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Adaptive Shooting for Bots in First Person Shooter
Games Using Reinforcement Learning

Frank G. Glavin and Michael G. Madden

Abstract—In current state-of-the-art commercial first person
shooter games, computer controlled bots, also known as non-
player characters, can often be easily distinguishable from those
controlled by humans. Tell-tale signs such as failed navigation,
“sixth sense” knowledge of human players' whereabouts and
deterministic, scripted behaviors are some of the causes of this. We
propose, however, that one of the biggest indicators of nonhuman-
like behavior in these games can be found in the weapon shooting
capability of the bot. Consistently perfect accuracy and “locking
on” to opponents in their visual field from any distance are in-
dicative capabilities of bots that are not found in human players.
Traditionally, the bot is handicapped in some way with either a
timed reaction delay or a random perturbation to its aim, which
doesn't adapt or improve its technique over time. We hypothesize
that enabling the bot to learn the skill of shooting through trial
and error, in the same way a human player learns, will lead to
greater variation in game-play and produce less predictable non-
player characters. This paper describes a reinforcement learning
shooting mechanism for adapting shooting over time based on
a dynamic reward signal from the amount of damage caused to
opponents.
Index Terms—First person shooters, nonplayer characters, rein-

forcement learning.

I. INTRODUCTION

A. First Person Shooter Games

T HE FIRST PERSON SHOOTER (FPS) genre of com-
puter games has existed for over twenty years and in-

volves a human player taking control of a character, or avatar, in
a complex 3D world and engaging in combat with other players,
both human and computer-controlled. Human players perceive
the world from the first person perspective of their avatar and
must traverse the map, collecting health items and guns, in order
to find and eliminate their opponents. The most straightforward
FPS game type is called a ‘Death Match’ where each player
must work by themselves with the objective of killing more op-
ponents than anyone else. The game ends when the score limit
has been reached or the game time limit has elapsed. An exten-
sion to this game type, ‘Team Death Match’, involves two or
more teams of players working against each other to accumu-
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late the most kills. Objective based games also exist where the
emphasis is no longer on kills and deaths but on specific tasks
in the game which, when successfully completed, result in ac-
quiring points for your team. Two examples of such games are
‘Capture the Flag’ and ‘Domination’. The former involves re-
trieving a flag from the enemies' base and returning it to your
base without dying. The latter involves keeping control of pre-
defined areas on the map for as long as possible. All of these
game types require, first and foremost, that the player is profi-
cient when it comes to combat. Human players require many
hours of practice in order to become familiar with the game
controls and maps and to build up quick reflexes and accuracy.
Replicating such human behavior in computer-controlled bots
is certainly a difficult task and it is only in recent years that
gradual progress has been made, using various artificial intel-
ligence algorithms, to work towards accomplishing this task.
Some of these approaches will be discussed later in Section II.

B. Reinforcement Learning
Reinforcement learning [1] involves an agent interacting with

an environment in order to achieve an explicit goal or goals. A
finite set of states exist, called the state space, and the agent
must choose an available action from the action space when in
a given state at each time step. The approach is inspired by the
process by which humans learn. The agent learns from its inter-
actions with the environment, receiving feedback for its actions
in the form of numerical rewards, and aims to maximize the re-
ward values that it receives over time. This process is illustrated
in Fig. 1. The state-action pairs that store the expected value of
carrying out an action in a given state comprise the policy of the
learner. The agent must make a tradeoff between exploring new
actions and exploiting the knowledge that it has built up over
time. Two common approaches to storing/representing policies
in reinforcement learning are generalization and tabular. With
generalization, a function approximator is used to generalize
a mapping of states to actions. The tabular approach, which
is used in this research, stores numerical representations of all
state-action pairs in a lookup table. The specific policy-learning
algorithm that we use in this work is , which will be
described later in Section III.

C. Problem Summary
FPS games require human players to have quick responses,

good hand-eye coordination and the ability to memorize com-
plex game controls. In addition to this, they must also remember
the pros and cons of specific guns, learn the layout of the dif-
ferent maps and develop their own unique playing style that
works well for them. Some players prefer an aggressive “run
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Fig. 1. The interactions between the agent and the environment (This figure is
based on [1 , Fig. 3.1 ]).

and gun” approach while others are more reserved and cau-
tious while playing. It is this diversity that leads to interesting
and entertaining gameplay where players build up experience
and find new ways to out-wit their opponents. Artificially gen-
erating such skills and traits in a computer controlled bot is a
difficult and complex task. While bots can be programmed rela-
tively easily to flawlessly carry out the tasks required to play
in a FPS, this is not the goal of developing effective AI op-
position in these games. The overall aim is to design a bot in
such a way that a human player would not be able to detect that
the opponent is being controlled by a computer. In this sense,
bots cannot be perfect and must be occasionally prone to bad
decision making and “human errors” while at the same time
learning from their mistakes. In our previously published work
[2], [3], we developed a general purpose bot that used reinforce-
ment learning with multiple sources of reward. In this research,
we are only concerned with the development and adaptation of
shooting skills over time. This is just one task of many that we
believe will lead to creating entertaining and human-like NPCs
in the future. The shooting architecture can be “plugged in” to
existing bots, overriding the default shooting mechanism. We
believe it is important to develop and analyze each task individ-
ually before merging them together into the final bot version.
Examples of other tasks would include navigation, item collec-
tion, and opponent evasion.

