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Abstract

While microtask crowdsourcing provides a new way to solvgdasolumes of small tasks at a much
lower price compared with traditional in-house solutioitssuffers from quality problems due to the
lack of incentives. On the other hand, providing incentif@smicrotask crowdsourcing is challenging
since verifying the quality of submitted solutions is so engive that will negate the advantage of
microtask crowdsourcing. We study cost-effective inagntinechanisms for microtask crowdsourcing
in this paper. In particular, we consider a model with sgatevorkers, where the primary objective of
a worker is to maximize his own utility. Based on this moded, analyze two basic mechanisms widely
adopted in existing microtask crowdsourcing applicatiang show that, to obtain high quality solutions
from workers, their costs are constrained by some lower 8suliVe then propose a cost-effective
mechanism that employs quality-aware worker training asohtb stimulate workers to provide high
quality solutions. We prove theoretically that the progbseechanism, when properly designed, can
obtain high quality solutions with an arbitrarily low co&eyond its theoretical guarantees, we further

demonstrate the effectiveness of our proposed mechanimmsgh a set of behavioral experiments.
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I. INTRODUCTION

Crowdsourcing, which provides an innovative and effectiay to access online labor mar-
ket, has become increasingly important and prevalent ientegears. Until now, it has been
successfully applied to a variety of applications rangiranf challenging and creative projects
such as R&D challenges in InnoCentivé [1] and software dgrakent tasks in TopCoder][2],
all the way to microtasks such as image tagging, keywordckeand relevance feedback
in Amazon Mechanical Turk (Mturk)]J3] or Microworkergl[4]. dpending on the types of
tasks, crowdsourcing takes different forms, which can lmadly divided into two categories:
crowdsourcing contest and microtask crowdsourcing. Csmwtting contests are typically used
for challenging and innovative tasks, where multiple woskeimultaneously produce solutions
to the same task for a requester who seeks and rewards onhjighest-quality solution. On
the other hand, microtask crowdsourcing targets on smglistéghat are repetitive and tedious
but easy for an individual to accomplish. Different fromwdsourcing contests, there exists no
competition among workers in microtask crowdsourcing. &mtipular, workers will be paid a
prescribed reward per task they complete, which is typicalsmall amount of money ranging
from a few cents to a few dollars.

We focus on microtask crowdsourcing in this paper. With theeas to large and relatively
cheap online labor pool, microtask crowdsourcing has tham@tdge of solving large volumes
of small tasks at a much lower price compared with tradiionehouse solutions. However,
due to the lack of proper incentives, microtask crowdsagr&uffers from quality issues. Since
workers are paid a fixed amount of money per task they compiets profitable for them
to provide random or bad quality solutions in order to inseedghe number of submissions
within a certain amount of time or effort. It has been repdrteat most workers on Mturk,
an leading marketplace for microtask crowdsourcing, doauwwttribute high quality work[]5].
To make matters worse, there exists an inherent conflict dmtwincentivizing high quality
solutions from workers and maintaining the low cost advgetaf microtask crowdsourcing
for requesters. On the one hand, requesters typically haweryalow budget for each task in
microtask crowdsourcing. On the other hand, the implentiemaof incentive mechanisms is
costly as the operation of verifying the quality of subndttolutions is expensivé][6]. Such a

conflict makes it challenging to design incentives for miasi crowdsourcing, which motivates
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us to ask the following question: what incentive mechanishwuld requesters employ to collect
high quality solutions in a cost-effective way?

In this paper, we address this question from a game-thegpetispective. In particular, we
investigate a model with strategic workers, where the prymabjective of a worker is to
maximize his own utility, defined as the reward he will reeeiminus the cost of producing
solutions of a certain quality. Based on this model, we firgtlg two basic mechanisms widely
adopted in existing microtask crowdsourcing applicatioims particular, the first mechanism
assigns the same task to multiple workers, identifies theecbsolution for each task using a
majority voting rule and rewards workers whose solutioreagrwith the correct one. The second
mechanism assigns each task only to one worker, evaluategudlity of submitted solutions
directly and rewards workers accordingly. We show that mheotto obtain high quality solutions
using these two mechanisms, the unit cost incurred by réepseper task is subject to a lower
bound constraint, which is beyond the control of requesd@ can be high enough to negate
the low cost advantage of microtask crowdsourcing.

To tackle this challenge, we then propose a cost-effectigeh@nism that employs quality-
aware worker training as a tool to stimulate workers to pteviigh quality solutions. In current
microtask crowdsourcing applications, training taskswseally assigned to workers at the very
beginning and therefore is irrelevant to the quality of theibmitted solutions. We show that
assigning training tasks to workers when they perform goeoather than uniformly at the
beginning can effectively stimulate workers to producehhigiality solutions. In particular, we
prove theoretically that the proposed mechanism, whengplpdesigned, can obtain high quality
solutions with an arbitrarily low cost. Beyond its theocati guarantees, we further conduct
a serial of behavioral experiments to test our proposed amesim. Our experimental results
demonstrated the effectiveness of our proposed mechamisthmore generally the idea of
quality-aware worker training, in stimulating high quglgolutions at low costs.

The rest of the paper is organized as follows. Section ll@ressthe related work. We introduce
our model in Section Ill and study two basic mechanisms inti®edV. Then, in Section V,
we describe the design of a cost-effective mechanism baseglality-aware worker training
and analyze its performance. We show simulation resultseicti& VI and our experimental

verifications in Section VII. Finally, we draw conclusions $ection VIII.
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I[I. RELATED WORK

Most of existing work on quality control for microtask crosalrcing focuses on filtering and
processing low quality submitted solutio$ [6]-=]10]. Aspoge to such approaches, we study
how to incentivize workers to produce high quality soluion the first place. There has recently
been work addressing incentives of crowdsourcing confests game-theoretic perspectives by
modeling these contests as all-pay auctidng [11] 4 [13]. extéeless, these models can not
apply to our scenario as there exists no competition amornges® in the context of microtask
crowdsourcing.

