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Abstract

While microtask crowdsourcing provides a new way to solve large volumes of small tasks at a much

lower price compared with traditional in-house solutions,it suffers from quality problems due to the

lack of incentives. On the other hand, providing incentivesfor microtask crowdsourcing is challenging

since verifying the quality of submitted solutions is so expensive that will negate the advantage of

microtask crowdsourcing. We study cost-effective incentive mechanisms for microtask crowdsourcing

in this paper. In particular, we consider a model with strategic workers, where the primary objective of

a worker is to maximize his own utility. Based on this model, we analyze two basic mechanisms widely

adopted in existing microtask crowdsourcing applicationsand show that, to obtain high quality solutions

from workers, their costs are constrained by some lower bounds. We then propose a cost-effective

mechanism that employs quality-aware worker training as a tool to stimulate workers to provide high

quality solutions. We prove theoretically that the proposed mechanism, when properly designed, can

obtain high quality solutions with an arbitrarily low cost.Beyond its theoretical guarantees, we further

demonstrate the effectiveness of our proposed mechanisms through a set of behavioral experiments.

Index Terms
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I. INTRODUCTION

Crowdsourcing, which provides an innovative and effectiveway to access online labor mar-

ket, has become increasingly important and prevalent in recent years. Until now, it has been

successfully applied to a variety of applications ranging from challenging and creative projects

such as R&D challenges in InnoCentive [1] and software development tasks in TopCoder [2],

all the way to microtasks such as image tagging, keyword search and relevance feedback

in Amazon Mechanical Turk (Mturk) [3] or Microworkers [4]. Depending on the types of

tasks, crowdsourcing takes different forms, which can be broadly divided into two categories:

crowdsourcing contest and microtask crowdsourcing. Crowdsourcing contests are typically used

for challenging and innovative tasks, where multiple workers simultaneously produce solutions

to the same task for a requester who seeks and rewards only thehighest-quality solution. On

the other hand, microtask crowdsourcing targets on small tasks that are repetitive and tedious

but easy for an individual to accomplish. Different from crowdsourcing contests, there exists no

competition among workers in microtask crowdsourcing. In particular, workers will be paid a

prescribed reward per task they complete, which is typically a small amount of money ranging

from a few cents to a few dollars.

We focus on microtask crowdsourcing in this paper. With the access to large and relatively

cheap online labor pool, microtask crowdsourcing has the advantage of solving large volumes

of small tasks at a much lower price compared with traditional in-house solutions. However,

due to the lack of proper incentives, microtask crowdsourcing suffers from quality issues. Since

workers are paid a fixed amount of money per task they complete, it is profitable for them

to provide random or bad quality solutions in order to increase the number of submissions

within a certain amount of time or effort. It has been reported that most workers on Mturk,

an leading marketplace for microtask crowdsourcing, do notcontribute high quality work [5].

To make matters worse, there exists an inherent conflict between incentivizing high quality

solutions from workers and maintaining the low cost advantage of microtask crowdsourcing

for requesters. On the one hand, requesters typically have avery low budget for each task in

microtask crowdsourcing. On the other hand, the implementation of incentive mechanisms is

costly as the operation of verifying the quality of submitted solutions is expensive [6]. Such a

conflict makes it challenging to design incentives for microtask crowdsourcing, which motivates
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us to ask the following question: what incentive mechanismsshould requesters employ to collect

high quality solutions in a cost-effective way?

In this paper, we address this question from a game-theoretic perspective. In particular, we

investigate a model with strategic workers, where the primary objective of a worker is to

maximize his own utility, defined as the reward he will receive minus the cost of producing

solutions of a certain quality. Based on this model, we first study two basic mechanisms widely

adopted in existing microtask crowdsourcing applications. In particular, the first mechanism

assigns the same task to multiple workers, identifies the correct solution for each task using a

majority voting rule and rewards workers whose solution agrees with the correct one. The second

mechanism assigns each task only to one worker, evaluates the quality of submitted solutions

directly and rewards workers accordingly. We show that in order to obtain high quality solutions

using these two mechanisms, the unit cost incurred by requesters per task is subject to a lower

bound constraint, which is beyond the control of requestersand can be high enough to negate

the low cost advantage of microtask crowdsourcing.

To tackle this challenge, we then propose a cost-effective mechanism that employs quality-

aware worker training as a tool to stimulate workers to provide high quality solutions. In current

microtask crowdsourcing applications, training tasks areusually assigned to workers at the very

beginning and therefore is irrelevant to the quality of their submitted solutions. We show that

assigning training tasks to workers when they perform poorly rather than uniformly at the

beginning can effectively stimulate workers to produce high quality solutions. In particular, we

prove theoretically that the proposed mechanism, when properly designed, can obtain high quality

solutions with an arbitrarily low cost. Beyond its theoretical guarantees, we further conduct

a serial of behavioral experiments to test our proposed mechanism. Our experimental results

demonstrated the effectiveness of our proposed mechanism,and more generally the idea of

quality-aware worker training, in stimulating high quality solutions at low costs.

The rest of the paper is organized as follows. Section II presents the related work. We introduce

our model in Section III and study two basic mechanisms in Section IV. Then, in Section V,

we describe the design of a cost-effective mechanism based on quality-aware worker training

and analyze its performance. We show simulation results in Section VI and our experimental

verifications in Section VII. Finally, we draw conclusions in Section VIII.
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II. RELATED WORK

Most of existing work on quality control for microtask crowdsourcing focuses on filtering and

processing low quality submitted solutions [6] - [10]. As oppose to such approaches, we study

how to incentivize workers to produce high quality solutions in the first place. There has recently

been work addressing incentives of crowdsourcing contestsfrom game-theoretic perspectives by

modeling these contests as all-pay auctions [11] - [13]. Nevertheless, these models can not

apply to our scenario as there exists no competition among workers in the context of microtask

crowdsourcing.

There is a small literature that addresses incentives for microtask crowdsourcing. In [14],

Shaw et al. conducted an experiment to compare the effectiveness of a collection of social

and finical incentive mechanisms. In [15], Singer and Mittalproposed a pricing scheme for

microtask crowdsourcing where tasks are dynamically priced and allocated to workers based on

their bids. A reputation-based incentive mechanism was proposed and analyzed for microtask

crowdsourcing in [16]. Our work differs from these studies in that they do not consider the

validation cost incurred by requesters in their models. Formicrotask crowdsourcing, the operation

of verifying the quality of submitted solutions is so expensive that will negate its low cost

advantage, which places a unique and practical challenge inthe design of incentives. To the

best of our knowledge, this is the first work that studies cost-effective incentive mechanisms for

microtask crowdsourcing.