II. RELATED RESEARCH
Reinforcement learning has been used to embed game AI in

many different genres of computer games in the past. These
genres include Real Time Strategy (RTS) games [4]–[6],
fighting games [7], [8], and board games [9]–[11] among others.
Improving NPC behaviors in FPS games has also received
noteable attention with everincreasing PC peformance and the
advent of “next generation” gaming consoles. This section
examines some of the artificial intelligence approaches used in
FPS games that are related to this research.
In 2008, a competition was set up for testing the humanness

of computer controlled bots in FPS games. This was called
BotPrize [12] and the original competition took place as part
of the IEEE Symposium on Computational Intelligence and
Games1. The purpose of the competition, which has been re-
peated annually, is to see whether computer-controlled bots can
fool human observers into thinking that they are human players
in the FPS game Unreal Tournament 2004 (UT2004). In this

1http://www.botprize.org/2008.

sense, the competition essentially acts as a Turing Test [13] for
bots. Under the terms of the competition, a bot is successful if
it fools observers into believing that it is human at least 50%
of the time. The original design of the competition involved
a judge playing against two opponents (one human and one
bot) in 10–min death matches. The judge would then rank the
players on a scale of 1 to 5 in humanness. The improved design
[14] made the judging process part of the game. An existing
weapon in UT2004 called the Link Gun was modified and this
is used to judge other players as being humans or bots. The
damage caused by each gun in the competition is set at 40%
of the normal damage, to give players enough time to make an
informed decision. This competition ran for five years before
finally being won by two teams in 2012. MirrorBot (52.2%)
and the UT bot (51.9%) surpassed the “humanness barrier” of
50%.
MirrorBot, developed by Polceanu [15], records opponents'

movements in real time and if it encounters what it perceives to
be a nonviolent player it will trigger a special behavior of mir-
roring. The bot then proceeds to mimic the opponent by playing
back the recorded actions after a short delay. The actions are
not played back exactly as recorded to give the impression that
they being independently selected by the bot. MirrorBot has an
aiming module to adjust the bot's orientation to a given focus
location. If the opponent is moving then a “future” location will
be calculated based on the opponents velocity and this will be
used to target the opponent. In the absence of a target, MirrorBot
will focus on a point computed from a linear interpolation of
the next two navigation points. The authors do not report any
weapon-specific aiming so it is assumed that this aiming module
is used for all guns despite the large variance in how different
ones shoot. The decision on which weapon to use is based on its
efficiency and the amount of available ammunition.
The UT bot, developed by Schrum et al. [16] uses human

trace data when it detects that it is stuck (navigation has failed).
The authors also developed a combat controller using neuroevo-
lution which evolves artificial neural networks, where the fit-
ness function is designed to encourage human-like traits in game
play. For its shooting strategy, the bot shoots at the location of
the opponent with some random added noise. The amount of
noise added is dependent on the distance from the opponent and
its relative velocity with more noise being added as the distance
and relative velocity values increase. Full development details
and an analysis of the bot's performance in Bot Prize can be
found in the chapter by Schrum et al. [17]
Gamez et al. [18] developed a system which uses a global

workspace architecture implemented in spiking neurons to con-
trol a bot in Unreal Tournament 2004. The system is designed
to create a bot that produces human-like behavior and the archi-
tecture is based on control circuit theories of the brain. It is the
first system of this type to be deployed in a dynamic realtime en-
vironment. The bot was specifically designed to reproduce hu-
manlike behavior and competed in the Bot Prize competition in
2011, coming in second place with a humanness rating of 36%.
The authors also developed a metric for measuring the human-
ness of an avatar by combining a number of statistical measures
into a single value. These were exploration factor, stationary
time, path entropy, average health, number of kills and number
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of deaths. The exploration factor metric measures how much
of the available space on the map is visited by the avatar. Sta-
tionary time measures the total amount of time that the avatar is
stationary during the game. Path entropy measures variability in
the avatars movements while navigating. The humanness metric
is calculated as the average of all of these statistical measures.
Using this humanness metric, the authors found that a similar
humanness rating percentage was obtained to those that were
calculated through the use of human judges in the Bot Prize
competition. The authors do not report any implemented vari-
ance in the shooting action of the bot.
McPartland and Gallagher [19] applied the tabular

reinforcement learning algorithm to a simplified purpose-built
first person shooter game. Individual controllers were trained for
navigating the map, collecting items and engaging in combat.
The experimentation involved three variations of the reinforce-
ment learning algorithm. The first of these, HierarchicalRL,
learns when to use the combat or navigation controller. Rule-
BasedRL has predetermined rules for deciding on which con-
troller to use and the RL controller which learns the entire task
of navigation and combat from scratch. A comparative analysis
was carried out which included a random bot and state machine
bot. The results showed that the reinforcement learning bots per-
formed well in this purpose-built FPS game. McPartland and
Gallagher [20] extended this research by developing an inter-
active training tool in which human users can direct the policy
of the learning algorithm. The bot follows its own policy un-
less otherwise directed by the user. They also investigated the
outcome of having five commercial game developers use the
interactive tool to train bots [21]. They concluded from their
experiments that the training could produce bots with different
behavior styles in the simplified environment. The developers
reported that the training tool had potential for use in FPS game
development and they also identified several improvements that
could be made. Our work differs from that of McPartland and
Gallagher in several ways. First, we have developed an architec-
ture for shooting which is embedded in a commercial FPS game
as opposed to a simplified, purpose-built one. Second, we have
tailored the architecture to be “plugged into” an existing game
to replace some of the core functionality of the bots logic, in
this case, how it shoots. The reward signal used is also dynamic
and taken directly from the systems reporting of damage caused
to opponents. Finally, the states and actions have been designed
from the perspective of a human player playing an FPS game
and “snapshots” of the bots memory are stored as the bot learns.
Any stage of the bots learning can be loaded at the beginning of
a new game.
Tastan et al. [22] developed an Unreal Tournament bot that

uses maximum entropy inverse reinforcement learning and par-
ticle filtering for the problem of opponent interception. First,
human trace data is used to learn a reward function which can
then generate a set of potential paths that the opponent could
be following. These learned paths are then maintained as hy-
potheses in a particle filter. Separate particle layers are run for
tracking probable locations at different times. The final step in-
volves planning a path for the bot to follow.
Conroy et al. [23] carried out a study to analyse human

players responses to computer-controlled opponents in FPS

Fig. 2. Training Day map and a birds eye view of its layout.