There is a small literature that addresses incentives faratéisk crowdsourcing. I [14],
Shaw et al. conducted an experiment to compare the effeetbgeof a collection of social
and finical incentive mechanisms. Ih_15], Singer and Mipabposed a pricing scheme for
microtask crowdsourcing where tasks are dynamically prexed allocated to workers based on
their bids. A reputation-based incentive mechanism wapgsed and analyzed for microtask
crowdsourcing in[[16]. Our work differs from these studiesthat they do not consider the
validation cost incurred by requesters in their models.iriarotask crowdsourcing, the operation
of verifying the quality of submitted solutions is so expeesthat will negate its low cost
advantage, which places a unique and practical challendbeirdesign of incentives. To the
best of our knowledge, this is the first work that studies -eff&ctive incentive mechanisms for

microtask crowdsourcing.

I1l. THE MODEL

There are two main components in our model: requesters, whtisp tasks; and workers,
who produce solutions to the posted tasks. The submittadisot can have varying quality,
which is described by a one-dimensional value. Requestaistain certain criteria on whether
or not a submitted solution should be accepted. Only acbkpsmlutions are useful to requesters.
Workers produce solutions to the posted tasks in returndaard provided by requesters. We
assume workers are strategic, i.e., they choose the qoélibeir solutions selfishly to maximize
their own utilities.

In our model, a mechanism describes how requesters evahmtsubmitted solutions and
reward workers accordingly. Mechanisms are designed byestgrs with the aim of obtaining

high quality solutions from workers, which should be pubdéd at the same time as tasks are
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posted. Mechanisms can be costly to requesters, whichesetis advantages of crowdsourcing.
In this work, we focus on mechanisms that not only can inge#ihigh quality solutions from
workers, but also are cost-effective. We now formally discthe model.

Worker Model. We model the action of workers as the qualityof their solutions. The
valueq represents the probability of this solution is acceptablesjuesters, which implies that
q € [0,1]. We assume that the solution space is infinite and the priityabf two workers
submitting the same unacceptable solution is 0. The costri@ed by a worker depends on the
quality of solution he chooses to produce: a worker can predusolution of quality; at a cost
c(q). We make the following assumptions on the cost functiomn:

1) ¢(q) is convex ing.

2) c(q)

3) d(q) > 0, i.e., solutions with higher quality are more costly to prod.

is differentiable ing.

4) ¢(0) > 0, i.e., even producin@ quality solutions will incur some cost.

The benefit of a worker corresponds to the received rewardchaMiepends on the quality
of his solution, the mechanism being used and possibly tladitguwf other workers’ solutions.
We focus on symmetric scenarios, which means the benefit adrewis evaluated under the
assumption that all the other workers choose the same a@tibith may be different from
the action of the worker under consideration). DenotelRy(q, §) the benefit of a worker
who submits a solution of quality while other workers produce solutions with qualifyand
mechanismM is employed by the requester. A quasi-linear utility is addpwhere the utility

of a worker is the difference between his benefit and his cost:

upm(q,q) = V(g q) — c(q). 1)

Mechanism Choice Requesters employ mechanisms to incentivize high qualltytisns from
self-interested workers. Therefore, the action chosendrkevs in response to a mechanism can
be used to indicate the effectiveness of this mechanismaiticplar, we will be interested in
a desirable outcome where workers chogse 1 as their optimal actions, i.e., self-interested
workers are willing to contribute with the highest qualilions. We would like to emphasize
that such an outcome is practical in that microtasks arec#yiyi simple tasks that are easy for
workers to accomplish satisfactorily. On the other handd mechanism\, there is a unit cost

C per task incurred by the requester, which comes from thercewaid to workers and the
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cost for evaluating submitted solutions. We refer to sucmiaeostC'y, as the mechanism cost
of M. Since one of the main advantages of microtask crowdsayisiits low cost, mechanisms
should be designed to achieve the desirable outcome withnieshanism cost. Therefore, to
study a certain mechanism, we wish to address the follomiggtpns: (a) under what conditions
can we achieve the desirable outcome? and (b) what are thenammmechanism cost and the
corresponding parameter settings?

Validation Approaches. As an essential step towards incentivizing high qualityusohs, a
mechanism should be able to evaluate the quality of subdrstiutions. We describe below three
approaches considered in this paper, which are also comynamidpted in existing microtask
crowdsourcing applications.

The first approach is majority voting, where requestergjagbie same task to multiple workers
and accept the solution that submitted by the majority ofkers as the correct one. Clearly, the
validation cost of majority voting depends on the number ofkers per task. It has been reported
that, if assigning the same task to more than 10 workers, dlse af microtask crowdsourcing
solutions is comparable to that of in-house solutidns [@] etmen the number of tasks is large,
it is financially impractical to assign the same task to toomynaorkers, e.g., more than Bl[5].
Therefore, when majority voting is adopted in incentive hatdsms, a key question need to be
addressed: what is the minimum required number of workerdgsk to achieve the desirable
outcome?

Second, requesters can use tasks with known solutionshwtécrefer to as gold standard
tasks, to evaluate the submitted answers. Validation wold gtandard tasks is expensive since
correct answers are costly to obtain. More importantly,hes main objective of requesters in
microtask crowdsourcing is to collect solutions for taggsld standard tasks can only be used
occasionally for the purpose of assessing workers, e.graasng tasks.

Note that both majority voting and gold standard tasks assumplicity that the task has a
unique correct solution, which may not hold for creativektase.g., writing a short description
of a city. In this case, a quality control group J17] can beduse evaluate the submitted
solution. In particularly, the quality group can be eithegraup of on-site experts who verify
the quality of submitted solution manually or another gradpvorkers who work on quality
control tasks designed by the requesters. In the first chedjrhe and cost spent on evaluating

the submitted solutions is typically comparable to thateffgrming the task itself. In the second
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case, requesters not only have to investigate time andt eéffatesigning quality control tasks
but also need to pay workers for working these tasks. Thexef@lidation using quality control

group is also an expensive operation.

IV. BASIC INCENTIVE MECHANISMS

We study in this section two basic mechanisms that are wielggloyed in existing microtask
crowdsourcing applications. Particularly, for each mecs@, we characterize conditions under
which workers will choose; = 1 as their best responses and study the minimum mechanism

cost for achieving it.

