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Abstract—Deep learning-based methods deliver state-of-the-
art performance for solving inverse problems that arise in
computational imaging. These methods can be broadly divided
into two groups: (1) learn a network to map measurements to
the signal estimate, which is known to be fragile; (2) learn a
prior for the signal to use in an optimization-based recovery.
Despite the impressive results from the latter approach, many of
these methods also lack robustness to shifts in data distribution,
measurements, and noise levels. Such domain shifts result in a
performance gap and in some cases introduce undesired artifacts
in the estimated signal. In this paper, we explore the qualitative
and quantitative effects of various domain shifts and propose a
flexible and parameter efficient framework that adapt pretrained
networks to such shifts. We demonstrate the effectiveness of
our method for a number of natural image, MRI, and CT
reconstructions tasks under domain, measurement model, and
noise-level shifts. Our experiments demonstrate that our method
provides significantly better performance and parameter effi-
ciency compared to existing domain adaptation techniques.

Index Terms—Inverse problems, image recovery, domain adap-
tation, unrolled networks.

I. INTRODUCTION

Linear inverse problems arise in many real-world appli-
cations. For instance, image enhancement and restoration
tasks in denoising, deblurring, and super-resolution or medical
image reconstruction from indirect measurements in computed
tomography (CT) and magnetic resonance imaging (MRI).
We can model such inverse problems as the recovery of an
unknown signal x from a set of measurements:

y = Ax+ η, (1)

where y represents measurements, A represents an m × n
measurement matrix or forward operator, and η represents
noise. The unknown signal and measurements can be real- or
complex-valued. To recover x, we can solve an optimization
problem of the following form:

min
x

g(x) + hθ(x), (2)

where g(x) is a data fidelity term (e.g., g(x) = 1
2∥y−Ax∥22),

hθ(·) denotes a regularization function that enforces some
prior constraint on the unknown signal, and θ denotes the
regularization function parameters [1], [2]. For instance, signal
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is sparse or low-rank in some representation space or belongs
to a manifold of natural images [3]–[6].

In the deep learning era, we can recover x by either training
a deep (reconstruction) network that maps measurements to the
signal estimate or solving an iterative optimization problem
(similar to the one in (2)) that can also be represented as an
unrolled network [7]. While training a reconstruction network
in an end-to-end manner is possible, it usually requires a large
set of input-output training pairs (y,x). Furthermore, since
these networks do not explicitly use the forward model in
(1), they are known to be sensitive to small changes in the
data distribution, measurement operators, and noise [8], [9].
Solving the optimization problem in (2) with an appropriate
choice of regularization function h(·) is often considered a
flexible and relatively robust option.

In recent years, deep networks are often used to represent
h(·) instead of hand-designed functions (e.g., ℓ1 norm or total
variation). For instance, deep unrolling [10]–[12] and plug-
and-play (PnP) [1], [13] methods use artifact-removal or image
denoising networks that are trained to map a noisy or corrupted
estimate of an image onto a clean image manifold [7], [11],
[12]. Despite recent success of such deep unrolled or PnP
methods, they are also sensitive to shifts in the data distribution
[14]. Figure 1 illustrates this effect for deep unrolling with
artifact removal (AR) networks under domain and forward
model shifts. The fastMRI AR is trained while solving (2)
for MR image reconstruction from radially under-sampled
k-space measurements. CelebA AR is trained while solving
(2) to reconstruct face images from measurements obtained
using a Gaussian sampling matrix. Note that reconstructing
MR images using the CelebA AR and vice versa results in a
significant performance degradation.

In this paper, we propose a parameter-efficient method to
adapt pretrained networks to multiple domains, measurement
models, and noise with little to no drop in performance.
In particular, we propose a domain-specific modulation of
network weights using low-rank (or rank-one) factors. Given
a single deep unrolled network, we learn a compact set of
modulation parameters for each domain/measurement/noise
setting, and adapt the weights of the network according to the
specific problem at the inference time. In the remainder of the
paper, we use the term domain shift and domain adaptation to
refer to changes in data/measurement/noise distributions. We
present a set of experiments to demonstrate the effectiveness
of our method in adapting the deep unrolled network for
shifts in data distribution/domain (x), forward models (A),
and noise levels (η). The modulated AR in Figure 1 shows
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Fig. 1: Artifact removal (AR) networks trained on MRI scans (fastMRI AR) and face images (celebA AR) suffer from performance degradation
under domain shifts, resulting in poor reconstruction quality (as indicated by PSNR and SSIM values under each image). Our proposed
network (Modulated AR) adapts fastMRI AR for face image reconstruction by learning rank-one factors (modulations). The network stores
shared and domain-specific modulations separately. During inference, it applies the correct modulation according to the specified domain.
Our proposed network retains the performance of fastMRI AR on MR images and achieves competitive reconstruction quality with celebA
AR on face images.

an application of our method, where we adapt a pretrained
fastMRI AR to celebA. It applies the learned modulations
when recovering celebA images and will use the pretrained
weights when reconstructing MRI scans. This network recov-
ers images that qualitatively and quantitatively resemble results
of the networks trained for the correct domains. The number
of parameters needed to adapt the pretrained network is less
than 0.5% of the parameters in the pretrained network.

