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Runtime Behavior Adaptation for Real Time
Interactive Games
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Abstract—Intelligent agents working in real-time domains need
to adapt to changing circumstance so that they can improve
their performance and avoid their mistakes. AI agents designed
for interactive games, however, typically lack this ability. Game
agents are traditionally implemented using static, hand-authored
behaviors or scripts that are brittle to changing world dynamics
and cause a break in player experience when they repeatedly
fail. Furthermore, their static nature causes a lot of effort for
the game designers as they have to think of all imaginable
circumstances that can be encountered by the agent. The problem
is exacerbated as state-of-the-art computer games have huge
decision spaces, interactive user and real time performance that
make the problem of creating AI approaches for these domains
harder. In this paper we address the issue of non-adaptivity of
game playing agents in complex real-time domains. The agents
carry out runtime adaptation of their behavior sets by monitoring
and reasoning about their behavior execution to dynamically
carry out revisions on the behaviors. The behavior adaptation
approaches has been instantiated in two real-time interactive
game domains. The evaluation results shows that the agents in
the two domains successfully adapt themselves by revising their
behavior sets appropriately.

Index Terms—Failure-driven learning, Computer Game AI

I. INTRODUCTION

Failures in problem solving provides both humans and
artificial agents with strong cues on what needs to be learned
[1], [2]. Thus, in order to create intelligent agents, it is
important to provide agents with the ability to learn from their
own experiences and their failures. The need for agents that
can learn from their experience and thus adapt themselves has
been emphasized for real time games as well [3], [4]. The
traditional approach for creating AI agents for games is to
create hand authored behaviors that remain static and thus are
non-adaptive to changing scenarios1. The static nature of the
AI agents results in excessive authorial burden as it is hard
to come up with a behavior set that can handle all possible
situations within the confines of the game world. Over long
game sessions, static behavioral repertoire further harms the
believability of the game when they fail repeatedly. Incorpo-
rating knowledge representation and planning techniques can
enable an agent’s behavior to become more flexible in novel
situations but this too can require extensive programming
effort [6] and it does not guarantee success: when an agent’s
behavior fails to achieve their desired purpose, most agents
are unable to identify such failure and will continue executing
the ineffective behavior. Self-adapting AI agents that can learn
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1For an overview of current AI behavior authoring approaches in the game
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from their own experience and adapt themselves could provide
the ability to resolve these issues. In this paper, we address
this problem of lack of adaptivity in game playing agents to
new and unforeseen circumstances.

The problem of the static nature of the AI agent’s behavior
set is exacerbated by the complexity of the state of the art
computer games. Most state of the art computer games pose
challenges for traditional AI approaches, as a result making it
harder to develop AI approaches for them, as we see next.

A. The Problem: Challenges for AI approaches Imposed by
Interactive Game Domains

Interactive game domains introduce considerable challenges
for artificial intelligent approaches situated within them. These
challenges are also applicable for our behavior adaptation
approach. The list below provides an overview on the kind
of problems that computer games pose to the AI community.

• Real-time Nature: interactive games operate in real-time.
Their real-time nature imposes constraints in terms of
processing time that could be taken by AI approaches
situated within these domains.

• Human in the loop: state of the art games involve an
interactive user that can change the game state instanta-
neously. Any considerable delay in AI decision making
results in a decision impertinent to current game situation.

• Large Decision Spaces: most state of the art computer
games have huge decision spaces[7], [8], and thus tra-
ditional search based AI techniques cannot be applied.
Learning techniques or higher level representation is
required to deal with such complex games.

• Behavior Authoring Effort: traditionally, computer games
use handcrafted behaviors authored by game designers.
Authoring the behavior sets in a game requires a huge
human engineering effort.

• Unanticipated Scenarios: it is not feasible to anticipate
all possible situations that can arise in a real game. As a
result, it is hard to design behaviors that can handle all
the possible situations and respond appropriately to all
possible player actions.

• Support Tools: human-authored behaviors are, ultimately,
software code in a complex programming language and as
such they are prone to human errors. Sometimes there are
”bugs”, sometimes the behaviors may simply not have the
intended result. Support tools are required that can help
the author detect these issues.

• Behavior Replayability and variability: static behavior
sets results in behaviors being repeated again and again.
A player might become bored seeing repeated behaviors.
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In recent years, interest in applying AI techniques to com-
puter games has seen a notable increase (e.g., see work-
shops dedicated to game AI in conferences such as ICCBR
2005, IJCAI 2005, AIIDE and more recently at ECAI 2008).
The vast majority of this work, however, focuses on small
sub problems within a computer game (small tactical-level
problems, coordination, path planning, etc.) or is not situated
within a real game. Although this research provides interesting
solutions and ideas, it cannot be directly applied by computer
game companies. As computer games are being developed
by increasingly large project teams with increasingly tight
timelines, game developers do not have the necessary cycles
needed to try and transition these techniques to their own
games. One of the long-term goals of our work is to reduce the
transition effort needed in applying academic AI techniques in
real games. Our approach presented in this paper is a step in
that direction.

Our approach has been implemented in two domains. The
first domain is a real-time game domain with embodied
characters that must behave in a human-like in a believable
way. The second domain is a real-time game domain with
a complex strategic behaviors. The two domains provide the
ideal game domains for developing adaptive agents as they
present the problems that we listed above for any AI approach
situated within these domains. They share the characteristic
of having huge decision spaces, require real-time performance
by the AI approaches situated within it, have an interactive
user and require extensive behavior libraries that can play at
a reasonable level.

B. The Solution

Our approach to deal with the issue of lack of adaptivity in
game playing agents is to provide agents with the ability to be
introspectively aware of their internal state, and further revise
themselves based on deliberating over their internal state. The
agents monitor and reason about their behavior execution;
when the agent fails, they use feedback from the world, and
the trace of the failed process, to identify the cause(s) of its
failure and perform appropriate revisions to their behaviors.
The behavior adaptation approach consists of three parts: Trace
recording, Failure detection and Behavior revision.

In the first part, a trace holding important events happening
during the game is recorded. This trace holds the status of the
executing behaviors and other information like external state
of the world at various intervals during the game. The second
part involves analyzing the execution trace to find possible
issues with the executing behavior set by using a set of failure
patterns. These failure patterns represent a set of pre-compiled
patterns that can identify the cause of each particular failure by
identifying instances of these patterns in the trace. Once a set
of failure patterns has been identified, the failed condition can
be resolved by appropriately revising the behaviors using a set
of behavior modification routines. These behavior modification
routines are created through a combination of basic operators
(called modops). The modops change the behavior in different
ways like modifying the original elements, introduction of
new elements or reorganization of the elements inside the

behavior. The solution addresses the need for AI agents to
be adaptive in complex real-time game domains. The results
from evaluation of the behavior adaptation approach in the two
domains indicate that the agents successfully adapt themselves
to changing game situations.