A. A Reward Consensus Mechanism

We first consider a mechanism that employs majority votingtsasalidation approach and,
when a consensus is reached, rewards workers who subniitezbhsensus solution. We refer
to such a mechanism as the reward consensus mechanism aid deéby M.. In M., a task
is assigned td{ + 1 different workers. We assume thatis an even number and is greater than
0. If the same solution is submitted by no less thgy2 + 1 workers, then it is chosen as the
correct solution. Workers are paid the prescribed rewaifdthey submit the correct solution.
On the other hand, workers will receive no payments if thabmsitted solutions are different
from the correct one or if no correct solution can be iderdifiee., no consensus is reached.

In M., the benefit of each worker depends not only on his own actignatso on other
workers’ actions. Therefore, a worker will condition hiscdgon making on others’ actions,
which results in couplings in workers’ actions. To captuelsinteractions among workers, we

adopt the solution concept of symmetric Nash equilibriurhjolv can be formally stated as:

Definition 1 (Symmetric Nash Equilibrium ofM.). The ¢* is a symmetric Nash equilibriumin
M. if ¢* is the best response of a worker when other workers are choosing ¢*.

We show below the necessary and sufficient conditiong*of 1 being a symmetric Nash

equilibrium in M...

Proposition 1. In M., ¢* =1 is a symmetric Nash equilibrium if and only if » > ¢/(1).
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Proof: Under the assumption that the probability of any two worlsrbmitting the same
unacceptable solution is zero (which is reasonable as #rer@nfinitely possible solutions), we
can calculate the utility of an worker who produces solwion quality ¢ while other workers

choose actiorg as

(a.4) =rq Z ‘ q'(1—9" " —clg).

n= K/2

According to Definitior[ll¢* is a symmetric Nash Equilibrium of. if and only if

q¢" € arg max un,(q,q°). (2)
q€[0,1]

Sinceun, (g, 1) = rq—c(q) is a concave function of andg € [0, 1], the necessary and sufficient

condition of¢* = 1 being a symmetric Nash equilibrium can be derived as

Qum(e ) 1y >0 3)
dq
[
From Proposition 1, we can see th&t,. can enforce self-interested workers to produce the
highest quality solutions as long as the prescribed rewaisilarger than a certain threshold.
Surprisingly, this threshold depends purely on the woskedst function and is irrelevant to the

number of workers. The mechanism cost/ef. can be calculated as
Cpm, = (K +1)r>(K+1)d(1). 4)

Therefore, to minimize the mechanism cost, it is optimal toase the minimum value ok,
i.e., K =2, and letr = ¢(1). In this way, requesters can achieye= 1 with the minimum
mechanism cost’y, = 3¢/(1). Having more workers working on the same task will only irse

the mechanism cost while not helping to improve the qualftgudmitted solutions.

B. A Reward Accuracy Mechanism

Next, we consider a mechanism that rewards a worker puredgdan his own submitted
solutions. Such a mechanism is referred to as the rewardaacmechanism and is denoted by
M.,. In particular, depending on the characteristics of tagks, will use either gold standard
tasks or the quality control group to verify whether a sulditsolution is acceptable or not. In

our discussions, however, we make no distinctions betwkertvwvo methods. We assume that
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the validation cost per task i$ and there is a certain probability< 1 that a mistake will be
made in deciding whether a solution is acceptable or not.

As we have discussed, these validation operations are sixgeand should be used rarely.
Therefore, M, only evaluates randomly a fraction of submitted solutiomseduce the mech-
anism cost. Formally, inM,,, requesters verify a submitted solution with probability. If a
submitted solution is acceptable or not evaluated, the evorkll receive the prescribed reward
r. On the other hand, if the solution being evaluated is ur@etde, the worker will not be
paid.

In M,, the utility of a worker is irrelevant to actions of other Wers. Therefore, we write

the utility of a worker who produces solutions of qualityas

upm,(q) = 7[(1 = o) + aa(l = €)q + aae(l = g)] = c(q).

Let ¢* represent the optimal action of a worker by which his utifiyction is maximized.
Sinceu, (q) is a concave function af andq € [0, 1], we can derive the necessary and sufficient

conditions ofg* =1 as
(1)
Qp = —————.
(1 —2¢e)r

We can see that there is a lower bound on possible valueg,ofthich depends on the cost

(5)

function of workers and the prescribed rewardSinceq, € [0, 1], for the above condition to

<)

hold, we must have > =

. Moreover, we can calculate the mechanism cost in the case of

q¢-=1as
Cm, = (1 — aue)r + agd.

a

Requesters optimize the mechanism cost by choosing thelisgngyobability o, and the
rewardr. Therefore, we can calculate the minimum mechanism cost as

Chu, = min (1 — age)r + aqd. (6)

) (1)
=20y Sa<l r2q=gg

By solving the above convex optimization problem using tleush-Kuhn-Tucker conditions

[18], we get

2,/9Wd AU g > 20
(7)

C* _ 1—2¢ 1—2¢’
Ma /(1) (1—e) :
Q09 4 4, otherwise
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Moreover, the optimal parameters for achieving the minimmagcthanism cost are

(- o

ar=1,r"= otherwise

1 26
Similarly as the reward consensus mechanism, the mechasusimof the reward accuracy

mechanism must be greater than a certain value in order doresters to collect solutions with

the highest quality from workers.

V. REDUCING MECHANISM COST BY QUALITY-AWARE WORKER TRAINING

From our discussions above, we can see that for the two basghanisms to achieve
the desirable outcome, their mechanism costs are corstirdip some lower bounds, i.e., the
minimum mechanism costs. These minimum mechanism costdedeemined by worker’s cost
function and possibly the validation cost, all of which aeybnd the control of requesters. If
these minimum mechanism costs are large, requesters wil teaeither lower their standards
and suffer from low quality solutions or switch to other afigtive approaches.

To overcome this issue, we introduce a new mechanigm which employs quality-aware
worker training as a tool to stimulate self-interested veoskto submit high quality solutions.
Our proposed mechanism is built on top of the basic mechanisrfurther reduce the required
mechanism cost. In particular, there are two stategVip the working state, where workers
work on standard tasks in return for reward; and the traistage, where workers do a set of
training tasks to gain qualifications for the working state.

