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Abstract

The Elo system for rating chess players, also used in other games and sports, was
adopted by the World Chess Federation over four decades ago. Although not without
controversy, it is accepted as generally reliable and provides a method for assessing players’
strengths and ranking them in official tournaments.

It is generally accepted that the distribution of players’ rating data is approximately
normal but, to date, no stochastic model of how the distribution might have arisen has
been proposed. We propose such an evolutionary stochastic model, which models the
arrival of players into the rating pool, the games they play against each other, and how
the results of these games affect their ratings. Using a continuous approximation to
the discrete model, we derive the distribution for players’ ratings at time t as a normal
distribution, where the variance increases in time as a logarithmic function of t. We
validate the model using published rating data from 2007 to 2010, showing that the
parameters obtained from the data can be recovered through simulations of the stochastic
model.

The distribution of players’ ratings is only approximately normal and has been shown
to have a small negative skew. We show how to modify our evolutionary stochastic model
to take this skewness into account, and we validate the modified model using the published
official rating data.

Keywords: Elo rating system, distribution of rating data, evolutionary stochastic model

1 Introduction

The Elo system for rating chess players [Elo86], named after its creator Arpad Elo, has been
employed by the World Chess Federation for over four decades as a method for assessing play-
ers’ strengths and ranking them in official tournaments. Although not without controversy, it
is accepted as generally reliable, and is also used in other games and sports such as Scrabble,
Go, American football and major league basketball.

The Elo rating system is based on the model of paired comparisons [Dav88], which can be
applied to the problem of ranking any set of objects for which we have a preference relation.
The model is particularly useful in that a ranking can be obtained in situations where a
preference exists only for some of the pairs of objects under consideration. Paired comparison
models have been successfully applied to measure ability in competitive games and sports
[Joe91, Gli99], the most notable example being the widely used Elo system for rating chess
players.
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Several extensions to the Elo system have been proposed, notably the Glicko [Gli99] and
TrueSkill [HMG06] Bayesian rating systems. Both these systems estimate, in addition to the
rating, the degree of uncertainty that the rating represents the player’s true ability. The
uncertainty allows the system to control the change made to the rating after a game has been
played. In particular, if the uncertainty is low then the changes made to the rating should be
smaller as the rating is already reasonably accurate, while if the uncertainty is high then the
changes made to the rating should be larger.

Here we adopt the Bradley-Terry model [BT52], which provides the theoretical underpin-
ning of Elo’s model, where the probability pαβ that a player A, whose strength is α, wins
against a player B, whose strength is β, is given by the logistic function LC(·), namely

pαβ = LC(α− β) =
1

1 + exp (−C(α− β))
, (1)

where C is a positive scaling factor. We note that LC(·) is strictly monotonically increasing,
limx→−∞LC(x) = 0, limx→+∞ LC(x) = 1 and LC(0) = 0.5. Moreover,

LC(x) + LC(−x) = 1. (2)

In this paper we are interested in the distribution of ratings within the pool of players
that arises as a result of the model induced by (1). We are not aware of any research in this
direction, although it is generally accepted that this distribution is well approximated by a
Gaussian (i.e. normal) distribution [CG96, BSMG09]. It is worth mentioning that Elo [Elo86]
claimed that the distribution of ratings of established chess players was not Gaussian, and
suggested the Maxwell-Boltzmann distribution as an alternative that fitted the data he used
slightly better.

The rest of the paper is organised as follows. In Section 2 we review the Elo rating system,
and in Section 3 we do some exploratory data analysis on published official chess rating data.
We show that the Gaussian distribution provides a very good fit to the data, but there is
a small negative skew present. In Section 4 we propose an evolutionary stochastic model,
which as a first attempt assumes a symmetric distribution of ratings. The derivation of the
distribution is presented in Section 5, where we prove that the resulting distribution is indeed
normal, with the interesting feature that the variance increases with time in a logarithmic
fashion. In Section 6 we validate the model using published rating data from January 2007
to January 2010, and in Section 7 we modify the model to allow for the skewness present in
the data. With reference to this data, we show through simulation that the modified model
yields a better approximation to the actual distribution. Finally, in Section 8 we give our
concluding remarks.

2 Elo’s Rating System

We now summarise Elo’s rating system [Elo86] in order to set in context the evolutionary
model that we present in Section 4.