III. T HE MODEL

There are two main components in our model: requesters, who publish tasks; and workers,

who produce solutions to the posted tasks. The submitted solutions can have varying quality,

which is described by a one-dimensional value. Requesters maintain certain criteria on whether

or not a submitted solution should be accepted. Only acceptable solutions are useful to requesters.

Workers produce solutions to the posted tasks in return for reward provided by requesters. We

assume workers are strategic, i.e., they choose the qualityof their solutions selfishly to maximize

their own utilities.

In our model, a mechanism describes how requesters evaluatethe submitted solutions and

reward workers accordingly. Mechanisms are designed by requesters with the aim of obtaining

high quality solutions from workers, which should be published at the same time as tasks are
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posted. Mechanisms can be costly to requesters, which negates the advantages of crowdsourcing.

In this work, we focus on mechanisms that not only can incentivize high quality solutions from

workers, but also are cost-effective. We now formally describe the model.

Worker Model. We model the action of workers as the qualityq of their solutions. The

valueq represents the probability of this solution is acceptable to requesters, which implies that

q ∈ [0, 1]. We assume that the solution space is infinite and the probability of two workers

submitting the same unacceptable solution is 0. The cost incurred by a worker depends on the

quality of solution he chooses to produce: a worker can produce a solution of qualityq at a cost

c(q). We make the following assumptions on the cost functionc(·):

1) c(q) is convex inq.

2) c(q) is differentiable inq.

3) c′(q) > 0, i.e., solutions with higher quality are more costly to produce.

4) c(0) > 0, i.e., even producing0 quality solutions will incur some cost.

The benefit of a worker corresponds to the received reward, which depends on the quality

of his solution, the mechanism being used and possibly the quality of other workers’ solutions.

We focus on symmetric scenarios, which means the benefit of a worker is evaluated under the

assumption that all the other workers choose the same action(which may be different from

the action of the worker under consideration). Denote byVM(q, q̃) the benefit of a worker

who submits a solution of qualityq while other workers produce solutions with qualityq̃ and

mechanismM is employed by the requester. A quasi-linear utility is adopted, where the utility

of a worker is the difference between his benefit and his cost:

uM(q, q̃) = VM(q, q̃)− c(q). (1)

Mechanism Choice.Requesters employ mechanisms to incentivize high quality solutions from

self-interested workers. Therefore, the action chosen by workers in response to a mechanism can

be used to indicate the effectiveness of this mechanism. In particular, we will be interested in

a desirable outcome where workers chooseq = 1 as their optimal actions, i.e., self-interested

workers are willing to contribute with the highest quality solutions. We would like to emphasize

that such an outcome is practical in that microtasks are typically simple tasks that are easy for

workers to accomplish satisfactorily. On the other hand, ina mechanismM, there is a unit cost

CM per task incurred by the requester, which comes from the reward paid to workers and the
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cost for evaluating submitted solutions. We refer to such a unit costCM as the mechanism cost

of M. Since one of the main advantages of microtask crowdsourcing is its low cost, mechanisms

should be designed to achieve the desirable outcome with lowmechanism cost. Therefore, to

study a certain mechanism, we wish to address the following questions: (a) under what conditions

can we achieve the desirable outcome? and (b) what are the minimum mechanism cost and the

corresponding parameter settings?

Validation Approaches. As an essential step towards incentivizing high quality solutions, a

mechanism should be able to evaluate the quality of submitted solutions. We describe below three

approaches considered in this paper, which are also commonly adopted in existing microtask

crowdsourcing applications.

The first approach is majority voting, where requesters assign the same task to multiple workers

and accept the solution that submitted by the majority of workers as the correct one. Clearly, the

validation cost of majority voting depends on the number of workers per task. It has been reported

that, if assigning the same task to more than 10 workers, the cost of microtask crowdsourcing

solutions is comparable to that of in-house solutions [6] and when the number of tasks is large,

it is financially impractical to assign the same task to too many workers, e.g., more than 3 [5].

Therefore, when majority voting is adopted in incentive mechanisms, a key question need to be

addressed: what is the minimum required number of workers per task to achieve the desirable

outcome?

Second, requesters can use tasks with known solutions, which we refer to as gold standard

tasks, to evaluate the submitted answers. Validation with gold standard tasks is expensive since

correct answers are costly to obtain. More importantly, as the main objective of requesters in

microtask crowdsourcing is to collect solutions for tasks,gold standard tasks can only be used

occasionally for the purpose of assessing workers, e.g., astraining tasks.

Note that both majority voting and gold standard tasks assume implicity that the task has a

unique correct solution, which may not hold for creative tasks, e.g., writing a short description

of a city. In this case, a quality control group [17] can be used to evaluate the submitted

solution. In particularly, the quality group can be either agroup of on-site experts who verify

the quality of submitted solution manually or another groupof workers who work on quality

control tasks designed by the requesters. In the first case, the time and cost spent on evaluating

the submitted solutions is typically comparable to that of performing the task itself. In the second
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case, requesters not only have to investigate time and effort in designing quality control tasks

but also need to pay workers for working these tasks. Therefore, validation using quality control

group is also an expensive operation.

IV. BASIC INCENTIVE MECHANISMS

We study in this section two basic mechanisms that are widelyemployed in existing microtask

crowdsourcing applications. Particularly, for each mechanism, we characterize conditions under

which workers will chooseq = 1 as their best responses and study the minimum mechanism

cost for achieving it.

A. A Reward Consensus Mechanism

We first consider a mechanism that employs majority voting asits validation approach and,

when a consensus is reached, rewards workers who submitted the consensus solution. We refer

to such a mechanism as the reward consensus mechanism and denote it byMc. In Mc, a task

is assigned toK+1 different workers. We assume thatK is an even number and is greater than

0. If the same solution is submitted by no less thanK/2 + 1 workers, then it is chosen as the

correct solution. Workers are paid the prescribed rewardr if they submit the correct solution.

On the other hand, workers will receive no payments if their submitted solutions are different

from the correct one or if no correct solution can be identified, i.e., no consensus is reached.

In Mc, the benefit of each worker depends not only on his own action but also on other

workers’ actions. Therefore, a worker will condition his decision making on others’ actions,

which results in couplings in workers’ actions. To capture such interactions among workers, we

adopt the solution concept of symmetric Nash equilibrium, which can be formally stated as:

Definition 1 (Symmetric Nash Equilibrium ofMc). The q∗ is a symmetric Nash equilibrium in

Mc if q∗ is the best response of a worker when other workers are choosing q∗.

