converted to their
canonical forms, checking the equivalence is simplified to
check whether the two canonical forms are identical.

By enumerating on equivalence class instead of
all realizable patterns, we reduce the complexity to∑min(L,m)

k=1

(
L
k

)(
m−1
k−1

)
while maintain same coverage of

realizable pattern space3. When L = 9 and m = 4, this
reduces enumeration size from 6561 to 495.

Remark: Readers may ask: The proposed algorithm is
largely an exhaustive search and it requires knowledge about
the radiance distribution. Is it possible to improve the search?
We note that the pilot estimate is designed to be coarse. As
long as the shape of the radiance distribution is obtained, we
can perform the histogram-based calculation. For faster algo-
rithms, we do not think the typical gradient-based algorithm
would work here because our problem is discrete with many
stationary points. There might be some discrete optimization
methods. We are open to explore them in our future work.

IV. OPTIMALITY AND UNIVERSALITY

In the beginning of the paper, we mentioned two key
findings of this paper. Firstly, we claim that for exposure
multiplexing, there exists a better optimality criteria than the
SNR. We have elaborated on the SVE-Risk in the previous
section. In this section, we evaluate SVE-Risk by justifying
the following statement.

Optimality. The SVE-Risk optimal exposure multiplex
pattern can generate a raw image, if passed through a
reconstruction algorithm, with nearly the highest PSNR.

The second claim we made is universality. In this section, we
justify the following statement.

Universality. The optimal exposure multiplex pattern is
universally good for all image reconstruction algorithms.

Because of the empirical nature of both statements, we answer
them through experiments. Our experiments involve large-
scale datasets, several new ways of visualizing the results, and
a collection of real data.

A. Datasets

Before diving into experiment design and results, we de-
scribe datasets and synthesis parameters in more details. We
use linearized ground truth 16-bit HDR images from NTIRE
[49], HDR-Eye [50], and SIGGRAPH17 [51] datasets as scene
radiance maps. These radiance maps are normalized such
that, under minimal exposure and unit gain, the photon flux
corresponding to 99 percentile is within the ADC range. This
setting is practical and realizable on hardware using modern
auto-exposure control. We do not attempt to accommodate for
the brightest 1% of pixels, because these pixels usually are
light sources that directly shine on the sensor. Each normalized
radiance map is resized such that the short edge has a length of

3See supplementary for the derivation and pseudo-code.
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512 pixels. The radiance maps are then used to synthesize raw
sensor readout using image formation model in Section II-A.
We use HDR-Eye data for reconstruction algorithms hyper-
parameter tuning and model training, SIGGRAPH17 data for
hyper-parameter validation, and NTIRE data for testing and
empirical study.

B. Reconstruction Algorithms

An important task of our verification is to evaluate the
quality of the reconstructed image. Thus, it is necessary
to consider image reconstruction algorithms. However, given
the sheer volume of reconstruction methods, it would be
impossible to evaluate everyone. A surrogate we take here is
to consider three representative classes of algorithms. Within
each class, we consider a representative method which we can
either implement or we have access to the original source code.

(i) Non-data-driven non-iterative: Algorithms in this class
do not require any training and usually make relatively
simple or even no assumptions about image structure.
During reconstruction, the estimation for each pixel is
only carried out once (hence non-iterative). Traditional
bi-linear/quadratic/cubic interpolation, median filters, fil-
ter banks and more fall into this class. We adopt and
implement a local polynomial approximation (LPA) [7]
as a representative of this class.

(ii) Non-data-driven iterative: These are classical tools for
solving an inverse problem. Compared with non-iterative
approaches, algorithms in this class usually model both
the forward imaging process and underlying image struc-
ture/prior. This class of algorithms alternate between a
forward step to handle the data fidelity, and a backward
step that integrates the scene prior. Typical examples
include Plug-and-Play [47] and Piecewise Linear Esti-
mators [52], etc. We implement a Plug-and-Play ADMM
with total variation prior (ADMM-TV) to represent this
category.

(iii) Data-driven: Dictionary learning [53] and neural
networks [48], [54], [55] based image reconstruc-
tion/restoration methods fall into this category. It should
be noted that although some non-data-driven iterative
approaches may also adopt a dictionary or network as
a sub-component (e.g., one may use a denoiser network
in Plug-and-Play framework as prior step), and there
has been numerous efforts [56], [57] to try to bring
together the best of both tools, we do not consider them
as purely data-driven approaches. We limit the scope of
this category to methods that are one-pass (i.e., non-
iterative) and trained directly for the inference task. We
use Restormer4 [48] as an example of this category.

4We discovered in our experiment that networks cannot be trained well
when the input to a network has a very high dynamic range, and this training
failure cannot be saved by input normalization. Therefore, instead of operating
on raw sensor readout in linear scale and predict a linear/log scale output
(as most of network-based HDR works do. Their inputs are usually LDR
images and their task is to combine LDR images into HDR images, so the
domain of their problems does not align exactly with ours), we take a log
scale normalized sensor readout as input and predict a log scale radiance map.