The fundamental assumption of Elo’s rating system is that each player has a current
playing strength. In a game played between players A and B, with unknown strengths ΦA
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and ΦB , the score of the game for player A is denoted by SAB , where SAB is 1 if A wins, 0 if
A loses and 0.5 if the game is a draw. Its expected value is assumed to be [GJ99]

E(SAB) = LC(ΦA − ΦB), (3)

where E(·) is the expectation operator and

C =
ln 10

400
≈ 0.0058. (4)

The Elo system attempts to estimate the strength ΦA of player A using a calculated
rating RA, which is adjusted according to the results of games played by A. We observe that
this model is related to the Bradley-Terry model for paired comparison data [BT52]; see also
[Dav88].

After playing a game against player B, player A’s rating is adjusted according to the
following formula (see equation (2) in [GJ99])

new RA = old RA +K(SAB − E(SAB)), (5)

where K (known as the K-factor) is the maximum number of points by which a rating can
be changed as a result of a single game. (A high K-factor gives more weight to recent results,
while a low K-factor increases the relative influence of results from earlier games.) In the
Elo system the K-factor is typically between 10 and 30. (There has been some controversy
involving a recent proposal by the World Chess Federation to change the K-factor [Son09,
Zul09].) For the purpose of experimentation we have fixed the K-factor at 20.

When using (5) to update RA, E(SAB) is estimated from (3) using the current values of
RA and RB as estimates of ΦA and ΦB, respectively.

Player B’s rating is updated similarly. We note that, after updating both A’s and B’s
ratings, the sum of their ratings remains unchanged. The above method can be straightfor-
wardly extended to the case of a player competing in a tournament, or to a number of games
played over a given period.

3 The Distribution of Elo Rating Data

The World Chess Federation, known as FIDE, publishes a rating list several times each year.
Traditionally FIDE published the rating list every three months, but from 2009 has moved to
bi-monthly publication; the official rating data can be obtained from http://ratings.fide.

com.

Here we are interested in the distribution of the players’ ratings. It has been confirmed by
Charness and Gerchak [CG96], and by Bilalić et al. [BSMG09] that the distribution is well
approximated by a Gaussian distribution. We recall that the probability density function for
a Gaussian random variable X takes the form,

1√
2πσ2

exp

(
−(X − µ)2

2σ2

)
, (6)

where µ is the mean and σ is the standard deviation of X.
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Figure 1: Plots of the binned rating data (left) and the fitted Gaussians (right) from January
2007 to January 2010

With these observations in mind, we performed some exploratory data analysis on the
FIDE rating data from January 2007 to January 2010. To test the normality of the data, we
binned each of the four data sets, taking the bin width to be 20 (the fixed K-factor). The
resulting plots for January 2007 to January 2010 are shown on the left-hand side of Figure 1.

We then fitted a constant multiple of a Gaussian distribution to each of the four data sets,
using Matlab. The plots for the fitted data for January 2007 to January 2010 are shown on
the right-hand side of Figure 1. The fitted parameters, Q, µ and σ, are shown in Table 1,
where Q is the multiplicative constant. Clearly, Q is an approximation to the actual number
of players P . Table 1 also shows R2, the coefficient of determination [Mot95]. It can be seen
that this is close to 1, which indicates a very good fit. For comparison, the last two columns in
the table show the mean µ̂ and standard deviation σ̂ computed from the actual FIDE rating
data. On average σ̂ is about 7-15 Elo points greater than the fitted standard deviation σ.

Year Q µ σ R2 P µ̂ σ̂

2007 75167 2096.400 151.604 0.9936 77056 2100.127 166.203
2008 84844 2077.400 166.452 0.9908 87075 2073.566 181.918
2009 97070 2034.000 183.706 0.9859 99223 2044.687 196.639
2010 107874 2007.600 202.092 0.9815 109373 2015.650 209.622

Table 1: The parameters for the fitted Gaussians in Figure 1

It can be seen that the plots on the left-hand side of Figure 1 appear to show a small
negative skew. (We note that this is in contrast to the positive skew of the Maxwell-Boltzmann
distribution, suggested by Elo [Elo86].) As a next step, we therefore investigated the skewness
of the data for 13 rating periods from October 2006 to September 2009. The skewness s is
defined by

s =
E(X − µ)3

σ3
.