The rest of the paper is organized as follows. We first
provide the background with theoretical foundations of our
work. We then focus on our behavior adaptation architecture
in Section III. Section IV presents concrete implementation
and evaluation of the behavior adaptation work in the first
game domain, inhabited with embodied characters. Section V
presents the details on the behavior adaptation work in the area
of real-time strategy game and the results of the evaluation.
We discuss our approach and some lessons learned based on
our implementation of the behavior adaptation approach in the
two domains in Section VI. We present the related work in
Section VII. Finally, we conclude with some future directions
we plan to undertake.

II. BACKGROUND

A. Theoretical Foundation of Behavior Adaptation

The agent’s behavior set can be considered a reactive plan
dictating what it should do under various conditions. Run-time
behavior adaptation can be considered a problem of runtime
reactive-plan revision. One approach to runtime plan revision
is to simply apply classical planning techniques to replan upon
encountering failure. Such techniques, however, are ill-suited
to the unique requirements of our domain. They typically
assume the agent is the sole source of change, actions are
deterministic and their effects well defined, that actions are
sequential and take unit time, and that the world is fully
observable. In an interactive, real-time game domain, all these
assumptions are violated. Actions are non-deterministic and
their effects are often difficult to quantify. Game domains
are typically not fully observable. There are often occlusions
blocking sensors from reaching the entire world.

Some of the more recent work in planning has focused
on relaxing these assumptions. Conditional planners such
as Conditional Non Linear Planner [9] and Sensory Graph
Plan [10] support sensing actions so that during execution,
changing environmental influences can be ascertained and the
appropriate conditional branch of the plan taken based on
the sensor values. Unfortunately, as the number of sensing
actions and conditional branches increase, the size of the plan
will grow exponentially. These techniques are mostly suited
to deterministic domains with occasional exogenous or non-
deterministic effects, not to continuously changing interactive
domains.

Approaches to planning that deal best with exogenous
events and non-determinism are decision-theoretic planners.
These planners share much with reinforcement learning, com-
monly modeling the problem as a Markov decision process
(MDP) and focusing on learning a policy. Partially observable
MDPs can be used when the world is not fully observable.
These approaches, however, require a large number of it-
erations to converge and only do so if certain conditions
are met. In complex game domains, these techniques are
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intractable. Physical states alone are complex, upon adding
game state information and the status, level and internal states
of various characters, the state space quickly grows untenable.
Further, these approaches generalize poorly. An interactive
player can significantly change the virtual world; a learned
static policy cannot be re-trained online during actual game
play to accommodate such changes. Finally, these approaches
invariably require significant engineering of for example, the
state space and reward signal to make its application feasible.

Transformational planning (TP) is an approach that can po-
tentially deal with the complexity and nondeterminism of our
problem game domain. This technique isolates itself from the
difficulties in the problem domain by focusing on reasoning
about the plan itself. In TP, the goal is not to reason about the
domain to generate a plan but to reason about a failing plan
and transform it so as to fix the failing case without breaking
the rest. This insight is key, but we cannot directly apply such
a technique. TP is generally applied to plans consisting of
STRIPS operators (or plan languages that provide relatively
minor extensions of STRIPS); it is unsuitable for rich reactive
planning languages required to represent behaviors for our
game domains. Thus we developed novel behavior transfor-
mations and techniques for failure detection and revision of
the failed behaviors, extending TP such as to enable us to
leverage this approach in our system.

B. Theoretical Foundation of Learning from failures

Learning is a multi-faceted competence, fundamental to
intelligent behavior. Intelligent Agents can learn by various
means, namely a) learning by being told, b) by observing
some expert in a particular domain and c) from their own
experiences in problem solving. Failures in problem solving
provide the cues on what the agent needs to learn. When an
agent fails, it needs to learn to recover from the particular
failure and eliminate the causes of this failure so that it
does not repeat the same mistake in the future. This paper
investigates this last type of learning, namely, learning from
failures for complex game playing agents.

The problem of learning from failures can further be divided
into three subtasks.

• Given a problem solving agent working in a domain, the
first task is to recognize that a failure has happened.

• Once a failure is identified, the next task involves de-
termining the cause of the failures, perhaps from symp-
toms of the failures or from some feedback from the
environment. This is the well known problem of blame
assignment in AI [11].

• Once the cause of the failure has been identified, the third
task involves carrying out appropriate repairs so that the
failure is not repeated in similar circumstances.

Failure driven learning (FDL) approach has been used in
various AI systems. For example, Meta-Aqua system by Cox
and Ram [12] operates in a story understanding domain. The
system uses a library of pre-defined patterns of erroneous
interactions among reasoning steps to recognize failures in
the story understanding task. Autognostic system by Stroulia
and Goel [13] uses a model of the system to localize the error

in the system’s element and uses the model to construct a
possible alternative trace which could lead to the desired but
unaccomplished solution. For an overview of AI systems using
FDL see [13].

FDL forms the basis of our approach to create adaptive
agents. FDL has traditionally been employed in scenarios
where the agent is not interacting with the user in a com-
plex real-time domain (for example all the systems described
above share this characteristic). Furthermore, as with Trans-
formational Planning, FDL when applied to the problem
of plan revision, is generally applied to detect failures in
plans consisting of STRIPS operators or minor extensions of
STRIPS; using it for revising complex behavior sets for our
game domains requires novel failure detection techniques, a
vocabulary of failure patterns pertinent to game domains and
behavior modification strategies that can revise rich constructs
of our behavior representation language (described later in
Section IV and V) used to author behaviors. Thus we have
extended FDL with real-time failure detection and novel
behavior modification routines to extend it for our real-time
interactive game domains.

III. REAL-TIME BEHAVIOR ADAPTATION ARCHITECTURE

Our Behavior adaptation architecture (Figure 1) can be
divided into two main layers: Behavior Representation and
Execution layer and Reasoning layer. The first layer involves
representing the agent’s behavior set in a representation lan-
guage, a set of behaviors constituting a behavior library to
play the game for which the agent has been developed and a
behavior execution layer that deals with the real-time nature of
the game and executes the authored behavior set in real-time.
The second part monitors the performance of the executing
behaviors at runtime in an execution trace, infer from their
execution trace what might be wrong using a set of author
defined patterns of common failures and perform appropriate
modifications to the failed behaviors. We describe these two
parts in detail next.