We show below the necessary and sufficient conditions ofq∗ = 1 being a symmetric Nash

equilibrium inMc.

Proposition 1. In Mc, q∗ = 1 is a symmetric Nash equilibrium if and only if r ≥ c′(1).
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Proof: Under the assumption that the probability of any two workerssubmitting the same

unacceptable solution is zero (which is reasonable as thereare infinitely possible solutions), we

can calculate the utility of an worker who produces solutions of quality q while other workers

choose actioñq as

uMc
(q, q̃) = rq

K
∑

n=K/2

K!

n!(K − n)!
q̃n(1− q̃)K−n − c(q).

According to Definition 1,q∗ is a symmetric Nash Equilibrium ofMc if and only if

q∗ ∈ arg max
q∈[0,1]

uMc
(q, q∗). (2)

SinceuMc
(q, 1) = rq−c(q) is a concave function ofq andq ∈ [0, 1], the necessary and sufficient

condition ofq∗ = 1 being a symmetric Nash equilibrium can be derived as

∂uMc
(q, 1)

∂q
|q=1 = r − c′(1) ≥ 0. (3)

From Proposition 1, we can see thatMc can enforce self-interested workers to produce the

highest quality solutions as long as the prescribed rewardr is larger than a certain threshold.

Surprisingly, this threshold depends purely on the worker’s cost function and is irrelevant to the

number of workers. The mechanism cost ofMc can be calculated as

CMc
= (K + 1)r ≥ (K + 1)c′(1). (4)

Therefore, to minimize the mechanism cost, it is optimal to choose the minimum value ofK,

i.e., K = 2, and letr = c′(1). In this way, requesters can achieveq∗ = 1 with the minimum

mechanism costC∗
Mc

= 3c′(1). Having more workers working on the same task will only increase

the mechanism cost while not helping to improve the quality of submitted solutions.

B. A Reward Accuracy Mechanism

Next, we consider a mechanism that rewards a worker purely based on his own submitted

solutions. Such a mechanism is referred to as the reward accuracy mechanism and is denoted by

Ma. In particular, depending on the characteristics of tasks,Ma will use either gold standard

tasks or the quality control group to verify whether a submitted solution is acceptable or not. In

our discussions, however, we make no distinctions between the two methods. We assume that
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the validation cost per task isd and there is a certain probabilityǫ ≪ 1 that a mistake will be

made in deciding whether a solution is acceptable or not.

As we have discussed, these validation operations are expensive and should be used rarely.

Therefore,Ma only evaluates randomly a fraction of submitted solutions to reduce the mech-

anism cost. Formally, inMa, requesters verify a submitted solution with probabilityαa. If a

submitted solution is acceptable or not evaluated, the worker will receive the prescribed reward

r. On the other hand, if the solution being evaluated is unacceptable, the worker will not be

paid.

In Ma, the utility of a worker is irrelevant to actions of other workers. Therefore, we write

the utility of a worker who produces solutions of qualityq as

uMa
(q) = r [(1− αa) + αa(1− ǫ)q + αaǫ(1 − q)]− c(q).

Let q∗ represent the optimal action of a worker by which his utilityfunction is maximized.

SinceuMa
(q) is a concave function ofq andq ∈ [0, 1], we can derive the necessary and sufficient

conditions ofq∗ = 1 as

αa ≥
c′(1)

(1− 2ǫ)r
. (5)

We can see that there is a lower bound on possible values ofαa, which depends on the cost

function of workers and the prescribed rewardr. Sinceαa ∈ [0, 1], for the above condition to

hold, we must haver ≥ c′(1)
(1−2ǫ)

. Moreover, we can calculate the mechanism cost in the case of

q∗ = 1 as

CMa
= (1− αaǫ)r + αad.

Requesters optimize the mechanism cost by choosing the sampling probability αa and the

rewardr. Therefore, we can calculate the minimum mechanism cost as

C∗
Ma

= min
c′(1)

(1−2ǫ)r
≤αa≤1, r≥

c′(1)
(1−2ǫ)

(1− αaǫ)r + αad. (6)

By solving the above convex optimization problem using the Karush-Kuhn-Tucker conditions

[18], we get

C∗
Ma

=







2
√

c′(1)d
1−2ǫ

− ǫ c′(1)
1−2ǫ

, if d ≥ c′(1)
1−2ǫ

,

c′(1)(1−ǫ)
1−2ǫ

+ d, otherwise.
(7)
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Moreover, the optimal parameters for achieving the minimummechanism cost are






α∗
a =

√

c′(1)
(1−2ǫ

)d, r∗ =
√

c′(1)d
1−2ǫ

, if d ≥ c′(1)
1−2ǫ

,

α∗
a = 1, r∗ = c′(1)

1−2ǫ
, otherwise.

(8)

Similarly as the reward consensus mechanism, the mechanismcost of the reward accuracy

mechanism must be greater than a certain value in order for requesters to collect solutions with

the highest quality from workers.

V. REDUCING MECHANISM COST BY QUALITY -AWARE WORKER TRAINING

From our discussions above, we can see that for the two basic mechanisms to achieve

the desirable outcome, their mechanism costs are constrained by some lower bounds, i.e., the

minimum mechanism costs. These minimum mechanism costs aredetermined by worker’s cost

function and possibly the validation cost, all of which are beyond the control of requesters. If

these minimum mechanism costs are large, requesters will have to either lower their standards

and suffer from low quality solutions or switch to other alternative approaches.

To overcome this issue, we introduce a new mechanismMt, which employs quality-aware

worker training as a tool to stimulate self-interested workers to submit high quality solutions.

Our proposed mechanism is built on top of the basic mechanisms to further reduce the required

mechanism cost. In particular, there are two states inMt: the working state, where workers

work on standard tasks in return for reward; and the trainingstate, where workers do a set of

training tasks to gain qualifications for the working state.

