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Single-Image HDR Reconstruction Assisted Ghost
Suppression and Detail Preservation Network for

Multi-Exposure HDR Imaging
Huafeng Li, Zhenmei Yang, Yafei Zhang, Dapeng Tao, Zhengtao Yu

Abstract—The reconstruction of high dynamic range (HDR)
images from multi-exposure low dynamic range (LDR) images
in dynamic scenes presents significant challenges, especially in
preserving and restoring information in oversaturated regions
and avoiding ghosting artifacts. While current methods often
struggle to address these challenges, our work aims to bridge this
gap by developing a multi-exposure HDR image reconstruction
network for dynamic scenes, complemented by single-frame HDR
image reconstruction. This network, comprising single-frame
HDR reconstruction with enhanced stop image (SHDR-ESI) and
SHDR-ESI-assisted multi-exposure HDR reconstruction (SHDR-
A-MHDR), effectively leverages the ghost-free characteristic
of single-frame HDR reconstruction and the detail-enhancing
capability of ESI in oversaturated areas. Specifically, SHDR-ESI
innovatively integrates single-frame HDR reconstruction with
the utilization of ESI. This integration not only optimizes the
single image HDR reconstruction process but also effectively
guides the synthesis of multi-exposure HDR images in SHDR-A-
MHDR. In this method, the single-frame HDR reconstruction is
specifically applied to reduce potential ghosting effects in multi-
exposure HDR synthesis, while the use of ESI images assists
in enhancing the detail information in the HDR synthesis pro-
cess. Technically, SHDR-ESI incorporates a detail enhancement
mechanism, which includes a self-representation module and
a mutual-representation module, designed to aggregate crucial
information from both reference image and ESI. To fully leverage
the complementary information from non-reference images, a
feature interaction fusion module is integrated within SHDR-
A-MHDR. Additionally, a ghost suppression module, guided by
the ghost-free results of SHDR-ESI, is employed to suppress the
ghosting artifacts. Experimental results on four public datasets
demonstrate the efficacy and superiority of the proposed method.
The code is available at https://github.com/lhf12278/SAMHDR.

Index Terms—Single-image HDR reconstruction, dynamic
scene HDR imaging, enhancement stop image, self-
representation, mutual-representation.

I. INTRODUCTION

High dynamic range (HDR) imaging technology excels in
the portrayal of real-world images, offering a wider range of
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Fig. 1. (a) Reference image. (b) Enhancement stop image (ESI). ESI has
the capability to highlight subtle information in oversaturated regions of the
reference image.

brightness. This characteristic endows it widely applicable in
virtual reality, traffic surveillance, digital television, medical
imaging, and other fields. However, ordinary digital cameras
are constrained by their limited dynamic imaging range. The
captured images not only fall far short of the visible brightness
range to the human eye but also suffer from the loss of
detail information in overexposed regions. In the early stages
of HDR imaging, the acquisition of HDR images relied on
high-end cameras and dedicated sensors [1]–[3]. However, the
prohibitive cost of this approach posed a substantial barrier
to the widespread utilization of HDR imagery. If it were
feasible to synthesize or reconstruct HDR images from low
dynamic range (LDR) images captured by ordinary cameras,
the reliance on high-end cameras can be effectively eliminated.
Therefore, investigating the methodology for reconstructing
HDR images from LDR counterparts is the key to promoting
the development of HDR imaging.

Existing HDR imaging techniques can classified into two
categories: single-frame HDR image reconstruction (SHDR)
[4]–[7] and multi-exposure HDR synthesis [8]–[11]. SHDR
typically reconstructs the HDR image from a given single
LDR image. Most of traditional SHDR methods [12]–[15]
only focus on expanding the dynamic range of LDR image,
resulting in poor quality of the reconstructed HDR image.
Currently, deep learning based SHDR techniques [16]–[19]
have garnered significant attention in the research commu-
nity. Compared to traditional methods, deep learning based
approaches have improved the visual quality of reconstruction
results. However, owing to the non-uniform exposure inherent
in LDR images, there exist regions with missing information,
posing a challenge for SHDR methods to achieve visually
satisfactory results. This challenge is particularly pronounced
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in overexposed areas with severe information loss. In contrast
to SHDR, multi-exposure HDR synthesis methods can achieve
superior reconstruction results due to their ability to integrate
complementary information derived from different LDR im-
ages.

However, in dynamic scenes, multi-exposure HDR synthesis
often faces the risk of introducing ghosting artifacts, which
affects the visual quality of the reconstruction results. Around
ghost suppression, a series of effective methods have been
proposed. Those methods primarily eliminate ghosting induced
by target movement through either explicit alignment [20]–
[25] or implicit alignment [26]–[32] of input LDR images. In
explicit alignment methods, the common alignment strategy
is image alignment based on optical flow [33]. However, the
performance of such methods heavily relies on the accuracy of
optical flow estimation. When input images contain occluded
or overexposed regions, the performance of optical flow esti-
mation algorithms is adversely affected. This heightens the risk
of introducing ghosting artifacts into HDR images. Compared
to explicit alignment, implicit alignment methods can avoid
the challenges posed by optical flow estimation. Typically,
implicit alignment is carried out at the level of image features.
Common implicit alignment methods mainly include attention-
based methods [26]–[29] and deformable convolution-based
methods [30]–[32]. Attention-based methods mitigate ghosting
by highlighting crucial information and reducing the impact
of ghosting-related data in HDR reconstruction. In contrast,
deformable convolution-based methods suppress ghosting by
aligning input image features. However, these methods exhibit
limited performance in preserving valuable information and
recovering lost data in oversaturated regions, thereby limit-
ing the quality improvement of reconstructed HDR images.
Although literature [34] attempts to recover lost information
by generative adversarial network (GAN), the poor quality
of generated content results in unsatisfactory reconstruction
results.

To address the issues of multi-exposure HDR synthesis, this
paper proposes an end-to-end dual-branch directional promo-
tion network. This network consists of a single-frame HDR
image reconstruction with an embedded enhancement stop
image (SHDR-ESI) and an SHDR-ESI-assisted multi-exposure
HDR image reconstruction (SHDR-A-MHDR). SHDR-ESI
primarily serves to aid SHDR-A-MHDR in suppressing ghost-
ing artifacts within the fused features. Owing to the precise
spatial alignment between the reference image and ESI fed
into the SHDR-ESI branch, the HDR reconstruction results for
the single-frame HDR image are free from ghosting artifacts.
However, as SHDR-A-MHDR takes LDR images with differ-
ent exposures as inputs, its reconstruction results may contain
ghosting artifacts. Based on this fact, it is proposed to use
the information difference between SHDR-ESI and SHDR-A-
MHDR results to suppress non-shared information (ghosting
artifacts) and preserve shared information. Specifically, the
single-frame HDR reconstruction is applied to reduce potential
ghosting effects in multi-exposure HDR synthesis, while the
use of ESI assists in enhancing the detail information in the
HDR synthesis process. As shown in Fig. 1, ESI plays a
pivotal role in highlighting subtle information in oversaturated

regions. Therefore, the difficulty of information recovery in
these regions will be effectively reduced with the assistance
of ESI. To effectively utilize the information contained in
ESI and the existing information in the reference image, a
detail enhancement mechanism (DEM), consisting of a self-
representation module (SRM) and a mutual-representation
module (MRM), is designed in SHDR-ESI. SRM emphasizes
shared information in the reference image and ESI that is
beneficial for reconstruction quality. Moreover, the MRM is
employed to transfer detailed information from ESI to the
reference image, facilitating the aggregation of crucial infor-
mation in both ESI and the reference image. To fully exploit
complementary information in non-reference images, a feature
interaction fusion module (FIFM) is designed in SHDR-A-
MHDR. This module utilizes weights generated through the
interaction of features to selectively combine information from
input images. Simultaneously, it enhances the role of valuable
information in HDR image reconstruction. Additionally, to
further eliminate ghosting in the fused features, a ghost
suppression module (GSM) guided by intermediate features
from SHDR-ESI is introduced. The GSM not only serves
to suppress ghosting artifacts but also embeds the informa-
tion from ESI into the reconstructed features. This achieves
comprehensive preservation and restoration of features in
oversaturated regions of reference images. In summary, the
main contributions of this paper are as follows:

• An end-to-end dual-branch directional promotion net-
work is proposed to achieve multi-exposure HDR image
reconstruction and ghosting suppression. This network
consists of two core components: SHDR-ESI and SHDR-
A-MHDR. These components work in a unidirectional
promotion manner to effectively suppress ghosting arti-
facts.