The skewness of the actual FIDE rating data is shown in the left-hand plot in Figure 2.
As can be seen, it shows that there is a small negative skew, which has generally slowly
increased over the period. (The increase in skewness in September 2009 is mostly due to
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Figure 2: Skewness of rating (left) and mean rating linear fit (right), for 13 periods from
October 2006 to September 2009

FIDE temporarily lowering the minimum rating for new players from 1400 to 1200, and then
reverting to the original policy in the following period.) The negative skew can be attributed
to the slow decrease in the mean rating with the growing number of players, since it is more
likely that a new player joining the pool will enter with a rating lower than the average. This
can be formalised as follows.

Let P1 be the number of players in the pool at the end of the first period and let µ1 be
the mean rating of those players. We define P2 and µ2 similarly for the second period. Then
the total of the ratings of all players in the pool is P1µ1 for the first period and P2µ2 for the
second period. Assuming the average rating of new players joining during the second period
is µ1 − ǫ, we have

P2µ2 = P1µ1 + (P2 − P1)(µ1 − ǫ),

yielding

µ2 − µ1 = −ǫ(P2 − P1)

P2

. (7)

We can approximate (7) by the differential equation

dµ

dP
= − ǫ

P
,

which has the solution
µ = µ0 − ǫ lnP, (8)

where µ0 is a constant.

The right-hand graph in Figure 2 shows the mean Elo rating µ̂ plotted against the loga-
rithm of the number of players P . The linear fit shown is in good agreement with (8), with
ǫ = 227.6, µ0 = 4663, and R2 = 0.9964. Thus the average rating is decreasing slowly as a
linear function of the logarithm of the number of players in the pool. In addition, knowing
ǫ would allow us to predict the rate of decrease, and also to estimate the skewness shown in
the left-hand graph in Figure 2.

As we have seen above, the Gaussian distribution is a good first approximation. We
pursue this further in Section 5 after we formalise the evolutionary model for players’ ratings
in Section 4. We return in Section 7 to a more general model that takes skewness into account.
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4 An Evolutionary Urn Transfer Model

In our evolutionary stochastic model for rating game players, two main types of event may
take place. The first event type occurs when a new player enters the system. We make two
assumptions related to such an event:

(i) that new players enter the system at a fixed rate, and

(ii) that once players enter the system they do not leave it.

(We note that the model can be extended to allow players to leave the pool as long as the
rate at which players enter the pool is greater than the rate at which they leave.)

The second event type occurs when a game is played between two players. In this case,
we assume

(iii) that the outcome of the game is either a win or loss for the first player, and

(iv) that every game occurs between two players of fairly similar strength; in particular, we
assume that the absolute value of the difference in strength between the players in any
game is at most W .

Assumption (iii) is often made, cf. [Gli99], to avoid including extra parameters in the
model, as it is reasonable to assume that a draw is equivalent to half a win and half a loss
(which is consistent with the score of a draw being 0.5, as in Section 2); see [Joe91, Hen92,
GJ99] for alternative ways of dealing with draws. The basis for Assumption (iv) is that
players will normally play games against players of comparable strength; for example, many
tournaments are divided into separate grading sections for that reason. We note that the win
probabilities given by (1) satisfy

pαβ + pβα = 1, (9)

which is consistent with Assumption (iii).

In our model, we approximate the ratings using a discrete numerical scale of values at
intervals of I. We use urns to store the pool of players, with each urn containing players of
approximately similar strength. Let M denote the average rating of all the players. Then
urnk, the kth urn, where −∞ < k < ∞, contains those players whose rating is in the range
[M + (k − 0.5)I,M + (k + 0.5)I), i.e. the players are grouped into bins of width I. Thus a
player with rating R will be in urn number ⌊0.5 + (R−M)/I⌋.

Players enter the system at a rate r, where 0 < r < 1. After playing a game, a player
may stay in the same urn or be transferred to one of the two neighbouring urns, depending
on the result of the game. We now describe the urn model in detail.

We assume a countable number of urns, with urn0 being the central urn; to its left are
the urns with negative subscripts and to its right are the urns with positive subscripts. We
let Fi(t) denote the number of players in urni at stage t of the stochastic process. Initially
t = 0, F0(0) = ∆, with ∆ > 0, i.e. urn0 initially has ∆ players in it, and all other urns are
empty, i.e. Fi(0) = 0 for i 6= 0.