In the working state, we consider a general model which po@tes both the reward con-
sensus mechanism and the reward accuracy mechanism. Weeatfsat with probabilitylt — 53,,,

a task will go through the reward consensus mechanism ard puitbability 5,,, the reward
accuracy mechanism will be used with the sampling prolghilj,. According to our results in
Section IV-A, it is optimal to assigA workers per task when the reward consensus mechanism
is being used. In the working state, a submitted solutiohllaccepted byM, if it is accepted

by either the reward consensus mechanism or the rewardamgcanechanism. A submitted
solution will be rejected otherwise. When a solution is pted, the worker will receive the
prescribed reward and can continue working on more tasks in the working stateth@ other
hand, if a worker’s solution is rejected, he will not be paid this task and will be put into the

training state to earn his qualifications for future taskst B, (., ¢.) represent the probability
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l - Pw (qw ’ qw)

P.(q,.4,) Training 1-F(q)

State

P(q,)

Fig. 1. The state transition diagram of our proposed meshami1;.

of a solution with qualityy,, being accepted in the working state when other submittadisak

are of qualityg,. We have

Pu(Guws quw) =(1 = Buw)quw [‘fy + 24w (1 — q~w)] + Bu(l — aw) + Buwon[(1 — 2€)qu + €. )

The immediate utility of a worker at the working state can b&ualated as

uw./\/tt (qun qu) = TPw(dwa Qw> - C(Qw>- (10)

In the training state, each worker will receive a set/dftraining tasks. To evaluate the
submitted solutions, an approach similar to the reward racgumechanism is adopted. In
particular, a worker is chosen to be evaluated at random pribbability o;. A chosen worker
will pass the evaluation and gain the permission to workitajesif A/ out N solutions are
correct. We assumé/ = N in our analysis while our results can be easily extended tcemo
general cases. An unselected worker will be granted theipsion to working state next time.
Only workers who fail the evaluation will stay in the traigirstate and receive another set of
N training tasks. We denote b¥,(¢;) the probability of a worker who produces solutions of

quality ¢, being allowed to enter the working state next time, which lbarcalculated as
Pi(q) = (1 — ap) + auf(1 — 2€)q + €. (11)
The immediate utility of a worker at the training state is

Wy, (@) = —Ne(qr). (12)

To summarize, we plot the state transitions/of; in Fig. 1. We further assume that at the
end of each time slot, a worker will leave the system with plolity 1 — 6, whered € (0, 1).

Moreover, a new worker will enter the system immediatelyerafain existing one left. New
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workers will be placed randomly into the working state or thening state according to an
initial state distribution specified by the requester.

From (10) and[(12), we can see that workers’ immediate wititit M, depends not only on
their actions but also on which state they are in. Moreovgitha state transition probabilities
depend on workers’ actions according d (9) and (11), takingertain action will affect not
only the immediate utility but also the future utility. Forample, a worker may increase his
immediate utility by submitting poor solutions at the wargistate but suffer from the loss of
being placed into the training state next time. Given theedépnce of future utility on current
actions, as rational decision makers, workers will chotssr tactions to optimize their long-
term utility. Formally, we denote b¥/y (G, ¢w. ¢:) the long-term expected utility of a worker
who is currently at the working state and chooses agjjpifor the working state and actiof
for the training state while others choosing actipnat the working state. Similarly, we write

ijt(cjw, qw, q¢) for the long-term expected utility at the training state. Wave
Ut (G Guos @) = g, (Guos @) 0 [ Pos(Guos @) Ui, (Guos s @) + (1= Poo(Guos @) Ul (Guos G 62) ]+ (13)
Ui, (Guos G @) =0, (@) + 6 [Pi(a)Usy, (G Guor @) + (1 = Pi@))Ulg, (Guos G @) ] - (14)
Based on the definition of worker’s long-term expected tytilve adopt the symmetric Nash

equilibrium as the solution concept in mechanidrty, which is formally defined as

Definition 2 (Symmetric Nash Equilibrium aM,). The action pair (¢., ¢;) is a symmetric Nash
equilibrium of M,, if Vg, € [0,1] and V¢ € [0, 1], the following two conditions hold

U,/l\ilt (Cjwa Cjun th) Z U}\U/It (unn G, Qt>7 (15)

U./t\/[t (qua qua th) Z Uj\/lt (Cjwa Gw; qt) (16)

The above definition suggests a way to verify whether an agigir (g, ;) of interest is a
symmetric Nash equilibrium or not, which can be summarizedha following three steps.

1) Assume all workers are adoptirig,, ;) and one worker of interest may deviate from it.

2) Find the optimal actioriq;, ¢;) for this worker.

3) The action pai(q., ¢;) is a symmetric Nash equilibrium if and only if it is consistevith

the optimal action paitq:, ¢;), i.e., ¢, = ¢, and g, = q;.
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The key challenge here is to find the optimal action pair foroaker given the other workers’
action, which can be modeled as a Markov Decision ProcessPiMID this MDP formulation,
the state set includes the working state and the trainingg,stihe action in each state is the
quality of solutions to produce, rewards are the immedigtagyuspecified in [10) and[(12), and
transition probabilities are given inl(9) ard (11).

Note that in our discussions so far we assume stationargresti.e., workers’ actions are
time-invariant functions of the state. Such an assumptanle justified by properties of MDP

as shown in Proposition 2.

Proposition 2. Any worker cannot improve his long-term expected utility by choosing time-

variant actions, if all the other workers' action at the working stateis stationary, i.e., Vq,, € [0, 1],

Ui, (Qws @ (7), @7 (7)) = Uy, (Gw, @ 47,
Uj\/lt<qw7q;ku(7—)7q:<7-)) = Uj\/lt(qlmquqr)?

where (¢: (1), g/ (7)) isthe optimal time-variant action pair and (¢, ¢;) isthe optimal stationary

action pair, given other workers action g¢,.