• In SHDR-ESI, SRM and MRM are designed to effectively
highlight and aggregate important information from ESI
and the reference image, thus preventing the loss of
subtle information in oversaturated regions. Simultane-
ously, FIFM and GSM are constructed in SHDR-A-
MHDR. These modules emphasize the role of important
information in HDR image reconstruction and suppress
the influence of ghosting artifacts on fusion results while
integrating features from multi-exposure LDR images.

• The proposed method is evaluated through experiments
on four challenging datasets and compared with state-of-
the-art methods. Extensive experimental results demon-
strate its effectiveness and superiority. In addition, abla-
tion experiments are conducted on the core components of
the proposed method to demonstrate their effectiveness.

II. RELATED WORK

A. Single-frame HDR Reconstruction

The HDR reconstruction result obtained from a single image
remains unaffected by ghosting. However, the task is more
challenging due to the absence of supplementary information
from oversaturated or underexposed areas. For the HDR im-
age reconstruction from a single-frame LDR image, existing
methods primarily fall into two categories. The first category
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involves direct recovery of HDR image from single-frame
LDR image. Conversely, the second category encompasses
the mapping of a single-frame LDR image to multi-exposure
LDR images, which is subsequently followed by HDR image
reconstruction based on these multi-exposure images.

For the recovery of HDR image from a single LDR image,
Eilertsen et al. [19] proposed using a convolutional neural
network (CNN) to predict missing information in overexposed
areas and subsequently reconstructing the HDR image based
on this prediction. Marnerides et al. [35] introduced a network
called ExpandNet. To improve the quality of HDR image, this
network adopts a multi-scale structural framework to avoid the
introduction of upsampling layers. Yang et al. [36] introduced
an end-to-end deep reciprocating HDR transformation. This
transformation includes two CNN networks, one for HDR
image detail reconstruction and another for LDR image de-
tail correction. Liu et al. [37] embedded domain knowledge
related to LDR images into HDR image reconstruction model.
Furthermore, they modeled the process of HDR-to-LDR image
formation and employed three dedicated CNNs to reverse this
process, thereby achieving HDR image reconstruction. The
aforementioned single-frame LDR-to-HDR image recovery
approaches have indeed proven to be effective. However, it still
faces significant challenges in recovering missing information
and preserving details in oversaturated and undersaturated
regions, which limits the quality of the recovered images.

To mitigate the challenges faced in single-frame LDR-to-
HDR image recovery, the approaches of mapping a single
LDR image into multi-exposure LDR images and subsequently
utilizing multi-exposure image fusion for HDR image recon-
struction have been proposed [38]–[41]. Specifically, Endo
et al. [38] employed a supervised learning approach to trans-
form a single-frame LDR image into multiple LDR images
with different exposures. Then, the transformed results are
fused to obtain an HDR image. Lee et al. [39] utilized an
adversarial generative network to transform an LDR image
into multi-exposure stacks and consequently estimated the
HDR image from them. To address the inversion artifacts in
stack reconstruction-based methods, Kim et al. [40] proposed
a fully differentiable HDR imaging technique. Le et al. [41]
introduced a weakly supervised learning approach that aims
to reverse the physical formation process of HDR image
by training a model to generate multiple exposure images
from a single image. These SHDR methods not only reduce
the steps of image feature alignment and tone mapping but
also effectively prevent the introduction of ghosting artifacts.
However, these methods still face significant challenges in
recovering lost details in overexposed areas. In contrast, the
HDR image reconstruction methods based on multi-exposure
LDR images fusion can effectively address the issue of in-
formation loss caused by overexposure due to the inherent
information complementarity among multiple images.

B. Multi-Exposure HDR Image Reconstruction

Multi-exposure LDR images encompass a wealth of com-
plementary information, making them particularly valuable
for addressing the challenges encountered in SHDR. This

characteristic has attracted researchers’ attention. However,
reconstructing HDR images from multi-exposure LDR images
with large-scale foreground object motion poses the risk of
introducing ghosting artifacts. In the field of HDR reconstruc-
tion with ghosting artifact suppression, significant progress
has been made in recent years. Currently, deep learning-
based methods for multiple-exposure HDR reconstruction can
be divided into CNN-based methods and hybrid CNN and
Transformer methods.

1) CNN-Based Methods: Kalantari et al. [25] employed
optical flow algorithms to align the input LDR images with
a reference image. Subsequently, the aligned images are fed
into a CNN for fusion to reconstruct the HDR image. Wu
et al. [43] introduced the first non-optical flow-based deep
learning framework to address HDR imaging in dynamic
scenes. This method transforms the HDR imaging problem
into a non-optical flow conversion problem from LDR images
to HDR images. The transformed and fused LDR images are
reconstructed into HDR images using a CNN with an encoder-
decoder architecture. Due to the ability of attention mecha-
nisms to highlight useful information, Yan et al. [26], Deng
et al. [27] and Chen et al. [28] have proposed attention-based
methods incorporated into the CNN framework to suppress
ghost artifacts caused by large-scale foreground movement.
Yan et al. [29] proposed embedding a non-local operation into
the intermediate layers of a U-net architecture to remove ghost
artifacts introduced in HDR reconstruction by calculating
non-local correlations within the input images. Given that
deformable convolutions can dynamically adjust the pixels
involved in the computation to achieve feature alignment,
Pu et al. [30] and Liu et al. [31] have proposed HDR
reconstruction methods based on deformable convolutions.
Prabhakar et al. [44] proposed a bilateral guided upsampler
method for HDR reconstruction, which removes ghost in HDR
images through motion estimation and motion compensation.
Chung et al. [45] transformed the motion alignment problem
into a simple brightness adjustment problem. They adjusted the
brightness of reference image features using underexposed and
overexposed image features to generate well-aligned multi-
exposure features, which were then used to reconstruct HDR
images.

The aforementioned methods primarily focus on suppress-
ing ghost artifacts during the multi-exposure image fusion
process, but tend to neglect the recovery of lost information in
overexposed or underexposed regions. To address this issue,
Niu et al. [34] employed a GAN to integrate features from
multi-exposure images and recover information in overexposed
regions. Although this method is somewhat effective, it may
not focus extensively on ghost artifact suppression. Recently,
Yan et al. [46] proposed an HDR reconstruction network
based on conditional diffusion model [47]. They formulated
the task of HDR deghosting as an image generation problem,
leveraging LDR features as conditions for the diffusion model.
This introduces a new perspective to the field of HDR image
reconstruction. Nevertheless, a significant challenge remains
in achieving complete suppression of ghosting within multi-
exposure HDR synthesis.
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Fig. 2. Overall framework of the proposed method. (a) the main network consists of the SHDR-ESI branch and the SHDR-A-MHDR branch, where SHDR-
ESI primarily assists SHDR-A-MHDR in suppressing ghosting artifacts within the fused features. SRM and MRM are employed to highlight and aggregate
valuable information from both the reference image and ESI, within the SHDR-ESI branch. In the SHDR-A-MHDR branch, FIFM is designed to merge
the information from input images and enhance the role of valuable information in HDR image reconstruction. Subsequently, GSM is employed to mitigate
potential ghosting artifacts within the fused features. (b) the feature extraction network Ei(i = 1,2,3,4) is composed of a 3×3 convolution and two CA-ViT
[42]. (c) R-Subblock consists of three residual blocks (Res-blocks).