When a player enters the system, an existing player A is selected uniformly at random
from the urns and the new player is put into the same urn as player A, i.e. we assign the new
player the same approximate rating as the selected existing player A. In other words, new
players enter the system according to the distribution of players currently in the system.
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The stochastic process modelling the changes in rating can be viewed as a random walk
[RG04], where the probabilities of players increasing, decreasing or maintaining their ratings
depend on their current ratings, as explained below.

At time t, t > 0, a player A is chosen uniformly at random from the urns, say from urni,
i.e. urni is selected with probability

Fi(t)∑
∞

j=−∞
Fj(t)

≈ Fi(t)

rt+∆
, (10)

where ≈ means is approximately equal to for large t. (This approximation holds since the
expectation of the number of players P at time t is rt+∆.)

As above, we assume 0 < r < 1. Then one of two things may occur:

(I) with probability r, a new player is inserted into urni, i.e. into the same urn as the
chosen player A;

(II) with probability 1− r, an opponent B for the player A is chosen from urns

urni−w, urni−w+1, . . . , urni−1, urni, urni+1, . . . , urni+w−1, urni+w,

where w = ⌊W/I⌋.
The probability that player B is chosen from urni+s is πs, −w ≤ s ≤ w, where for
symmetry we assume π−s = πs. Depending on the result of the game, player A either
moves to urni−1 or urni+1, or remains in urni. The probabilities of these events are
chosen so that the expected change in A’s rating is identical to that prescribed by the
Elo system.

As we are working in terms of urn numbers rather than Elo ratings, we let c = CI, so c
is the scaling factor in terms of urn numbers. Thus, since LC(sI) = Lc(s) and LC(−sI) =
Lc(−s), the probability that player A wins is Lc(−s), by (1). Therefore, from (5) and (2),
when A wins A’s new rating is given by

new RA = old RA +K(1− Lc(−s)) = old RA +KLc(s). (11)

In order to find the new urn number new iA for A, corresponding to the rating new RA,
we first normalise (11) by subtracting M and dividing by I, giving

new iA = old iA +

(
K

I

)
Lc(s).

We restrict player A to moving up or down by at most one urn. Moreover, we discretise
the change stochastically so that the new urn number will be integral but the expected change
unaffected. Hence,

new iA = old iA +

{
1 with probability

(
K
I

)
Lc(s)

0 otherwise.
(12)

We note that I has to be chosen so that the probability in (12) does not exceed 1 for all
s, −w ≤ s ≤ w. We therefore require K ≤ I(1 + e−cw). For simplicity, we will choose
I = K = 20.
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The probability that player A moves to urni+1 is

Lc(−s)
(
K

I

)
Lc(s),

i.e. the product of the probability that A wins against B and the corresponding discretisation
probability.

Similarly, when A loses we have

new iA = old iA −
(
K

I

)
Lc(−s).

Again restricting A to moving up or down by at most one urn, on stochastically discretis-
ing, we obtain

new iA = old iA −
{

1 with probability
(
K
I

)
Lc(−s)

0 otherwise.
(13)

Therefore the probability that A moves to urni−1 is

Lc(s)

(
K

I

)
Lc(−s),

i.e. the product of the probability that A loses against B and the corresponding discretisation
probability.

Let

ψs =

(
K

I

)
Lc(s)Lc(−s) =

(
K

I

)
Lc(s) (1− Lc(s)) . (14)

Then, in summary, if the selected player A is from urni and the chosen opponent B is
from urni+s, −w ≤ s ≤ w,

(i) with probability ψs player A moves to urni+1,

(ii) with probability ψs player A moves to urni−1, and

(iii) with probability 1− 2ψs player A stays in urni.

We note that ψs is proportional to the derivative of the logistic function, viz.

ψs =

(
K

cI

)
Lc

′(s).

This symmetric bell-shaped curve is proportional to the probability density function of
the logistic distribution, with standard deviation π/c

√
3 [EHP00].

It is easy to show that, conditional on A being chosen from urni and B from urni+s,
the variance of the change in rating is 2ψs, whereas with the Elo system it is only (K/I)ψs;
the additional variance is due to the stochastic discretisation. It therefore follows that the
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unconditional variance in our model will also be increased by a factor of 2I/K compared to
that for the Elo system.