C. Metrics

Because of the unique problem setting we have, there is
no prior standardized evaluation criterion. To this end, we
consider a few known metrics and introduce a few new ones.

(i) µPSNR, µSSIM, µLPIPS. In high dynamic range
images, high exposure regions can easily dominate losses
or metrics over low exposure regions; therefore, evaluating
reconstruction quality in linear scale is usually less meaning-
ful. Similar to other HDR related works [39], we evaluate
reconstruction quality on µ-tone-mapped images, which is
defined as

xµ =
log(1 + x · µ)
log(1 + µ)

,

where x is a linear scale image normalized to [0, 1] and µ
is a hand-picked hyper-parameter controlling the strength of
dynamic range compression. In our experiment, we set µ to
the maximum reference level of ADC (see sec. II-A).

In tone-mapped space, we measure the PSNR (µPSNR,
higher is better), structural similarity (µSSIM, higher is better)
[58], and perceptual distance (µLPIPS, lower is better) [59]
between reconstructions and ground truth images.

(ii) SNR-Risk, SVE-Risk, and their variants. Since one
main objective of this paper is to propose SVE-Risk, it is
necessary to compare it with SNR. In addition to the standard
SNR-Risk and SVE-Risk described in previous sections, we
also evaluate following two variants of the risks, which arise
naturally as one contemplate why one risk works while the
other does not. Thus, we have four risk terms to consider:

• SNR-Risk, as defined in Eq. (3).
• SVE-Risk, as defined in Eq. (6).
• SNRMSE: SVE-Risk assigns coarse estimates of mean

squared error (MSE) as risk to unrecoverable pix-
els. Given the close relationship between MSE and
PSNR/SSIM, one may wonder if this assignment gives
SVE-Risk an unfair advantage over SNR-Risk, as SNR-
Risk is purely forward model based. To answer this, we
modify SNR-Risk by assigning the actual MSE between
the normalized sensor readout (i.e., y/(ατ)) and the
corresponding ground truth to overflowing pixels. We
denote this variant as SNRMSE in results.

• SVEw/o: The idea of our SVE-Risk design is that it
penalizes neighborhoods with too many saturated pixels
through an auto-tuned parameter |B|. We evaluate SVE-
Risk without the penalty term |B|, denoted SVEw/o in
results, to show that this idea is indeed imperative for
achieving optimal performance instead of being a dubious
add-on.

D. Verify the Optimality of SVE-Risk

In this subsection we discuss our experiments to assess the
optimality of the SVE-Risk. We first discuss the protocol of
the experiment, and then the results.

Protocol of experiment. We would like to compare SNR-
Risk and SVE-Risk. The evaluation of SNR-Risk requires
access to the radiance map. For convenience, we directly
use ground truth radiance map as the input. The evaluation
of SVE-Risk is easier because we only need the histogram.
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TABLE V
LEFT EIGHT COLUMNS: AVERAGE RECONSTRUCTION QUALITY DROP (MEASURED BY µPSNR, µSSIM, µLPIPS) BETWEEN USING THE ORACLE

PATTERN AND THE TOP-1/TOP-5 PATTERN(S) FOR VARIOUS RECONSTRUCTION ALGORITHMS. RIGHT EIGHT COLUMNS: PROBABILITY OF THE
RECONSTRUCTION QUALITY DIFFERENCE BETWEEN THE ORACLE PATTERN AND THE TOP-1 PATTERN SELECTED BY A RISK BEING GREATER THAN

PRE-DETERMINED THRESHOLDS. FOR ALL CATEGORIES, SMALLER NUMBERS CORRESPOND TO BETTER SELECTIONS OF EXPOSURE PATTERNS. THE
BEST SCORE IN EACH COMPARISON CATEGORY IS COLORED IN BLUE. WE USE DIFFERENT Q-SCORE THRESHOLD FOR µLPIPS BECAUSE ITS SCALE AND

SPREAD ARE MUCH WIDER THAN THOSE OF THE OTHER TWO METRICS.

µPSNR
∆1 ∆5 Q(1%) Q(5%)

SVE SVEw/o SNR SNRmse SVE SVEw/o SNR SNRmse SVE SVEw/o SNR SNRmse SVE SVEw/o SNR SNRmse

LPA 0.66 1.03 10.32 9.66 1.04 0.98 8.5 8.81 53.8 71.4 99.9 98.4 10 18.6 99.9 96.5
ADMM-TV 1.3 1.7 8.43 7.99 1.43 1.8 7.44 7.38 78.9 81.9 99.9 98.4 26.5 34.5 99.5 92.5
Restormer 0.49 1.54 6.19 5.38 0.62 1.31 4.57 4.49 49.3 87.4 99.9 98.7 4.3 29.8 97.7 96

µSSIM
∆1 ∆5 Q(1%) Q(5%)