2) Hybrid CNN and Transformer Methods: Transformer
architecture excels in capturing global image features more
effectively. Consequently, HDR image reconstruction methods
based on Transformer have been proposed. Song et al. [48]
proposed generating a mask for the ghost region from the
input LDR images, dividing the given images into ghost and
non-ghost regions, and adaptively selecting either CNN or
Transformer for HDR reconstruction. Liu et al. [42] utilized
CNN to extract features from the input LDR images and
attention mechanisms to suppress ghosting artifacts. Finally, a
Swin-Transformer embedded with channel attention was used
to reconstruct the HDR image. Yan et al. [49] developed a
network called HyHDRNet for reconstructing HDR images
from multi-exposure LDR images. This network consists of a
CNN-based content alignment sub-network and a Transformer-
based fusion sub-network. Subsequently, Yan et al. [50]
combined CNN and multi-scale Swin-Transformer residual
blocks and introduced a two-stage training mode to achieve
semi-supervised HDR imaging. Chen et al. [51] employed
deformable convolutions to align the LDR image features
extracted by CNN and introduced Transformer in the fusion
process to model long-range relationships between features.
The methods mentioned above primarily aim to address the
impact of ghosting on the HDR image. Certain approaches
comprehensively address the issues of ghosting suppression
and information loss in overexposed regions. However, these
methods may not effectively address the preservation of
useful information and the recovery of lost information in
underexposed areas, simultaneously. This limitation hinders
the potential for enhancing the visual quality of reconstruc-

tion results. In contrast to the aforementioned approaches,
this paper introduces a novel paradigm by integrating ghost
suppression, information preservation and recovery within a
unified framework. It presents a distinctive method for multi-
exposure HDR reconstruction in dynamic scenes guided by
single-frame HDR reconstruction.

III. THE PROPOSED METHOD

A. Overview

The overall structure of the proposed method is mainly
composed of single-frame HDR reconstruction with ESI em-
bedding (SHDR-ESI) and SHDR-ESI-assisted multi-exposure
HDR reconstruction (SHDR-A-MHDR), as illustrated in Fig.
2. SHDR-ESI is used to assist SHDR-A-MHDR in suppressing
ghosting artifacts and enhancing the information in overex-
posed regions. To ensure the high-quality HDR image pro-
duced by SHDR-ESI, we propose integrating ESI into SHDR
process. Concurrently, a DEM, composed of an SRM and an
MRM, is employed to highlight critical information and ag-
gregate complementary feature effectively. Within the SHDR-
A-MHDR framework, both reference and non-reference image
features are fused through the FIFM. Furthermore, the interme-
diate features derived from SHDR-ESI are fed into the GSM
to effectively suppress ghosting artifacts.

B. Image Preprocessing

Assuming there are three multi-exposure LDR source im-
ages, denoted as {L1,L2,L3}. A similar processing approach
can be applied for additional source images. Typically, to
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Fig. 3. Illustration of the self-representation module (SRM).

achieve satisfactory reconstruction results, it is advisable to
perform gamma correction on the source images, i.e., mapping
the LDR images to HDR domain to obtain their corresponding
HDR images {H1,H2,H3}:

Hi =
L

γ

i
ti
,(i = 1,2,3) (1)

where ti denotes the exposure time of Li, and γ is the gamma
correction parameter, typically set to 2.2 based on empirical
knowledge [11].

After the correction, Li and Hi are concatenated on the
channel dimension to obtain Xi = [Li,Hi], which is then
used as the input for the feature extraction network. In multi-
exposure HDR reconstruction, a medium exposure image is
usually selected as the reference image. The complementary
information from other exposure images is integrated into the
reference image for HDR reconstruction. In the SHDR-ESI,
the reference image is also used as the base image for HDR
reconstruction.

Owing to non-uniform exposure levels, it’s worth noting
that the reference image also contains oversaturated areas. In
these regions, certain details may not be distinctly displayed,
consequently impacting SHDR process. To address this issue,
this paper introduces an image edge-detail correction method
called enhancement stop. This process is described in Equa-
tions (2) and (3) as follows:

L2,PT (x,y) =
√

L2,P (x,y)
2 +L2,T (x,y)

2 (2)

L2,m (x,y) =

{
1, L2,PT (x,y)≥ c
L2,PT (x,y) , otherwise

(3)

where L2,P (x,y) and L2,T (x,y) respectively represent the
values of channel P and channel T at position (x,y) after L2 is
transformed into the IPT color space. L2,m is the enhancement
stop image. c is a constant, commonly set to 1. For further
details about the enhancement stop image, please refer to [52].

C. Single-Frame HDR Reconstruction with ESI Embedding

The single-frame HDR image reconstruction branch in this
study is designed to assist the multi-exposure HDR reconstruc-
tion branch in producing higher-quality HDR images. Typi-
cally, the reference image serves as the input for single-frame

HDR image reconstruction. To improve the detail in over-
saturated areas of the reference image, this paper proposes
a single-frame HDR image reconstruction method embedded
with ESI (SHDR-ESI). Furthermore, the DEM, comprising an
SRM and an MRM, is utilized to recover and highlight the
missing details and subtle information in overexposed areas,
utilizing the detailed information provided by ESI.

1) Self-representation Module: The SRM primarily serves
to emphasize the role of important information in HDR
reconstruction. Its detailed structure is depicted in Fig. 3. Let
the reference image be X2 and the ESI be L2,m. Features
F2 ∈ RC×H×W and F2,m ∈ RC×H×W can be obtained after
the images X2 and L2,m pass through the feature extraction
networks E2 and E4, respectively, which are designed based on
CA-ViT [42]. F2 and F2,m are separately fed into the SRM.
Following their input, they traverse through a normalization
layer and subsequently undergo three parameter-unshared fea-
ture extraction blocks, each consisting of a 1×1 convolutional
layer and a 3×3 depthwise separable convolutional layer. The
outcomes are then rearranged to yield features Q2, K2, V2 and
Q2,m, K2,m, V2,m.

L2,m carries a wealth of edge detail information from
the source images, which corresponds to the salient detail
information in X2. If L2,m is employed to emphasize the
detail information in X2, it will help to improve the quality of
HDR reconstruction results. To this end, we propose a feature
enhancement method with dynamic parameter modulation. As
shown in Fig. 3, this method initially utilizes F2 to find the
corresponding features in F2,m and subsequently enhances
them as follows:

F att
2 =Conv1×1

(
So f tmax

(
Q2(K2,m)

T

s2

)
V2

)
(4)

where s2 is a learnable scale parameter, Conv1×1 represents a
1× 1 convolutional layer. Similarly, we can use F2,m to find
the corresponding features in F2, and enhance the relevant
features as follows:

F att
2,m =Conv1×1

(
So f tmax

(
Q2,m(K2)

T

s2,m

)
V2,m

)
(5)

where s2,m is a learnable scale parameter.