It is clear that, according to the Elo model, player B’s rating should be updated in a
similar manner to player A’s. However, we simplify the analysis by considering each game
as essentially equivalent to two “half games”, since the players are chosen randomly. It is
therefore sufficient to analyse only the change to A’s rating.

(We note that, unlike the proposal in [GJ99], our evolutionary model does not take into
account, for example, the fact that junior players tend to be under-rated and to improve more
rapidly than older players.)

5 Derivation of the Distribution of Players’ Ratings

Considering all possible choices for player B, it follows from the above discussion that the
probability θ that A will move to urni+1 is given by

θ =
w∑

s=−w

πsψs (15)

and, by symmetry, that this is also the probability that A will move to urni−1.

At time t, t > 0, a game is played with probability 1− r, and there are then the following
three possible ways that the contents of urni may change.

(a) The player A chosen uniformly at random is selected from urni, and then plays an
opponent B from say urni+s. By (15), the probability that A beats B and moves to
urni+1 is θ, that A loses to B and moves to urni−1 is θ, and that A stays in urni is
1− 2θ. Thus the net expected loss from urni is 2θ.

(b) The player A chosen uniformly at random is selected from urni−1, and then plays an
opponent B from say urni−1+s. By (15), the probability that A beats B and moves to
urni is θ; so the net expected gain to urni is θ. (In all other cases the contents of urni
do not change.)

(c) The player A chosen uniformly at random is selected from urni+1, and then plays an
opponent B from say urni+1+s. By (15), the probability that A loses to B and moves
to urni is θ; so the net expected gain to urni is θ. (In all other cases the contents of
urni do not change.)

If A is selected from any of the other urns, the contents of urni do not change.

We now obtain the difference equation for the urn transfer model, by considering the
expected change to urni, as discussed above. For integer i and t ≥ 0,

E(Fi(t+ 1)) = Fi(t) +
1− r

P
(θFi−1(t) + θFi+1(t)− 2θFi(t)) +

r

P
Fi(t). (16)

To derive (16), we follow a mean-field theory approach, such as that in [OS01, LFLW02],
replacing P by its expectation rt + ∆, as in (10). The expected value of Fi(t + 1) is equal
to the previous number of players in urni plus the two probabilities of inserting a player into
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urni, from either urni−1 or urni+1, minus the probability of moving a player from urni to
either of the neighbouring urns, i.e. urni−1 and urni+1, plus the probability of inserting a
new player into urni.

We now take expectations in (16), and we write Fi(t) for E(Fi(t)). By the linearity of
E(·), we obtain

Fi(t+ 1)− Fi(t) =
θ(1− r)

rt+∆
(Fi−1(t) + Fi+1(t)− 2Fi(t)) +

r

rt+∆
Fi(t). (17)

We note that (17) defines a symmetric random walk by the selected player A at time
t, where the probability of moving right or left is proportional to θ, but the probability
that A is selected decreases over time. Thus the distribution of the players in the urns
flattens asymptotically over time and the standard deviation increases, as in a diffusion process
[DB03].

We will see that in our case the variance increases logarithmically with time and thus the
distribution will flatten very slowly.

We now approximate our discrete model by a continuous model using a continuous function
F (i, t) to approximate Fi(t). In particular, we may approximate

Fi(t+ 1)− Fi(t) by
∂F (i, t)

∂t

and

Fi−1(t) + Fi+1(t)− 2Fi(t) by
∂2F (i, t)

∂i2
.

From (17), we thus derive the partial differential equation

(
t+

∆

r

)
∂F (i, t)

∂t
= λ

∂2F (i, t)

∂i2
+ F (i, t), (18)

where

λ =
θ(1− r)

r
(19)

is a constant.