Our method can be viewed as an example of domain
adaptation or domain expansion technique, where we update
a network trained for a source domain to perform well on
several target domains. Fine-tuning pre-trained networks is a
widely used method for domain adaptation but suffers from
catastrophic forgetting [15] and requires a large number of
parameters for every new domain [16]. Several parameter
efficient domain adaptation techniques have been proposed
in [17], [18]. Our method resembles some of these methods
in spirit and separates the network into shared and domain-
specific modules. By limiting the number of parameters for the
domain-specific modules, our method provides a parameter-
efficient method to learn multiple tasks and domains. Further-
more, conditional computation is efficient during training and
inference compared to independent networks [19].
Contributions. We summarize the contributions of this paper
as follows.
• We proposed a simple parameter-efficient domain expansion

technique to modulate weights of a pretrained network with
rank-one factors. Our method expands the domain of the

networks and adapts to a variety of data/model shifts that
arise in inverse problems.

• Our method requires a small number of domain-specific
parameters (less than 0.5% of a single network) that can
be stored separately from the shared network weights. This
enables the network to continuously adapt to new domains
without forgetting previous knowledge; therefore, we call it
domain expansion.

• We present a detailed set of experiments that analyze the
effects of domain, forward model, and noise-level shifts in
natural and medical image recovery problems using deep
unrolled methods.

II. RELATED WORK

A. Inverse problems and structured priors.

Hand-crafted priors for inverse problems usually assume the
signal is sparse in some transform domain. ℓ1 norm has been
widely used as a sparsity-promoting regularizer [20], [21].
Total variation (TV) minimization is used as a regularization
approach in [22], [23] to solve denoising and deblurring
problems. An iterative algorithm that minimizes the image
total variation (TV) for CT reconstruction was proposed in
[24]. These hand-crafted priors, however, have limited ability
to represent the true underlying image and may lead to sub-
optimal solutions [25].
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B. Deep networks for inverse problems

Generative models learn to map a low-dimensional code into
an image. Following [26], several methods have successfully
applied generative networks as priors when solving inverse
problems including MRI compressed sensing [27], super-
resolution [28], blind image deconvolution [29], and phase
retrieval [30], [31].

End-to-end trained networks are purely data driven methods
that learn to directly map measurements to signals. A de-
noising network that directly maps corrupted images to clean
images was proposed in [32]. The method was applied to MRI
measurements captured under different acquisition setups [33].
Other approaches such as [34], [35] use end-to-end networks
to estimate artifact free signals from initial states.

Plug-and-play (PnP) methods are at the intersection of data
driven and model based methods that alternatively minimizes
data consistency and regularization terms. PnP-ADMM [1]
was the first plug-and-play iterative algorithm that used pre-
trained denoisers as priors. This method is based on the
ADMM algorithm [2]. PnP-FISTA [36] is a PnP variant that
replaces the proximal operator [2] of the data fidelity with the
gradient. These methods have been applied to solve inverse
problems [37], [38]

Deep unrolled networks learn the denoiser network in PnP
algorithms in a supervised manner [11], [12], [39]. These
methods truncate the PnP algorithm for a fixed number of
iterations and share the same network through the iterations.
They perform updates using the reconstruction output of the
final iteration. Deep unrolled methods show remarkable results
in several inverse problems such as super-resolution [40],
image restoration [41], MRI [42] and CT [43] reconstruction.

C. Domain expansion and adaptation

Developing a single network that can handle multiple
domains as well as adapt to new target domains has been
an active area of research. Deep neural networks can learn
transferable features and fine-tuning to a new dataset improves
generalization performance [44], [45]. Despite its success,
fine-tuning a network or parts of it force the network to lose
previously learned domain or task, which requires storing mul-
tiple networks per domain and task. Parameter-efficient fine-
tuning methods [46]–[48] propose networks that can achieve
competitive performance to fully-tuned networks while re-
quiring few number of additional parameters. Adapter-based
techniques that learn efficient modules have been proposed in
[49]–[51]. These modules are added to a pretrained network
and enable it to adapt to new tasks.

Domain specific sub-network selection using binary masks
was proposed in [16], [52]. [53] proposed a modular-network
that learns new tasks without compromising performance
on previous tasks. The proposed method was successfully
applied to a rehearsal-based continual learning method. Such
methods, however, require a replay buffer, which is a subset of
training samples from previous tasks. A modular-network for
continuous task adaptation that does not require replay buffers
was proposed in [54]. Up on arrival of a new task/domain,
the method creates trainable modules at every layer and finds

the optimal way to add them to a frozen backbone network.
These added modules are required to match the base-network
in terms of parameters. After training, modules that are not
part of the optimal path way will be discarded. This method
is computationally demanding and parameter inefficient. Later,
we will show that modules with significantly fewer parame-
ters compared to the base-network modules we can perform
successful task/domain adaptation.