SVE SVEw/o SNR SNRmse SVE SVEw/o SNR SNRmse SVE SVEw/o SNR SNRmse SVE SVEw/o SNR SNRmse

LPA 0.0048 0.0050 0.1056 0.1255 0.0093 0.0065 0.0887 0.1096 14.3 17.4 95.9 93.6 0.3 0.1 62.2 81.3
ADMM-TV 0.0080 0.0078 0.1099 0.1070 0.0103 0.0098 0.0829 0.0892 27.2 29 84 85.5 1.9 0.7 45.9 58.5
Restormer 0.0063 0.0106 0.0469 0.0573 0.0075 0.0103 0.0391 0.0443 21.6 37.4 69.5 92.2 0 0 22.5 54.9

µLPIPS
∆1 ∆5 Q(20%) Q(80%)

SVE SVEw/o SNR SNRmse SVE SVEw/o SNR SNRmse SVE SVEw/o SNR SNRmse SVE SVEw/o SNR SNRmse

LPA 0.007 0.018 0.179 0.218 0.019 0.020 0.147 0.191 10.4 40.1 99.6 97.1 0.1 2.3 83.5 94.6
ADMM-TV 0.026 0.031 0.169 0.169 0.032 0.035 0.128 0.140 58.4 71.6 87.9 97.5 8.6 13.5 72.5 78
Restormer 0.03 0.046 0.08 0.112 0.035 0.044 0.070 0.093 75.8 92.6 92.2 94.5 6.4 26.2 42.6 60.5

We assume we have access to 4 exposures evenly distributed
across the total exposure levels. The histogram is then built
using all non-saturating pixels.

Given a set of candidate patterns (495 patterns in our
experiment), we define the oracle pattern as the one that
gives the highest PSNR. We do not have access to this oracle
pattern. We want to use a risk to estimate the best pattern and
to rank all patterns. Note that the ranked top-1 pattern by a
risk is usually NOT the oracle pattern.

To gauge the ranking power of a risk, it is not informative
to compare the rank of the oracle pattern rated by different
estimators, because the ranks do no reflect reconstruction
quality differences. It is also not enough to only look at the
reconstruction quality difference between the top-1 pattern and
the oracle pattern for two reasons. Firstly, a small quality
difference can be a coincidence due to specific textures or
scenes being insensitive to choices of pattern. Secondly, even
a risk that rank patterns poorly may find an acceptable pattern
once in a while (as illustrated in Figure 6 (d)).

Therefore, in our evaluation protocol, we propose to mea-
sure two descriptive statistics of risk estimators:

A) Average quality difference between using the oracle
and the top-K patterns ranked by an estimator. This
statistic evaluates the absolute reconstruction quality drop
when one uses top patterns selected by a risk estimator
compared to using the oracle pattern. Furthermore, if top-
K average difference is an increasing function of K,
then the risk estimator likely has good ranking power
on patterns. Mathematically, we define

∆K =
1

NK

N−1∑

n=0

K−1∑

i=0

( s∗n︸︷︷︸
oracle score

− sn,i︸︷︷︸
i-th score

), (9)

where ∆K is the top-K average difference, s∗n is the
score of the oracle pattern on the n-th radiance map (n =
0, 1, . . . , N−1, with N = 1494 in this paper), sn,i is the

score of the i-th top pattern as ranked by the risk.
B) Probability that the reconstruction quality difference

between the oracle pattern and the top-1 pattern is above
certain pre-determined threshold. This statistic measures:
given a threshold that one considers as critical, what is
the probability that using a particular risk estimator will
not yield satisfactory results. Formally, we define

Q(η) =
1

N

N−1∑

n=0

I
{
s∗n − sn,1

s∗n
> η

}
, (10)

where Q is the probability of having a difference above
a threshold η, I[·] is an indicator function.

Results. We show in Table V the top-K average differences
and Q scores at two thresholds across the pattern ranking
dataset. The full SVE-Risk is capable of selecting a pattern that
will yield a reconstruction with close to oracle performance,
with an average µPSNR drop for the top-1 pattern around
1 dB. SVE-Risk without the neighborhood penalty term can
still pick a reasonably good pattern, but is almost always
subpar compared to pattern selected by full SVE-Risk. SNR-
Risk as well as its variant SNR-RiskMSE are incapable of
picking a good pattern in almost all scenarios, and equipping
SNR-Risk with MSE for overflowing pixels does not help
SNR-Risk. This experiment shows the significance of properly
assigning surrogate risk to recoverable overflowing pixels and
exposure/gain control element binding.

How do the Optimal Patterns Look Like? To give readers
an idea of how the optimal exposure/gain patterns look like,
we show in Figure 5 four randomly selected scenes and their
corresponding optimal exposure/gain patterns. As the radiance
of the scenes change from all dark to all bright, the optimal
patterns change from all-high to all-low. This variety of scenes
with the experimental results suggest that our proposed scheme
is able to adaptively select the exposure and gain based on the
radiance.