In the working state, we consider a general model which incorporates both the reward con-

sensus mechanism and the reward accuracy mechanism. We assume that with probability1−βw,

a task will go through the reward consensus mechanism and with probability βw, the reward

accuracy mechanism will be used with the sampling probability αw. According to our results in

Section IV-A, it is optimal to assign3 workers per task when the reward consensus mechanism

is being used. In the working state, a submitted solution will be accepted byMt if it is accepted

by either the reward consensus mechanism or the reward accuracy mechanism. A submitted

solution will be rejected otherwise. When a solution is accepted, the worker will receive the

prescribed rewardr and can continue working on more tasks in the working state. On the other

hand, if a worker’s solution is rejected, he will not be paid for this task and will be put into the

training state to earn his qualifications for future tasks. Let Pw(q̃w, qw) represent the probability

August 27, 2018 DRAFT



11

�Working 

State

�Training 

State
( , )

w w w
P q qɶ

1 ( , )
w w w
P q q− ɶ

( )
t t
P q

1 ( )
t t
P q−

Fig. 1. The state transition diagram of our proposed mechanism Mt.

of a solution with qualityqw being accepted in the working state when other submitted solutions

are of qualityq̃w. We have

Pw(q̃w, qw) =(1− βw)qw
[

q̃2w + 2q̃w(1− q̃w)
]

+ βw(1− αw) + βwαw[(1− 2ǫ)qw + ǫ]. (9)

The immediate utility of a worker at the working state can be calculated as

uw
Mt

(q̃w, qw) = rPw(q̃w, qw)− c(qw). (10)

In the training state, each worker will receive a set ofN training tasks. To evaluate the

submitted solutions, an approach similar to the reward accuracy mechanism is adopted. In

particular, a worker is chosen to be evaluated at random withprobabilityαt. A chosen worker

will pass the evaluation and gain the permission to working state if M out N solutions are

correct. We assumeM = N in our analysis while our results can be easily extended to more

general cases. An unselected worker will be granted the permission to working state next time.

Only workers who fail the evaluation will stay in the training state and receive another set of

N training tasks. We denote byPt(qt) the probability of a worker who produces solutions of

quality qt being allowed to enter the working state next time, which canbe calculated as

Pt(qt) = (1− αt) + αt[(1− 2ǫ)qt + ǫ]N . (11)

The immediate utility of a worker at the training state is

ut
Mt

(qt) = −Nc(qt). (12)

To summarize, we plot the state transitions ofMt in Fig. 1. We further assume that at the

end of each time slot, a worker will leave the system with probability 1 − δ, whereδ ∈ (0, 1).

Moreover, a new worker will enter the system immediately after an existing one left. New
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workers will be placed randomly into the working state or thetraining state according to an

initial state distribution specified by the requester.

From (10) and (12), we can see that workers’ immediate utility in Mt depends not only on

their actions but also on which state they are in. Moreover, as the state transition probabilities

depend on workers’ actions according to (9) and (11), takinga certain action will affect not

only the immediate utility but also the future utility. For example, a worker may increase his

immediate utility by submitting poor solutions at the working state but suffer from the loss of

being placed into the training state next time. Given the dependence of future utility on current

actions, as rational decision makers, workers will choose their actions to optimize their long-

term utility. Formally, we denote byUw
Mt

(q̃w, qw, qt) the long-term expected utility of a worker

who is currently at the working state and chooses actionqw for the working state and actionqt

for the training state while others choosing actionq̃w at the working state. Similarly, we write

U t
Mt

(q̃w, qw, qt) for the long-term expected utility at the training state. Wehave

Uw
Mt

(q̃w, qw, qt) =uw
Mt

(q̃w, qw)+δ
[

Pw(q̃w, qw)U
w
Mt

(q̃w, qw, qt)+(1−Pw(q̃w, qw))U
t
Mt

(q̃w, qw, qt)
]

, (13)

U t
Mt

(q̃w, qw, qt) =ut
Mt

(qt) + δ
[

Pt(qt)U
w
Mt

(q̃w, qw, qt) + (1− Pt(qt))U
t
Mt

(q̃w, qw, qt)
]

. (14)

Based on the definition of worker’s long-term expected utility, we adopt the symmetric Nash

equilibrium as the solution concept in mechanismMt, which is formally defined as

Definition 2 (Symmetric Nash Equilibrium ofMt). The action pair (q̂w, q̂t) is a symmetric Nash

equilibrium of Mt, if ∀qw ∈ [0, 1] and ∀qt ∈ [0, 1], the following two conditions hold

Uw
Mt

(q̂w, q̂w, q̂t) ≥ Uw
Mt

(q̂w, qw, qt), (15)

U t
Mt

(q̂w, q̂w, q̂t) ≥ U t
Mt

(q̂w, qw, qt). (16)

The above definition suggests a way to verify whether an action pair (q̂w, q̂t) of interest is a

symmetric Nash equilibrium or not, which can be summarized as the following three steps.

1) Assume all workers are adopting(q̂w, q̂t) and one worker of interest may deviate from it.

2) Find the optimal action(q∗w, q
∗
t ) for this worker.

3) The action pair(q̂w, q̂t) is a symmetric Nash equilibrium if and only if it is consistent with

the optimal action pair(q∗w, q
∗
t ), i.e., q̂w = q∗w and q̂t = q∗t .
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The key challenge here is to find the optimal action pair for a worker given the other workers’

action, which can be modeled as a Markov Decision Process (MDP). In this MDP formulation,

the state set includes the working state and the training state, the action in each state is the

quality of solutions to produce, rewards are the immediate utility specified in (10) and (12), and

transition probabilities are given in (9) and (11).

Note that in our discussions so far we assume stationary actions, i.e., workers’ actions are

time-invariant functions of the state. Such an assumption can be justified by properties of MDP

as shown in Proposition 2.

Proposition 2. Any worker cannot improve his long-term expected utility by choosing time-

variant actions, if all the other workers’ action at the working state is stationary, i.e., ∀qw ∈ [0, 1],

Uw
Mt

(qw, q
∗
w(τ), q

∗
t (τ)) = Uw

Mt
(qw, q

∗
w, q

∗
t ),

U t
Mt

(qw, q
∗
w(τ), q

∗
t (τ)) = U t

Mt
(qw, q

∗
w, q

∗
t ),

where (q∗w(τ), q
∗
t (τ)) is the optimal time-variant action pair and (q∗w, q

∗
t ) is the optimal stationary

action pair, given other workers’ action qw.

Proof: The problem of finding the optimal action pair for a worker given the other workers’

action can be formulated as a MDP. In this MDP formulation, rewards and transition probabilities

are stationary if other workers’ action at the working stateis stationary. In addition, the state

space is stationary and finite and the action space is stationary and compact. Moreover, the

rewards and transition probabilities are continuous in actions. Therefore, according to Theorem

6.2.10 in [19], there exits a deterministic stationary action rule by which the optimal utility

of this MDP can be achieved. In other words, choosing any random, time-variant and history

dependent action rules will not lead to a higher utility.