To prevent the information loss of input features, it is
common practice to directly supplement the original features
F2 and F2,m into F att

2 and F att
2,m. Although this approach is

effective, it falls short in effectively highlighting the role of key
information in both F2 and F2,m during HDR reconstruction.
The feature enhancement method we propose, incorporating
dynamic parameter modulation, offers a solution to this chal-
lenge. To obtain these dynamic modulation parameters (γ2,β2)
and (γ2,m,β2,m), the paper suggests generating them based on
features F att

2 and F att
2,m by employing a combination of a 1×1

convolutional layer, a ReLU activation function, and another
1×1 convolutional layer.

The dynamic parameters (γ2,β2) and (γ2,m,β2,m) are used to
modulate F2 and F2,m, respectively. The modulated features
are individually added to F att

2 and F att
2,m to obtain enhanced
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Fig. 4. Illustration of the mutual-representation module (MRM).

features F
′
2 and F

′
2,m:

F
′
2 = F att

2 +(F2 ⊙ γ2 +β2) (6)

F
′
2,m = F att

2,m +(F2,m ⊙ γ2,m +β2,m) (7)

where ⊙ represents the Hadamard product.

2) Mutual-representation Module: The SRM is primarily
designed to highlight the features relevant to the HDR recon-
struction results. However, it does not possess the capability
to transfer the information from ESI to the features of X2
to compensate for the loss of information in the overexposed
areas of X2. To address this issue, this paper introduces an
MRM, depicted in Fig. 4, to facilitate the mutual transfer of
information between X2 and L2,m. In this process, we utilize
the features from X2 as one set of bases to represent L2,m,
concurrently employing the features from L2,m as another set
of bases to represent X2, thereby achieving the mutual transfer
of information.

The MRM, similar to the SRM, takes F2 and F2,m as inputs.
The feature extraction block of MRM is also composed of
parallel layers, including LayerNorm, a 1× 1 convolutional
layer, and a 3× 3 depth-wise separable convolutional layer.
The results of F2 and F2,m passing through three feature
extraction blocks are denoted as Q̃2, K̃2, Ṽ2 and Q̃2,m, K̃2,m,
Ṽ2,m, respectively.

To minimize information loss during the feature propagation
process, this paper introduces a pair of modulation layers
to modulate Ṽ2 and Ṽ2,m with F2 and F2,m, respectively,
before performing information exchange. This procedure aims
to highlight the crucial information in Ṽ2 and Ṽ2,m. In order
to achieve the interaction of information between F2 and
F2,m, the mutual representation operation in this paper can
be formulated as follows:

F̃2 =Conv1×1

(
So f tmax

(
Q̃2(K̃2,m)

T

s̃2

)
(
Ṽ2,m ⊙ γ̃2 + β̃2

))
+F2

(8)

F̃2,m =Conv1×1

(
So f tmax

(
Q̃2,m(K̃2)

T

s̃2,m

)
(
Ṽ2 ⊙ γ̃2,m + β̃2,m

))
+F2,m

(9)

Fig. 5. Detailed structure of the feature interaction fusion module (FIFM).

where modulation parameters (γ̃2, β̃2) and (γ̃2,m, β̃2,m) can be
obtained from the following equations:

(γ̃2, β̃2) =Conv1×1(ReLU(Conv1×1(F2))) (10)

(γ̃2,m, β̃2,m) =Conv1×1(ReLU(Conv1×1(F2,m))) (11)

3) Reconstruction Network: The features F
′
2, F

′
2,m, F̃2 and

F̃2,m are concatenated along the channel dimension and then
processed through a network denoted as Er. The outcome
derived from this process is concatenated with F2 and then fed
through a 1× 1 convolutional layer to obtain the aggregated
features F 1

s of the first detail enhancement module (DEM).
This process can be formulated as follows:

F 1
s =Conv1×1

([
Er
([
F

′
2,F

′
2,m, F̃2, F̃2,m

])
,F2

])
(12)

where [·, ·] denotes concatenation operation. F 1
s and F2,m can

be utilized as inputs for the second DEM to yield F 2
s , and this

process can be iteratively continued. Following N DEM , the
aggregate feature F N

s is obtained.
Using F N

s and F2 as the inputs of the reconstruction
network, we obtain the final HDR image Hs of SHDR-ESI. As
shown in Fig.2, the reconstruction network used in this paper
is mainly composed of three R-Subblocks, each containing
three residual blocks (Res-blocks).

D. SHDR-ESI-assisted Multi-exposure HDR Reconstruction

Because SHDR directly generates HDR images from the
reference image, it can avoid the ghosting artifacts introduced
by multi-exposure images fusion. In view of this characteristic
of SHDR, this paper proposes SHDR-A-MHDR, which is
intended to use the results of single-frame HDR reconstruction
to suppress the ghosting artifacts in the results of multi-
exposure HDR reconstruction. Specifically, FIFM is employed
to merge the features from both the reference and non-
reference images in a weighted manner. In addition, the GSM,
which is guided by the ghost-free intermediate features derived
from SHDR-ESI, is utilized to effectively suppress potential
ghosting artifacts and enhance the valuable information within
the fused features.

1) Feature Interaction Fusion Module: In HDR reconstruc-
tion, effectively highlighting the features that contribute to the
improvement of reconstruction quality can enhance the quality
of HDR image. To this end, this paper introduces an FIFM
designed to facilitate information interaction between the
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reference image and other multi-exposure images. It enables
the modulation of individual pixels in spatial positions based
on the outcomes of this interaction. The specific structure of
the FIFM is illustrated in Fig.5. To enhance the quality of
HDR reconstruction image, this paper utilizes convolutional
layers with a consistent structure to further extract features
from both the reference feature F2 and the non-reference
features Fi(i = 1,3). These extracted features are represented
as FConv

2 ∈ RC×H×W and FConv
i ∈ RC×H×W (i = 1,3):

FConv
2 = LReLU(Conv3×3(LReLU(Conv3×3 (F2)))) (13)

FConv
i = LReLU(Conv3×3(LReLU(Conv3×3 (Fi)))) (14)

where LReLU and Conv3×3 represent the LeakyReLU activa-
tion function and a 3×3 convolution respectively. In order to
more effectively utilize the complementary information from
input features F2, Fi and features FConv

2 , FConv
i , we cross-

concatenate them to create FCat
2,i =

[
F2,F

Conv
i

]
and FCat

i =[
Fi,F

Conv
2

]
to promote information transfer between image

features with different exposure.
To independently modulate the feature at each spatial po-

sition within the interaction results FCat
i and FCat

2,i , we have
devised a modulation parameter generation module (MPGM).
The input of the MPGM is represented as F Fusion

i = [F2,Fi],
which is obtained by concatenating the original features.
In the MPGM, we design two sets of multi-scale feature
extraction blocks (MFEBs) composed of 3×3, 5×5 and 7×7
convolutional layers combined with global average pooling
(GAP) to further extract features from F Fusion

i . The features
at different scales in each MFEB are concatenated to obtain
F̃ Fusion

2,i and F̃ Fusion
i . Subsequently, they are processed through

a feature extraction block. The results can be represented as
follows:

F w
2,i = Sigmoid

(
BN

(
Conv3×3

(
F̃ Fusion

2,i
)))

(15)

F w
i = Sigmoid

(
BN

(
Conv3×3

(
F̃ Fusion

i
)))

(16)

where Sigmoid and BN represent the sigmoid activation func-
tion and batch normalization layer, respectively. Based on F w

2,i
and F w

i , parameters for modulating F cat
2,i and F cat

i can be
obtained:

{W2,i,Wi}= So f tmax
([
F w

2,i,F
w
i
])