Visualize Ranking Power. To illustrate the ranking power
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Scene 1 Scene 2 Scene 3 Scene 4

Optimal patterns (oracle scheme)
Image How bright? Optimal exposure τ Optimal gain α

Scene 1 All dark {10,1,10,10} {4,2,4,4}
Scene 2 All bright {1,1,1,1} {2,1,2,2}
Scene 3 Half-half {1,10,10,1} {1,2,4,2}
Scene 4 More dark {1,10,10,10} {1,4,4,1}

Fig. 5. Scenes and their corresponding oracle patterns.

of SNR-Risk and SVE-Risk, we show a scatter plot of µPSNR
of a scene sorted by risk values in Figure 6. We remark that
this is a novel visualization of the performance, as we have
not seen a similar plot in the literature.

To interpret the results of this plot, we note that the x-axis
of the plots is the risk ranked from high to low. There are four
risks: SNR, SVE, SVEw/o and SNRMSE. The ideal risk for our
task is µPSNR. If we use µPSNR as the metric to rank the
patterns, we will have a scatter plot shown in Figure 6(a).
A better pattern ranked by µPSNR will, of course, give a
higher µPSNR. When we evaluate other risks, we see that the
proposed SVE-Risk has the closest behavior to the ideal risk.
In contrast, SNR-based risks show an overlapped behavior.
This means that if we use SNR to pick the pattern, we will
not be able to tell which pattern is the best because for the
same SNR (x-axis), we have multiple patterns on the y-axis.

Staircase µPSNR Behavior. Readers may wonder about
the step-wise behavior. This is due to the image histogram, as
the scene may contain large flat regions of similar radiance
values. As the minimum exposure and gain go above certain
thresholds, the brightest large region of scene becomes com-
pletely saturated and irrecoverable, causing significant quality
drop. Such drop is intrinsic to the scene itself and related to
values that local exposure and gain can take, but no pattern is
guaranteed to be in any particular cluster as the scene varies
(i.e., no intrinsically bad pattern).

Visualize the Patterns. A visualization of adopting the top
pattern selected by different risks for capturing is shown in
Figure 7. In Figure 8, we show an example of reconstructing
simulated readouts captured with SVE-Risk top pattern and
SNR-Risk top pattern using different reconstruction algo-
rithms.

Can SNR-Risk Work if We Discard “Bad” Patterns? A
common question people ask is that would SNR-Risk perform
better if we throw away the bad patterns. Our answer is no.
Firstly, we simply cannot discard bad patterns when there is no
intrinsically bad pattern. Secondly, even if we analyze current
scene and discard all patterns that may yield large saturated
region, pixel-wise SNR will still not use nonuniform exposure
levels. This can be seen in the µPSNR v.s. risk rank scatter
plots as shown Figure 9.

E. Verify the Universality of Patterns

In this subsection, we describe our discovery that an expo-
sure/gain pattern is universal for many image reconstruction

algorithms. This is a significant departure from the recent trend
of camera-algorithm co-optimization where people have been
arguing that jointly optimizing the pattern and the algorithm
is essential. Our experiments in this subsection show the
opposite. We find that the design of the exposure/gain pattern
can be completely decoupled from the design of the image
reconstruction algorithm.

Spearman’s ranking correlation. To evaluate the depen-
dency of the pattern and the algorithm, we need some notion of
correlation between the two factors. The metric we consider in
this paper is the Spearman’s ranking correlation [60], although
other types of correlations can also be used.

For each ground truth radiance image θ, we synthesize
495 raw sensor readouts {x0, ...,x494}, one for each pattern
equivalence class. For each readout, we use three distinct
algorithms {f0, f1, f2} to reconstruct the radiance image and
evaluate the reconstruction quality using three different metrics
MµPSNR,MµSSIM,MµLPIPS. We define a score as

si,j,k =Mk(fj(xi),θ), (11)

where si,j,k denotes the score using ith pattern, jth algorithm,
and metric k. The exhaustive evaluation results are collated
to create a pattern ranking data set. We assess whether a
monotonic relationship exists between a pair of reconstruction
algorithms as pattern varies by computing Spearman’s ranking
correlation coefficient [60] over scores of a metric

ρj,j′,k = Spearman({(si,j,k, si,j′,k) | i = 0, · · · , 494}),
where a tuple of scores (si,j,k, si,j′,k) is treated as an observa-
tion, associated with which a p-value describes the probability
that no monotonic relationship exists between them. The cor-
relation coefficients are computed for every pair of algorithms
over all 1494 images from NTIRE dataset.

Experiment Protocol. The overall procedure of the ex-
periments is as follows. Given a scene radiance map, we
exhaustively evaluate reconstruction quality of distinct re-
construction algorithms on synthesized sensor readouts for
all patterns returned by our enumeration algorithm. Taking
reconstruction quality scores as data samples, we calculate
Spearman’s ranking correlation coefficient for every pair of
reconstruction algorithms. We conduct hypothesis testing

• H0 : the reconstruction quality between two algorithms
are uncorrelated as exposure pattern varies,

• Ha : the reconstruction quality are positively correlated.