A. Behavior Representation and Execution

1) Behavior Library in Representation Language: The rep-
resentation language for authoring behaviors provides a means
for representing basic behaviors using various constituents
namely, preconditions, alive-conditions, sensors and basic ac-
tions. Preconditions are a set of conditions that must be true in
order to execute the behavior (e.g., an ”attack” behavior for a
strategy game might have as its preconditions the existence of
an army and an enemy). A set of alive-conditions associated
with a behavior represent the conditions that must be satisfied
during the execution of the behavior for it to succeed. If at
some moment during the execution, these alive-conditions are
not met, the behavior is stopped, as it will not achieve its
intended goal. Sensors are the basic variables and tests that the
behaviors can use to consult the current world state. Actions
are the basic actions that can be sent to the game world to
perform some low level things (e.g, moving to a particular
part of the world, carrying out gestures etc). In order to adapt
the behaviors, the language could further provide inherent
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Fig. 1. The figure shows the architectural diagram for the behavior adaptation
system.

support to modify the internal of the authored behaviors.
These modification operators help in easily revising the failed
behaviors once a modification is detected.

The behavior library holds the set of behaviors that would
allow the agent to play in a given game domain. These
behavior set could be hand authored by the game designer
using the representation language or learned through some
other mechanism (for example, the behavior set could be
learned through designer’s demonstration for our second case
study).

2) Behavior Execution Layer: The execution layer provides
the ability to execute behaviors in real-time. The execution
layers provide the means to look at the current state of
the world and select appropriate behavior for execution. The
execution layer further needs to maintain currently active goals
and behaviors. During execution, steps of the behavior may fail
(e.g. no behavior can be found to accomplish a subgoal, or a
basic action fails in the game world), potentially causing the
enclosing behavior to fail. When a behavior fails, the execution
layer needs to find an alternate behavior to accomplish the
goal; if no appropriate alternative behavior is found, the goal
would fail. Behavior preconditions are used to find appropriate
behaviors for accomplishing a goal in the current context.
When a behavior needs to execute a basic action, it needs
to be sent to the game layer.

B. Reasoning Layer

The reasoning layer consists of three components: Trace
recording, Failure detection and Behavior Revision. Figure ??
shows the behavior adaptation algorithm.

1) Trace Recording: The execution trace is generated by
storing each game state recorded at specific time intervals.
An abstracted version of the execution trace is used to record
important events happening during the execution. From each
game state , various events are extracted and recorded in the
abstracted trace . These events are in the form of information
regarding the behaviors that were executing: their start and
end times, and their final execution status (i.e. whether the
behavior started, failed or succeeded). The abstracted trace
also contains external state of the world recorded at various

ModOps Original Behavior Modified Behavior
Add a step (B2’, B2) Behavior B{ Behavior B’{

step B1, step B2 step B1, step B2’
step B3 } step B2, step B3}

Reorder a step (B2, B3) Behavior B{ Behavior B’{
step B1, step B2 step B1, step B3
step B3 } step B2}

Change the Parameters
(B, x, x’)

Behavior B{ Behavior B’{

step B1 (x, y) step B1 (x’, y)
step B2, step B3 } step B2, step B3 }

TABLE I
THE TABLE PROVIDES SOME OF THE MODOPS USED FOR CREATING

BEHAVIOR MODIFICATION ROUTINES.

BehaviorModificationRoutine Bmod() {
add step(B1, step s1, step s2);
change parameter (B1, x, x’);}

Fig. 2. The figure shows an example behavior modification routine created
using modops.

intervals so that different information can be extracted from
it during reasoning about the failures happening at execution
time. The abstracted trace provides a considerable advantage
in performing adaptation of behavior as search in the trace
can help localize portions that could possibly have been
responsible for the failure.

2) Failure Detection: Failure detection involves localizing
the fault points. Although the abstracted execution trace de-
fines the space of possible causes for the failure, it does
not provide any help in localizing the cause of the failure.
Traces can be extremely large, especially in the case of
complex games on which the system may spend a lot of
effort attempting to achieve a particular goal. In order to avoid
this potentially very expensive search, a set of pre-compiled
patterns of failures can be used that can help identify the cause
of each particular failure by identifying instances of these
patterns in the trace [1], [14]. The failure patterns essentially
provide an abstraction mechanism to look for typical patterns
of failure conditions over the execution trace. The failure
patterns simplify the blame-assignment process into a search
for instances of the particular problematic patterns. Once a set
of failures is identified, they need to be appropriately revised.

3) Behavior Revision: Once the cause of the failure is
identified, each failure needs to be addressed through ap-
propriate modification. The collection of modification routines
provide the necessary set of modifications to be applied . Each
modification consists of basic operators (called modops). The
modops change the behavior in different ways like modifying
the original elements, introduction of new elements or reor-
ganization of the elements inside the behavior. Table I shows
some of the modops. Figure 2 shows an example of a behavior
modification routine created using the combination of modops.
Each of the modop for a modification are applied to produce
a modified behavior. Once all the modifications are carried
out, a modified behavior set is produced.

Our behavior adaptation architecture has been concretely
implemented in two domains. Next we present these two case
studies and the evaluation of the behavior adaptation approach
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Fig. 3. The figure shows the architectural diagram for our behavior
transformation system.

in these two domains.

IV. CASE STUDY: BEHAVIOR MODIFICATION BASED ON
TAG

In the first case study, our game scenario consists of two
embodied characters named Jack and Jill. They are involved
in a game of Tag where they chase the character who is ”It”
around the game area. Each character has its own personality
that affects the way they approach play. Jack for example, likes
to daydream and is not particularly interested in the game. If
he has to play he would prefer to hide somewhere where he
can relax. Jill on the other hand, likes to be the center of
attention. She is bored if she is not being chased or chasing
someone. The behaviors authored for each character reflect
their personalities. Each character’s behavior library currently
consists of about 50 behaviors and contains approximately
1200 lines of ABL code (see below). Our system (see Figure 3)
is composed of an execution layer which handles the real-time
interactions, and a reasoning layer responsible for monitoring
the character’s state and making repairs as needed.

A. Behavior Execution Layer

We have used A Behavior Language (ABL) as the behavior
execution layer. ABL is explicitly designed to support pro-
gramming idioms for the creation of reactive, believable agents
[15]. Its fast runtime execution module makes it suitable for
real-time scenarios. ABL is a proven language for believable
characters, having been successfully used to author the central
characters Trip and Grace for the interactive drama Facade
[6]. A character authored in ABL is composed of a library
of behaviors, capturing the various activities the character can
perform in the world..