(17)

where W2,i(·, ·, ·)+Wi(·, ·, ·) = 1 (i = 1,3). Contrasting with
traditional attention mechanisms that typically rely on spatial
or channel attention, our unique modulation parameter predic-
tion mechanism introduces a novel approach. It independently
assigns specific weights to features at each spatial position,
circumventing the need for conventional spatial and channel
attention. This distinct capability allows for the targeted en-
hancement of features at individual spatial positions, offering a
more refined and adaptable control over the feature processing
compared to existing methods. The features modulated by
W2,i and Wi can be represented as:

F2,i =Conv1×1
(
W2,i ⊙FCat

2,i +Wi ⊙FCat
i

)
(18)

Following the aforementioned procedure, we can obtain the
features F2,1 and F2,3, which are the results of the interaction

Fig. 6. Illustration of the ghost suppression module (GSM).

and fusion between the reference image and the overexposed
and underexposed images, respectively. These features are
concatenated and subsequently processed through a 1 × 1
convolution to generate the fused feature F 0

M .
2) Ghosting Suppression Module: The FIFM effectively

integrates the features from both the reference and non-
reference images. However, owing to object movement in
multi-exposure images, the direct utilization of the output
features from the FIFM for HDR image reconstruction un-
avoidably gives rise to ghosting artifacts. To address this issue,
taking into account the absence of ghosting artifacts in the
SHDR results, this paper proposes a ghost artifact suppression
method guided by SHDR. The method leverages the informa-
tion disparity between the SHDR and multi-exposure HDR
synthesis results to effectively suppress ghosting artifacts.

Specifically, to fully utilize the valuable information in the
fusion feature derived from FIFM, this paper designs a ghost
suppression module (GSM) to suppress ghosting artifacts.
This module adopts a cross-attention mechanism incorporating
ReLU and RReLU activation functions, as shown in Fig.6. In
the GSM, Q1

S is obtained according to the following equation:

Q1
S =Conv3,3(Conv1×1(F

1
S )) (19)

where Conv3,3 represents a 3×3 depthwise separable convo-
lution. Correspondingly, the input feature F 0

M undergoes the
similar operations to derive features K1

M and V 1
M:

K1
M = ReLU

(
Conv3,3

(
Conv1×1

(
F 0

M
)))

(20)

V 1
M = RReLU

(
Conv3,3

(
Conv1×1

(
F 0

M
)))

(21)

where RReLU =−min(0,x). Although the convolutional oper-
ation structure employed in K1

M and V 1
M remains consistent,

it’s important to note that the parameters of the convolutional
layers are not shared.

In Eqs. (20) and (21), to emphasize the significance of the
ignored information in F 0

M , this paper employs two different
activation functions. Specifically, the ReLU function activates
features that contribute positively to enhancing reconstruction
quality and possess amplitudes greater than 0, whereas the
RReLU function is responsible for activating features that pos-
itively influence reconstruction quality and exhibit amplitudes
less than 0. In light of the complementary characteristics of
features K1

M and V 1
M , we concatenate them and then process

them through a 1×1 convolution to achieve feature K̃1
M .

Q1
S originates from SHDR-ESI, and it is inherently free

from ghosting artifacts. Consequently, the shared information
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between Q1
S and K̃1

M contributes positively to the HDR image
reconstruction, while the disparate information is regarded as
containing ghosting artifacts. If the input feature can be ad-
justed based on the similarity between Q1

S and K̃1
M , it becomes

feasible to suppress ghosting artifacts while accentuating the
information that positively contributes to the reconstruction
process. To attain this objective, we employ the following
method for feature purification:

F 1
M =Conv1×1

[
Conv1×1

(
So f tmax

(
Q1

S(K̃
1
M)T

s

)
V 1

M

)
+F 0

M ,F 1
S

]
(22)

where s is a learnable scale parameter. F 1
M represents the

output of the first GSM, and the output of the last GSM is
denoted as F N

M . F N
M , along with the reference image feature

F2, is fed into the reconstruction network to obtain the HDR
image.

E. Loss Function

In practice, HDR images are typically exhibited following
a tone mapping process. Therefore, training an HDR recon-
struction network on tone-mapped images proves to be a more
effective approach compared to direct training in the HDR
domain. Given an image H in the HDR domain, we use µ-
law to perform tone mapping on H:

T (H) =
log(1+µH)

log(1+µ)
(23)

where µ is the compression factor, and T (H) represents the
tone-mapped image. Following [25], we set µ to 5000.

In this paper, we use the following loss function to update
the network parameters in an end-to-end manner:

L = LM +λLS (24)

where λ is a hyperparameter, LM represents the loss function
for the SHDR-A-MHDR network, and LS represents the loss
function for the SHDR-ESI network. LM and LS can be
formulated as:

Ll = Ll,re +αLl,ssim +βLl,gradient (25)

where l = {M,S}. α and β are hyperparameters. Ll,re is the
reconstruction loss, Ll,ssim is the structural similarity loss, and
Ll,gradient represents the gradient loss. The definition of Ll,re
in this paper is:

Ll,re =
∣∣∣∣T (Hl)−T (HG)

∣∣∣∣
1 (26)

where HS and HM represent the HDR images generated by
SHDR-ESI and SHDR-A-MHDR, respectively, while HG rep-
resents the ground truth. To ensure a high structural similarity
between the generated HDR image and the ground truth, Ll,ssim
used in this paper is defined as follows:

Ll,ssim = 1−SSIM(T (Hl),T (HG)) (27)

To ensure that the generated HDR image contains more
edge details, this paper uses the Sobel operator to estimate
the gradient maps of the generated image and the ground

truth, then computes the l1 loss on the estimated gradient map.
Therefore, the Ll,gradient in this paper is defined as follows:

Ll,gradient =
∣∣∣∣▽ (Hl)−▽(HG)

∣∣∣∣
1 (28)

where ▽(·) represents the Sobel operator.

IV. EXPERIMENTS

A. Experimental Settings

Datasets. To evaluate the effectiveness of the proposed
method, we conduct performance validation on the Kalantari’s
[25], Hu’s [53], Sen’s [54] and Tursun’s [55] datasets, and
compare its performance with several state-of-the-art methods.
Kalantari’s dataset contains 74 groups of training and 15
groups of test samples. Each sample contains three LDR
images with exposure values of {−2,0,+2} or {−3,0,+3}
respectively, and each set of images is accompanied by ground
truth data. Hu’s dataset consists of 100 samples, each com-
prising three LDR images with exposure values {−2,0,+2}.
Following [49], we designate 85 samples as the training set and
the remaining 15 samples as the test set. Sen’s and Tursun’s
datasets provide multi-exposure LDR images for 8 and 16
scenes, respectively, and neither of these datasets includes
ground truth HDR images. We train the proposed network
using the training set of Kalantari’s dataset and subsequently
tested it on the test set of Kalantari’s dataset, as well as Sen’s
and Tursun’s datasets. In addition, we train and test the model
on Hu’s dataset.

Evaluation Metrics. In order to quantitatively evaluate the
quality of reconstruction results, PSNR-L, SSIM-L, PSNR-
µ , SSIM-µ and HDR-VDP-2 [56], [57] are used as objective
evaluation metrics for the datasets with ground truth. For
datasets without ground truth, BTMQI [58], MEF-SSIMd
[59] and UDQM [55] are utilized. PSNR-L and SSIM-L
evaluate the similarity between the reconstructed HDR image
and the ground truth by calculating the peak signal-to-noise
ratio (PSNR) and structure similarity index measure (SSIM)
in the linear domain. PSNR-µ and SSIM-µ evaluate the
quality of the reconstructed results by calculating the PSNR
and SSIM between the images generated after µ-law tone
mapping and the ground truth images also processed with µ-
law tone mapping. HDR-VDP-2 assesses the visual quality
of the reconstructed HDR image by predicting the difference
between the reconstructed HDR image and the ground truth.
BTMQI assesses the overall quality of a tone-mapped HDR
image by quantifying its information entropy, naturalness
and structural information. A smaller BTMQI value indicates
a higher reconstruction quality. MEF-SSIMd evaluates the
comprehensive assessment of the HDR reconstruction image
by individually measuring SSIM between it and corresponding
sequences in the dynamic and static regions, followed by
averaging the quality measurements from these two regions.
UDQM evaluates the suppression effects on ghosting artifacts
in reconstructed HDR images. This is achieved through the
integration of blending metric (QB), gradient inconsistency
metric (QG), visual difference metric (QV ) and dynamic range
metric (QD).
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Fig. 7. Comparison of HDR reconstruction results by different methods on the “Building” scene in the Kalantari’s test dataset.