Tuning specific layers such as the BatchNorm [55], the
final classification head [56], and LayerNorm [57] are proven
to be effective adaptation techniques. A related approach
that scales and shifts features to achieve the performance of
full-tuning was proposed in [58]. In [18], [59], a network
reparametrization technique was proposed to learn shared and
task-specific modules, enabling a single network to adapt to
various settings. Hyperdomain Networks [17] use modulated
convolution to adapt generator networks to new domains. An
adaptation method for shifts in domain and forward-models
when solving inverse problems was proposed in [60]. The
method proposes a fine-tuning and regularization technique
adopted from RED [61]. Domain-specific batch normalization
layers were proposed in [62] for a segmentation network that
can handle brain MR scans across scanners and protocols.
Unlike R&R [61], the method proposed in [62] can adapt
to new domains without forgetting previous domains. Sev-
eral test-time adaptation techniques have been proposed to
close performance gaps resulting from domain shifts [63]–
[65]. While many of these methods are proposed for purely
data drive approaches, we focus on methods that fuse data-
driven and model based techniques. In addition, our aim is to
find parameter efficient domain adaptation techniques without
introducing catastrophic forgetting.

III. METHODS

In this section, we present details of our proposed domain
expansion method for deep unrolling-based reconstruction. We
first briefly discuss deep unrolled networks (readers may refer
to [66] for further details). Then we discuss how we adapt the
network weights using rank-one factors to perform domain
expansion/adaptation.

A. Deep unrolled network

A deep unrolled network in its simplest form represents a
fixed number of iterations for solving the optimization problem
in (2). Plug and play (PnP) methods based on accelerated
proximal gradients [1], [66], [67] offer a flexible and efficient
framework for solving such problems. Key steps of PnP with
a deep denoiser at iteration k can be described as follows.

zk = xk−1 − γ∇g(xk−1) (3)

sk = D(zk; θ) (4)

xk = sk + βk(s
k − sk−1), (5)

where γ is the step size, superscript k = 1, . . . ,K denotes
iteration number, ∇g(·) denotes gradient of data fidelity with
respect to x, D(·; θ) denotes a denoiser or artifact removal
network with weights θ, βk = (qk−1 − 1)/qk, and qk =
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(1/2)(1 +
√
1 + 4q2k−1). We can initialize the estimate as

x0 = AHy, where AH denotes Hermitian transpose of the
measurement operator. Similar to [12], we implement D as an
artifact removal network: D(x; θ) = x− f(x; θ), where f is a
DnCNN-based residual network [68].

We can view each iteration of PnP as one layer of the
unrolled network with predefined parameters. The output of an
unrolled network with denoiser D(·, θ) and K iterations can
be denoted as xK(θ). Since all operations are differentiable,
we can further improve the performance by minimizing the
reconstruction error on some training images with respect to
θ. We can define such an optimization problem as

min
θ

∑
x∈X
L(x,xK(θ)), (6)

where X denotes the set of training images.

B. Factorized network adaptation

Our method primarily adapts the prior in the unrolled
network using domain/task-specific rank-one factors as the
data, measurement, or noise distribution changes. We start
with a pretrained network D(·; θ) with parameters θ. Then
we learn domain-specific modulations denoted as {Md}Dd=1

for D domains. Each Md represents a set of domain-specific
modulation parameters that we use to adapt base network
parameters to θ ⊙ Md, where ⊙ represents element-wise
multiplication. In order for this multiplication to be defined,
we require θ and Md to have identical number of elements.
In practice, we do not create a new set of modulated weights;
instead we keep the Md and θ separate. This allows us to fix
the base network and adapt to multiple new domains without
forgetting previous domains. We represent the domain-specific
network for dth domain as D(·, θ,Md) and the output of
the unrolled network as xK(θ,Md). To learn the modulation
parameters for dth domain, we keep θ unchanged and solve
the following optimization problem for Mi:

min
Md

∑
x∈Xd

L(x,xK(θ,Md)), (7)

where Xd denotes the set of training images for the dth
domain.

Even though we do not explicitly discuss measurement
operator A and noise η in the unrolled network, any mismatch
between training and test time settings of domain, measure-
ments, and noise can cause performance degradation. We can
consider any variation in data, measurements, or noise as a
new domain and use the same procedure described above to
learn the domain-specific modulations.
Rank-one factorization. Inspired by [46], [69], we assume
the intrinsic dimension of the objective in (7) is small. We
parameterize Md such that its trainable parameters remains
significantly smaller than the number of parameters in the base
network.

To achieve the goal of parameter efficiency, we represent
modulation weights for each layer as a rank-one tensor. Let
us assume lth convolution layer has weights W l with kernels
of size k × k with Cin input and Cout output channels. We

Algorithm 1 Factorized network adaptation
Input: Training images x ∈ Xd with measurements y, and
operator A for domain indicator d
Base network parameters θ, {βk}k≥0, γ, α
Output: Recovered image xK and domain-specific
Md

1: Md ← initialModulation(d)
2: repeat
3: for every x ∈ Xd and y

initialize x0 ← AHy
4: for k ∈ {1, . . . ,K} do
5: zk ← xk−1 − γ∇g(xk−1)
6: sk ← D(zk; θ,Md)
7: xk ← sk + βk(s

k − sk−1)
8: end for
9: Calculate loss for all training samples in a minibatch

and compute gradient w.r.t. Md

10: Md ←Md − α∇Md

∑
x∈Xd

L(xK ,x)
11: until Convergence of Md

12: return xK ,Md

represent the modulation weights for dth domain and lth layer
as an outer product of four vectors as