If we now let
F (i, t) = (rt+∆)G(i, t),

we can transform (18) into

(
t+

∆

r

)
∂G(i, t)

∂t
= λ

∂2G(i, t)

∂i2
. (20)

We now transform (20) into the following simple form of the standard diffusion equation
(also known as the heat equation) [DB03, RG04], by making the substitution t = ∆(ez − 1)/r
and writing H(i, z) for G(i, t):

∂H(i, z)

∂z
= λ

∂2H(i, z)

∂i2
. (21)

10



The initial conditions of the discrete model are F0(0) = ∆, where ∆ > 0, and Fi(0) = 0
for i 6= 0. Since

∞∑

i=−∞

Fi(0) = ∆,

the boundary conditions for the continuous model become F (i, 0) = ∆δ(i), where δ(·) is the
Dirac delta function. This yields the boundary conditions

H(i, 0) = G(i, 0) =
F (i, 0)

∆
= δ(i). (22)

Equation (21) with boundary conditions (22) has the following standard solution:

H(i, z) =
1√
4πλz

exp

(
−i2
4λz

)
, (23)

and we see from (6) that this is the density function of the Gaussian distribution with mean
0 and variance 2λz.

From (23) it follows that

F (i, t) =
rt+∆

[4πλ ln(1 + rt
∆
)]1/2

exp

(
−i2

4λ ln(1 + rt
∆
)

)
. (24)

6 Modelling the Distribution of Chess Players’ Ratings

In order to run simulations of the model that we described and analysed in Sections 4 and 5,
respectively, we first need to specify or derive values for the various parameters involved.

We are assuming that C = ln 10/400 and I = K = 20, as stated previously in Sections 2
and 4; thus c = ln 10/20. We consider the cases w = 1, 2 and 3, and for simplicity we assume
that the urn from which the opponent B is selected is chosen uniformly, i.e. πs = 1/(2w+1).
We can then compute ψs from (14) and θ from (15).

Finally, we need estimates for r, ∆ and t. We assume, as indicated in Section 3, that
the ratings are normally distributed; we relax this assumption in Section 7 to cater for some
degree of skewness in the distribution. In order to validate our model, we obtain estimates for
these parameters using the published official rating data from January 2007 to January 2010,
as described in Section 3. Our methodology is to extract values for these parameters from
this data, using the analysis in Section 5, and then run simulations of our model in order to
see how closely the resulting distribution matches that obtained from the actual data.

To estimate r from the actual rating data, we proceed in the following way. Let P be
the number of rated players recorded at January of a given year. Let G be the number of
games played and N be the number of new players joining the pool of rated players during the
previous year (computed as the difference between P and its value for the previous January).
According to the data, the rate r at which players entered the system during the previous
year is given by

r =
N

N +G
.

The values for these parameters from January 2007 to January 2010, calculated using the
official FIDE data, are presented in Table 2. In the simulations we took the rate r to be
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0.009553, the average rate over the complete four-year period, as shown in the summary row.
It can be seen from the table that, in reality, r fluctuates somewhat, but as an approximation
we assume that r is constant. We can then compute λ from (19).

Year P G N r

2006 67349 − − −
2007 77056 881089 9707 0.010897
2008 87075 1009067 10019 0.009831
2009 99223 1181206 12148 0.010180
2010 109373 1285607 10150 0.007833

Summary − 4356969 42024 0.009553

Table 2: The data used to compute r

Lastly we need to obtain values for ∆ and t. From (6) and (24), it follows that at time t
the expected number of players P is given by

P = rt+∆, (25)

and that σ2, the variance of the rating distribution, is 2λ ln(1 + rt/∆). We thus obtain

∆ = P exp

(
−σ2
2λ

)
. (26)

To get a single value for ∆, we simply take the average over the years 2007 to 2010, where
we compute a year-specific value for ∆ from (26) using the values of P and σ from Table 1.
Finally, we estimate t using (25).

For w = 1, 2 and 3, the estimated values for ∆ and t are presented in Table 3, where
the values for t are rounded to the nearest 10. We also obtained alternative estimates by
replacing P by Q in (25) and (26); the two alternatives are indicated by the first column of
Table 3. The alternatives will be denoted by ∆P , tP and ∆Q, tQ, respectively.