ABL’s runtime execution module acts as the front end
for communication with the game environment. It constantly
senses the world, keeps track of the current game state, updates
the active behavior tree and initiates and monitors primitive
actions in the game world. Furthermore, the runtime system
provides support for meta behaviors that can monitor (and

SMF/S Semantically Meaningful Failure/Success: failure/success of
this behavior implies something that the goal is important in
the game world wrt. author intent ( AvoiditPerson shown in Fig
6 is SMF because it is important to avoid the person who is ”it
” in the game )

FI Fully Implementing: the behavior in and of itself is a complete
and independent method of achieving goal.

TABLE II
SOME EXAMPLE ANNOTATIONS

potentially change) the behaviors at run time. For our reason-
ing module, we have utilized this meta-reasoning capability
of ABL to trace agent execution. We also modified ABL’s
runtime system and compiler so that behaviors generated by
the reasoning layer can be reloaded.

B. The Reasoning Layer

The reasoning layer consists of two components. The first
component tracks long term patterns in the character’s behav-
ior execution and detects violations of the author specified
behavior contract (see below). When a contract violation
is detected, it uses the execution trace to perform blame
assignment, identifying one or more behaviors that should be
changed. The second component applies modification opera-
tors so as to repair the offending behaviors identified during
blame assignment.

1) Failure Detection: The reasoning system first needs to
detect when a modification to a behavior should be carried
out. We need a way for authors to define contracts about
long term character behavior; when the contract is violated,
the reasoning layer should modify the behavior library. To
accomplish this, we use a simple emotion model based on
Em, an OCC2 model of emotion [16]. Emotion values serve
as compact representations of long-term behavior. The author
defines personality contract through constraints on behavior.
The constraints are defined by providing nominal bounds for
emotion values. When an emotion value exceeds the bounds
provided by the author, this tells the reasoning layer that
the current behavior library is creating inappropriate long-
term behavior and that it should seek to assign blame and
change its behavior. At runtime, a character’s emotional state is
incremented when specific behaviors, annotated by the author,
succeed or fail. The emotion increment value per behavior
is defined by the author as part of creating the character
personality. The reasoning module also needs to determine the
behavior(s) that should be revised in response to a violation
of the personality contract (in our case, an emotion value
exceeding a bound). This process involves analyzing the past
execution trace and identifying the behavior with the maximal
contribution to the out-of-bound emotion value, amortized over
time, as the responsible behavior.

2) Failure Patterns and Behavior Modification Routines:
Once the reasoning module has detected the behavior(s)
that need to be modified, the next step is to identify the
appropriate set of behavior modification operators that can

2OCC model derives its abbreviated name from it original inventors, Ortony,
Clore and Collins
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Fig. 4. The figure shows the concepts hierarchy and relationships used during
the tweaking process

be applied to the offending behavior(s). We would like our
behavior modification operators to be as domain independent
as possible. However, domain specific knowledge about par-
ticular game worlds is necessary in order to reason about
which operators to apply to a given behavior. Rather than
rolling such knowledge into the operators, we factor it into
author provided declarative knowledge about the character’s
behavior library. This declarative knowledge consists of two
parts: annotations on the behaviors themselves (see Table II
for a subset of the annotations used in our current system)
and an ontological description of the behaviors, their types,
relationships, and what they accomplish (see Figure 4 for
a subset of the ontology). Each of the behavior (about 50
total behaviors for each character) written as part of the
character’s behavior library needs to be classified according
to the ontological categories. The ontological classification
provides the necessary declarative knowledge about the behav-
ior library. In the ontology, among other relationships parent-
child, part-subpart relationship among the different behaviors
are specified. For example behavior ”Avoid It Person” (shown
later in figure 8) has a parent-child relationship with ”Hide”
and ”TurnAroundEnsureEscape”. This knowledge is utilized
by few of the modification routines (as shown in Table III) to
find appropriate similar behaviors to replace the failing ones.

Our system contains a collection of modification routines
based on the currently defined ontological categories. Given
that blame assignment has provided a behavior to modify, the
applicability of a modification routine depends on the role the
problematic behavior plays in the execution trace, that is, an
explanation of how the problematic behavior contributed to a
contract violation. Thus, modification routine is categorized
according to failure patterns. The failure patterns provide
an abstraction mechanism over the execution trace to detect
the type of failure that is taking place. Failure patterns
are encoded loosely as finite state machines that look for
patterns in the execution trace. Figure 5 shows an example
failure pattern that recognizes when a problematic behavior
is repeatedly failing. Table III shows the association between
modification routine and failure patterns.

Now that the major components of the reasoning layer have
been described, we can provide a brief summary of the behav-
ior modification process. At runtime, the system detects when
the author provided behavior contract has been violated. Once

Failure Pattern Behavior Modification Routines

Continuously repeating behavior

If behavior is part of a persistent goal,
halt persistent goal.
Use alternate behavior or alternate par-
ent behavior.
Recursively fix the behavior itself.

Failing SMF type goal, all
behaviors fail.

Recursively fix one of the failing be-
haviors (or a clone thereof)
If some behaviors are never run, try
loosening preconditions of those be-
haviors (or a clone).
Modify goal annotations (eg. priority
of the goal)

Failing sequential, SMF type
behavior

Replace failing step with a sibling
(closest equivalent behavior from the
ontology)
Modify step annotations or change its
parameters
Remove failing step or reorder steps

TABLE III
SOME EXAMPLE FAILURE PATTERNS AND THEIR ASSOCIATED BEHAVIOR

MODIFICATION ROUTINES

Fig. 5. The figure shows a matcher for the failure pattern: persistent failing
behavior. In this diagram, <X>denotes the behavior in question, STRT (start),
FAIL and ANY (start, fail, succeed) represents the status of the behavior and
”after MINFAILs” or ”within MINTIME” are conditions

blame assignment has determined the offending behavior, the
system uses the failure patterns to explain the behavior’s role
in the contract violation. This involves matching each of the
finite state machines associated with failure pattern against the
execution trace. The set of matching failure patterns provide an
associated set of applicable behavior modification routines to
try on the offending behavior. The order in which the routines
are tried is defined through annotated priority specifications.
Modification routines are tried one at a time until one succeeds
(routines can fail if the behavior they are tweaking lacks the
structural prerequisites for the application of the routine). If the
routines fail, the conducted changes are undone and behavior
is tweaked with the next modification routine. The modified
behavior is compiled and reloaded into the agent.