M l
d = M1,l

d ⊗M2,l
d ⊗M3,l

d ⊗M4,l
d , (8)

where M1,l
d ∈ Rk,M2,l

d ∈ Rk,M3,l
d ∈ RCin ,M4,l

d ∈ RCout .
Thus, we need k + k + Cin + Cout parameters to adapt
a layer with k2CinCout parameters. We apply the rank-one
factorization and modulation on the convolution layers as
follows. For an input U with Cin channels, we can represent
ith output channel of the convolution layer as

V (:, :, i) =

Cin∑
j=1

W l(:, :, j, i) ∗ U(:, :, j), (9)

where ∗ represents 2D convolution. Modulated weights for
domain d and layer l can be represented as W l

d = W l ⊙M l
d.

We can represent the convolution operation as

V (:, :, i) = M4,l
d (i)

[
Cin∑
j=1

W̃ l(:, :, j, i) ∗ Ũ(:, :, j)

]
, (10)

where W̃ l(:, :, j, i) = W l(:, :, j, i)⊙ (M1,l
d ⊗M2,l

d ) represents
a modulated version of (j, i) slice of weight tensor and Ũ(:
, :, j) = U(:, :, j) ⊙M3,l

d represents a modulated version of
the jth input channel. In summary, even though we represent
modulation weights are rank-one tensor, we do not need to
modulate the weights of the base network. We can implement
the same procedure by modulating input channels, 2D filters,
and output channels.

Figure 2 illustrates how our proposed unrolled multi-domain
network applies low-rank factors to the pretrained network.
We implement (10) by first combining the low-rank factors as
formulated in (8) and applying them to the base convolution
weights using an element-wise product. We then use these
updated weights to perform regular convolution during the
forward pass. When performing backward propagation, we
compute gradients with respect to the low-rank factors and
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Fig. 2: Overview of our factorized network that uses modulated con-
volutions for domain adaptation. Our network follows the DNCNN
[68] architecture that leverages modulated convolution for domain
adaptation. After trained on the source domain, the network learns
low-rank modulations for each domain while keeping the base
network parameters frozen. Using a domain identifier, the network
selects the appropriate low-rank factors during inference and applies
them to the pretrained network through element-wise multiplication.

update them while keeping the remaining parameters of the
network frozen.

A pseudocode for factorized adaptation with the unrolled
network is provided in Algorithm 1. The algorithm begins by
initializing domain-specific modulations using an outer prod-
uct of the low-rank factors. These low-rank factors are real-
valued and randomly initialized. After computing the initial
estimates x0, we perform K unrolled iterations containing
data-consistency and artificial-removal updates. Finally, we
use the output from the last iteration, xK , to compute the
reconstruction loss. This loss is used to compute gradients
with respect to the low-rank factors and to perform updates.
Further details and hyper-parameter setups are provided in the
supplementary material.

IV. EXPERIMENTS AND RESULTS

We performed a number of experiments to analyse the
effects of shifts in different parts of the inverse problem in
(1). The shifts can occur in the data distribution x, the forward
model A, and the measurement noise η. We test our proposed
adaptation technique for all these shifts. In all our experiments,
we start with a fixed base network, which we refer to as Base
AR, and learn domain-specific rank-one modulations. Base
AR is trained to reconstruct MR images from 4× radially
sub-sampled Fourier measurements without any measurement
noise. Base AR uses spectral normalization proposed in [70]
along with the ReLU activation functions. We implement our
AR network using a 12-layer DnCNN [68] network. We will
provide training details as well as hyper-parameters used in
our experiments in the supplementary material.

A. Parameter efficiency for adaptation

Figure 3 compares the performance of a base network, full
training, and our proposed modulation-based adaptation for
shifts in data distribution/domain, forward model, and noise
level. Base network does not require any additional parameter
for different domains, but it provides worst performance. Full
training learns a new network for every domain/distribution

Fig. 3: Comparison of our modulated AR, fully-tuned AR, and the
Base AR networks in terms of accuracy and number of additional
parameters they require. Base AR requires no additional parameter
and provides worst performance. Fully-tune AR provides best per-
formance using a large number of parameters. Our proposed method,
Modulated AR, shows performance comparable to Fully-tuned AR
with a fraction of additional parameters.

shifts and provides best performance, but at the expense of a
large number of parameters per domain. Our proposed network
adaptation approach requires a small number of parameters
(nearly 1.6K additional parameters) and achieves performance
close to full training method. The additional parameters are
unique for each domain and are stored separately from the
base network. In this manner, the pre-trained model can
be adapted to learn new domains while retaining previously
learned knowledge.

Ground Truth CelebA AR fastMRI AR CT AR Modulated AR

39.6, 0.97 34.3, 0.91 32.7, 0.88 38.8, 0.96

37.4, 0.91 39.5, 0.94 35.7, 0.89 39.5, 0.94

35.3, 0.91 35.7, 0.93 38.15, 0.96 38.12, 0.95

Fig. 4: We present sample ground truth images in the first column
and reconstruction of these images using three AR networks trained
on Face, MR, and CT images in the subsequent three columns . Our
modulated AR, shown in the last column effectively removes this
artifacts and closes the performance gap.
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TABLE I: Average PSNR of AR networks under domain shift. ARs trained for specific domain (MRI, CelebA, and CT ARs) do not perform
well on out-of-domain samples. In contrast, our Modulated AR network, that applies learned modulations for each target domain, has the
best average performance across all domains.