This procedure is repeated on every sample of NTIRE [49]
dataset. We report the average and median of correlation
coefficients across 1494 images for each metric in Table VI.

Results. To give a sense of the reported value, we also show
scatter plots of µPSNR of pairs of reconstruction algorithms
in Figure 10, with detailed numbers shown in Table VI.

The three scattered plots in Figure 10 are worth discussing.
These three subplots are the µPSNR comparison between
LPA, ADMM-TV, and Restormer. The scattered plot shows
a surprisingly strong correlation between any pair of the
methods: If a 2×2 pattern favors LPA, it also favors ADMM-
TV, and similarly for other pairs. Therefore, at least based on
this limited set of experiments, we find that if a pattern is good,
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(a) µPSNR (b) SVE risk (c) SVEw/o risk (d) SNR risk (e) SNRMSE risk
Fig. 6. Scatter plots of µPSNR of exposure patterns with their x-coordinates sorted. Each dot represents a pattern. (a) Exposure patterns sorted by their
corresponding µPSNR scores from low to high, representing what an ideal risk estimator should achieve. An ideal risk estimator always assigns lower risks
to patterns yielding higher µPSNR. (b) – (e) Exposure patterns sorted by their estimated risk values using various risk estimators. The y-coordinate of a dot
is the µPSNR of reconstruction using that pattern.

(a)

(b)
Fig. 7. Qualitative comparisons of risk estimators. Images in the middle are the ground truth. Images on the sides are reconstructions using simulated readouts
captured with spatially-varying exposure patterns selected by different risk estimators. Oracle denotes the best possible pattern through exhaustive search. (a)
SNR-Risk is dominated by relatively darker regions, so it selects an exposure pattern such that the high-light textures are irrecoverable. SVE-Riskw/o fails
to retain low-light details, e.g., characters on the license plate. Oracle and SVE-Risk selections preserve most information across high dynamic ranges. (b)
SNR-Risk is unable to pick a spatially-varying exposure/gain, and therefore compromises texture in high-light regions and introduces irrecoverably heavy
noise in low-light region. SVE-Riskw/o loses details in medium exposure regions such as the human face and the white shirt. Oracle and SVE-Risk selections
trade off high/low flux regions differently: the oracle pattern better preserves the face but loses some details of the curtain, while SVE-Risk’s top pattern
preserves all curtain details but results in a slightly more blurry face. The reconstruction algorithm is Restormer for all images. All images are tone-mapped.

TABLE VI
AVERAGE (STANDARD DEVIATION) AND MEDIAN CORRELATION COEFFICIENTS AND AVERAGE P-VALUE OF EACH CORRELATION COEFFICIENT ACROSS

NTIRE DATASET

µPSNR µSSIM µLPIPS
average ρ median ρ average p-value average ρ median ρ average p-value average ρ median ρ average p-value

ADMM-TV v.s. LPA 0.937± 0.035 0.952 < 10−7 0.805± 0.116 0.830 < 10−7 0.740± 0.195 0.775 0.008± 0.079
LPA v.s. Restormer 0.877± 0.070 0.878 < 10−7 0.826± 0.053 0.826 < 10−7 0.773± 0.112 0.770 < 10−7

Restormer v.s. ADMM-TV 0.891± 0.042 0.885 < 10−7 0.701± 0.130 0.719 < 10−7 0.564± 0.306 0.625 0.071± 0.252

it is good for all reconstruction algorithms; if it is bad, it is bad
for all reconstruction algorithms. By inspecting the numbers
in Table VI, we further note that the Spearman’s correlation
coefficients are all in the range of 0.87 or above (for µPSNR).
For other evaluation metrics µSSIM and µLPIPS, we also see
a high correlation coefficient.

We believe that this finding is new and perhaps less ex-
pected. The implication is that if we need to design the

multiplexing pattern, there is no need to consider the image
reconstruction algorithm. This is a good news from the point
of a designer’s perspective. Co-optimization is not always
preferred because we do not want the patterns to be dependent
on a particular algorithm. If we can modularize the designs of
the two, the debugging and analysis of the methods will be
significantly easier.
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Fig. 8. Images reconstructed by different algorithms. Using the sub-optimal spatially-varying exposure pattern selected by SNR-Risk, all three reconstruction
algorithms fail to recover the texture of the hardwood flooring.

Fig. 9. µPSNR versus risk rank scatter plots. Even if we throw away bad
pixels, SNR-Risk still cannot generate a smooth curve. In contrast, SVE-Risk
produces a largely smooth curve. Color code: (SVE, SNR)

F. Real Experiments

In this section, we test the SVE-Risk and SNR-Risk on real
camera raw readouts and show the feasibility of the proposed
risk on real hardware for exposure pattern selection. Since no
SVE sensor is available to us, we interlace real camera raw
readouts to synthesize images captured with SVE patterns.