Fig. 8. Comparison of HDR reconstruction results by different methods on the “Parking” scene in the Kalantari’s test dataset.

Implementation Details. The proposed method is imple-
mented using the PyTorch framework and trained on a single
NVIDIA 3090 GPU. In the experiments, the batch size is set
to 2, and the model is trained for a total of 5000 epochs.
In the training process, an Adam optimizer is used with an
initial learning rate of 2e-4, weight decay set to 0, momentum
values of β1=0.9 and β2=0.99, and ε set to 1e-8 for parameter

updates. The learning rate is decayed by a factor of 0.1 every
2000 epochs.

B. Comparison with State-of-the-Art Methods

To validate the effectiveness of the proposed method, we
conduct experiments comparing it with several state-of-the-art
methods on the Kalantari’s, Hu’s, Sen’s and Tursun’s datasets.
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Fig. 9. Comparison of HDR reconstruction results by different methods on the “089” scene in the Hu’s dataset.

TABLE I
QUANTITATIVE EVALUATION OF THE RECONSTRUCTION RESULTS ON KALANTARI’S TEST SET AND HU’S TEST SET FOR DIFFERENT METHODS. BEST

AND RUNNER-UP VALUES ARE IN BOLD AND UNDERLINED, RESPECTIVELY.

methods
Kalantari’s dataset Hu’s dataset

PSNR-µ SSIM-µ PSNR-L SSIM-L HDR-VDP-2 PSNR-µ SSIM-µ PSNR-L SSIM-L HDR-VDP-2

Sen [54] 40.95 0.9832 38.31 0.9753 60.33 - - - - -

Kalantari [25] 42.74 0.9877 40.72 0.9824 62.87 41.60 0.9914 43.76 0.9938 64.70

DeepHDR [43] 41.62 0.9865 40.88 0.9858 57.37 44.70 0.9945 44.27 0.9960 68.90

AHDRNet [26] 43.74 0.9913 41.69 0.9869 63.51 45.80 0.9956 46.51 0.9985 70.65
NHDRRNet [29] 42.41 0.9887 41.08 0.9861 62.31 45.15 0.9945 48.75 0.9989 67.45

HDR-GAN [34] 43.92 0.9905 41.57 0.9865 64.70 45.86 0.9956 49.14 0.9981 61.12

HDRI [45] 43.65 0.9894 41.67 0.9867 64.46 43.77 0.9930 46.31 0.9975 67.82

HDR-Transformer [42] 44.32 0.9916 42.18 0.9884 64.63 46.14 0.9961 50.04 0.9988 68.92

SGARN [11] 43.96 0.9907 41.51 0.9874 65.11 45.26 0.9944 48.58 0.9983 70.18

Ours 44.39 0.9915 42.20 0.9891 65.21 46.98 0.9961 52.49 0.9991 69.76

These methods include Sen’s method [54], Kalantari’s method
[25], DeepHDR [43], AHDRNet [26], NHDRRNet [29], HDR-
GAN [34], HDRI [45], HDR-Transformer [42] and SGARN
[11]. Among these, Sen’s method is patch-based, while the
rest are deep learning-based methods.

1) Experiments on Kalantari’s dataset: To validate the
effectiveness of our method, we initially compare the perfor-
mance of different methods on the Kalantari’s dataset. From
the boxed region in Fig. 7, it can be observed that Sen’s
method tends to make errors when searching for corresponding
patches among images with different levels of saturation. This
leads to a lower quality of reconstructed HDR images. Kalan-
tari’s method introduces ghosting artifacts in the reconstructed
results due to inaccurate optical flow estimation. DeepHDR
does not consider the recovery of missing details in saturated

areas, resulting in significant detail loss in the generated HDR
images. AHDRNet utilizes attention to suppress ghosting arti-
facts, but there is still room for significant improvement in the
visual quality of the reconstructed HDR images. NHDRRNet
and HDR-GAN do not consider the spatial inconsistency
caused by moving objects, resulting in noticeable ghosting
artifacts in the reconstructed results. HDRI and SGARN do not
sufficiently address the recovery of details lost in overexposed
areas, resulting in less clear details in the reconstructed HDR
images. Moreover, due to the lack of an effective ghost artifact
suppression mechanism, HDR-Transformer exhibits poor per-
formance in ghost artifact suppression. In contrast, our method
exhibits excellent performance in ghost artifact suppression
and detail recovery. This is achieved through the incorpora-
tion of ESI to complement details in oversaturated regions
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Fig. 10. Comparison of HDR reconstruction results by different methods on Sen’s dataset.

Fig. 11. Comparison of HDR reconstruction results by different methods on Tursun’s dataset.

and by utilizing the ghost-free SHDR results to effectively
suppress potential ghost artifacts in the multi-exposure HDR
synthesis results. Fig. 8 presents the reconstruction results of
comparative methods on the Kalantari’s test dataset in the
Parking scene. Similar conclusions can also be drawn from
the comparative results of Fig. 7.

To objectively evaluate the reconstruction quality of differ-
ent methods, Table I presents the average objective evaluation
results of different methods on the 15 test scenes from the

Kalantari’s dataset. These results indicate that the proposed
method achieves the best performance in terms of PSNR-
µ , PSNR-L, SSIM-L and HDR-VDP-2, and it also performs
second best in terms of SSIM-µ . This further confirms the
effectiveness of the proposed method.

2) Experiments on Hu’s dataset: In Fig. 9, a visual com-
parison on Hu’s dataset between our proposed method and
other state-of-the-art methods is presented. The comparison
clearly shows that Kalantari’s method tends to introduce color
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TABLE II
QUANTITATIVE EVALUATION OF THE RECONSTRUCTION RESULTS ON
SEN’S DATASET AND TURSUN’S DATASET FOR DIFFERENT METHODS.

methods
Sen’s dataset Tursun’s dataset

BTMQI MEF-SSIMd BTMQI MEF-SSIMd UDQM
Sen [54] 3.7242 0.7896 4.2771 0.6557 0.3938

Kalantari [25] 3.7679 0.7636 4.7089 0.6532 0.3984
DeepHDR [43] 3.7744 0.7990 4.1628 0.6359 0.4147
AHDRNet [26] 3.6877 0.7957 3.9205 0.6570 0.4260

NHDRRNet [29] 3.8326 0.7908 3.9008 0.6278 0.3660
HDR-GAN [34] 7.1340 0.7992 7.0330 0.6663 0.4118

HDRI [45] 5.5036 0.8024 5.0423 0.6283 0.4098
HDR-Transformer [42] 2.9057 0.7956 3.4278 0.6372 0.4142

SGARN [11] 3.6473 0.8003 3.7816 0.6612 0.4311
Ours 2.7677 0.8033 3.2496 0.6686 0.4329

distortion in the reconstructed HDR images. While the results
from DeepHDR and AHDRNet show potential, they still leave
considerable room for improvement in visual quality. Both
NHDRRNet and HDR-GAN exhibit notable artifacts in their
reconstructed results, with HDR-GAN also displaying color
distortion. The HDRI method, although effective, requires fur-
ther enhancement in recovering content from saturated areas.
SGARN and HDR-Transformer, on the other hand, perform
less effectively in suppressing ghosting artifacts. In contrast,
our proposed method excels in ghosting artifact suppression,
demonstrating superior performance. Furthermore, Table I lists
the average objective evaluation results for various methods
across the 15 testing scenes of Hu’s dataset. These results
clearly indicate that our method outperforms others in most
metrics, thereby reinforcing the effectiveness of our proposed
approach.