Test domain AR Trained on
MRI

AR Trained on
CelebA

AR Trained on
CT

Modulated AR
(Ours)

MRI 40.93 39.22 37.14 40.93
CelebA 40.34 44.29 35.44 42.97

CT 37.68 38.56 41.97 42.25
Avg 39.65 40.69 38.18 42.05

TABLE II: Comparison of our method with existing domain adaptation techniques. We have highlighted the best-performing method in
boldface and second best with an underscore. Additionally, we provide the count of additional parameters required by each method. Our
modulated AR outperforms other methods and is comparable to full tuning.

Target domain Full-tuning Supsup RCM Hyperdomain Modulated AR
(Ours)

407k 407k 50.6k 0.7k 1.6k
CelebA 44.29 42.49 43.88 42.73 42.97

CT 41.97 40.57 40.99 41.57 42.25
Avg 43.13 41.53 42.49 42.15 42.61

36.85, 0.92 24.66, 0.72 35.98, 0.92

38.26, 0.93 39.53, 0.94 39.53, 0.94

Cartesian AR Radial AR Modulated AR
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Fig. 5: Reconstruction results under sampling pattern shifts. AR
trained on radial pattern performs poorly when tested on Cartesian
sampled patterns. Our Modulated AR applies low-rank modulations
to adapt Radial AR to Cartesian samples.

B. Domain shift

For experiments with domain/data distribution shifts in x,
we consider natural image, MRI, and CT scans. We use
CelebA dataset [71] for natural images, NYU fastMRI dataset
for [72] knee MRI scans, and a subset of TCGA-LUAD dataset
[73] for CT scans. The first three columns of Table I show
the performance single domain AR networks. We present the
reconstruction PSNR of these AR networks evaluated under
the domain shifts. The last column shows the performance
of our modulated network that uses weights of the Base
AR trained on MRI and learned modulations for each target
domain. Quantitatively we observe that performance drops
as domains change (off-diagonal entries in columns 2,3,4).
Our proposed method for modulated AR offers best overall
performance. Figure 4 shows example reconstructed images
for our domain shift experiments. Our modulated network
effectively removes artifacts introduced by fastMRI AR and

CT AR on CelebA images.
Comparison with existing domain adaptation methods.
We compare our proposed approach with the following re-
lated domain adaptation techniques: Supsup [52], RCM [18],
Hyperdomain Modulation [17], and Full-tuning. We evaluate
these methods using the same training and testing procedure
as our proposed approach. Supsup [52] learns binary masks to
find domain specific sub-networks. RCM [18] reparameterizes
convolutions using domain-specific feature transformations.
Hyperdomain [17] learns domain-specific modulation for input
channel of every convolution operation. Full-tuning retrains
the entire network for each target domain and is considered as
an upper-bound. Table II shows comparison of these methods
and our proposed method outperforms other adaptation tech-
niques while requiring fewer additional trainable parameters.

C. Forward model shifts

To evaluate the performance with shifts in the forward
model, A, we consider sampling types, ratio, and patterns
as domains that can induce shifts. The sampling type can be
either Fourier or Gaussian sampling. In the case of Fourier
sampling, we can have Cartesian, Radial, Gaussian, or Spiral
patterns. The sampling ratio determines the rate at which
measurements are captured. We consider reconstruction from
4×, 8× and 10× under-sampled measurements. We will now
examine the effects of each of these shifts and utilize our
proposed method to adapt our Base AR.
Sampling pattern shifts. Table III shows the performance
of AR networks trained on single sampling patterns when
tested on all available patterns in the first four columns.
The last column shows the performance of our modulated
AR. We observed a significant performance drop when our
Base AR was tested on samples from Cartesian samples. This
drop is also evident qualitatively in Figure 5, where visible
artifacts appear in the output. Our modulated AR successfully
eliminates these artifacts and bridges the performance gap.
Moreover, our method provides overall superior performance
compared to networks trained for individual patterns.
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TABLE III: Sampling pattern shift adaptation results. Our Modulated AR achieves competitive in-domain performance to ARs trained on
specific patterns. Moreover, it shows an overall superior performance across all patterns.

Test pattern Radial
AR

Cartesian
AR

Gaussian
AR

Spiral
AR

Modulated AR
(Ours)

Radial 40.93 37.75 40.55 40.83 40.93
Cartesian 29.74 39.21 28.39 29.12 37.10
Gaussian 41.91 40.19 42.05 42.04 42.10

Spiral 41.24 39.57 41.26 41.36 41.38
Avg 38.46 39.18 38.06 38.34 40.38

TABLE IV: Sampling ratio shift adaptation results.