Fig. 3. Pogamut 3 Architecture (based on Gemrot et al., [24, Fig. 1]).

games. The study examined how well the players can distin-
guish between other humans and NPCs while also seeking to
identify some of the characteristics that lead to an opponent
being labelled as artificially controlled. A multiplayer game
play session was carried out with 20 participants in Quake III
followed by a survey. The top opponent behaviors used by
survey takers for making judgements were aiming, camping
(lying in wait for the opponent), response to player, and fleeing
from combat.

III. METHODOLOGY

A. Unreal Tournament 2004 and Pogamut 3
The reinforcement learning shooting architecture for this re-

search was developed using the game UT2004 and an open-
source development toolkit called Pogamut 3.
UT2004 is a first person shooter game, and the third game re-

leased under the Unreal franchise, developed primarily by Epic
Games2. It has 11 different game types, including those men-
tioned in Section I-A, and the game also includes modding ca-
pabilities with many user-made maps and player models which
can be found online. There is also an extensive array of weapons
available with 19 of them in total. The weapons available in each
game depend on the map being played. There are points on each
map where different guns appear as pick-ups. The map shown
in Fig. 2 is called Training Day. This is one of the smallest maps
in the game and is used for our experimentation in Section IV.
UT2004 uses the Unreal Engine which has a scripting language
called UnrealScript for high-level programming of the game.
Players can compete against other human players online as well
as being able to play against computer-controlled bots, or a com-
bination of both humans and bots.
Pogamut 3 [24] facilitates the creation of bots for UT2004.

It has modules that simplify the process of adding capabili-
ties for the bot in the game, such as navigation and item col-
lection, so that development work can be focused on the arti-
ficial intelligence which drives the bots' behavior. Pogamut 3
integrates five main components: UT2004, GameBots2004, the

2http://liandri.beyondunreal.com/Unreal_Tournament_2004.
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Fig. 4. Bot shooting logic using .

GaviaLib Library, the Pogamut agent and the NetBeans plugin
Integrated Development Environment (IDE). This is illustrated
in Fig. 3. GameBots2004, an extension to the original Game-
Bots [25], uses a TCP/IP text-based protocol so users can con-
nect their agents to UT2004 in a client-server architecture where
GameBots2004 acts as the server. The GaviaLib library is a
Java library that acts as an interface for accessing virtual envi-
ronments such as UT2004. The agent interface that it provides
comprises classes for listening for events and querying object
instances. The agent itself is made up of Java classes and in-
terfaces which are derived from the classes of the GaviaLib li-
brary. The IDE is a NetBeans plugin that communicates with the
agent using JMX. The IDE includes project templates, example
agents, server management, access to agent properties and a log
viewer among other features. A fully detailed description of this
architecture can be found in Gemrot et al. [24].

B. Algorithm

Tabular [1] is an on-policy algorithm which in-
volves an agent interacting with the environment and updating
its policy based on the actions that are taken. At the beginning
of a new episode, the current state is obtained and then an action
is selected from all available actions in this state, based on some
action-selection policy. These policies are nondeterministic and
involve some amount of exploration in the policy. The purpose
of these policies is to balance the tradeoff between exploring
new actions and exploiting the knowledge that has already been
learned. The -greedy action-selection policy is used in this re-
search. With this approach, the most favorable action is chosen

of the time from those available (i.e., the one with the
highest estimated Q-value recorded so far) but a random action
is performed of the time. For example, if is set to 0.3 then
a random action will be chosen 30% of the time. Random ac-
tions are chosen with a uniform probability distribution. The al-
gorithm uses eligibility traces to speed up learning by allowing
past actions to benefit from the current reward. The use of el-
igibility traces can enable the algorithm to learn sequences of
actions, which could be useful when learning effective shooting

strategies in FPS games. The pseudocode for the algorithm is
presented in Algorithm 1.

Algorithm 1 Pseudocode for the algorithm.

for all do

end for

repeat

Initialize

repeat

Take action , observe

Choose and using policy derived from

for all

end for

until (steps of single episode have finished)

until (all episodes have finished)

For the experiments reported in this paper, we use the fol-
lowing values for the parameters. The learning rate
determines how quickly newer information will override older
information that was learned. As the value approaches 1, the
agent will only consider themost recent information. If the value
was closer to 0, then the current information would have less of
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an immediate impact on the learning. We would like the bot to
have strong consideration for recent information without com-
pletely overriding what has been learned so the value is set to
0.7. The discount parameter determines how important future
rewards are. The closer the value is to 0, the more the agent will
only consider current rewards whereas a value close to 1 would
mean the agent would be more focused on long term rewards.
To enable a balance between current and longterm rewards we
set to 0.5. The eligibility trace, , is set to 0.9. This value rep-
resents the rate at which the eligibility traces decay over time.
This large value results in recent state-action pairs receiving a
large portion of the current reward.
The algorithm works as follows. First, the Q-values, ,

and eligibility traces, , for all states and actions are initial-
ized to 0. At the beginning of each episode, the current state and
current action values, and , are initialized. Then, for every
step of each episode, the action is taken and a reward is
received, and the next state is observed. The next action
is then chosen from the next state using the policy ( -greedy).
The temporal difference (TD) error is then calculated using