C. Illustrated Example

To better understand the inner workings of the reasoning
module, let’s look at an illustrative example. In our tag game,
when Jack is chasing Jill, he will use behavior RunToward-
sPlayer 1 to run towards Jill and tag her when he sees her (see
Figure 6). Unfortunately, this behavior fails if Jill is standing
on an elevated surface. Although Jack is able to see Jill,
he cannot reach her without jumping. The behavior author
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sequential behavior RunTowardsPlayer(){
precondition{ (ItWME itPlayerName :: itAgent)

!(AgentPositionWME x::x y::y z::z
objectID == itAgent)}
act Walkto(x,y,z)}

sequential behavior GoToElevatedPos(double x,
double y, double z){
mental_act{ pathplan_closest(x,y,z);}
subgoal walkpath();
act jump();}

Fig. 6. Example behaviors defined in ABL

forgot to handle this case, being either unaware that there
were elevated surfaces in the world or perhaps because the
world has changed since the characters were authored. Due to
this deficiency, behavior RunTowardsPlayer 1 will persistently
fail. Since it has been marked with emotion annotations (not
shown), Jack’s stress level will rise as the behavior persistently
fails, eventually going beyond his nominal bounds for stress,
triggering the behavior adaptation reasoning layer.

The reasoning module first analyzes the execution trace. The
blame assignment module identifies the responsible behavior
by calculating a temporally normalized emotional contribution
for each behavior. In the current example, it detects that
RunTowardsPlayer 1 is the offending behavior. Analyzing the
trace based on this behavior, the matcher identifies the failure
pattern as continuously repeating behavior (Table III). The set
of associated behavior modification routines are then tried.
Because the system is unable to find a stopping condition for
the parent persistent goal to halt it, nor to find an alternative
behavior, the first applicable routine instructs the reasoning
module to recursively modify the steps of the behavior itself.
Sending this back to the matcher, leads us to the failure pat-
tern Failing Sequential Behavior. The first associated routine
is applicable and involves replacing the failing step in the
behavior with the closest ontological match that achieves the
same purpose. The failing step in our case is walkto, which
is of type Movement. Querying the ontology, we see that
GoToElevatedPosition 1, one of Jack’s behaviors defined for
him to locate and hide on an elevated platform, is also of
type Movement. Thus, we can apply the tweak, replacing the
walkto step with GoToElevatedPosition 1. Finally the modi-
fied behavior library is reloaded into the character. It should
be noted that finding the closest match from the ontological
classification is one of the several ways to modify the behavior.
The modification routines involves changing the internals of
the behavior in different ways as shown in Table III. Other
ways of modifying the behavior include reordering the steps
of the behaviors, changing the parameters of the behaviors,
preconditions etc.

D. Experimental results

We evaluated our behavior adaptation system on two hand-
authored embodied characters, Jack and Jill, designed to play a
game of Tag. Jack and Jill were initially authored by people on
a different research project. This provided a great opportunity

Fig. 7. The figure shows the results for average stress level from the
evaluation experiment

for us to evaluate our system. Their fixed behavior set must
invariably make assumptions about world dynamics and thus
will be ineffective at maintaining personality invariants in
the face of change. If our system can help maintain those
invariants then it is an effective means of behavior adaptation.

Specifically, we provide emotion annotations by associating
a stress emotion with being chased and placing nominal
bounds on stress, specifying a contract on Jack’s intended
personality. We then tested whether our system is able to
successfully modify the behavior library to changing environ-
ments. In our experiment, we simulated a changing world by
moving the tag agent whose behaviors had been built for a
specific map into a larger and sparser version.

Our experimental procedure involves first running the game
scenario without the adaptation mechanisms and continuously
observing Jack’s stress level. We then run Jack with the
adaptation mechanisms. Figure 7 shows Jack’s stress levels
averaged over five 10 minute games before adaptation, and
with two different behavior libraries modified by our system.
Blame assignment found that the behavior Run Away 1 is
responsible for stress exceeding bounds. In the ideal case, Jack
would run away for a while, until he was able to escape out of
sight, at which point, he would head for a hiding place. Trace
analysis however shows that Jack turning around to ensure
he is not being followed always fails. Jack is never able to
run away and escape out of sight long enough to risk going
to a hiding place. This situation tends to occur on our test
maps because they are sparse; with fewer obstacles it is more
difficult for Jack to ever escape out of sight. As a result, Jack
is continuously under immediate pursuit and his stress level
quickly exceeds bounds.

In our runs, the behavior adaptation system found two
different modifications that brought stress back in bounds.
In the first case, the system changed the AvoidItPerson 3
behavior (see Figure 8) from a sequential behavior to a parallel
behavior. Originally the authors had expected Jack to first
ensure no one is following before hiding, but the system’s
change is actually quite reasonable. When pressed, it makes
sense to keep running while turning around. If it turns out
some one is following you, you can always change course
and not go to the secret hiding place. Visually, this change was
quite appealing. Jack, when running away, would start strafing
towards his hiding place, allowing him to move towards
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sequential behavior AvoidItPerson() {
precondition {(ItWME itPlayerName :: itAgent)

!(AgentPositionWME objectID == itAgent)}
with(post) subgoal Hide();
with(post) subgoal TurnAroundEnsureEscape();}

Fig. 8. The figure shows the modified behavior

his destination while keeping a look out. Unfortunately, this
change was unstable. Due to how Jack navigates, if he cannot
see his next navigation point, he will stall (a defect in his
navigation behaviors). Surprisingly, even with this defect, Jack
with this change is able to stay within his normal stress
bounds. We initially assumed this was because the defect
happened rarely, but in fact it was the opposite. While running
away, Jack was always getting stuck, allowing Jill to tag him.
This decreases stress because Jack is not as stressed when
he is the pursuer; he can take his time and is not pressed.
This change is nevertheless undesirable. Jack is violating an
implicit behavior contract that Jack should try to escape when
he is ”It” and not allow himself to be tagged. The adaptation
system essentially found a clever way to take advantage of
the under specification of the author’s intent. After amending
the specifications, our behavior adaptation system found an
alternate change: to reorder the steps inside AvoidItPerson 3.
In the new behavior set, AvoidItPerson 3 first hides and then
turns around to ensure no one is following instead of the other
way around. This results in behavior that is as good as the
parallel version if not better than it.

V. CASE STUDY: BEHAVIOR ADAPTATION BASED ON
REAL-TIME STRATEGY GAME WARGUS

Realtime strategy games have been recognized as do-
main rich in interesting problems for artificial intelligence
researchers [8], [7]. Our second case study uses Wargus a
realtime strategy game as an application domain. The goal
of each player in Wargus is to survive and destroy the other
players. Each player has a number of troops, buildings, and
workers who gather resources (gold, wood and oil) in order
to produce more units. Buildings are required to produce
more advanced troops, and troops are required to attack the
enemy. In addition, players can also build defensive buildings
such as walls and towers. Therefore, Wargus involves complex
reasoning to determine where, when and which buildings and
troops to build.