Test ratio 4x AR 8x AR 10x AR Modualted AR
(Ours)

4x 40.93 40.23 39.61 40.93
8x 34.98 37.13 37.05 37.32

10x 31.00 33.63 35.34 34.73
Avg 35.64 37.00 37.33 37.66

Sampling ratio shifts. We compared the performance of
different AR networks trained on three sampling ratios and
presented the results in Table IV. The 4× AR network exhibits
poor performance when tested with 8× and 10× radially sub-
sampled measurements. Additionally, the AR network trained
on the 8× ratio did not perform well with 10× ratio. To
address this, we applied our modulation technique to adapt the
Base AR model to 8× and 10× sampling ratios. On average,
the modulated network outperforms AR networks trained on
specific sampling ratios. Figure 6 illustrates the reconstruction
results of the networks trained at various sampling ratios,
including our modulated network. On average, the modulated
network outperforms AR networks trained on specific sam-
pling ratios.

4x AR 8x AR 10x AR Modulated AR

4x
 s

am
pl

in
g

8x
 s

am
pl

in
g

10
x 

sa
m
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in

g

34.5, 0.89 37.9, 0.93 37.8, 0.92 38.4, 0.93 

42.0, 0.96  41.1, 0.95 40.4, 0.94 42.0, 0.96 

30.1, 0.80 33.3, 0.87 37.9, 0.92 35.2, 0.89 

Fig. 6: Examples of image reconstruction under sampling ratio shifts.
Our Modulated AR shows an average superior performance when
compared to the 4×, 8×, and 10× AR networks.

Comparison with existing domain adaptation methods.

We now compare our method with some of the existing
domain adaptation techniques under the forward model shifts
discussed above. We report the average PSNR along with
the number of trainable parameters with in each method
in Table V. Our proposed method outperforms all domain
techniques and is only one dB less than full-tuning, which
requires significantly larger number of parameters.

10db AR 20db AR Base AR Modulated AR

10
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N

R

19.6, 0.34 10.9, 0.03 8.6, 0.06 31.5, 0.82 33.7, 0.88 

37.2, 0.92 18.0, 0.31 10.3, 0.05 35.9, 0.90 36.6, 0.92 

38.6, 0.94 39.9, 0.94 14.5, 0.13 39.7, 0.94 37.4, 0.93 

20
db

 S
N

R
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 S

N
R

R
es

id
ua

l

30db AR

Fig. 7: Visual results of models trained at specific noise levels
and our modulated network under measurement level. The last row
shows the 20×amplified residual of the reconstructed image under
no measurement noise.

D. Noise-level shifts

Noise-level shifts can also cause significant performance
degradation in AR networks. We model the noise as an additive
Gaussian noise η ∼ N (0, σ2) and analyze the effects of
different noise levels on the performance. Figure 7 shows
sample reconstructed images with the Base AR, our Modulated
AR, and AR networks trained for 10, 20, and 30 dB SNR.
We observed that the Base AR is unable to reconstruct the
MRI scans from the noisy measurements. This is also shown
quantitatively in Table VI, where the performance of the Base
AR is severely degraded in the presence of noise. The AR
network trained on 10dB SNR performs well on higher noise
settings but fails to recover fine details when tested with noise-
free or low noise measurements. The last row of Figure 7
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TABLE V: Comparison of domain adaptation methods under forward model shifts. Our proposed method achieves competitive performance
to full-tuning with significantly fewer parameters. It outperforms related domain adaptation methods in terms of performance and parameter
efficiency.

Sampling shifts Full-tuning Supsup RCM Hyperdomain Modulated AR
(Ours)

407k 407k 50.6k 0.7k 1.6k
Radial to Cartesian 39.21 36.37 36.52 36.57 37.10

4x to 10x 35.34 33.62 34.49 34.56 34.73
Fourier to Gaussian 38.59 36.31 38.49 38.45 38.55

Avg 37.71 35.43 36.50 36.53 36.79

TABLE VI: Noise level shift adaptation results. Modulated AR that learns low-rank factors for each noise-level outperforms networks trained
for a specifc noise.

Test SNR 10db AR 20db AR 30db AR Base AR Modualted AR
(Ours)

10db 33.37 23.86 12.56 9.18 31.40
20db 35.39 35.82 22.86 11.20 35.09
30db 35.97 36.84 38.04 15.90 37.91

No noise 36.10 40.93 40.93 40.93 40.93
Avg 35.21 33.30 28.11 19.30 36.33

TABLE VII: Comparison of various domain adaptation methods under noise level shifts. Our proposed method can achieve competitive
performance to RCM and Full-tuning while requiring significantly fewer number of additional parameters.

Test SNR Full-tuning Supsup RCM Hyperdomain
modulation

Modulated AR
(Ours)

407k 407k 50.6k 0.7k 1.6k
10db 33.37 31.94 32.80 29.11 31.40
20db 35.82 35.53 35.70 34.32 35.09
30db 38.04 37.75 38.08 37.58 37.91
Avg 35.74 35.07 35.53 33.67 34.80

shows the 20× amplified reconstruction residual of each model
when reconstructing noise-free measurements. From this row,
we can infer that AR networks trained on higher noise-levels
fail to recover fine details when tested with lower noise-
levels. To the contrary, our Modulated AR has the ability to
reconstruct fine details when the measurement noise is low
and maintains comparable performance to noise-specific AR
as the noise level increases.
Comparison with existing domain adaptation methods.
Table VII reports comparison of our proposed method with
related domain adaptation techniques. Although Full-tuning
and Supsup [52] show slight performance improvement (less
than 1 dB), they require a significant number of trainable
parameters. Furthermore, Full-tuning does not have the ability
to retrain previously learned knowledge. Our method achieves
competitive performance to RCM [18] while requiring a
fraction of the additional trainable parameters.