Using w ∆ t until 2007 t until 2008 t until 2009 t until 2010

P 1 20701 5899130 6947900 8219530 9282010
Q 1 20242 5749450 6762420 8042210 9173160
P 2 20569 5912960 6961730 8233360 9295840
Q 2 20113 5762980 6775950 8055750 9186690
P 3 20373 5933480 6982250 8253880 9316360
Q 3 19921 5783070 6796030 8075830 9206770

Table 3: Derived ∆ and t for 2007 to 2010, for w = 1, 2 and 3

As mentioned above, we fixed r at 0.009553, the value obtained in Table 2. For each set
of values for the parameters w, ∆ and t in Table 3, we ran 10 simulations of the stochastic
process described in Section 4, implemented in Matlab. In each case we then fitted a Gaussian
to the distribution of the number of players in the urns, again using Matlab. Each row in
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Table 4 was computed from the average of the 10 simulations in exactly the same way that
the values in Table 1 were computed from the actual rating data. That is, P , µ̂ and σ̂ are the
values calculated from the results of the simulations, and Q, µ and σ are the values obtained
by fitting a Gaussian distribution to the simulation results. (In order to obtain Elo ratings
from the urn numbers of the players in the simulation, the urn numbers were calibrated by
means of a suitable shift. This was chosen so that the means µ̂ from Table 1 for each of the
four years were within the range of urn0.) It can be seen that, in each row of Table 4, all the
fitted and calculated values are very close to each other. This and the fact that R2 is so close
to one gives strong confirmation of our analysis in Section 5.

We now compare the fitted and calculated parameters from Table 4 with those in Table 1.
Obviously, by construction, µ and µ̂ are very close to the corresponding values in Table 1. In
addition, it can be seen that the values for P and Q when using ∆P and tP are very close to
the values for P in Table 1, and correspondingly close to the values for Q in Table 1 when
using ∆Q and tQ. However, the calculated standard deviation σ̂ in Table 4 is consistently
lower than its counterpart in Table 1. For 2007 they are very close, for 2008 they are about
10 Elo points apart, for 2009 they are about 17 points apart, while for 2010 they are about
24 points apart. Although these results are very encouraging, we will see in the next section
that we can get much closer to the actual standard deviations by introducing skewness into
the model.

7 Taking Skewness into Account

As discussed in Section 3, the actual rating data exhibits a small negative skew. We now
consider modifying the urn model presented in Section 4 to take this into account. Since
it is likely that a new player will enter with a rating lower than the average, we can model
this skewness in a simple way by making a small change to the way in which new players
are added. Instead of inserting the new player into the same urn as the chosen player A, say
urni, we put the new player into urni−κ, where κ determines the amount of negative skew
we wish to introduce.

To validate the modified stochastic process, we ran a batch of simulations in Matlab,
starting the process with the actual rating data as of October 2006 and ending in January
2010. For the October 2006 starting data µ̂ = 2105.007, σ̂ = 163.552 and s = −0.1354
(as shown in Figure 2). From October to December 2006 the number of games played was
G = 259, 662, and the number of new players was N = 1960. Using these values together with
the data in Table 2, we therefore took the number of simulation steps to beN+G = 3, 769, 819
and, as before, the rate r at which players enter the system to be 0.009553. Tables 5, 6 and
7 show the average skewness s, mean rating µ̂ and standard deviation σ̂ over 10 simulations,
for w = 1, 2 and 3, respectively, with κ varying from 0 to 12. As a reference point, for the
actual rating data as of January 2010, µ̂ = 2015.650 and σ̂ = 209.622, as in Table 1, and we
computed s = −0.2284.

It can be seen that the results are rather similar in all three tables. As κ is increased,
the skewness s becomes more negative, the mean µ̂ decreases and the standard deviation σ̂
increases, as expected. The closest fit to the actual skewness s = −0.2284 and the standard
deviation σ̂ = 209.622 is when κ is 8. However, the closest fit to the mean Elo rating
µ̂ = 2015.650 is when κ is 11 or 12. The suggested values for κ therefore correspond to a new
player being rated 160−230 Elo points below the average rating. This latter value is in broad
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Using w Year Q µ σ R2 P µ̂ σ̂

∆P , tP 1 2007 77016 2092.231 164.476 0.9993 77064 2092.179 164.890
∆Q, tQ 1 2007 74895 2103.906 164.826 0.9993 74899 2104.053 164.923
∆P , tP 2 2007 77048 2096.596 164.865 0.9994 77045 2096.646 164.933
∆Q, tQ 2 2007 75206 2090.258 164.489 0.9993 75233 2090.195 164.752
∆P , tP 3 2007 77201 2091.796 164.679 0.9994 77228 2092.199 164.981
∆Q, tQ 3 2007 75066 2095.629 164.533 0.9993 75111 2096.049 164.893