A. Behavior Library and Execution Layer

We have used Darmok as the real-time planning and execu-
tion system. Darmok has been designed to play games such as
WARGUS [17]. The behavior adaptation approach for Wargus
uses Darmok as the execution layer to carry out the behaviors
that play the game. Darmok learns behaviors from expert
demonstrations and uses case-based planning techniques to
reuse the behaviors for new situations. Darmok’s execution
can be divided in two main stages:

• Behavior acquisition: During this first stage, an expert
plays a game of Wargus and the trace of that game is

seqbeh SetupResourceInfrastructure(){
precondition{(resource gold > gold1,

oil > oil1)}
action Build(2,pig-farm,26,20);
action Train(4,"peon);
action Build(2,troll-lumber-mill,22,20)
action Train(4,peon)

alivecondition{peasantcount > 2}}

Fig. 9. The figure shows an example behavior in the representational language
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Fig. 10. The figure shows the behavior modification architecture.

stored. Then, the expert annotates the trace explaining
the goals he was pursuing with the actions he took while
playing. Using those annotations, a set of behaviors are
extracted from the trace and stored as a set of cases.
Figure 9 shows an example of a behavior representing
using the representation language.

• Execution: The execution engine maintains a current
plan to win the game. It is in charge of executing the
current plan and updating its state (marking which actions
succeeded or failed). It also identifies open goals in the
current plan and expands them.

B. Reasoning Layer

The reasoning layer for Wargus consists of four compo-
nents: Trace recording, Failure detection, Behavior Revision,
and Daemon Manager, as shown in Figure 10. The three
first components are executed off-line, after a game playing
episode has finished. The last component executes on-line,
while the system is playing a new game. We describe each of
the different components of the meta-level behavior adaptation
in detail next.

1) Trace Recording: The behavior execution system during
execution records a trace that contains information related to
basic events as explained earlier in Section III-B1. Once a
game episode finishes, an abstracted version of the execution
trace is created for processing by other components. The
abstracted trace, consists of various relevant domain-dependent
features: like information regarding units such as hit points, or
location, information related to units that were idle, killed or
attacked and the cycles at which this happens. The abstracted
trace also contains basic behavior failure data that consists of
the apparent reason for behavior failures, such as whether it
was due to insufficient resources or not having a particular
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 init 
state

<ResourceLoc beh> 
STRT

 beh 
start

beh 
inapp.

<ResourceLoc beh STRT> 
with PARAMInappr ==true

 beh 
finish

<ResourceLoc beh> END 

when UnitBusyOtherBeh

<ResourceLoc beh> STRT 
with PARAMInappr == 

false

Fig. 11. The figure shows the failure pattern VCRGLfail in WARGUS.
STRT, END represents the status of the behavior. PARAMInappr. represents
the routine that checks whether the parameters of ResourceLoc beh. i.e. the
location where peasant is gathering resources is at a location that is too close
to the enemy compared to other possible resource gathering locations.

unit available to carry out a behavior. The abstracted trace is
used to find out various failure patterns as explained next.

2) Failure Patterns and Behavior Modification Routines:
The failure patterns defined over the abstracted trace is used
to detect different failures that occur at run time and find
appropriate modifications for them. These patterns are defined
using a combination of basic elements of the abstracted trace.
Some examples of such failure patterns that have been already
defined in the system and some of their modification routines
are shown in table IV. Each failure pattern is associated
with modification routines. When a failure pattern generates a
match in the abstracted trace, an instantiation of the failure
pattern is created. Each instantiation contains which were
the particular events in the abstracted trace that matched
with the pattern. Such instantiation is used to instantiate
particular behavior modification routines that are targeted to
the particular behaviors that were to blame for the failure.
Figure 11 shown an example failure pattern defined for the
Wargus domain.

Once the failure patterns are detected from the execution
trace, the corresponding behavior modification operators and
the failed conditions are inserted in the base reasoner as
daemons. Each daemon has a set of conditions that repre-
sent when the failure pattern was detected. When the base
reasoner plays another game, different daemons might trigger
and prevent previous failures. The daemons act as meta-level
reactive behaviors that operate over the executing behavior-set
at runtime. The daemon manager uses the daemons to operate
over the executing behavior set at runtime. The daemon
manager monitors the behavior execution, detect whether a
failure pattern is satisfied and repair the behavior according to
the defined behavior modification operator.

In the current system, we have defined about 12 failure
patterns and 20 behavior modification routines. The adaptation
system can be easily extended by writing other patterns of
failure that could be detected from the abstracted trace and
the appropriate fixes to the corresponding behaviors that need
to be carried out in order to correct the failed situation. In
order to understand better, let us look at an example.

C. Illustrated Example

Consider a game scenario where the system has two long
range attacking units (named ballistae in Wargus ) and issues
attack command to the ballistae to go to the location of a peon

Failure Pattern Behavior Modification Routine
Resource Idle failure Utilize the resource in a more productive man-

ner (for example, send peasant to gather more
resources or use the peasant to create a more
appr. building)

Inappr. Enemy Attacked Attack more dangerous enemy unit
Inappr. Attack Location Change attack location to a more appropriate one
Basic Operator failure Add a basic action that fixes failed condition

TABLE IV
SOME EXAMPLE FAILURE PATTERNS AND THEIR ASSOCIATED BEHAVIOR

MODIFICATION ROUTINES IN WARGUS

(one of the enemy units) and start attacking it. As the ballistae
reach an appropriate attacking point, they are attacked by other
nearby enemy units (named axe-throwers). The attack inflicts
considerable damage to the ballistae and they get killed as a
result. These events are recorded as part of the execution trace.
Once the game is over, the system takes the recorded execution
trace and abstracts various data from it. The system applies
the failure patterns over the abstracted trace and detects that
two failure patterns are applicable to the portion of the trace
explained above. These two failure patterns are Inappropriate
Enemy Attacked failure and Inappropriate Attack Location
failure. The failure pattern Inappropriate Enemy Attacked
failure detects the fact that the enemy unit that was being
attacked was not the most appropriate one to destroy first.
This failure happened as the ballistae attacked a less harmful
enemy unit peon rather than a more dangerous enemy unit
axe-thrower. The second failure pattern Inappropriate Attack
Location failure detects the fact that the location used by an
attacking unit is inappropriate and there are better locations
available for attack. This failure, happens as the ballistae
attacks from a location that is very close to an axe thrower.
A better location for the ballistae to attack would have been
one where it was not very close to the axe-thrower, outside of
its range but still at a distance where the ballistae itself can
attack the axe thrower.

The behavior modification operators for the two failed plans
are to a) issue the ballistae new behaviors which have the
enemy unit set as axe-thrower and b) change the location for
attack a little further away from axe-thrower by computing
difference between the location of axe-thrower and ballistae
attacking range. These failure patterns and their associated
behavior modification operators are inserted as daemons that
can be checked at runtime during game execution.