V. LIMITATIONS

While our proposed method is able to continuously adapt
to new domains, it requires domain selectors/identifiers during
inference to apply the correct modulations. In some cases, this
is not a major limitation since we can partially infer the domain
from the available measurements or context. In principle, we
can parameterize the network modulations as a function of
the input and construct a multi-domain network that can infer

the domain without the need for explicit identifiers. Another
limitation of our current method and experiments is the
incremental adaptation to target domains. We start from a fixed
base network and subsequently adapt it to multiple domains
independently. We can further improve the efficiency of our
method by adapting the network to multiple domains jointly.
Achieving rapid and generalized multi-domain adaptation is
feasible following meta-learning techniques as outlined in
[74]. We believe that these limitations will serve as inspiration
for several future studies.

VI. CONCLUSION

We proposed a simple and parameter-efficient method to
adapt networks for domain adaptation and expansion. Our
method uses a fixed base network and learns separate (domain-
specific) rank-one modulation parameters. This capability al-
lows our method to continually learn new domains while
retaining previously acquired knowledge. We focused on shifts
that arise in solving inverse problems for imaging, including
shifts in data distribution, forward model, and noise level. We
demonstrated the effectiveness of our approach in adapting to
all these shifts.
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SUPPLEMENTARY MATERIAL

We present additional material and details to complement
our main paper. We provide a detailed description of our train-
ing and hyper-parameter tuning procedures. Additionally, we
present further experiments, analyze the effects of modulation
in each layer, and showcase visual results. Finally, we address
the limitations of our work and suggest potential directions for
future research.

VII. TRAINING DETAILS

We used PyTorch [75] to implement our proposed method
on a single NVIDIA GeForce RTX 2080 Ti GPU with 12GB
memory. Our artifact removal (AR) prior is implemented using
a DnCNN [68] network with 12 blocks. Each block comprises
a convolution layer, a spectral normalization layer [70], and
a ReLU activation layer [76]. Within the intermediate blocks,
our convolution consists of 64 filter kernels with a size of
3× 3. The number of filters at the input and output layers is
set to match the number of features in the target dataset.

The AR operator is implemented as the residual of our
DnCNN network, utilizing an α-averaged operator similar
to [12]. We set α = 0.2 for all experiments. With this
operator, we obtained the best performance when setting the
acceleration parameter qk = 1 for all k ≥ 1. We used the
ADAM optimizer [77], setting the learning rate to 10−4 for
the base network weights during full-tuning and 10−2 for
the modulation factors. Our experiments were trained for 100
epochs. After 50 epochs, we adjusted the learning rate for
the modulations, reducing it by a factor of 2. We maintained
default settings for the remaining optimizer configurations.
We reported the results using the best-performing model
on the validation dataset. Throughout all experiments, we
incorporated K = 33 unrolled iterations. For MR image
reconstruction tasks, we employed a step size of γ = 1.5,
while γ = 1.2 was utilized for face image reconstruction tasks.
In the comparison experiments, we adapted the source code
available on the GitHub pages of RCM [18], Supsup [52], and
Hyperdomain Modulation [17] to align with our framework.

We utilized PyTorch’s Torchvision library as the data source
for CelebA [71] and adhered to the official train-val-test
set split. For the multi-coil Knee dataset provided by NYU
FastMRI [72], we partitioned the original training set into
training and validation sets using an 85-15 split. Subsequently,
we used the validation dataset as our test set. In the case of CT
scans, we used a subset of the TCGA-LUAD dataset [73]. We
performed a 75-15-10 split for the training, validation, and test
sets. All images were normalized within the range of [0, 1].

A. Initialization.

To ensure stability, we implement our modulation as W l ⊙
(1 +M l

d). The factors of M l
d are initialized using a uniform

distribution near zero, such that M i,l
d ∼ U

[
− 1√

f
, 1√

f

]
, where

f corresponds to the number of channels or kernel size to
be modulated at the lth layer. This approach ensures that our
modulated weights start with values close to the pre-trained
weights and allows them to be updated to an optimal value.

VIII. ADDITIONAL EXPERIMENTS

A. Analyzing the layer-wise effects of weight modulation

We conducted an analysis of the effects of weight mod-
ulation at each layer. This analysis provides us with better
insight into which layers play more crucial roles in bridging
performance gaps. Subsequently, we can use this information
to apply dynamic adaptation to different layers, thereby further
reducing additional computation and the necessary parameters.

Figure 8 illustrates the ratio of ℓ2 norms of modulations
|M l

d| to pre-trained weight norms |W l| at the lth layer, corre-
sponding to domain, forward model, and noise-level adaptation
experiments. We normalize the norm ratios independently for
each adaptation, scaling them between 0 and 1. The figure
suggests that modulation power is primarily concentrated
in the final layers of the network, with minimal impact
observed in the initial layers. We confirm this observation
by conducting partial modulation experiments for noise-level
adaptation, where we apply modulation to a subset of layers
in our network. We report our findings in Table VIII. We
note that modulating the top half of the layers (requiring only
0.88k parameters) resulted in a 7% performance decrease, and
modulating the last 4 layers (requiring only 0.67k parameters)
led to only a 12.8% drop. In contrast, modulating the first half
and the first four layers resulted in a significant performance
reduction. In future works, we can utilize these insights when
designing parameter-efficient domain adaptation techniques.