Among all possible symmetric Nash equilibria, we are interested in ones wherêqw = 1,

i.e., workers will produce solutions with the highest quality at the working state. Note that we

do not guarantee solution quality at the training state since in Mt, the working state serves

the production purpose whereas the training state is designed as an auxiliary state to enhance

workers’ performance at the working state. Solutions collected from the training state will only

be used for assessing workers and should be discarded afterwards. We would like to characterize

conditions under which such symmetric Nash equilibria exist. Toward this end, we will follow
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the three steps outlined above with an emphasize on solving the MDP to find the optimal action

pair. Our results are summarized in the following proposition, where we present a necessary and

sufficient condition on the existence of symmetric Nash equilibria with q̂w = 1.

Proposition 3. There exists q̂t ∈ [0, 1] such that (1, q̂t) is a symmetric Nash equilibrium of Mt

if and only if

Uw
Mt

(1, 1, q̂t)− U t
Mt

(1, 1, q̂t) ≥
c′(1)

δ [(1− βw) + βwαw(1− 2ǫ)]
−

r

δ
. (17)

Proof: To show the existence of a symmetric Nash equilibrium withq̂w = 1, we first assume

that all workers are choosing the action pair(1, q̂t) except one worker under consideration. Since

interactions among workers only occur at the working state,the value ofq̂t will not affect the

decision of this particular worker.

Next, we characterize the optimal action pair(q∗w, q
∗
t ) for this particular worker. The problem

of finding the optimal action pair of a certain worker can be modeled as a MDP where the

necessary and sufficient conditions of an action pair being optimal are given in (15) and (16).

Nevertheless, it is not easy to derive the optimal action pair directly from these conditions.

Therefore, we need to find another set of equivalent conditions. Since in our MDP formulation,

0 < δ < 1, the state space is finite and the immediate reward is bounded, Theorem 6.2.7 in [19]

shows that an action pair(q∗w, q
∗
t ) is optimal if and only if it satisfies the following optimality

equations

q∗w ∈ arg max
0≤qw≤1

{

uw
Mt

(1, qw)+δ
[

Pw(1, qw)U
w
Mt

(1, q∗w, q
∗
t )+(1−Pw(1, qw))U

t
Mt

(1, q∗w, q
∗
t )
]}

, (18)

q∗t ∈ arg max
0≤qt≤1

{

ut
Mt

(qt) + δ
[

Pt(qt)U
w
Mt

(1, q∗w, q
∗
t ) + (1− Pt(qt))U

t
Mt

(1, q∗w, q
∗
t )
]}

, (19)

and that there exits at least one optimal action pair.

Since the above optimality equations hold for any value ofq̂t, we setq̂t = q∗t . Then, to prove

that there exists an symmetric Nash equilibrium(q̂w, q̂t) with q̂w = 1, it suffices to show that

q∗w = 1. Substituting (10) into (18) and after some manipulations,we have

q∗w ∈ arg max
0≤qw≤1

{[

r + δUw
Mt

(1, q∗w, q
∗
t )− δU t

Mt
(1, q∗w, q

∗
t )
]

Pw(1, qw)− c(qw)
}

. (20)

From (9), we know

Pw(1, qw) = [(1− βw) + βwαw(1− 2ǫ)] qw + βw(1− αw) + βwαwǫ. (21)
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Substituting (21) into (20), we have

q∗w ∈ arg max
0≤qw≤1

{

[(1− βw) + βwαw(1− 2ǫ)]
[

r + δUw
Mt

(1, q∗w, q
∗
t )− δU t

Mt
(1, q∗w, q

∗
t )
]

qw − c(qw)
}

.

Recall thatc(qw) is a convex function ofqw. We can thus derive the necessary and sufficient

condition forq∗w = 1 as

[(1− βw) + βwαw(1− 2ǫ)]
[

r + δUw
Mt

(1, 1, q∗t )− δU t
Mt

(1, 1, q∗t )
]

≥ c′(1), (22)

which is also the necessary and sufficient condition for the existence of the symmetric Nash

equilibrium (q̂w, q̂t) with q̂w = 1. Replacingq∗t with q̂t, we obtain the condition in (17) and

complete the proof.

In the above proposition, we show that it is an equilibrium for self-interested workers to

produce solutions with quality1 at the working state as long as the condition in (17) holds.

Nevertheless, this condition is hard to evaluate since neither the equilibrium action at the training

state,q̂t, nor the optimal long-term utilityUw
Mt

(1, 1, q̂t) andU t
Mt

(1, 1, q̂t) are known to requesters.

On the other hand, we hope to find conditions that can provide guide requesters in choosing

proper parameters for mechanismMt. Therefore, based on results of Proposition 3, we present

in the following a sufficient condition on the existence of desirable equilibria, which is also easy

to evaluate.

Theorem 1. In Mt, if the number of training tasks N is large enough, i.e.,

N ≥
1

c(0)

[

(1 + δβwαwǫ)c
′(1)

δ(1− βw) + δβwαw(1− 2ǫ)
−

δ + 1

δ
r + c(1)

]

, (23)

then there exits a symmetric Nash equilibrium (q̂w, q̂t) such that q̂w = 1.

Proof: We first obtain a lower bound onUw
Mt

(1, 1, q̂t)−U t
Mt

(1, 1, q̂t) and then combine this

lower bound with Proposition 3 to prove Theorem 1.

Let U(qw, qt) ,
[

Uw
Mt

(1, qw, qt) U t
Mt

(1, qw, qt)
]T

. Then, from (13) and (14), we have

(I− δQ(qw, qt))U(qw, qt) = b(qw, qt), (24)

whereI is a 2 by 2 identity matrix,b(qw, qt) , [uw
Mt

(1, qw) ut
Mt

(qt)]
T and

Q(qw, qt) ,





Pw(1, qw) 1− Pw(1, qw)

Pt(qt) 1− Pt(qt)



 . (25)
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Since0 < δ < 1, it can be proved according to the Corollary C.4 in [19] that matrix (I −

δQ(qw, qt)) is invertible. Therefore, we can obtain the long-term utility vector of action pair

(qw, qt) as

U(qw, qt) = (I− δQ(qw, qt))
−1

b(qw, qt). (26)

Based on (26), we have

Uw
Mt

(1, qw, qt)− U t
Mt

(1, qw, qt) = [1 −1]U(qw, qt)

=
uw
Mt

(1, qw)− ut
Mt

(qt)

1 + δ [Pt(qt)− Pw(1, qw)]
. (27)

The above results hold for∀qw ∈ [0, 1] and∀qt ∈ [0, 1]. Therefore, for a desired action pair

(1, q̂t), we have

Uw
Mt

(1, 1, q̂t)− U t
Mt

(1, 1, q̂t) =
uw
Mt

(1, 1)− ut
Mt

(q̂t)

1 + δ [Pt(q̂t)− Pw(1, 1)]

=
(1− βwαwǫ)r − c(1) +Nc(q̂t)

1 + δ {1− αt + αt[(1− 2ǫ)q̂t + ǫ]N − (1− βwαwǫ)}

≥
(1− βwαwǫ)r − c(1) +Nc(0)

1 + δβwαwǫ
. (28)

Since[(1− 2ǫ)q̂t + ǫ]N ≤ 1, the inequality in (28) is derived by replacing[(1− 2ǫ)q̂t + ǫ]N with

1 and by using the fact thatc(q) is monotonically increasing inq.