In the next game run, the daemon manager checks these
daemons during execution. As the ballistae’s starts moving
forward for attack towards the peon and a nearby axe-thrower
is present, the new daemon conditions are satisfied and it
gets activated. The daemon detects the two failed condition
of attacking inappropriate enemy unit and attacking it from
an inappropriate location and perform appropriate revisions on
it. The existing behaviors related to the current attack towards
the peon and current location are removed and appropriate new
behaviors are inserted. These new behaviors have the attack
location and the attacked enemy set based on the following
heuristic. The heuristic for selecting the appropriate enemy
is to pick the one that is most strong among the ones that
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Daemon InappropriateAttack() {
precondition
{(attacklocation == unsuitable)
(attackedenemy != most_dangerous)}

action changeAttackParameters();
action changeAttackedEnemy();}

Fig. 12. The figure shows the daemon that changes the attack behavior in
response to unsuitable location and enemy for an attack behavior. Unsuitable
location and enemy are detected using routines (not shown here) that perform
operations over the location and enemy parameters of the original attack
behavior.

are currently alive and is in attacking range. The heuristic
for selecting the appropriate location is based on picking the
location for attack such that it is currently not in the attacking
range of the enemy.

D. Experimental Results

To evaluate our behavior adaptation approach, we conducted
two sets of experiments by turning the behavior adaptation on
and off respectively. Table V provide both these results. The
experiments were conducted on 8 different variations of the
well known map “Nowhere to run nowhere to hide” (NWTR).
NWTR maps have a wall of trees separating the opponents
that introduces a highly strategic component in the game (one
can attempt ranged attacks over the wall of trees, or prevent
the trees to be chopped by building towers, etc.). 6 different
expert demonstration were used for evaluation from NWTR
maps. The games were played against the built-in AI 3 that
comes along with Wargus. Table V shows the results of the
experiments with and without adaptation. NT indicates the
number of traces. For each experiment 6 values are shown:
W, D and L indicate the number of wins, draws and loses
respectively. ADS and AOS indicate the average system score
and the average opponent score (where the “score” is a number
that Wargus itself calculates and assigns to each player at the
end of each game). Finally, WP shows the win percentage.
The right most row PI presents the improvement in win
percentage comparing adaptation with respect to no adaptation.
The bottom row shows a summary of the results. The results
show that behavior adaptation leads to an improvement of the
percentage of wins as well as the player score to opponent
score ratio. An improvement occurs in all cases irrespective
of the number of traces used. There were a few occasions when
the behavior adaptation module introduced unwanted changes
that degraded the system performance. The system lost the
game with the adaptation turned on whereas it was winning
without it. Overall system performance improved considerably
(overall increase of 62.3% as shown in Table V). The issue
of unwanted changes could be resolved with some future
modifications (as discussed later in Section VI).

VI. DISCUSSION

AI agents designed for real-time settings need to adjust
themselves to changing circumstances as that allows them to

3On a higher level, the strategy for the built-in AI is to: a) train a wave of
units, b) send it to attack, c) strengthen defenses and advance technology and
d) repeat the steps a), b and c)

No Behavior Adaptation Behavior Adaptation
NT W D L ADS AOS WP(%) W D L ADS AOS WP(

%)
PI(%)

1 4 5 15 1253 1510 16.67 8 7 9 1834 483 33.33 100
2 5 6 13 1193 1008 20.83 7 8 9 1987 234 29.17 40.00
3 6 5 13 1092 1567 25 9 9 7 1990 794 37.5 50
4 5 7 12 1034 1243 20.83 8 6 10 1793 687 33.33 60
5 7 5 12 1343 1234 29.17 11 7 6 2190 1183 45.83 57.14
6 6 8 10 1432 1678 25 10 7 7 2245 1087 41.67 66.67

33 36 75 7347 8240 22.92 53 42 49 120394468 36.8 62.3

TABLE V
EFFECT OF BEHAVIOR ADAPTATION ON GAME STATISTICS

improve their performance and remedy their faults. Agents
typically designed for computer games, however, lack this
ability. Real-time nature of the game, complex decision spaces
and an interactive user make designing adaptive agents for
games a challenging and hard problem. We have presented
an approach for game agents situated in complex real-time
interactive domains that handle these challenges. It is based
on the idea that it is much more efficient to reason about plans
and how to fix them than it is to reason directly about an
interactive, real-time and non-deterministic domain to plan a
course of action. This is exemplified by transformational plan-
ning, which we extended in order to apply to such a domain.
Our approach is based on the idea that failed experiences in
problem solving provide both humans and artificial systems
with strong cues on what needs to be learned. When an agent
fails, it needs to learn to recover from the particular failure and
eliminate the causes of this failure so that it does not repeat
the same mistake in the future. This is exemplified by FDL,
which we extended in order to apply to our game domain.
The game playing agents learn from their failed experiences,
improve their performance and avoid their mistakes. The
approach is based on revising complex behavior sets for our
game domains using novel failure detection techniques, a
vocabulary of failure patterns pertinent to game domains and
behavior modification strategies that revise rich constructs of
our behavior representation language. Failure detection from
execution trace, can be very expensive and time consuming
as these traces can be very long in these game domains. In
order to deal with this expensive search and achieve real-time
performance, we use a set of pre-compiled patterns of failures
that can be used that can help identify the cause of each
particular failure by identifying instances of these patterns in
the trace [1], [14].

Adaptive approaches can be used to improve performance
along various metrics namely:

• Believable Character Behavior: the goal of the adaptive
AI here is to behave in accordance with their personality.

• Strong AI Performance: the goal of the resulting adaptive
AI is to achieve a more winning percentage and thus
provide a more challenging opponent to the player.

• Adaptation to Challenge Level: the goal of the adaptive
game AI is to continuously scale a game’s difficulty level
to the point that the human player is challenged, but not
completely overpowered.

• Better Player Experience: the goal of the resulting adap-
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tive AI is to provide the player with a better playing
experience.

The adaptive AI approach in our domains focuses on
improving the performance metrics singularly i.e. it aims to
improve on one aspect and doesn’t claim on improving on the
other dimensions. However it can be argued that improvement
along one performance metric could possibly also result in
improvement along other metrics as well.

Game development is an expensive pursuit with a lot of
money riding on their success. Game developers, as a result,
want to use approaches that they can fully test for at design
time. Agents that can adapt their behavior sets at run-time is
a relatively new approach towards developing AI agents for
games. Even if today, the game companies are not employing
run time adaptation, in the future we expect to see adaptive
games that can adapt themselves to unforeseen situations.
Our research would help build a foundation for techniques
which can eventually impact game developers. Exploring these
techniques from a scientific perspective motivates future type
of games that can learn from their own experiences and change
themselves to unforeseen circumstances.