and the current and next state-action pairs. TD learning
uses principles from Monte Carlo methods and Dynamic Pro-
gramming (DP) in that it learns from an environment based on
a policy and it approximates its estimates based on previously
learned estimates (this is known as bootstrapping [1]). The cur-
rent eligibility trace is then assigned a value of 1 to mark it as
being eligible for learning. Next, the Q-values and eligibility
traces for all states and actions are updated as follows. Each
Q-value is updated as the old Q-value plus the eligibility trace
variable multiplied by the learning rate and the TD error. Each
eligibility trace variable is then updated as the old value multi-
plied by the discount parameter and the eligibility trace param-
eter. Therefore, those that were not marked as visited (eligible)
will remain as 0. Once this has completed, the current state is
set to the next state and the current action is set to the next
action . The process, as embedded in the bot shooting logic,
is illustrated in Fig. 4.

C. Learning to Shoot
The success of any reinforcement learning algorithm relies on

the design of suitable states (detailed descriptions of the current
situation for the agent), actions (control statements for interac-
tion with the environment) and rewards (positive or negative
feedback for the agent). This section provides a detailed descrip-
tion of our design of the states, actions and rewards for the task
of shooting. The state and action space for the current architec-
ture was designed specifically for the map Training Day. This
map was chosen due its small size and tendency to encourage
almost constant combat between players. Since the reinforce-
ment learning architecture is only concerned with shooting, the
smaller map prevents players from having to excessively ex-
plore the map before encountering opponents. The architecture
could be tailored to work equally and consistently between all
maps by introducing very few changes. For instance, we dis-
card the Z value when reading the relative velocity in the map
Training Day, given the flat nature of the maps geometry. This,
of course, has the consequence of ignoring some relevant ve-
locity information when the opponent is jumping and dodging

TABLE I
DISCRETIZED DISTANCE VALUES

TABLE II
DISCRETIZED SPEED VALUES

so in order for the state space to be more complete and repre-
sentative of all maps, with complex geometry of varying sizes,
this value would have to be reintroduced. Also, the discretized
values for distance are specific to the Training Day map. Game
logs were used to determine themin, max, and average distances
of opponents during combat. These values were then used to
create an approximate notion of “close,” “medium,” and “far”
for the specific map.More generalized values would be required
for the same distance categories to be applicable in all maps.
1) States: The state space is inspired by how humans per-

ceive enemy players during FPS combat. While target selec-
tion is an interesting problem in itself, our implementation uses
a simplified approach in which the bot will always engage in
combat with the nearest visible player. We have taken into ac-
count its own system of measurement called unreal units (UU).
These units are used when measuring distance, rotation and ve-
locity. The collision cylinder of the NPC's graphical model is
34 units in diameter and 39 units in height. Each character in
the game has an absolute location on the map represented by
X, Y, and Z coordinates in UUs. The X and Y values are in the
horizontal plane while the Z value represents the height of the
character above a baseline.Wemeasure the distance of the bot to
the enemy and descretize these values into the ranges of “close,”
“medium,” and “far” as detailed in Table I.
The bot will only determine the range of the current opponent

of which it is engaging in combat. This will always be the closest
visible player asmentioned earlier. The enemy is said to be close
to the bot if the bot's current location falls inside a perimeter of
510UUs units surrounding the enemy. To give the reader an idea
of the size of this perimeter, it is equivalent to 15 player widths.
The enemy is a medium distance from the bot if its location falls
between 15 and 50 player widths from the bot and anything over
50 is considered far. The relative speed of the enemy can be
“regular” or “fast” as shown in Table II.
These relative velocity state values were again determined

based on log data and spectating games in progress and do not
represent a universal notion of relative speed in the game. The
values would need to be updated for other maps with the reintro-
duction of the Z value. As aforementioned, we only take the X
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TABLE III
DISCRETIZED MOVEMENT DIRECTION VALUES

Fig. 5. Discretized values for the enemy's rotation.

and Y coordinates of the velocity vector into account when cal-
culating relative velocity. The enemy's relative velocity to the
bot is calculated and then the square root of the X value squared
plus the Y value squared gives the total relative velocity. If this
value falls below a certain threshold then the enemy is said to
be moving at a regular speed. Anything above this threshold is
treated as fast. The relative direction that the enemy is moving
is also taken into account. The values for this state represen-
tation are shown in Table III. Three checks are carried out to
determine how the enemy is moving. First, the enemy can be
moving towards or away from the bot or not moving in either of
those directions. Second, the enemy can also be moving either
left or right or not moving in either of these directions. Third,
the enemy can be jumping or not when moving in any direc-
tion and is stationary when not moving in any direction. In our
definition of “stationary,” the enemy can still be jumping on the
spot.
There are 6 discrete values, shown in Fig. 5, for representing

the direction in which the opponent is facing. These values are
Front Right One (FR1), Front Right Two (FR2), Back Right
(BR), Back Left (BL), Front Left Two (FL2), and Front Left
One (FL1). The enemy will not always move in the same direc-
tion as it is facing but knowing which direction it is facing could
be useful for anticipating the enemy's sequence of movements.
The bot also takes into account whether the weapon they are
using is an “instant hit” weapon or not. This means that there is
no apparent delay from when the weapon is fired to hitting the
target. Examples of such weapons are the sniper rifle and light-
ning gun which instantly hit their target once fired. Other guns
shoot rockets, grenades and slow moving orbs which take time
before hitting the target. The complete state space for shooting
includes 1296 different states using the aforementioned checks.
These are summarized in Table IV.
2) Actions: The actions that are available to the bot involve

variations on how it shoots at enemy targets. We have identified
six different categories of weapons to account for the variance
in their functionality.