Fig. 8: We show most of the modulation occurs at the final layers
of our artifact removal network. We present the ratio of ℓ2 norms of
modulations to weights at each layer for domain, forward model,
and noise level shifts. We have normalized each row to enhance
visualization.

TABLE VIII: We experimentally demonstrate that modulating the
top half and the last four layers of our network retains the majority
of the performance achieved through full modulation. In contrast, we
show that the same level of performance cannot be attained by solely
modulating the initial layers.

Trained blocks Noise-level
Adaptation # Trained

PSNR SSIM Params Layers
None 9.18 0.02 1.6k 13
All 31.40 0.79 1.6k 13
Blocks 0-4 10.67 0.04 0.67k 5
Blocks 4-8 16.87 0.20 0.67k 5
Blocks 8-12 27.15 0.49 0.67k 5
Blocks 0-6 19.97 0.28 0.88k 7
Blocks 6-12 29.14 0.64 0.88k 7
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B. Adapting to domain and forward model shifts

In the main paper, we focused on experiments involving
a single type of shift that can arise when solving inverse
problems. Now, we are expanding this concept by applying
our technique to accommodate multiple shifts. Specifically,
we will adapt a network trained for face image reconstruction
using Gaussian sampling to MR image reconstruction with
Fourier sampling, encompassing both domain and forward
model shifts. Table IX shows the performance of these AR
networks. We observe an 18% drop in performance on CelebA
and a 30.37% drop on FastMRI ARs due to this shift. To
address this challenge, we applied our domain adaptation
technique and conducted a comparison with relevant methods.
We present the average performance in Table X. Similar
to our previous experiments, our method outperforms other
domain adaptation techniques. Additional visual results for this
experiment are shown in figure 9.

TABLE IX: The CelebA AR, which is trained to reconstruct
faces from random projections, exhibits poor performance in MR
reconstruction. Similarly, the fastMRI AR is unable to reconstruct
face images, despite its competence in its own domain. We provide
the average PSNR values for these ARs.

Test dataset CelebA AR FastMRI AR
CelebA 35.05 24.58
FastMRI 28.46 35.34

TABLE X: Comparison results upon adapting CelebA AR to MR
and CT reconstruction tasks. We have highlighted the best-performing
method in boldface and second best with an underscore.

Methods # Trainable
parameters MRI Knee CT

Full-tuning 407k 35.34 32.63
Supsup 407k 32.57 28.82
Reparametrized AR 50.6k 34.14 30.43
Hyperdomain modulation 0.7k 33.81 31.37
Modulated AR 1.6k 34.17 32.11

C. Adapting to sampling type shifts

We consider Fourier and Gaussian measurement operators
as domains of different sampling types. When testing our
Base AR with Gaussian sub-sampled MRI measurements,
we observed an average PSNR drop of approximately 2.7
dBs on our test set. As shown in the second row of the
first column of Figure 10, the Base AR is incapable of
recovering fine details and produces a smoothed output. Using
our proposed modulation technique, we were able to enhance
the reconstruction results and achieve outcomes similar to
those of the fully-tuned AR.

Lastly, in Figure 11, we present the ground truth images
for the samples utilized in our forward model adaptation ex-
periments. The corresponding reconstruction outputs of these
images are displayed in the main paper.

Original fastMRI AR CelebA AR Our method

35.76, 0.90 27.37, 0.74 32.66, 0.86

26.48, 0.71 32.93, 0.91 32.29, 0.89

37.47, 0.90 31.22, 0.77 34.68, 0.86

23.17, 0.61 34.84, 0.93 33.36, 0.91

35.23, 0.88 28.82, 0.73 33.04, 0.84

23.91, 0.66 30.87, 0.89 30.50, 0.88

Fig. 9: Examples of image reconstruction under domain and forward
model shifts. Second and third columns show reconstructed images
with fastMRI AR and celebA AR, respectively. Reconstruction qual-
ity degrades with domain shifts (PSNR and SSIM reported under
each image). Our proposed network adaptation method, where we
adapt the mis-matched ARs (recovering MR images using CelebA
AR and recovering faces using fastMRI AR) to recover an targets
images in shown below.
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Fourier AR Gaussian AR Modulated AR
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g 38.7, 0.94 36.4, 0.91 38.7, 0.94

33.52, 0.86 36.7, 0.92 36.5, 0.92
Fig. 10: The Fourier (Base) AR is unable to recover fine details under
Gaussian sampling (first column, second row). On the other hand, the
Modulated AR can achieve performance comparable to fully-tuned
networks when reconstructing images from both Fourier and Gaussian
samples (last column).

Ground Truth 
(pattern shift)

Ground Truth 
(ratio shift)

Ground Truth 
(type shift)

Fig. 11: Ground truth images for forward model shifts experiments.
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