Therefore, the condition in (17) is guaranteed to hold if

(1− βwαwǫ)r − c(1) +Nc(0)

1 + δβwαwǫ
≥

c′(1)

δ [(1− βw) + βwαw(1− 2ǫ)]
−

r

δ
,

which leads to the sufficient condition in (23).

Theorem 1 shows that given any possible settings(αw, βw, r, αt) in Mt, we can always enforce

workers to produce solutions with quality1 at the working state by choosing a sufficiently large

N . Such a property makes it possible for requesters to controltheir cost while obtaining high

quality solutions. We discuss the mechanism cost ofMt in the following subsection.

A. Mechanism Cost

For requesters, the mechanism cost ofMt at the desirable equilibrium(1, q̂t) can be written

as

CMt
= (1− βw) · 3r + βw · [(1− αwǫ)r + αwd] + βw · αwǫ

∞
∑

k=0

[1− Pt(q̂t)]
k αtNd,
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where the last term corresponds to the cost of validation in the training state. Sinceǫ ≪ 1, it

follows thatPt(q̂t) ≥ 1− αt + αtǫ
N . Therefore, we have

CMt
≤ 3r(1− βw) + βw [(1− αwǫ)r + αwd] +

αt

1− αt(1− ǫN)
βwαwǫNd.

We then design parameters ofMt according to the following procedure: (a) select working

state parametersαw, βw andr, (b) chooseN such that (28) holds, (c) designαt such that

αt

1− αt(1− ǫN)
βwαwǫNd ≤ γ{3r(1− βw) + βw [(1− αwǫ)r + αwd]}, (29)

whereγ > 0 is a parameter chosen by requesters to control the relative cost of training state to

working state. The inequality in (29) is equivalent to

αt ≤
γ{3r(1− βw) + βw [(1− αwǫ)r + αwd]}

γ(1− ǫN ){3r(1− βw) + βw [(1− αwǫ)r + αwd]}+ βwαwǫNd
. (30)

Following the above design procedure, we have

CMt
≤ (1 + γ) [3r(1− βw) + βw((1− αwǫ)r + αwd)] .

If αw andr are chosen to minimize the cost, we have

C∗
Mt

= inf
0<αw≤1,r>0

(1 + γ) [3r(1− βw) + βw((1− αwǫ)r + αwd)] = 0,

which illustrates that our proposed mechanismMt enables requesters to obtain high quality

solutions with an arbitrarily low cost.

Moreover, from the above design procedure, the significanceof our proposed mechanism

can be interpreted from another perspective. That is, through the introduction of quality-aware

worker training, our proposed mechanism can be built on top of any basic mechanisms to bring

requesters an extra degree of freedom in their design. They can now freely choose working state

parameters, e.g.,αw, βw and r, without concerning the constraint of incentivizing high quality

solutions, which will be automatically guaranteed throughthe design of training state parameters.

B. Stationary State Distribution

In above discussions, we focus on the quality of submitted solutions at the working state, while

there is no guarantee of solution quality at the training state. This is sufficient for requesters to

high quality solutions as the training state only serves as an axillary state and will not be used

for production. On the other hand, the system efficiency ofMt depends on the probability of a
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worker being at the working state. If such a probability is small, Mt will have low efficiency

as a large portion of workers are not contributing to actual tasks

Therefore, to fully study the performance ofMt, we analyze the stationary state distribution

of Mt in this subsection. We denote byπn
w the probability of a worker being at the working

state at thenth time slot after entering the platform. The probability ofbeing at the training

state is thus(1− πn
w). We denote byπ∞

w andπ0
w the stationary state distribution and initial state

distribution, respectively. Note that the initial state distributionπ0
w is a design aspect that can be

controlled by requesters, i.e., requesters can decide whether a new worker starts at the working

state or at the training state. Our main result is a lower bound of π∞
w as shown in the following

proposition.

Proposition 4. In Mt, if workers follow a desirable symmetric Nash equilibrium (1, q̂t), then

the stationary state distribution π∞
w will be reached and

π∞
w ≥

(1− δ)π0
w + δ(1− αt)

1− δ + δβwαwǫ+ δ(1− αt)
(31)

Proof: Assuming that all workers are adopting the action pair(1, q̂t), then we can write the

state distribution update rule as

πn+1
w = δπn

wPw(1, 1) + δ(1− πn
w)Pt(q̂t) + (1− δ)π0

w

= δ [Pw(1, 1)− Pt(q̂t)] π
n
w + (1− δ)π0

w + δPt(q̂t). (32)

If the stationary state distributionπ∞
w exists, it must satisfy

π∞
w = δ [Pw(1, 1)− Pt(q̂t)]π

∞
w + (1− δ)π0

w + δPt(q̂t). (33)

Therefore, we have

π∞
w =

(1− δ)π0
w + δPt(q̂t)

1− δ [Pw(1, 1)− Pt(q̂t)]

=
(1− δ)π0

w + δ
{

(1− αt) + αt[(1− 2ǫ)q̂t + ǫ]N
}

1− δ(1− βwαwǫ) + δ {(1− αt) + αt[(1− 2ǫ)q̂t + ǫ]N}

≥
(1− δ)π0

w + δ(1− αt)

1− δ + δβwαwǫ+ δ(1− αt)
.

The last inequality holds since[(1− 2ǫ)q̂t + ǫ]N ≥ 0 andπ∞
w is monotonically increasing as the

value of [(1− 2ǫ)q̂t + ǫ]N increases.
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Next, we show that the stationary distributionπ∞
w will be reached. From (32) and (33), we

have

πn+1
w − π∞

w = δ [Pw(1, 1)− Pt(q̂t)] (π
n
w − π∞

w ).

Since|δ [Pw(1, 1)− Pt(q̂t)] | < 1, we have

lim
n→∞

(πn
w − π∞

w ) = 0 ⇒ lim
n→∞

πn
w = π∞

w .

From Proposition 4, we can see the lower bound ofπ∞
w increases asπ0

w increases. Since the

largerπ∞
w means higher efficiency, requesters should chooseπ0

w = 1 for optimal performance.