TABLE IV
SHOOTING STATES

The Instant Hit category is for weapons that immediately hit
where the cross-hairs are pointing once the trigger has been
pulled. The primary mode3 of the Sniper Rifle, Lightning Gun,
and Shock Rifle all belong to this category. The Sniper Rifle and
Lightning Gun don't have a shooting secondary mode but acti-
vate a zoomed in scope view for increased precision.
The primary mode of the Assault Rifle and both modes of

the Mini Gun are examples of theMachine Gun category which
spray a constant volley of bullets.
The Projectile category is made up of guns which shoot ex-

plosive projectiles. These include grenades from the secondary
mode of the Assault Rifle and Flak Canon as well as an ex-
ploding paste from the Bio Rifle in primary mode. The sec-
ondary mode of the Bio Rifle is used for charging the weapon
to produce a larger amount of paste.
Slow Moving guns, which shoot ammunition such as rockets

or “orbs,” involve a delay from when they are shot to when they
reach the target. Examples of these guns include the secondary
mode of the Shock Rifle and the primary mode of the Rocket
Launcher and the Link Gun.
Close Range weapons are those that should be used when in

close proximity to an opposing player. The Flak Canon is an
example of this type of weapon which shoots a spread of flak
(primary mode) that is very effective at close range. The Shield
Gun, used as a last resort weapon for defense, causes a small
amount of damage from close range in primary mode and acts
as a shield deflecting enemy fire in secondary mode.
The final category of weapons Other includes all other

weapons in the game that haven't been identified in one of the
previous categories. The weapon categories are summarized in
Table V.
Each category of gun has five actions associated with it in the

current implementation. This results in 6480 state-action pairs
for each category of gun or 38880 state-action pairs in total. The
actions available for each gun are listed in Table VI.
The shooting actions for the bot involve receiving the

planar coordinates of the enemy's location and then making
slight adjustments to these or shooting directly at that area.
The Head, Mid, and Legs actions take the X-axis and Y-axis

3All weapons have a primary and secondary mode activated by left and right
mouse clicks, respectively.
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TABLE V
THE DIFFERENT TYPES OF GUN AVAILABLE TO THE BOT

TABLE VI
SHOOTING ACTIONS FOR SPECIFIC GUN TYPES

values directly and the Z-axis value is set to head height, the
midriff or the legs of the opponent respectively. Shooting left
and right involves skewing the shooting in that direction by
incrementing/decrementing the X value of the target location
by a fixed number of UUs. In the current implementation,
the amount of skew added comes from fixed values that are
specific to the weapon type. A possible improvement for future
implementations could involve dynamically determining this
skew based on the relative velocity of the opponent and the
nature of the weapon being used. The Player action uses the
inbuilt targeting which takes an enemy player as an argument
and continually shoots at that player, regardless of their move-
ment. This is essentially “locking on” to the opponent but since
actions are chosen multiple times a second by the reinforcement
learner this shouldn't be apparent to the human opposition.
Experienced human players can often be very accurate, just
not constantly flawless. The Location action shoots directly at
the exact location of the opponent. There are three variants of
shooting above the opponent, (Above, Above-2 and Above-3),
which differ by the distance above the player with Above-3
being the highest. These “Above” actions are designed so that

the bot can find the correct height above the opponent so that
the resulting trajectory will lead to causing damage. The further
away the opponent is, the greater the height required in order
for the aim to be successful. Left-2 and Right-2, which are
found in the Slow category, provide a bigger adjustment in each
direction to account for the slow moving ammunition.
Unlike previous work in the literature, our shooting mecha-

nism is being refined over time as the bot learns with in-game
experience. While there is some randomness present to enable
exploring in the policy, the bot constantly adapts over time
based on continuous feedback, similar to a human player.
Human players constantly adapt and learn what works best and
then try to reproduce these actions as often as they can. Mis-
takes are, of course, made from time to time which are being
accounted for here with random action-selection occurring a
percentage of the time during exploration. At the early stages
of learning, the bot will not know the best actions to take so
they are all equally likely to be chosen.
Weapon selection for the bot is taken from hard-coded pri-

ority tables of close, medium and far combat based on human
knowledge of the weapon capabilities. These tables were in-
spired by a similar system in the UT bot [17]. The bot will
use the best available weapon that it has, according to these ta-
bles, based on the current distance from the opponent. Weapon
selection in itself is a task that could be learned but our current
research is focused on shooting technique so we opted to use
human knowledge for weapon selection.
3) Rewards: The reward that the bot receives is dynamic and

related directly to the amount of damage caused by the shooting
action. The bot receives a small penalty of if the action taken
doesn't result in causing any damage to an opponent. This en-
sures that the bot is always striving towards the long term goal of
causing the most damage that it can given the circumstances and
minimizing unsuccessful shots that do not cause any damage.

D. Architecture Summary

To the best of the authors knowledge, this architecture is the
first to use reinforcement learning to enable NPCs to learn and
adapt the skill of shooting over time based on in-game experi-
ence. This approach is novel in that the bot will constantly adjust
its shooting technique as it gathers knowledge of what works
well and what does not. This approach is inspired by how hu-
mans learn to play these games. Modern FPS games have fast
paced, complex environments that require instantaneous deci-
sion making. We have developed a state space and action space
representation to facilitate the bots perception of opponents in
the environment by reading key details. We have also tailored
suitable actions to react in given circumstances. Reading im-
portant features of the opponents combat movements coupled
with the “damage caused” reward signal are then used to drive
real-time, knowledge-based decision making.
Traditional approaches to NPC shooting in FPS games in-

volve limiting the ability of the bot by incorporating either a
delay before shooting or purposefully missing the target to sim-
ulate lower ability from the bot. Examples of some of the re-
strictions imposed on bots are shown later in Section IV.A.
The main drawback of this approach is the lack of adaptation.
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Once a human player forms a strategy to beat such an oppo-
nent, there is no longer a challenge and the gameplay becomes
highly predictable. Our approach constantly adapts the shooting
technique based on in-game experience. In order to advance the
state-of-the-art, we believe that computer-controlled opponents
should adapt to their surroundings and improve with experi-
ence over time. Enabling learning in individual tasks, such as
shooting, leads to less predictable andmore engaging gameplay.