3) Experiments on Sen’s dataset: To further validate the
effectiveness of the proposed method, we conduct a compar-
ative analysis of the reconstruction performance of different
methods on Sen’s dataset. From the enlarged region in Fig.
10, it is evident that the compared methods exhibited limited
information recovery capabilities, resulting in the inefficient
recovery of lost information in the overexposed areas. In
contrast, the model proposed in this paper reconstructed HDR
images with clearer details and minimal distortion, ultimately
yielding optimal visual quality in the reconstructed results.
The quantitative evaluation results presented in Table II indi-
cate that our proposed method exhibits superior performance
compared to other methods, achieving the best results in
both BTMQI and MEF-SSIMd. It should be noted that the
Sen’s dataset does not provide the required camera parameters
(ExposeTime, ISO, and F-Number) for calculating UDQM
metric. Therefore, the performance of different methods on the
Sen’s dataset is only evaluated on BTMQI and MEF-SSIMd
metrics. This further highlights the advantages of the proposed
approach on Sen’s dataset.

4) Experiments on Tursun’s dataset: On Tursun’s dataset,
the visual comparison between the method proposed in this
paper and other state-of-the-art methods is presented in Fig.
11. As depicted in Fig. 11 (b), the reference image con-
tains not only substantial underexposure regions but also ex-
hibits notable large-scale foreground motion. The comparative
methods, as observed from the reconstruction results, fail

to effectively recover details and colors in underexposure
regions, leading to distortions in both color and details. In
the moving areas, the compared methods inevitably introduce
information inconsistent with the reference image from un-
derexposed and overexposed regions into the reconstruction
results, creating ghosting artifacts in the heads and backs of
the foreground objects. In contrast, the proposed method can
generate more satisfactory details in the saturated regions,
effectively integrate information from misaligned areas in the
source images, and reduce the impact of ghosting artifacts
on the reconstruction results. Furthermore, the data in Table II
highlights that, when compared to other methods, our approach
demonstrates superior performance with the highest values for
BTMQI, MEF-SSIMd, and UDQM on Tursun’s dataset. This
provides additional support for the efficacy of the proposed
method on Tursun’s data.

C. Ablation Study

The proposed network consists of SHDR-ESI branch and
SHDR-A-MHDR branch. These two branches are principally
constituted by the DEM, comprising SRM and MRM, along
with FIFM and GSM. To evaluate the effectiveness of each
module, the following ablation studies are conducted. During
this procedure, considering the absence of an explicit baseline
in our proposed method, we exclude the module or branch to
be tested from the complete network structure to assess their
respective contributions. Specifically, “w/o SRM” denotes the
removal of SRM from the overall network structure. “w/o
MRM” signifies the exclusion of MRM from the overall
network structure. “w/o FIFM” entails the absence of FIFM
in the overall network structure, instead directly concatenat-
ing features F1, F2 and F3 along the channel dimension
before inputting them into the GSM module. “w/o GSM”
involves substituting the GSM module with direct channel-
wise concatenation. Lastly, “w/o SHDR-ESI” means removing
the SHDR-ESI branch from the overall network structure.
The interactive fusion result (F 0

M) obtained from FIFM is
directly fed into the reconstruction network for HDR image
reconstruction. Fig. 12 displays local results of reconstructed
HDR images using scene images shown in Fig. 8.

Additionally, to further validate the efficacy of the crucial
modules in this study, features from both before and after
each module are used to reconstruct images, respectively.
These results provides a more intuitive demonstration of the
effectiveness of these critical modules. Specifically, BFR-DEM
refers to the preliminary stage preceding the execution of the
DEM, whereas AF-DEM represents the subsequent phase that
occurs after the execution of DEM. AF-FIFM denotes the
phase that follows the execution of the FIFM, while AF-GSM
describes the stage subsequent to the execution of the GSM.
Fig. 13 demonstrates the reconstruction results of intermediate
features of the crucial modules based on the scene images
depicted in Fig. 7.

Effectiveness of SRM: The SRM in this paper is primarily
utilized to emphasize features that have a positive effect on
HDR reconstruction, thus aiding in the effective recovery of
detailed information. Initially, the SRM is excluded from the
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Fig. 12. Ablation experiments of different components.

Fig. 13. Intermediate features reconstruction results of the crucial modules in the proposed method.

TABLE III
OBJECTIVE EVALUATION OF THE EFFECTIVENESS OF EACH PROPOSED

MODULE.

PSNR-µ SSIM-µ PSNR-L SSIM-L HDR-VDP-2
w/o SRM 44.17 0.9914 41.84 0.9884 65.05
w/o MRM 44.18 0.9914 41.88 0.9885 64.95
w/o FIFM 44.14 0.9914 41.65 0.9883 64.80
w/o GSM 44.09 0.9912 41.69 0.9878 65.02

w/o SHDR-ESI 43.98 0.9909 41.73 0.9885 65.43
Full model 44.39 0.9915 42.20 0.9891 65.21

comprehensive model, followed by a comparative analysis to
assess the differences between its results and the performance
of the full model. From Fig. 12(a), it can be observed that the
model without SRM yields HDR images with blurred details
at the boundaries and slight color distortion. This observation
is further corroborated by the objective evaluation results
presented in presented in Table III, which show a decrease
in overall performance when SRM is removed. Specifically,
PSNR-µ and PSNR-L decrease by 0.22dB and 0.36dB, respec-
tively. This validates the positive role of SRM in enhancing
detailed information in the reconstructed results.

Effectiveness of MRM: The proposed MRM compensates
for the lack of detail information in overexposed regions by
transferring information from ESI to the reference image.
From Fig. 12(b), it is evident that in the absence of MRM, the
model fails to reconstruct HDR images with clear details, and
its ability to suppress ghosting artifacts decreases compared
to the full model. Furthermore, as evident from Table III,
the removal of MRM results in a decrease in all evaluated
performance metrics compared to the full model. Specifically,
PSNR-µ and PSNR-L exhibit reductions of 0.21 dB and 0.32
dB, respectively. This provides additional evidence of the
effectiveness of MRM in enhancing the quality of HDR image
reconstruction.

As shown in Fig. 13, the BFR-DEM image displays an
oversaturated region that notably lacks detailed information. In
contrast, the corresponding region in the AF-DEM image re-
veals a richness of detail. This observation further underscores
the effectiveness of the DEM, comprising SRM and MRM as
proposed in this study, in highlighting and integrating crucial
information from ESI and reference images, thereby enhancing
the quality of HDR image reconstruction.

Effectiveness of FIFM: FIFM enhances the quality of
HDR images by effectively integrating features from both the
reference and non-reference images. As can be seen from
Fig. 12(c), when FIFM is removed from the overall model,
the reconstructed HDR image appears blurry and ghosting
artifacts. The objective evaluation results shown in Table III
indicate that, compared to the performance of the full model,
omitting FIFM results in the significant reductions in both
PSNR-L and HDR-VDP-2, with decreases of 0.55dB and 0.41
respectively. This demonstrates the essential role of FIFM
in enhancing the overall performance of the model. Further-
more, the AF-FIFM image in Fig. 13 demonstrates FIFM’s
proficiency in integrating features from both reference and
non-reference images. However, it should be noted that this
integration process also introduces ghosting artifacts within
the fused features.