As game complexity increases in the future, creating hand
authored behavior sets would require huge engineering effort.
As a result of increase in complexity, manually behavior sets
are likely to contain design issues. Adaptive approaches can
provide benefits by helping game developer identify these
issues when these approaches are integrated as part of the
debugging interface as we have shown in our earlier work
[18].

Revisions to the failed behaviors, at times, can cause
inconsistencies that lead to a degradation in performance.
These issues need to be addressed through a mechanism
where the system keeps track of the system performance
with the introduction of modifications. If the system perfor-
mance degrades, it could realize that the adaptation is causing
unwanted changes in system performance. Another way to
tackle the issue of introducing unwanted changes would be to
learn the important failure pattern that should be addressed.
The system could keep track of successful (where system
wins) and unsuccessful (where system loses) traces and the
corresponding failure patterns present in them. The system
could address only the failure patterns present in unsuccessful
traces based on the heuristic that the ones common across
successful and unsuccessful might not be important to address.

VII. RELATED WORK

A. Behavior Adaptation

A character’s behavior set can be considered a reactive plan
which dictates what they should do under different conditions.
Runtime behavior modifications can thus be considered a prob-
lem of runtime reactive-plan revision. One approach to runtime
plan revision is to combine deliberative or generative planning
with a reactive layer such that the deliberative planner can
regenerate and replace failing portions of the reactive plan. In
the AI planning community, there has been previous work on
techniques for combining deliberative and reactive planning.

For example, Atlantis [19] and 3T [20] are all aimed at com-
bining deliberative and reactive components. Unfortunately
they all, to varying degrees, make classical planning assump-
tions and are thus not applicable to our domain of interest, real-
time interactive games. These approaches, furthermore, treat
reactive plans as black boxes; planning sequences of black-
boxed reactive plans, but not modifying the internals of the
reactive plans themselves. Our approach directly modifies the
internal structure of existing reactive behaviors. Behavior-set
rewriting can be cast as a transformational planning problem.
In transformational planning, the goal is to improve an existing
reactive plan by applying a set of plan transformations. [21]
describes such an approach where the agent tries to improve
the expected utility of its plan in a world where its job is
to transport balls from one location to another through an
obstacle-filled space. More recently, other transformational
planning approaches have used temporal projection of a robot’s
plan to detect problems with the plans using a causal model of
the world to represent the effects of their actions [22]. These
approaches, although promising, are of limited usefulness for
us. They require a detailed casual model of the world. In
our domain, we have neither the time for extended projective
reasoning nor can we perform accurate projection due to the
interactive and stochastic nature of game domains.

More recent work has relaxed these assumptions and has
been applied to more complex game domains. Introspect
system, for example, observe its own behavior so as to detect
its own inefficiencies and repair them. The system has been
implemented for the game of Go, a deterministic, perfect
information, zero-sum game of strategy between two players
[23]. Ulam et. al. present a model based system for FreeCiv
game [24] that uses a self-model to identify the appropriate
Reinforcement Learning space for a specific task. Differently
from their approach, our work explores repairing behaviors
that fail and then learning to avoid future performance failures.

Guestrin et. al. [25] present a relational Markov decision
process models for a limited real-time strategy game scenario
as the MDP’s complexity grew exponentially with the number
of units. Their approach is a learned static policy that cannot
be re-trained online during actual game play to accommodate
such changes. In our approach the game agent learns from its
own experiences and modifies its internal processing based on
the issues in the executing behavior. Another body of related
work applied to complex game domains is in Adaptive AI
[4]. Dynamic Scripting is a technique based on reinforcement
learning, that is able to generate “scripts” by drawing subsets
of rules from a pre-authored large collection of rules. The
main difference with our approach is that dynamic scripting
creates new scripts only by drawing different subsets of rules,
but not by modifying those rules. In the approach presented in
this paper, we will use meta-reasoning to adapt the behaviors
of the base system.

B. Behavior Authoring In Interactive Games

Simple finite state automaton have been used to author
game characters [5]. While finite state automata are easy to
develop, they are predictable. Over long game sessions, a
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character’s static behavioral repertoire may result in repetitive
behavior which harms the believability of the characters [26].
Therefore, many developers of computer games and robotic
toys have turned to hierarchical, probabilistic and fuzzy state
machines [27]. The advantage of these systems is that layered
control enables authoring sophisticated behaviors, and prob-
abilistic transitions makes the actual behavior of the agent
nondeterministic, less predictable, and more realistic. Other
game developers have turned to scripting languages which
allow arbitrarily sophisticated behaviors. Common scripting
languages, such as Python [28], have been adopted by some
companies for AI scripting [29], [30]. Some other companies
have used Lua [31] for scripting AI behaviors [32]. These
scripting languages allow arbitrarily sophisticated behaviors
[33]. However, creating AI using scripting languages can be
very labor intensive. Computer game manufacturers typically
employ dozens of engineers to perfect very simple game AI(for
examples, see the Postmortems in Game Developer Magazine,
e.g. [34], [35]). The static nature of the scripted behaviors
means that when the behaviors fail to achieve their desired
purpose, the game AI is unable to identify such failure and
will continue executing them.

VIII. CONCLUSIONS AND FUTURE WORK

Our goal is to create adaptive agents for complex real-time
interactive domains that learn from their experience, improving
their performance and avoid their mistakes. In this paper, we
have presented our approach to behavior adaptation for real-
time game playing agents that achieves this. Our approach was
implemented and tested in two domains, one a game world
containing two embodied characters and the other a real-time
strategy game Wargus.

As part of the future work, in our Tag work, to increase
the transformational power of our system we are adding more
behavior adaptation operators, which have several effects.
First, as the number of operators increases, the time required
to reason about them and finds the applicable set increases.
Second, operators for more complex scenarios may have a
lower success rate, requiring us to focus the search through
behavior transformation space. It will become necessary for
the reasoning layer to learn which operators are best applicable
in which situations, such that fewer operators have to be
tried. These characteristics of the problem make a case-based
approach, as a form of speedup learning, very attractive.

There are number of research directions we plan to under-
take for Behavior adaptation in Wargus. Currently the system
applies the behavior modification routines without keeping
track of whether and which of the changes introduced, improve
in-game performance during execution over long term. As
we see from our experimentation results, this is not an issue
as overall performance of the system improves with the
introduced behavior adaptations. However, a few times some
of the introduced changes cause unwanted revisions of the
behavior causing a degradation in system performance. We
plan to address this issue in the future.
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