Proof: The problem of finding the optimal action pair for a workeregithe other workers’
action can be formulated as a MDP. In this MDP formulatiomarels and transition probabilities
are stationary if other workers’ action at the working ststestationary. In addition, the state
space is stationary and finite and the action space is stayicemd compact. Moreover, the
rewards and transition probabilities are continuous itoast Therefore, according to Theorem
6.2.10 in [19], there exits a deterministic stationary @ttrule by which the optimal utility
of this MDP can be achieved. In other words, choosing anyaandime-variant and history
dependent action rules will not lead to a higher utility. [ |

Among all possible symmetric Nash equilibria, we are irdtgd in ones wherg,, = 1,
i.e., workers will produce solutions with the highest gtyakt the working state. Note that we
do not guarantee solution quality at the training stateesimcM;, the working state serves
the production purpose whereas the training state is degigs an auxiliary state to enhance
workers’ performance at the working state. Solutions ctdld from the training state will only
be used for assessing workers and should be discarded aftisrvw\Ve would like to characterize

conditions under which such symmetric Nash equilibriatexieward this end, we will follow

August 27, 2018 DRAFT



14

the three steps outlined above with an emphasize on solkenIDP to find the optimal action
pair. Our results are summarized in the following propositiwhere we present a necessary and

sufficient condition on the existence of symmetric Nash ldga with ¢, = 1.

Proposition 3. There exists ¢; € [0, 1] such that (1, ;) is a symmetric Nash equilibrium of M,
if and only if
'(1) r
wo(1,1,4,) — ULy (1,1,6) > o L 17
UMt( 9 7qt) UMt( ) 7qt) - 5[<1 —Bw> +Bwaw<1 —26)] 5 ( )

Proof: To show the existence of a symmetric Nash equilibrium wjth= 1, we first assume

that all workers are choosing the action pdirg;) except one worker under consideration. Since
interactions among workers only occur at the working sttite,value ofg; will not affect the
decision of this particular worker.

Next, we characterize the optimal action pgijf,, ¢;) for this particular worker. The problem
of finding the optimal action pair of a certain worker can bedeled as a MDP where the
necessary and sufficient conditions of an action pair bejtgral are given in[(15) and_(16).
Nevertheless, it is not easy to derive the optimal actiom paectly from these conditions.
Therefore, we need to find another set of equivalent conditi®ince in our MDP formulation,

0 < 4 < 1, the state space is finite and the immediate reward is boyfdexbrem 6.2.7 in([19]
shows that an action paii;, ¢;) is optimal if and only if it satisfies the following optimayit

equations
4o € arg max {ulfy, (1, u) +0[Pu (L, qu) U, (1 45 67) + (1= Pu (L, 4w) Ul (145, 47)] } - (18)
q; € arg max {uly, (@) + 6 [P(a) Uk, (1, 45 67) + (1= Pi(a)) U, (1, 43 0)] } (19)

and that there exits at least one optimal action pair.
Since the above optimality equations hold for any valug,pfve setj, = ¢;. Then, to prove
that there exists an symmetric Nash equilibridfn, ¢;) with ¢, = 1, it suffices to show that

q: = 1. Substituting [(ZD) into[(18) and after some manipulations,have

4, € arg max {[r+ 06U, (1.4, 4;) = 6U, (1,45, 47)] Pu(l,q0) = clau)} - (20)

From (9), we know

PU)(la Qw) = [(1 - 510) + 5waw<1 - 26)] Guw + ﬁw(l - aw) + ﬁwawe- (21)
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Substituting [(211) into[(20), we have

CJZ € argog}],a% {[(1 - ﬁw) + ﬁwaw(l - 26)] [T + 6U,/L\U/tt(]-7 CJ; C]Zk) - 6va1t(1v C]ZN Q:)} Guw — C(Qw)} .

Recall thatc(q,,) is a convex function of,,. We can thus derive the necessary and sufficient

condition forg}, =1 as
[(1 = Bu) + Buwaw(1 = 2€¢)] [r+ 60U, (1,1,q) — 06U}, (1,1,47)] > (1), (22)

which is also the necessary and sufficient condition for tkistence of the symmetric Nash
equilibrium (g,, ;) with ¢, = 1. Replacingg; with ¢;, we obtain the condition inf(17) and
complete the proof. [ |

In the above proposition, we show that it is an equilibrium $elf-interested workers to
produce solutions with quality at the working state as long as the condition[in] (17) holds.
Nevertheless, this condition is hard to evaluate sincéaethe equilibrium action at the training
state,g;, nor the optimal long-term utility/y, (1,1, ¢) andUj, (1, 1, G;) are known to requesters.
On the other hand, we hope to find conditions that can providdegrequesters in choosing
proper parameters for mechanisi,. Therefore, based on results of Proposition 3, we present
in the following a sufficient condition on the existence osidable equilibria, which is also easy

to evaluate.

Theorem 1.In M,, if the number of training tasks N is large enough, i.e,

1 (14 6Bpane)d (1) o+1
Nz c(0) |0(1 = By) + 0Buwcr(l —2¢) &

then there exits a symmetric Nash equilibrium (g, ¢;) such that ¢, = 1.

r+c(l)], (23)

Proof: We first obtain a lower bound o}, (1,1, ¢;) — U}, (1,1, ¢) and then combine this

lower bound with Proposition 3 to prove Theorem 1.
Let U(qu, @) £ [U, (1, quw, @) Uf\,lt(l,qw,qt)}T. Then, from [(IB) and_(14), we have

(I - 5Q(QwaQt>)U(Qw7%) = b(qunqt)a (24)
wherel is a 2 by 2 identity matrixb(q,,, ¢:) = [u%y, (1, ¢u) vy, (@)]" and

Q(qw,qt) A Pw(lv%u) 1_Pw(17Qw) . (25)
Pt(Qt) 1— Pt(Qt)

August 27, 2018 DRAFT



16

Since0 < ¢ < 1, it can be proved according to the Corollary C.4[inl[19] thaitmx (T —
dQ(qw, q:)) is invertible. Therefore, we can obtain the long-term wtiNector of action pair
(quw q:) @s

U(gu @) = (1= 0Q(4u, 4) " b(gu, @)- (26)

Based on[(26), we have

U,/t\uxtt(la(]wa%) - Uﬁv(t(LQwa(]t) = [1 _I]U(Qwa%)
u'py, (1, quw) — ulyy, (q1)
1+ 0 [Pt(Qt) - Pw(1> Qw)] ‘

The above results hold forg, € [0,1] andVg, € [0, 1]. Therefore, for a desired action pair

(27)

(1,4;), we have
ufy, (1, 1) — iy, (G)
14+ 9[P(q) — Pu(1,1)]
(1 - 5waw6)r - C(l) + NC(Cjt)
1+ (5{1 — oy + Oét[(l — 26)th + E]N - (1 - 5U)Oéw€)}
(1 = Buawe)r — c(1) + Ne(0)
- 1 + 0 Bpaye '
Since[(1 — 2¢)g; + €]V < 1, the inequality in[(2B) is derived by replacifg — 2¢)g; + €] with

U}\U/tt(]wlqut) _Uf\/tt(]vlqut) =

(28)

1 and by using the fact thatq) is monotonically increasing in.
Therefore, the condition if.(17) is guaranteed to hold if

(1 = Bupawe)r —c(1) + Ne(0) - d(1) T
1 + 6 Bupoupe [ = Bu) + Puaw(l —2¢)] 4’
which leads to the sufficient condition in_(23). [ |

Theorem 1 shows that given any possible settiags 5., r, «;) in M,;, we can always enforce
workers to produce solutions with qualityat the working state by choosing a sufficiently large
N. Such a property makes it possible for requesters to cotiieat cost while obtaining high

guality solutions. We discuss the mechanism costf in the following subsection.