Effectiveness of GSM: To mitigate potential ghosting
artifacts in the fused features resulting from FIFM, this paper
introduces a GSM that is guided by the intermediate features
of SHDR-ESI. This method effectively suppresses inconsistent
information and accentuates key information by calculating the
correlation between the intermediate features of SHDR-ESI
and the fused features. As observed in Fig. 12(d), when GSM
is removed from the overall model, the reconstructed HDR
image exhibits very prominent ghosting artifacts. The objective
evaluation data in Table III indicates a notable decline in all
metrics upon the exclusion of GSM. PSNR-µ and PSNR-
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L exhibits reductions of 0.30dB and 0.51dB, respectively,
while SSIM-L decreases from 0.9891 to 0.9878. A comparison
between the AF-FIFM image and the AF-GSM image in Fig.
13 further demonstrates the effectiveness of GSM in ghosting
suppression.

Effectiveness of SHDR-ESI: After removing SHDR-ESI,
the SHDR-A-MHDR no longer utilizes ESI for feature aggre-
gation and highlighting essential information. Without SHDR-
ESI, the interactively fused features are directly fed into the
reconstruction network to generate HDR images. As shown
in Fig. 12(e), the SHDR-ESI branch plays a significant role
in ghosting artifact suppression and detail recovery. Addition-
ally, the results in Table III indicate that in the absence of
SHDR-ESI, except for HDR-VDP-2, all other the evaluation
metrics exhibit a decline in performance. This demonstrates
the effectiveness of SHDR-ESI.

D. Further Discussion

To validate the effectiveness of the proposed SHDR-ESI
branch, we evaluate its reconstruction results on the Tursun’s
dataset and compare it with the existing SHDR methods,
including HDRCNN [19], SingleHDR [37] and HDR-UNet
[17]. The experiment results are depicted in Fig. 14 and Table
IV. As can be seen in Fig. 14, the HDR reconstruction images
generated by SingleHDR and HDR-UNet exhibit low contrast
and blurred details. In contrast, our method and HDRCNN
have achieved commendable reconstruction results. As shown
in Table IV, our method has achieved the best values on MEF-
SSIMd and UDQM, while also obtaining comparable scores
on BTMQI. Overall, the proposed SHDR-ESI branch, which
highlights and aggregates crucial information in both ESI
and the reference image, demonstrates superior capabilities in
HDR image reconstruction.

TABLE IV
QUANTITATIVE EVALUATION OF THE RECONSTRUCTION RESULTS FROM

TURSUN’S DATASET USING VARIOUS SHDR METHODS.

methods BTMQI MEF-SSIMd UDQM
HDRCNN [19] 3.0431 0.5536 0.4192
SingleHDR [37] 4.1468 0.6043 0.3809
HDRUNet [17] 3.5120 0.5541 0.4038

Ours 3.0475 0.6133 0.4333

E. Parameter analysis

The hyperparameters involved in this study include the
number N of DEMs and GSMs, λ in Eq. (24), and α and
β in Eq. (25). In the proposed network, N DEMs and N
GSMs are used to aggregate essential information and suppress
potential ghosting artifacts. λ is employed to balance the
contribution of the loss function in the SHDR-ESI. α and
β are used to harmonize the contributions of the structural
similarity loss and gradient loss, respectively. In the process
of hyperparameter selection, we utilize Kalantari’s test dataset
to analyze how the model performance changes with different
values of the aforementioned parameters.

The Influence of N on Model Performance: Fig. 15(a)
illustrates the impact of different values of N on the model’s

Fig. 14. Comparison of HDR reconstruction results by different SHDR
methods on the “161” scene in Tursun’s dataset.

(a) (b)

(c) (d)
Fig. 15. Hyperparameter analysis on Kalantari’s test dataset. (a), (b), (c) and
(d) respectively represent the impact of variations in N, λ , α and β on the
model’s performance.

performance. It can be observed that the model achieves its
best performance when N = 2. Therefore, in this paper, N is
set to 2.

The Influence of λ on Model Performance: Fig. 15(b)
illustrates the curve of model performance as the parameter
λ varies when α=0.2 and β=0.5. From the graph, it can be
observed that the model achieves its best performance when
λ=0.5. Therefore, in this study, the parameter λ is set to 0.5.

The Influence of α on Model Performance: To assess the
impact of the parameter α on model performance, this study
keeps the parameters λ and β fixed at 0.5. Fig. 15(c) presents
the variation in model performance with different values of α .
It can be observed that the model achieves its best performance
when α=0.2. Therefore, α is set to 0.2 in this study.

The Influence of β on Model Performance: Fig. 15(d)
illustrates the performance variation of the reconstruction
results with different values of β when λ=0.5 and α=0.2. It
can be observed that when β=0.5, the evaluation metrics all
reach their best values. Therefore, we set β to 0.5.
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TABLE V
PERFORMANCE COMPARISON OF THE DIFFERENT METHODS ON THE NUMBER OF MODEL PARAMETERS , FLOPS AND INFERENCE TIME.

methods Sen [54] Kalantari [25] DeepHDR [43] AHDRNet [26] NHDRRNet [29] HDR-GAN [34] HDRI [45] HDR-Transformer [42] SGARN [11] Ours

Size(M) - 0.30 16.61 1.44 41.42 7.67 6.70 1.46 0.89 4.76

FLOPs(G) - - 15.93 23.70 5.11 - - 23.89 13.76 77.49

Time (s) 61.81 29.14 0.28 0.30 0.31 0.69 20.61 4.92 0.53 1.97

F. Computational Complexity Analysis

To evaluate the efficiency of all comparison methods, we
analyze their computational complexity from three aspects:
the number of model parameters, FLOPs, and inference time.
The results are presented in Table V. The inference time
is calculated as the average time taken to process 15 scene
images from Kalantari’s test dataset. For FLOPs calculation,
the size of the input images is standardized to 128×128
pixels. As indicated in Table V, our model has a relatively
high FLOPs value, due to the incorporation of a single-frame
image reconstruction model and blocks with specific functions.
Nevertheless, the parameter size of our model is only 4.76M,
suggesting that it is not excessively large. Moreover, the
average inference time for our model to process a scene is
1.97 seconds, demonstrating that our model’s inference speed
is relatively fast and acceptable. Overall, our model can be
practically deployed and applied after training. In future work,
we aim to optimize the proposed model to reduce its FLOPs
and improve training speed.

V. CONCLUSION

In this paper, we introduce a dual-branch network consisting
of single-frame HDR image reconstruction and multi-exposure
HDR image reconstruction. Within the unified framework,
we achieve the suppression of ghosting artifacts in SHDR-
A-MHDR and also restore missing details. In this process,
the introduction of ESI effectively promotes the recovery and
preservation of details in overexposed regions. In SHDR-
A-MHDR, it mainly consists of two modules: FIFM and
GSM. The FIFM thoroughly integrates features from both
the reference and non-reference images, ensuring the richness
of feature information while highlighting the features that
play a positive role in the reconstructed image. Furthermore,
GSM is primarily achieved through guidance from SHDR-
ESI results. This process not only effectively suppresses the
impact of ghosting on the fusion result but also emphasizes
the contribution of consistent information to the reconstruction
result, further enhancing the quality of the HDR image. The
proposed method exhibits superior performance compared
to other comparative methods on three publicly available
datasets.
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