IV. EXPERIMENTATION AND ANALYSIS

A. Details
Three individual RL-Shooter bots were trained against na-

tive scripted opponents from the game with varying difficulty.
These native bots ship with the game and each of them has a
hard-coded scripted strategy that dictates how they behave. A
discussion of these bots and a list of all the skill levels available
can be found at the Liandri Archives: Beyond Unreal website4.
In our experiments we use three skill levels, Novice, Experi-
enced, and Adept:
• Opponent Level 1 (Novice)—60% movement speed,
static during combat, poor accuracy (can be 30 degrees off
target), 30 degrees field of view.

• Opponent Level 3 (Experienced)—80% movement
speed, can strafe during combat, better accuracy and has
faster turning, 40 degrees field of view.

• Opponent Level 5 (Adept)—Full speed, dodges incoming
fire, tries to get closer during combat, 80 degrees field of
view with even faster turning.

Each experiment run involved the RL-Shooter bot competing
against three opponents that have the same skill level as each
other, on the Training Day map in a series of thirty minute
games. Training Day is a small map which encourages almost
constant combat between opponents. We chose this map since
the focus of our experimentation was on the shooting capabil-
ities of the RL-Shooter bot. A total of three experiment runs
took place, one for each of the opponent skill levels mentioned
above. There was no score limit on the games and they only fin-
ished once the thirty minute time limit had elapsed. Each time
the RL-Shooter bot was killed the state-action table was written
out to a file. These files represent a “snap-shot” of the bots deci-
sion-making strategy for shooting at that moment in time. Each
bot starts out with no knowledge (Q-table full of 0's) and then,
as the bot gains more experience, the tables become more pop-
ulated and include decisions for a wider variety of situations.
The amount of exploration being carried out in the policy of
the learners was dependent on the values from Table VII. For
the first 10 000 lives the bot is randomly selecting an action
half of the time. The other half of the time it is using knowl-
edge that it has built up from experience (choosing the action
with the greatest Q-Value based on previous rewards received).
During exploration, we included a mechanism for choosing ran-
domly from actions which haven't been selected in the past to
maximize the total number of state-action value estimates that
are produced. The exploration rate is reduced by 10% every ten
thousand lives until is remains static at 5% once the bot has been
killed over 50 000 times.

4http://liandri.beyondunreal.com/Bot.

TABLE VII
EXPLORATION RATE OF THE RL-SHOOTER BOT

B. RL-Shooter Bot 60 000 Lives: Results and Analysis
This section and the next one present the experimentation re-

sults from two different perspectives. In this section, we look
at the different trends that occur with the bot having lived and
died 60 000 times. This is followed in Section C by analyzing
the same results from the perspective of the 30 minute games
that were played, as opposed to the individual lives. The Level
5 skilled opponent had played 350 games as its death count ap-
proached 60 000. For this reason, our comparative game anal-
ysis of the three skill levels is carried out over 350 games.
In this section, we look at the results and statistics gathered

from each of the RL-Shooter bots playing against opponents
with different skill levels (Level 1, Level 3, and Level 5 op-
ponents). From here on, we will refer to the RL-Shooter bot
playing against Level 1 opponents as RL-Shooter-1 and the
other two, playing against Level 3 and Level 5 opponents, as
RL-Shooter-3 and RL-Shooter-5, respectively. We analyse the
results of the bots having lived through 60 000 lives with a de-
creasing exploration rate as described in Table VII.
First, in Table VIII, we can see the total kills, deaths and sui-

cides accumulated over the 60 000 lives for each bot. This table
also shows the kill-death (KD) ratio which computes how many
kills were achieved for each death (either by the other player or
by suicide). RL-Shooter-1 has a KD ratio of 1.87:1 with almost
20% of its deaths coming from suicides. Suicides occur in the
game when the bot uses an explosive weapon too close to an
opponent or wall and can also occur if a bot falls into a lava pit.
Although the Training Day map is small, there are three sepa-
rate areas where bots can fall to their deaths. The RL-Shooter-3
bot appears to be more evenly matched with its opponents and
has a KD ratio of 1.07:1. Deaths by suicide correspond to 12%
of the bots overall deaths. The number of suicides appears to
be directly linked to the number of kills which suggests that the
majority of suicides are inflicted by the bot's own weapon as
opposed to falling into a pit as mentioned earlier. This is con-
firmed further by the reduced suicide rate (10%) and kill totals
for the RL-Shooter-5 bot. The RL-Shooter-5 has a negative KD
ratio with 0.67 kills to every death.
Table IX shows the average and standard deviation of

hits, misses, and reward received for the 60 000 lives. A hit
is recorded each time the bot shoots its weapon and causes
damage to an opponent. A miss is recorded when the weapon
is fired but fails to cause any damage. The reward corresponds
to the exact amount of damage inflicted on an opponent for the
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TABLE VIII
TOTAL KILLS, DEATHS AND SUICIDES AND KILL-DEATH RATIO