1) Experiment Settings and Procedure: For each high dy-
namic range scene, we use a Sony Alpha 7 II camera to
capture 9 differently exposed LDR frames. We capture 5 HDR
scenes in total. For ease of camera parameter calibration,
we keep the camera ISO at 100 and gradually increased the
exposure time from 1/80 sec to 3.2 sec, doubling from one
frame to the next. Our imaging model based risks require
knowledge of dark current and read noise level. For these
two parameters, we estimate them by capturing three dark
frames (ISO 100, exposure 1/80 sec, 0.2 sec, 1.6 sec). We
generate a pseudo ground truth radiance map by fusing all
9 frames. We synthesize all possible SVE captures using
following procedure:

A) Enumerate all possible SVE patterns with 9 different
exposures.

B) For each pattern, pick the corresponding frames from the
9 raw frames.

C) Interlace picked frames to generate an SVE frame by
taking every other pixel.

Then, we use our trained Restormer to reconstruct scene
radiance for every SVE captures and compare the reconstruc-
tion against the pseudo ground truth. We build the empirical
radiance histogram of a scene by treating the SVE capture
with exposure (1/80 sec, 1/20 sec, 1/5 sec, 4/5 sec) as the
pilot frame. We use this histogram to calculate SVE-Risk for

every pattern. For SNR-Risk, we used the pseudo ground truth
of a scene for calculation.

The camera response function (CRF) of Sony Alpha 7 II
camera raw readout is close to linear at ISO 100 except when
the photon charge accumulated is near full well capacity.
Therefore, we use a linear CRF and aggregate the entire
conversion from charge to final ADC readout (voltage follower
gain, column amplifier gain, and output amplifier gain) into
conversion gain term α in Eq. (1). The final parameters used
in this experiment are listed in table VII.

2) Results: We show the quantitative reconstruction quality
in terms of µPSNR in table VIII and two sets of qualitative
results in Figure 11. As evidenced in both quantitative and
qualitative results, using top pattern selected by SVE-Risk can
yield near-optimal final reconstruction.

TABLE VII
MEASURED PARAMETERS IN TERMS OF EQUIVALENT CHARGES FOR REAL

CAMERA EXPERIMENT

Gain α 5.25 e- per ADC Unit
Exposure τ 1/80 sec, 1/40 sec, ..., 1.6 sec
Read noise σread 1.3 e-
Camera response function Linear
dark current 1.4e-/sec
Clip threshold 84667e-

TABLE VIII
µPSNR OF IMAGES RECONSTRUCTED FROM RAW IMAGES INTERLACED

ACCORDING TO BEST POSSIBLE PATTERNS (ORACLE), PATTERNS
SELECTED BY SVE-RISK, AND PATTERNS SELECTED BY SNR-RISK,

COMPARED TO THE PSEUDO GROUND TRUTH

scene 1 scene 2 scene 3 scene 4 scene 5
oracle 44.5 44.4 35.5 40.3 49.5

SVE-Risk top-1 44.5 42.3 33.9 38.8 49.3
SNR-Risk top-1 41.8 38.1 30.0 27.5 47.6

V. CONCLUSION

In this paper, we report two findings about the design of
a spatially varying exposure multiplexing scheme. Firstly, we
show that the pixel-wise SNR is a poor metric to quantify
the performance of a multiplex pattern because it fails to
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Fig. 10. Tone-mapped ground truth HDR scene and cross comparisons between reconstruction algorithms in µPSNR. Each dot in the scatter plots represents
an exposure pattern. The x and y coordinates are µPSNR scores of the reconstructions by different algorithms on the image captured using that exposure
pattern. The average correlation coefficient of the three scatter plots is approximately ρ = 0.86.

(a)

(b) (c)
Fig. 11. Reconstruction results on real images and experimental setup. Input images with spatially-varying patterns are generated by interlacing raw images
captured at various exposures. For (a) and (b), we show full frames of pseudo ground truth in both linear scale and tone-mapped scale (top-left and bottom-left,
respectively). The linear scales are clipped at 95 percentile radiance level and are normalized to [0, 255]. We also show zoomed-in regions of tone-mapped
reconstructions on the best possible spatially-varying pattern via exhaustive search (oracle), the best pattern selected by SVE-Risk (SVE), and the best by
SNR-Risk (SNR). The reconstruction algorithm is Restormer for all images. (a) The texts and textures at low light shown in the orange box are preserved
equally well in all three reconstructions, but SNR-Risk reconstruction loses all details of high-light regions. (b) The dark regions (QR code, wall, etc.) of all
three reconstructions are indistinguishable, but SNR-Risk reconstruction loses outdoor high-light details (red arrows). (c) Experimental setup. We capture real
images of HDR scenes using a Sony Alpha 7 II camera.