A. Mechanism Cost

For requesters, the mechanism costA\df at the desirable equilibriurfil, ¢;) can be written

as

Oty = (1= Bu) =37 + B - [(1 = cwe)r + ] + Bu - e Y [1 = Pil@)]" axNd,
k=0
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where the last term corresponds to the cost of validatiorhénttaining state. Since < 1, it
follows that P,(g;) > 1 — ay + aye”. Therefore, we have

Qy
1— (L — M)

We then design parameters 68ff; according to the following procedure: (a) select working

Crm, <3r(1 — Bu) + Bu [(1 — aywe)r + aud] +

Buwo,eNd.

state parameters,,, 5, andr, (b) chooseN such that[(28) holds, (c) design such that

ay
1—ou(1—eN)

BuwweNd < 4{3r(1 — By) + Buw [(1 — aé)r + aud] }, (29)

where~ > 0 is a parameter chosen by requesters to control the reladisteof training state to

working state. The inequality ih_(R9) is equivalent to

o < {37 (1 = By) + Bu [(1 — ce)r + ad]}
" (1= e {3r(1 = Bu) + Bu [(1 — awe)r + awd]} + BuaweNd

Following the above design procedure, we have

(30)

CMt S (1 + 7) [3T(1 - Bw) + Bw((l - OéwE)’l“ + awd)] .
If o, andr are chosen to minimize the cost, we have

Cy, = inf 0(1 +9)[3r(1 = By) + Bu((1 — ape)r + ad)] = 0,

0<aw<l,r>
which illustrates that our proposed mechanigiy enables requesters to obtain high quality
solutions with an arbitrarily low cost.

Moreover, from the above design procedure, the significasfceur proposed mechanism
can be interpreted from another perspective. That is, girdbe introduction of quality-aware
worker training, our proposed mechanism can be built on fogng basic mechanisms to bring
requesters an extra degree of freedom in their design. Téeyow freely choose working state
parameters, e.gq.,, 5, andr, without concerning the constraint of incentivizing highatjty

solutions, which will be automatically guaranteed throtiggn design of training state parameters.

B. Sationary State Distribution

In above discussions, we focus on the quality of submittéatisms at the working state, while
there is no guarantee of solution quality at the trainingest@his is sufficient for requesters to
high quality solutions as the training state only servesraaxallary state and will not be used

for production. On the other hand, the system efficiencyMdf depends on the probability of a
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worker being at the working state. If such a probability isaimM, will have low efficiency
as a large portion of workers are not contributing to actasks

Therefore, to fully study the performance 68f;, we analyze the stationary state distribution
of M; in this subsection. We denote by’ the probability of a worker being at the working
state at thenth time slot after entering the platform. The probability méing at the training
state is thug1l — 7). We denote byr> and=? the stationary state distribution and initial state
distribution, respectively. Note that the initial statstdbution=? is a design aspect that can be
controlled by requesters, i.e., requesters can decidehehatnew worker starts at the working
state or at the training state. Our main result is a lower Hafrry” as shown in the following

proposition.

Proposition 4. In M,, if workers follow a desirable symmetric Nash equilibrium (1, ¢;), then
the stationary state distribution 72> will be reached and

- (1 =070 + (1 — ay)

1
YTl =0+ 0fuane +0(1 — ay) (31)

Proof: Assuming that all workers are adopting the action g&ig;), then we can write the

state distribution update rule as

Tt = 0muPu(1,1) + 0(1 — 1) P(G) + (1 = 0)my

w w

= 0[Pu(1,1) = P(d)] my, + (1 = O)my, + 0P (Gy)- (32)
If the stationary state distribution’® exists, it must satisfy

T =0 [Py(1,1) — Pi(q)] moy + (1 — 5)772; + 0P (Gr)- (33)

w

Therefore, we have
o (1 —086)7° + 5P(q)
Yo 1= 8[Py(1,1) — P(q)]
(1=8)md +0{(1 — o) + a[(1 —26)G + €]V}
1 —0(1 — Bpawe) + 0 {(1 —ay) + (1 — 2€) G + €]V}
(1 =870 +6(1 — ay)
T 1—0400paue+ (1 — )

The last inequality holds sindél — 2¢)g; + ¢]¥ > 0 and72° is monotonically increasing as the

value of [(1 — 2¢)g; + €]V increases.
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Next, we show that the stationary distributiaff will be reached. From (32) an@ (33), we
have
gl g = § [Py(1,1) — Pi(Ge)] (mp — 7or).

Since|d [P,(1,1) — P,(¢:)] | < 1, we have

: n oo\ __ 3 n __
lim (7, — 7)) =0= lim 7w, =
n— o0 n— oo

o0
w "

u
From Proposition 4, we can see the lower boundrpfincreases as® increases. Since the

larger 7> means higher efficiency, requesters should chedse- 1 for optimal performance.

Therefore, we have

oo

Tl >1 — 0Pt
W= 1—0+6(1 — ) + 0Buue

Wheng, = 0, i.e., only the reward consensus is employed at the workatg,sor in the ideal

(34)

case ofe = 0, we can conclude that;® = 1. This implies that every newly entered worker will
first work at the working state, choose to produce solutioitls the highest quality as their best
responses and keep on working in the working state until kbaye the system. As a result, all
workers will stay at the working state and are available toesposted tasks.