TABLE IX
AVERAGE AND STANDARD DEVIATION VALUES AFTER 60 000 LIVES

TABLE X
PERCENTAGES OF HITS AND MISSES OVER THE 60 000 LIVES

current hit or if no damage resulted from firing the weapon.
RL-Shooter-1 fires the most shots per life on average with 36.66
(27% hits; 73% misses). This would be expected as weaker
opposition would afford the bot more time to be shooting, both
accurately and inaccurately. The shots per life and accuracy
decrease as the skill level of the opposition increases with
RL-Shooter-3 shooting an average of 28.71 shots (25% hits;
75% misses) and RL-Shooter-5 shooting an average of 22.53
shots (21% hits; 79% misses).
While the level of shooting inaccuracy may seem quite high

for all of the bots, they are all still performing at a competitive
standard as evidenced by Table VIII. It is important to remember
that hits are only recorded when the bot is shooting and the
system indicates that it is currently causing damage. All other
shots are classified as misses. The actual damage caused by in-
dividual hits also varies greatly depending on the gun type used
and the opponents proximity to explosive ammunition from cer-
tain guns.
Table XI lists the minimum, maximum and median values of

the hits, misses and rewards over the 60 000 lives. Theminimum
numbers of hits and misses for each of the levels was zero. This
is a result of the bot spawning into the map and being killed
before it has a chance to fire its weapon. The maximum numbers
of hits, misses and rewards are again closely dependent on the
opposition skill level and the large difference between these and
themedian values shows the amount of variance from life to life.

TABLE XI
MINIMUM, MAXIMUM AND MEDIAN VALUES AFTER 60 000 LIVES

TABLE XII
AVERAGES PER GAME AFTER 350 GAMES (30 MINUTE TIME LIMIT)

The reward, as mentioned earlier, corresponds directly to the
amount of damage that the bots successfully inflict on their
opponents. The value is set to 0 at the beginning of each life
and then accumulates based on any damage caused or is decre-
mented by 1 for shots that do not result in any damage. The
results for each of the skill levels do not show a clear upward
trend for total reward per life received over time. There could
be many reasons for this. The ammunition from the different
guns that can be picked up from the map cause varying degrees
of damage upon successfully hitting an opposing player. While
the RL-Shooter bots are learning different strategies for each
of the different types of gun, they have no control over which
weapon they have available to them during each life. They are
prioritizing the use of the more powerful weapons when they are
available but during many lives, as evidenced by the shooting
time average data from Table XII, they have not acquired these
more powerful weapons. The small number of actions available
for each gun type could also be a reason behind performing well
in the earlier games even when selecting randomly. On some
occasions, the bot received a substantial total reward during its
lifetime but it is inconclusive as to whether this was occurring
randomly, given the nature of the game (real time, multiple op-
ponents, small map etc.), or whether the bots were improving
their action selection as they experienced new situations and
then took advantage of this knowledge when these situations
occurred at a later stage.

C. Thirty Minute Games: Results and Analysis
This section analyzes the results and statistics based on in-

dividual games as opposed to the lives of the bots which we
looked at in the previous section. Specifically, we look at 350
games, each with a duration of 30 min, for the three different
opponent skill levels. All of the following results and statistics
are reviewed on a “per game” basis.
Table XII lists some game statistics averaged over the 350

games. RL-Shooter-1 collected nearly twice as many weapons
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TABLE XIII
SHOOTING TIME AVERAGES AFTER 350 GAMES (30 MINUTE TIME LIMIT)

on average as the other two bots. All players in the game start
each life with an Assault Rifle and must pick up additional
weapons and ammunition from different points around the map.
The Assault Rifle is a weak weapon and is only used when a
better weapon is not available. Playing against lesser opposition
gives the bot many more opportunities to pick up different
weapons and also replenish their ammunition with pick-ups.
All three bots spent the same amount of time moving which
was just over 20 min. This would be expected as they were
all using the same navigation modules which did not include
any learning. Time spent not moving would include the short
delays between when the bot is killed and when it spawns back
to life on the map. The average distance travelled for each bot
over the 350 games is also shown and this is measured in UUs.
RL-Shooter-1 travels 16951 UUs more than RL-Shooter-3 per
match, on average, while RL-Shooter-3 travels 13128 UUs
more than RL-Shooter-5. This would suggest that as the skill
level of the opponents increase the bots have less opportunity
to traverse the map and thus miss out on important pick-ups.
Table XIII shows the average amount of time shooting (in

minutes) per game and also lists the shooting time for each of the
individual guns. From the table, we can see that RL-Shooter-3
spends the most time shooting on average and also spends the
most time using the Assault Rifle. RL-Shooter-1 does not use
this default gun as much as the other bots because it is able to
pick up stronger weapons from the map. The Shield Gun, which
the bots also spawn with, is seldom used in any case as this
is a “last resort” weapon which helps the bot to defend itself
while searching for a more effective weapon. The small map
with multiple opponents meant that the bots rarely got into a
situation where the Shield Gun was the only remaining option.
Table XIV shows the average kills, deaths by others (Killed

By) and suicides from the 350 games. One fifth of the deaths
to the RL-Shooter-1 bot were self-inflicted. Aside from this
fact, the bot managed to keep an impressive 2:1 kill-death ratio.
RL-Shooter-3 bot was more closely matched with its opponents
(1.12:1 KD) where as RL-Shooter-5 bot had a negative kill-
death ratio of 0.72:1. RL-Shooter-3 and RL-Shooter-5 had very
similar suicide rates to each other.
The minimum, maximum and difference (between min and

max) of Kills, Killed By, and Suicides after the 350 games are
shown in Table XV. This table gives an idea of the range of