differentiate the recoverable cases and the non-recoverable
cases. We circumvent the difficulty by proposing the SVE-
Risk. Our experiments show that the pattern ranking provided
by the SVE-Risk correlates extremely well with the ideal
ranking. Secondly, through a large-scale experiment, we find
that for spatially-varying-exposure imaging with tiled exposure
patterns, it is not necessary to design a pattern selection
algorithm tailored for specific reconstruction algorithm; the
margin of improvement for using tailored/co-designed pattern
selection algorithm is limited. Our finding is a significant
departure from recent work in computational photography

that advocates for sensor-algorithm co-optimization. To sensor
designers, this could be good news because sensor-algorithm
co-design is significantly more costly for production. However,
our bigger hope is that this counterexample can stimulate
more discussions about the necessity of sensor-algorithm co-
optimization, and under what context would it become bene-
ficial not to co-optimize.
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Supplementary Material

This supplementary document contains following:
• More details on parameters used for synthesis and reconstruction algorithms (I)
• More details on counting of number of non-saturated pixels within a neighborhood (II)
• Derivation for pattern equivalence class size and pseudo-code for efficient enumeration algorithm (III)

I. MORE EXPERIMENT DETAILS

We describe in more detail the parameters used for the data synthesis and reconstruction algorithms in this section.

A. Synthesis Parameters

Exact parameters used for synthesis is shown in table I

Symbol Meaning Values Used for Experiment
ADC Analog-to-Digital Converter 10-bit

ADC least significant bit resolution 8 e- at lowest gain, 0.1 e- at highest gain
ADC lower bound 1 e- at lowest gain, 0.0125 e- at highest gain
ADC upper bound 8185 e- at lowest gain, 102 e- at highest gain

Clip full well limit 8200 e-
τ exposure of individual pixel {×0.25, ×0.5, ×1} global exposure duration

global exposure 30ms
µdark dark current 0.2 e- at shortest exposure
QE quantum efficiency 80%
α conversion gain {1, 10, 80} (roughly correspond to ISO 100, 1000, 8000)
σread read noise 20 e- at lowest gain, 0.25 e- at highest gain
CRF Camera Response Function Linear

TABLE I
SYNTHESIS PARAMETERS

Note that
• wherever applicable, values shown are mapped from their original domain to number of electrons held in the potential

well of a pixel for ease of understanding.
• the spatially-varying-exposure can be achieved by either adjusting pixel-wise exposure duration or modulating light right

on top of the sensor array (sensor side modulation). In our experiment, we assumed using pixel-wise exposure duration
control.

• CRF is in general non-linear on most modern cameras, but since our data is synthesized and a non-linear CRF only
uniformly extends the dynamic range of all pixels, we adopt a linear CRF for simplicity

B. Reconstruction Algorithm Parameters

Parameters of LPA [1]/ADMM-TV [2] are tuned by performing grid search on HDR-Eye data set. Model of Restormer [3]
is trained on HDR-Eye [4] data set and hyper-parameters are set by evaluating trained model on SIGGRAPH17 [5] data set.

• LPA For LPA algorithm, we estimate each pixel with a window of size 7-by-7 and a Gaussian radial basis function with
scale parameter of 1.

• ADMM-TV For ADMM-TV, we use regularization coefficient of 1 and run at most 30 iterations for reconstruction. We
use scikit-image Chambolle total variation denoising implementation with default parameters for prior step.

• Restormer We use original author’s implementation1 with following hyper-parameters ”inp channels” : 1, ”out channels” :
1, ”dim” : 48, ”num blocks” : [4, 6, 6, 8], ”num refinement blocks” : 4, ”heads” : [1, 2, 4, 8], ”ffnexpansionfactor” :
2.66, ”bias” : false, ”LayerNormtype” : ”WithBias”, ”dual pixel task” : false. Since the network consumes a
gigantic amount of memory even at inference time, we train the network on a fixed spatial resolution of 128-by-128.
During test time, we partition image to 128-by-128 patches, reconstruct each single patch, and finally stitch patches back
to original image.
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Fig. 1. Example of counting number of non-saturated pixels with 3x3 neighborhood. The radiance levels and exposure/gain setting determines the saturation
case, but for each case, the number of saturated pixels is fixed. Note that this is only true under our small neighborhood and pixel variation assumptions.
We do not care about number of non-saturated pixels in a neighborhood for saturated exposure/gain element because saturated pixels’ risks are replaced with
their neighbors’ and the number is not used.

II. COUNTING NON-SATURATED NEIGHBORS FOR COMPUTING SVE-RISK

Under the assumptions of using small neighborhood (e.g. 3x3, 5x5) for computing SVE-Risk as well as adjacent pixels
having similar values, given our knowledge about how exposure/gain pattern is tiled across the entire sensor array, we can
count number of non-saturated pixels within the neighborhood of any pixel at any radiance level before we calculate risk. In
fact, we don’t even need the knowledge of radiance distribution or the exact exposure/gain value for the counting.