Therefore, we have

π∞
w ≥ 1−

δβwαwǫ

1− δ + δ(1− αt) + δβwαwǫ
. (34)

Whenβw = 0, i.e., only the reward consensus is employed at the working state, or in the ideal

case ofǫ = 0, we can conclude thatπ∞
w = 1. This implies that every newly entered worker will

first work at the working state, choose to produce solutions with the highest quality as their best

responses and keep on working in the working state until theyleave the system. As a result, all

workers will stay at the working state and are available to solve posted tasks.

On the other hand, whenβw > 0 and ǫ > 0, although all workers will start with the working

state and choose to produce solutions with quality1, a portion of them will be put into the

training state due to validation mistakes of requesters. However, since the probability of error is

usually very small, i.e.,ǫ ≪ 1, we can still expectπ∞
w to be very close to1, which implies that

the majority of workers will be at the working state.

VI. SIMULATION RESULTS

In this section, we conduct numerical simulations to examine properties of our proposed

mechanismMt and to compare its performance with that of the basic mechanismsMc and

Ma. Throughout the simulations, we assume the following cost function for workers

c(q) =
(q + λ)2

(λ+ 1)2
, (35)

whereλ > 0 is a parameter that controls the degree of sensitivity of a worker’s cost to his

action. In particular, the smallerλ is, the more sensitive a worker’s cost will be with respect

to his actions. In addition, the cost of choosing the highestquality 1 is normalized to be 1, i.e,
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Fig. 2. The lower bound of N for the existence of desirable symmetric Nash equilibria whenβw = 0.

c(1) = 1. From the definition ofc(q), we also havec(0) = λ2

(λ+1)2
and c′(1) = 2

(λ+1)
. Moreover,

we setd = 10, δ = 0.9 and ǫ = 0.01 throughout the simulations.

In the first simulation, we evaluate the sufficient conditionfor the existence of desirable

symmetric Nash equilibria in (28) under different settings. Such a sufficient condition is expressed

in the form of a lower bound on the number of required trainingtasks, which depends on the

worker’s cost function as well as working state parametersβw, αw andr. We setr = 1, which

matches the cost of producing solutions with quality1. Moreover, sinceN ≥ 1, when the derived

lower bound of N is less than1, we set it to be1 manually.

We show in Fig. 2 the lower bound ofN versusλ when βw = 0, i.e., only the reward

consensus mechanism is used in the working state. Since workers are more cost-sensitive in

producing high quality solutions with a smallerλ, it becomes more difficult to makeq = 1 as

their best responses. As a result, we need to set relatively largeNs to achieve the desirable

symmetric Nash equilibrium for smallλs as shown in Fig. 2. On the other hand, whenλ is large

enough, the lower bound in (28) will no longer be an active constraint since anyN ≥ 1 can

achieve our design objective.

We then study the more general cases where both the reward consensus mechanism and the

reward accuracy mechanism are adopted in the working state.We show in Fig. 3 the lower bound

of N versusαw under different values ofβw andλ. Similarly, we can see that smallerλ leads
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Fig. 4. The lower bound ofπ∞

w whenβw = 1.

to a larger lower bound ofN . Moreover, the lower bound ofN also increases asαw decreases.

This is due to the fact that it becomes more difficult to enforce workers to submit high quality

solutions if we evaluate the submitted solutions less frequently. Sinceβw represents the ratio of

tasks that will be evaluated using the reward accuracy mechanism, the smallerβw is, the less

dependent of the lower bound ofN will be on the sampling probabilityαw.

In the second simulation, we evaluate numerically the lowerbound of the stationary probability
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Fig. 5. The long-term expected utility loss of a worker who deviates to action pair(qw, q̂t): (a)βw = 0; (b) βw = 1, αw = 0.1;

(c) βw = 1, αw = 0.9.

of a worker being at the working state, i.e.,π∞
w under different settings. We considerβw = 1 in

our simulations asπ∞
w = 1 whenβw = 0. In addition,we setπ0

w = 1, i.e., every newly entered

worker will be placed at the working state. In Fig. 4, we show the lower bound ofπ∞
w under

different values ofαw andαt. We can see that the lower bound ofπ∞
w decreases asαw andαt

increases. More importantly,π∞
w will be above0.9 even in the worst case, which indicates that

our proposed mechanism can guarantee the majority of workers being at the working state.

Next, we verify Theorem 1 through numerical simulations. Inparticular, we assume all workers

adopt the equilibrium action pair(1, q̂t) except one worker under consideration who may deviate

to (qw, q̂t). We setr = 1 and chooseN to be the smallest integer that satisfies the sufficient

condition of the existence of desirable symmetric Nash equilibria in (28). We setαt according

to (30) with γ = 1, i.e.,

αt = min

{

{3r(1− βw) + βw [(1− αwǫ)r + αwd]}

(1− ǫN ){3r(1− βw) + βw [(1− αwǫ)r + αwd]}+ βwαwǫNd
, 1

}

.

Moreover, the equilibrium action at the training state,q̂t, is obtained by solving (18) and (19) us-

ing the well-known value iteration algorithm [19]. We show in Fig 5 the long-term expected utility

loss of the worker under consideration at the working state,i.e., Uw
Mt

(1, 1, q̂t)− Uw
Mt

(1, qw, q̂t).

From the simulation results, we can see that under all simulated settings, choosingqw = 1 will

always lead to the highest long-term expected utility, i.e., zero long-term expected utility loss.

Therefore, as a rational decision maker, this worker will have no incentive to deviate from the

action (1, q̂t), which demonstrates that(1, q̂t) is indeed sustained as an equilibrium.
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Fig. 6. The equilibrium action versus the mechanism cost inMc.

Finally, we compare the performance of our proposed mechanism Mt with that of the two

basic mechanismsMc andMa. SinceMt is capable of incentivizing workers to submit solutions

of quality 1 with an arbitrarily low cost, it suffices to show the quality of solutions achieved by

Mc andMa under different mechanism costs. In particular, forMc, we assume that a task is

given to3 workers. Therefore, for a given mechanism costCMc
, the reward to each worker is

r = CMc
/3. According to our analysis in Section IV-A, the equilibriumactionq∗Mc

in Mc can

be calculated asq∗Mc
= max{min{q, 1}, 0}, whereq is the solution to the following equaiton

r[2q − q2] = c′(q).