On the other hand, whefi, > 0 ande > 0, although all workers will start with the working
state and choose to produce solutions with qualitya portion of them will be put into the
training state due to validation mistakes of requestersvaver, since the probability of error is
usually very small, i.e.¢ < 1, we can still expectr>° to be very close td, which implies that

the majority of workers will be at the working state.

VI. SIMULATION RESULTS

In this section, we conduct numerical simulations to examimoperties of our proposed
mechanismM; and to compare its performance with that of the basic meshasu\. and
M,. Throughout the simulations, we assume the following costtion for workers

_ (g +N)?
c(q) = m, (35)

where A > 0 is a parameter that controls the degree of sensitivity of &kers cost to his
action. In particular, the smallex is, the more sensitive a worker’s cost will be with respect

to his actions. In addition, the cost of choosing the higlyestlity 1 is normalized to be 1, i.e,
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Lower bound of N

10 10

Fig. 2. The lower bound of N for the existence of desirable mtric Nash equilibria whe,, = 0.

¢(1) = 1. From the definition of:(q), we also have:(0) = ﬁ andd(1) = ﬁ Moreover,
we setd = 10, 6 = 0.9 ande = 0.01 throughout the simulations.

In the first simulation, we evaluate the sufficient conditimm the existence of desirable
symmetric Nash equilibria i (28) under different settin§sch a sufficient condition is expressed
in the form of a lower bound on the number of required trainiagks, which depends on the
worker’s cost function as well as working state parametgrsa,, andr. We setr = 1, which
matches the cost of producing solutions with qualityyloreover, sinceV > 1, when the derived
lower bound of N is less thah, we set it to bel manually.

We show in Fig. 2 the lower bound a¥ versus\ when 5, = 0, i.e., only the reward
consensus mechanism is used in the working state. Sinceevgogte more cost-sensitive in
producing high quality solutions with a smallgr it becomes more difficult to make =1 as
their best responses. As a result, we need to set relatiaefye IVs to achieve the desirable
symmetric Nash equilibrium for smalls as shown in Fig. 2. On the other hand, wheis large
enough, the lower bound in_(28) will no longer be an activest@int since anyV > 1 can
achieve our design objective.

We then study the more general cases where both the rewasgrgus mechanism and the
reward accuracy mechanism are adopted in the working $tehow in Fig. 3 the lower bound

of N versusa,, under different values of,, and A. Similarly, we can see that small@rleads

August 27, 2018 DRAFT



21

_..._Bw=l,)\=0.3
—A—pB,=1A=1

—a—B,=1A=3
—+—BW=0.5,)\=0.3
——B,=05A=1

—v—BW=O.5,)\=3

Lower bound of N

Fig. 3. The lower bound of N for the existence of desirable mytric Nash equilibria whe,, # 0.

W

Lower bound of «

Fig. 4. The lower bound ofrg;y when g, = 1.

to a larger lower bound ofV. Moreover, the lower bound oV also increases as, decreases.
This is due to the fact that it becomes more difficult to erdonorkers to submit high quality
solutions if we evaluate the submitted solutions less featjy. Sinces,, represents the ratio of
tasks that will be evaluated using the reward accuracy nmesima the smallers,, is, the less

dependent of the lower bound of will be on the sampling probability,,.

In the second simulation, we evaluate numerically the Idveemd of the stationary probability
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Fig. 5. The long-term expected utility loss of a worker wheidees to action paifq., ¢:): (@) Sw = 0; (b) Bw = 1, aw = 0.1;
©) Bw =1, aw = 0.9.

of a worker being at the working state, i.e5” under different settings. We considéf = 1 in
our simulations as>° = 1 when 3, = 0. In addition,we setr) = 1, i.e., every newly entered
worker will be placed at the working state. In Fig. 4, we shtww tower bound ofr;® under
different values ofv,, and . We can see that the lower boundgf decreases as, and«a;
increases. More importantly;> will be above0.9 even in the worst case, which indicates that
our proposed mechanism can guarantee the majority of wotkang at the working state.

Next, we verify Theorem 1 through numerical simulationgpémticular, we assume all workers
adopt the equilibrium action paif, ¢,) except one worker under consideration who may deviate
to (qu,q:)- We setr = 1 and chooseV to be the smallest integer that satisfies the sufficient

condition of the existence of desirable symmetric Nash lduia in (28). We setn; according
{3r(1 = Bw) + Buw [(1 — aywe)r + ad]}

to (30) withy =1, i.e.,
= 1mi 1.
B { (1 — ) {3r(L — Bu) + Bo [(1 — Qwe)r + awd]} + BucweNd’ }
Moreover, the equilibrium action at the training stajg,is obtained by solvind (18) and (19) us-

ing the well-known value iteration algorithin [19]. We shawHig 5 the long-term expected utility
loss of the worker under consideration at the working stage, U3, (1,1, ;) — Uiy, (1, quw, G1).
From the simulation results, we can see that under all si@ailsettings, choosing, = 1 will
always lead to the highest long-term expected utility, izero long-term expected utility loss.
Therefore, as a rational decision maker, this worker willehao incentive to deviate from the

action (1, ¢;), which demonstrates that, ¢;) is indeed sustained as an equilibrium.
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Fig. 6. The equilibrium action versus the mechanism costin.

Finally, we compare the performance of our proposed meshan; with that of the two
basic mechanism&1,. andM,. Since M, is capable of incentivizing workers to submit solutions
of quality 1 with an arbitrarily low cost, it suffices to show the qualitiysolutions achieved by
M. and M, under different mechanism costs. In particular, fef., we assume that a task is
given to 3 workers. Therefore, for a given mechanism c04sf, , the reward to each worker is
r = Cp. /3. According to our analysis in Sectign IVA, the equilibriumetion g}, in M. can
be calculated ag}, = max{min{g,1},0}, whereq is the solution to the following equaiton

r2g — ¢*] = ¢(q).

In our simulations, when there are multiple equilibria, wekpthe one with higher quality. On
the other hand, if there exits no equilibrim, we ggf = 0. We show curves of the equilibrium
action ¢j,_ in Fig. 6. From the simulation results, we can see thdt can only achieve the
highest qualityl when the mechanism costy,, is larger than a certain threshold. Moreover,
such a threshold increases asncreases, i.e., as workers are more cost sensitive in pioglu
high quality solutions.