TABLE XIV
AVERAGE AND STANDARD DEVIATION VALUES AFTER 350 GAMES

TABLE XV
MINIMUM, MAXIMUM AND DIFFERENCE VALUES AFTER 350 GAMES

variance between games when playing against each of the skill
levels.
Another indicator of performance in FPS games is known

as a Kill Streak. This is a record of the total amount of kills
that a bot can make without dying. The maximum Kill Streak
was recorded for each of the games and is shown in Fig. 6. The
highest Kill Streak per game for RL-Shooter-1 usually falls be-
tween 7 and 10 for each game. This appears to change, how-
ever, as more shooting experience is acquired and falls between
11 and 16 on many occasions reaching even as high as 20.
RL-Shooter-3 usually achieves maximum Kill Streaks of either
5 or 6 but again these increase over time with the highest that it
reaches being 11. RL-Shooter-5 is less successful at achieving
high Kill Streaks with the majority of them being either 3 or 4.
It does, however, manage to achieve a Kill Streak of 9 on two
occasions.
Fig. 7 shows the total number of kills that the RL-Shooter

bots achieved in each of the 350 games. A clear separation of
the results can be seen from the graph. RL-Shooter-1manages to
kill opponents in the range of 200 to 300 times each game. This
range drops to between 150 and 200 for RL-Shooter-3 and again
drops to falling mostly between 100 and 150 for RL-Shooter-5.
Improvements in performance over time, while not significant,
are more evident against the Level 3 and Level 5 opponents.
This would suggest that the RL-Shooter-1 bot learns the best
strategy to use against the weaker opponent at an early stage and
then only ever matches this, at best, in the subsequent games.
The total number of deaths from the same 350 games are

shown in Fig. 8. There is once again a clear separation of the
data based on the skill level. While the number of deaths of the
RL-Shooter-5 bot mostly fall between 160 and 180, there are a
number of occasions midway through the games in which they
fall within the range expected of a Level 3 bot (120 to 160). The
number of deaths for the RL-Shooter-1 bot are quite evenly dis-
persed between 80 and 120 throughout all of the games.
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Fig. 6. Longest kill streak per game for each of the opponent skill levels.

Fig. 7. Total number of kills per game and Centred Moving Average of kills for each of the opponent skill levels.

In order to investigate the presence of any trends in the data,
Figs. 7 and 8 also show the Centred Moving Average (CMA)
of the total kills and deaths, respectively. We use an 11-point
sliding window for the CMA, so each point on the graph rep-
resents the average of the 11 samples on which it is centred.

RL-Shooter-1 is the most consistent when it comes to kills in the
early games. It appears to be gradually increasing the number of
kills until a dip in performance around Game 80. It then slowly
begins to recover before the total kills begin to fluctuate up and
down. It is just beginning to recover from another dip in perfor-
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Fig. 8. Total number of deaths per game and Centred Moving Average of deaths for each of the opponent skill levels.

mance in the final games. The other two bots RL-Shooter-3 and
RL-Shooter-5 show a similar fluctuating pattern with total kills.
There appears to be little evidence to suggest that the total kills
are improving consistently over time. This can also be said of
the total deaths which show a similar amount of variance. We
attribute this to the fact that the bots are choosing from a small
subset of actions at each time step. The bot can be successful
when randomly choosing from these actions. Although the best
actions will not become apparent until the bots have built up ex-
perience, they may choose successful actions at an early stage
given their limited choices.

V. CONCLUSION
This paper has described an architecture for enabling NPCs

in FPS games to adapt their shooting technique using the
reinforcement learning algorithm. The amount of

damage caused to the opponent is read from the system and this
dynamic value is used as the reward for shooting. Six categories
of weapon were identified and, in the current implementation,
the bot has a choice of five hand-crafted actions for each. The
bot reads the current situation that it finds itself in from the
system and then makes an informed decision, based on past
experience, as to what the best shooting action is. The bot
will continually adapt its decision-making with the long term
objective of inflicting the most damage possible to opponents
in the game.
In order to evaluate the reinforcement learning shooting ar-

chitecture, we have carried out extensive experimentation by
deploying it against native fixed-strategy opponent bots with
different skill levels. The reason for pitching our bot against
scripted opponents was to ensure that all of the games were

played against opponents of a set skill level to facilitate a di-
rect comparative analysis and make it easier to detect any pos-
sible trends in performance. This would be much more diffi-
cult to achieve with human opponents given the inherent vari-
ance in human game play and the amount of time that would be
needed to run all of the games (with the same human players).
That being said, we will move on to experimentation involving
human opposition after further developing the system.
Reviewing the overall results that are presented in the pre-

ceding sections, the main trends that can be observed are:
• The RL-Shooter bots are able to perform at about the same
level as the “Experienced” opponent, as was described
above in Section IV-A; for example, its kill-death ratio
against Level 3 opponents is approximately 1:1.

• When pitched against weaker opponents, the RL-Shooter
bots perform better and when pitched against stronger op-
ponents they perform worse; this can be seen in all of the
results presented.

• From Figs. 7 and 8, there is not a clear pattern of the
RL-Shooter bots improving in performance over time.

These results indicate how challenging it is for a bot with its
relatively limited perception abilities and narrow range of ac-
tions to improve its performance over time. In our continuing
work on this research topic, we will focus on identifying mecha-
nisms by which we can improve the ability of the bots to demon-
strate learning, by reviewing and refining our state representa-
tions, action representations, and reward design.
The overall aim of our research is to eventually generate bots

that can compete with, and adapt to, human players and remove
the predictability generally associated with computer-controlled
opponents. The framework described in this paper is a platform
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that can be used by other researchers to tackle similar tasks.
The results presented here are a comprehensive baseline against
which future improvements can be measured.
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