∆P , tP 1 2008 87049 2075.647 171.938 0.9994 87081 2075.632 172.178
∆Q, tQ 1 2008 84901 2077.914 172.079 0.9994 84962 2078.193 172.515
∆P , tP 2 2008 87080 2084.221 172.265 0.9995 87111 2083.853 172.573
∆Q, tQ 2 2008 84829 2069.993 172.106 0.9994 84843 2070.036 172.171
∆P , tP 3 2008 87073 2075.797 172.173 0.9994 87144 2075.890 172.676
∆Q, tQ 3 2008 84897 2070.297 171.903 0.9994 84926 2070.029 172.086

∆P , tP 1 2009 99267 2033.206 179.812 0.9995 99324 2033.229 180.227
∆Q, tQ 1 2009 96970 2036.315 179.620 0.9995 97030 2036.540 180.000
∆P , tP 2 2009 99121 2037.768 179.613 0.9995 99141 2037.980 179.862
∆Q, tQ 2 2009 96985 2041.688 179.421 0.9995 97043 2041.843 179.820
∆P , tP 3 2009 99149 2032.080 179.770 0.9995 99166 2031.835 179.943
∆Q, tQ 3 2009 97138 2032.044 179.542 0.9994 97172 2031.974 179.804

∆P , tP 1 2010 109458 2019.797 185.313 0.9995 109485 2019.818 185.528
∆Q, tQ 1 2010 107868 2026.636 186.163 0.9995 107893 2026.662 186.304
∆P , tP 2 2010 109457 2014.156 185.612 0.9995 109469 2013.943 185.691
∆Q, tQ 2 2010 107847 2021.331 185.932 0.9995 107860 2021.283 186.047
∆P , tP 3 2010 109373 2013.765 185.203 0.9994 109386 2013.833 185.344
∆Q, tQ 3 2010 107840 2020.426 185.611 0.9995 107865 2020.262 185.806

Table 4: Actual and fitted parameters for simulation results

agreement with the value ǫ = 227.6 obtained in Section 3 from Figure 2. Although this value
was obtained using the entire three year period, the values for the individual years calculated
from (7) are similar, being roughly in the range 200 − 300. These results confirm that the
modified process is a reasonable model for obtaining rating data with the observed parameters,
despite the discrepancy between the values for κ. This discrepancy is not surprising, since
the modified model, as a first approximation, is clearly an oversimplification. We note that
the value of w seems to have very little effect on the results, although it is possible that some
pattern might be noticeable if a significantly larger value for w was used.

8 Concluding Remarks

We have constructed a stochastic evolutionary urn model that generates the distribution of
players’ ratings and have validated this model using published official rating data on chess
players. For the symmetric case, our analysis of the model yielded a Gaussian distribution,
which has the interesting feature that the variance increases logarithmically with time. This
implies that the distribution of ratings is quite stable, but has the tendency to flatten ex-
tremely slowly over time. These results were validated by simulating the model. Although the
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κ s µ̂ σ̂

− -0.2284 2015.650 209.622

0 -0.0920 2105.641 186.980
1 -0.0884 2097.907 187.030
2 -0.0933 2089.894 188.557
3 -0.0995 2082.068 190.721
4 -0.1064 2074.321 193.440
5 -0.1276 2066.435 197.046
6 -0.1541 2058.940 201.387
7 -0.1881 2050.446 206.373
8 -0.2309 2043.175 211.843

9 -0.2745 2035.115 218.153
10 -0.3206 2027.404 224.623
11 -0.3742 2019.250 232.101
12 -0.4227 2012.005 239.422

Table 5: Simulation results allowing skewness, for w = 1

data is well approximated by a Gaussian, there is a small negative skew present in the data.
An improvement can be made to the model to account for this by breaking the symmetry
and putting new players into lower-numbered urns, corresponding to new players generally
having lower than average ratings. The modified stochastic process was validated by simula-
tion starting with actual rating data. Deriving analytically the distribution for the modified
process remains an open problem.

Throughout the paper we have assumed that the K-factor is fixed at 20. It would be
interesting to allow the K-factor to vary with players’ ratings and the number of games they
have played, as suggested in [GJ99], and to see whether such a modification could shed some
light on the K-factor controversy mentioned in Section 2.
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