In our simulations, when there are multiple equilibria, we pick the one with higher quality. On

the other hand, if there exits no equilibrim, we setq∗Mc
= 0. We show curves of the equilibrium

action q∗Mc
in Fig. 6. From the simulation results, we can see thatMc can only achieve the

highest quality1 when the mechanism costCMc
is larger than a certain threshold. Moreover,

such a threshold increases asλ increases, i.e., as workers are more cost sensitive in producing

high quality solutions.

For Ma, we study two cases whereαa = 0.2 and αa = 0.8, respectively. Then, given a

mechanism costCMa
, we setr such that

CMa
= (1− αaǫ)r + αad.
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Fig. 7. The optimal action versus the mechanism cost inMa: (a) αa = 0.2; (b) αa = 0.8.

UnderMa, workers will respond by choosing their optimal actionq∗Ma
as

q∗Ma
= arg max

q∈[0,1]
uMa

(q).

We show the optimal actionq∗Ma
versus the mechanism costCMa

for Ma in Fig. 7. Similarly,

we can see that requesters are unable to obtain high quality solutions with lowCMa
.

VII. EXPERIMENTAL VERIFICATIONS

Beyond its theoretical guarantees, we further conduct a setof behavioral experiments to test

our proposed incentive mechanism in practice. We evaluate the performance of participants on a

set of simple computational tasks under different incentive mechanisms. We mainly focused on

the reward accuracy mechanism in the experiment. We found that, through the use of quality-

aware worker training, our proposed mechanism can greatly improve the performance of a basic

reward accuracy mechanism with a low sampling probability to a level that is comparable to the

performance of the basic reward accuracy mechanism with thehighest sampling probability. We

describe the experiment in detail below followed by analysis and discussions of the results.

A. Description of The Experiment

The task we used was calculating the sum of two randomly generated double-digit numbers.

To make sure all tasks are of the same difficulty level, we further make the sum of unit digits to
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be less than10, i.e., there is no carry from the unit digits. The advantage of such a computational

task is that: (a) it is straightforward for participants to understand the rule, (b) each task has a

unique correct solution, (c) the task can be solved correctly with reasonable amount of effort,

and (d) it is easy for us to generate a large number of independent tasks.

In our experiment, participants solve the human computation tasks in exchange for some virtual

points, e.g., 10 points for each accepted solution. Their goal is to maximize the accumulated

points earned during the experiment. Tasks are assigned to each participant in three sets. Each

set has a time limit of 3 minutes and participants can try as many tasks as possible within the

time limit. Such a time limit helps participants to quantifytheir costs of solving a task with

various qualities using time. Different sets employ different incentive mechanisms. In particular,

Set I employs the basic reward accuracy mechanismMa with the highest sampling probability

αa = 1. The basic reward accuracy mechanismMa with a much lower sampling probability

αr = 0.3 is employed in Set II. We use our proposed mechanismMt in Set III, which introduces

quality-aware worker training to the same basic reward accuracy mechanism as used in Set II

with training state parameters set asαr = 0 andN = 15. Since correct solution can be obtained

for all tasks, we are able to determine the correctness of each solution without error. That is,

we haveǫ = 0 in all cases.

We created a software tool to conduct the experiment. As no interaction among participants

is involved, our experiment was conducted on an individual basis. Before the experiment, each

participant was given a brief introduction to experiment rules as well as a demonstration of the

software tool. There was also an exit survey followed each trial of the experiment, which asked

participants about their strategies.

B. Experimental Results

We have successfully collected results from41 participants, most of whom are engineering

graduate students. The number of collected submissions perset varies significantly from 30 to

180, depending on both the strategy and skills of different participants. From the requester’s

perspective, the accuracy of each participant represents the quality of submitted solutions and

therefore is a good indicator to the effectiveness of incentive mechanisms. We show the histogram

of accuracy for all three sets in Fig. 8.
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Fig. 8. Histogram of accuracy: (a) Set I; (b) Set II; (c) Set III.

For Set I, as the highest sampling probability, i.e.,αa = 1, was adopted, most participants re-

sponded positively by submitting solutions with very high qualities. There is only one participant

who had relatively low accuracy compared with others in thathe was playing the strategy of

“avoiding difficult tasks” according to our exit survey. A much lower sampling probability of0.3

was used for Set II. In this case, it becomes profitable to increase the number of submissions by

submitting lower quality solutions, as most errors will simply not be detected. This explains why

the majority of participants had very low accuracies for SetII. Noteworthily, a few workers, 5

out 41, still exhibited very high accuracies in Set II. Our exit survey suggests that their behaviors

are influenced by a sense of “work ethics”, which prevents them to play strategically to exploit

the mechanism vulnerability. Similar observations have also been reported in [20] and [21]. In

Set III, as the introduction of training tasks make it more costly to submit wrong solutions,

participants need to reevaluate their strategies to achieve a good tradeoff between accuracy and

the number of submitted tasks. From Fig. 8, we can see that theaccuracy of participants in Set

III has a very similar distribution as that in Set I.

We now analyze our experimental results qualitatively. LetΓI , ΓII and ΓIII represent the

accuracy of Set I, Set II and Set III, respectively. Our results show thatΓIII − ΓII follows a

distribution with median significantly greater than0.6 by the Wilcoxon signed rank test with

significance level ofρ < 5%. On the other hand, the median of the distribution ofΓI − ΓIII

is not significantly greater than0.01 by the Wilcoxon signed rank test withρ ≥ 10%. The

unbiased estimate of the variance ofΓI , ΓII andΓIII are0.0060, 0.1091 and0.0107, respectively.

Moreover, according to the Levene’s test with significance level of5%, the variance ofΓIII is not
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significantly different from that ofΓI while it is indeed significantly different from that ofΓII .

To summarize, through the use of quality-aware worker training, our proposed mechanism can

greatly improve the effectiveness of the basic reward accuracy mechanism with a low sampling

probability to a level that is comparable to the one that has the highest sampling probability.

VIII. C ONCLUSIONS

In this paper, we study cost-effective mechanisms for microtask crowdsourcing. In particular,

we first consider two basic mechanisms widely adopted in existing microtask crowdsourcing

applications and show that, to obtain high quality solutions, their mechanism costs must be

higher than some lower bounds. Such lower bounds are beyond the control of requesters and may

be high enough to negate the advantage of microtask crowdsourcing. Then, we propose a cost-

effective mechanism based on quality-aware worker training. We prove theoretically that, given an

arbitrarily low cost, our proposed mechanism can be designed to sustain a desirable equilibrium

where workers choose to produce solutions with the highest quality at the working state and a

worker will be at the working state with a large probability.Beyond its theoretical guarantees,

we further conduct a set of human behavior experiments to demonstrate the effectiveness of our

proposed mechanism.
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