As illustrated in figure 1, given maximum reference voltage of ADC (Vmax) and exact exposure/gain values ({τ l}, {αl}),
a radiance level is mapped to a saturation case. This mapping is dependent on the exact values of θ as well as {τ l}, {αl}
and cannot be known beforehand. However, the mapping from saturation case to number of non-saturated pixels within a
pre-specified neighborhood is fixed. Therefore, once we determine the neighborhood size that we are gonna use for computing
the SVE-Risk, we can do the counting for every saturation case and each exposure/gain control element, and then construct a
hash table for usage when we calculate risk for a specific scene.

Numbers counted in this way are good approximations to the ground truth numbers for majority part of an image, and only
become inaccurate around thresholds Vmax

τlαl
and dark-bright region boundaries.

III. ENUMERATION SIZE DERIVATION AND IMPLEMENTATION

Given an SVE array with L unique exposure/gain levels (9 in our experiment) and M independently configurable expo-
sure/gain control elements (4 in our experiment), we want to evaluate risk on canonical patterns of each pattern equivalence
class. To do this, we need a method to enumerate these equivalence classes. The most straight forward, albeit naive, approach
is to enumerate all patterns and for each pattern, check whether another pattern within the same class has appeared before it.
This implementation requires at least LM enumerations and comparisons. Although one could carry out the naive approach
offline and cache equivalence classes for later usage, we show here that there is a much more elegant and efficient approach.
The efficient approach comes naturally as we derive equation for calculating number of equivalence classes.

Two patterns are equivalent if and only if they are permutations of each other. This means that M exposure/gain control
elements are indistinguishable, while L exposure/gain levels are distinguishable. The question of ”how many equivalence classes
are there” can therefore be rephrased as ”how many ways are there to assign M indistinguishable elements to L distinguishable
levels”.

We can assign M elements to 1 level (i.e. all exposure/gain control element use same value), 2 levels, or up to min(M,L)
different levels. Apparently, assigning M elements to 1 level is guaranteed to be non-redundant compared to assigning M
elements to 2 levels, if we ensure that each level chosen receive at least 1 element. It is also easy to see that given a subset of
chosen levels, if we replace any level within subset with another level outside of the subset, the possible assignments generated
by old subset is guaranteed to be non-redundant as compared to assignments generated by new subset.

1https://github.com/swz30/Restormer
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Now, suppose we have decided to use k levels and each level must be assigned at least one element, then there are
(
L
k

)
unique

combinations of levels, and each combination guarantees generated assignments are non-redundant. How many non-redundant
assignments are there for each combination? Well, imagine that M elements are in a list, then the question is same as how
many ways there are to partition the list into k non-empty sub-lists, which is

(
M−1
k−1

)
. Therefore, we have

(
L
k

)(
M−1
k−1

)
unique

assignments if we use k levels. Summing k from 1 to min(M,L) yields total number of unique assignments.
Following the counting process, we obtain an algorithm that directly enumerate on equivalence classes. We show pseudo-code

for an implementation in algorithm 1, 2

Algorithm 1 Pattern equivalence class enumeration
1: procedure ENUMERATE(Levels,M )▷ Enumerate pattern equivalence classes given allowed exposure/gain Levels and M

exposure/gain control elements
2: locations← [0, ...,M − 1] ▷ split location for partitioning exposure/gain control elements list
3: for k ← 1, ...,min(L,M) do ▷ Use k of L levels
4: indices← [0, ..., k − 1] ▷ index into exposure/gain level values
5: loc indices← [0, ..., k − 1) ▷ index into locations
6: for selected← NCHOOSEK(k, indices, Levels) do ▷ retrieve k levels to use
7: for splits← NCHOOSEK(k − 1, loc indices, locations) do ▷ retrieve k − 1 partition locations
8: Pattern← [M copies of selected[0]] ▷ initialize pattern to first selected level
9: for j ← [0, ..., k − 1) do ▷ assign desired levels to rest of pattern

10: Pattern [splits[j] : splits[j + 1]]← selected[j + 1]
11: end for
12: Do something with the generated Pattern (e.g. evaluate risk)
13: end for
14: end for
15: end for
16: end procedure

Algorithm 2 Retrieve non-redundant sub-list from a list
1: function NCHOOSEK(k, indices, optionList)▷ retrieve k elements from optionList using indices and update indices for

next retrieval
2: ret← []
3: for i← 0, ..., k − 1 do ▷ Retrieve elements from optionList
4: ret.append(optionList[indices[i]])
5: end for
6: for i← k − 1, ..., 0 do ▷ update indices for next retrieval
7: if indices[i] < optionList.length− k + i then
8: indices[i]← indices[i] + 1
9: break

10: else
11: mark indices[i] as undetermined
12: end if
13: end for
14: for i← 0, ..., k − 1 do
15: if indices[i] is undetermined then
16: indices[i]← indices[i− 1] + 1 if i > 0 else 0
17: end if
18: end for
19: return ret
20: end function
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