For M,, we study two cases where, = 0.2 and «, = 0.8, respectively. Then, given a

mechanism cost’y,,, we setr such that
Cm, = (1 — ae€)r + agd.

a
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Fig. 7. The optimal action versus the mechanism cos#in: (a) o, = 0.2; (b) aq = 0.8.

Under M,, workers will respond by choosing their optimal actigyy as

Y = arg max u )
I, g max M. (q)

We show the optimal action}, versus the mechanism caSt,, for M, in Fig. 7. Similarly,

we can see that requesters are unable to obtain high qualiiosis with low Cy, .

VIl. EXPERIMENTAL VERIFICATIONS

Beyond its theoretical guarantees, we further conduct afsbehavioral experiments to test
our proposed incentive mechanism in practice. We evall@@é¢rformance of participants on a
set of simple computational tasks under different incentivechanisms. We mainly focused on
the reward accuracy mechanism in the experiment. We fouat] through the use of quality-
aware worker training, our proposed mechanism can greatbyave the performance of a basic
reward accuracy mechanism with a low sampling probabititg tevel that is comparable to the
performance of the basic reward accuracy mechanism withititeest sampling probability. We

describe the experiment in detail below followed by analysid discussions of the results.

A. Description of The Experiment

The task we used was calculating the sum of two randomly gézebrdouble-digit numbers.

To make sure all tasks are of the same difficulty level, wehferrimake the sum of unit digits to

August 27, 2018 DRAFT



25

be less than(, i.e., there is no carry from the unit digits. The advantaigguch a computational
task is that: (a) it is straightforward for participants toderstand the rule, (b) each task has a
unique correct solution, (c) the task can be solved cogregith reasonable amount of effort,
and (d) it is easy for us to generate a large number of indepdrtdsks.

In our experiment, participants solve the human computdtieks in exchange for some virtual
points, e.g., 10 points for each accepted solution. Theal goto maximize the accumulated
points earned during the experiment. Tasks are assignedcto garticipant in three sets. Each
set has a time limit of 3 minutes and participants can try asymasks as possible within the
time limit. Such a time limit helps participants to quantityeir costs of solving a task with
various qualities using time. Different sets employ diatrincentive mechanisms. In particular,
Set | employs the basic reward accuracy mechanigmwith the highest sampling probability
a, = 1. The basic reward accuracy mechanigry, with a much lower sampling probability
a, = 0.3 is employed in Set Il. We use our proposed mechamgmin Set Ill, which introduces
guality-aware worker training to the same basic reward @oyumechanism as used in Set Il
with training state parameters set@s= 0 and N = 15. Since correct solution can be obtained
for all tasks, we are able to determine the correctness df ealution without error. That is,
we havee = 0 in all cases.

We created a software tool to conduct the experiment. As teyantion among participants
is involved, our experiment was conducted on an individweai®s Before the experiment, each
participant was given a brief introduction to experimenesuas well as a demonstration of the
software tool. There was also an exit survey followed eaieth of the experiment, which asked

participants about their strategies.

B. Experimental Results

We have successfully collected results frdm participants, most of whom are engineering
graduate students. The number of collected submissionsgteraries significantly from 30 to
180, depending on both the strategy and skills of differeatigipants. From the requester’s
perspective, the accuracy of each participant represaetgjaality of submitted solutions and
therefore is a good indicator to the effectiveness of ingemhechanisms. We show the histogram

of accuracy for all three sets in Fig. 8.
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For Set I, as the highest sampling probability, ice,,= 1, was adopted, most participants re-
sponded positively by submitting solutions with very highatities. There is only one participant
who had relatively low accuracy compared with others in thatwas playing the strategy of
“avoiding difficult tasks” according to our exit survey. A tulower sampling probability di.3
was used for Set Il. In this case, it becomes profitable teemse the number of submissions by
submitting lower quality solutions, as most errors will pigjnnot be detected. This explains why
the majority of participants had very low accuracies for BeNoteworthily, a few workers, 5
out 41, still exhibited very high accuracies in Set Il. Ouitexirvey suggests that their behaviors
are influenced by a sense of “work ethics”, which preventsthe play strategically to exploit
the mechanism vulnerability. Similar observations haw® dleen reported i [20] and]21]. In
Set Ill, as the introduction of training tasks make it morestoto submit wrong solutions,
participants need to reevaluate their strategies to aetaeyood tradeoff between accuracy and
the number of submitted tasks. From Fig. 8, we can see thadtracy of participants in Set
lll has a very similar distribution as that in Set I.

We now analyze our experimental results qualitatively. Cet I';; and I';;; represent the
accuracy of Set I, Set Il and Set Ill, respectively. Our ressghow thatl’;;; — I';; follows a
distribution with median significantly greater thar6 by the Wilcoxon signed rank test with
significance level ofp < 5%. On the other hand, the median of the distributionl'gf— I';;;
is not significantly greater thaf.01 by the Wilcoxon signed rank test with > 10%. The
unbiased estimate of the variancelof I';; andI';;; are0.0060, 0.1091 and0.0107, respectively.
Moreover, according to the Levene’s test with significarsel of5%, the variance of';;; is not
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significantly different from that of'; while it is indeed significantly different from that af;;.
To summarize, through the use of quality-aware worker imginour proposed mechanism can
greatly improve the effectiveness of the basic reward aayumechanism with a low sampling

probability to a level that is comparable to the one that hashighest sampling probability.

VIII. CONCLUSIONS

In this paper, we study cost-effective mechanisms for ntésio crowdsourcing. In particular,
we first consider two basic mechanisms widely adopted intiegisnicrotask crowdsourcing
applications and show that, to obtain high quality solwiotheir mechanism costs must be
higher than some lower bounds. Such lower bounds are bepentbintrol of requesters and may
be high enough to negate the advantage of microtask crowclagu Then, we propose a cost-
effective mechanism based on quality-aware worker trginile prove theoretically that, given an
arbitrarily low cost, our proposed mechanism can be dedigneustain a desirable equilibrium
where workers choose to produce solutions with the higheaslity at the working state and a
worker will be at the working state with a large probabiliBeyond its theoretical guarantees,
we further conduct a set of human behavior experiments taodstrate the effectiveness of our

proposed mechanism.
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