arXiv:1508.00377v2 [cs.Al] 9 Nov 2015

Using Behavior Objects to Manage Complexity in
Virtual Worlds

Martin Cemy, Tom4s Plch, Matéj Marko, Jakub Gemrot, Petr Ondracek, Cyril Brom

Abstract—The quality of high-level AI of non-player characters
(NPCs) in commercial open-world games (OWGs) has been
increasing during the past years. However, due to constraints
specific to the game industry, this increase has been slow and
it has been driven by larger budgets rather than adoption
of new complex Al techniques. Most of the contemporary Al
is still expressed as hard-coded scripts. The complexity and
manageability of the script codebase is one of the key limiting
factors for further AI improvements. In this paper we address
this issue. We present behavior objects — a general approach
to development of NPC behaviors for large OWGs. Behavior
objects are inspired by object-oriented programming and extend
the concept of smart objects. Our approach promotes encapsu-
lation of data and code for multiple related behaviors in one
place, hiding internal details and embedding intelligence in the
environment. Behavior objects are a natural abstraction of five
different techniques that we have implemented to manage Al
complexity in an upcoming AAA OWG. We report the details
of the implementations in the context of behavior trees and the
lessons learned during development. Our work should serve as
inspiration for AI architecture designers from both the academia
and the industry.

Index Terms—action selection, behavior trees, scripting, reac-
tive planning, smart objects, industry evaluation

I. INTRODUCTION

growing number of computer games advertise to feature

a “large open world”. No strict definition exists as
whether a particular world can be considered “large” and
“open” but one of the key properties is definitely freedom: In
an ideal case, the player is constrained only by the physical
laws of the virtual world — they may interact at any time
with all the objects and characters in their surrounding and
will always get a meaningful feedback from the environment.

Contemporary game worlds that are considered large feature
a landscape of tens to hundreds of square kilometers. Such
worlds are then populated with dozens of non-player charac-
ters (NPCs) that are part of the story of the game and possibly
hundreds of NPCs as background cast.

Development of the action-selection mechanism for NPCs
in open-world games (OWGs) provides both theoretical and
practical challenges for applied Al Since the user has a large
degree of freedom, the behaviors must not only look mean-
ingful to a spectator, but they must also maintain interactive
believability, i.e., NPCs should respond to the player’s actions

M. Cern}’/, T. Plch, J. Gemrot and C. Brom are with the Faculty of Math-
ematics and Physics, Charles University in Prague, Czech Republic. E-mail:
{cerny.m,tomas.plch,jakub.gemrot} @gmail.com, brom @ksvi.mff.cuni.cz

T. Plch, M. Marko and P. Ondracek are with Warhorse Studios, Prague,
Czech Republic.

Manuscript received XX; revised XX.

in a believable way. While combat behavior in contemporary
games is usually well designed and interactively believable to
a large degree, even recent and successful OWGs such as Red
Dead Redemption [1]] or Skyrim [2] have resorted to severely
limited non-combat NPC behaviors. Improved believability of
non-combat behaviors would let the player feel like the world
does not revolve around them and increase immersion.

There are multiple reasons why games often implement
only very basic non-combat behaviors, but one of the most
prominent is complexity: the increased amount of behaviors
an NPC is required to manifest in various contexts results in a
large and hard-to-maintain script codebase. At the same time a
shift from scripted behaviors to more intelligent, autonomous
NPC design is currently not possible, as there are many NPCs
to simulate and computing time is scarce. Similarly to the
evolution of classical programming languages, new scripting
techniques are necessary to break the complex behaviors and
their interactions down into smaller manageable pieces [3].

The state of the art in OWG Al scripting are — to our
knowledge — variants of behavior trees (BT) [4]. The com-
mon denominator of all BT approaches is that behavior is a
tree structure which is traversed for every update of the NPC to
determine an action (leaf) that should be executed. The internal
nodes then direct how the tree is traversed based on state of the
nodes and input from the environment. Conceptually the nodes
close to the root correspond to high-level decisions while
nodes close to the leaves correspond to low-level decisions.

Other notable scripting techniques in use are finite state
machines [5] and direct use of an interpreted procedural
language like Lua [|6] or combinations of the aforementioned
techniques (e.g., BTs with Lua scripts as leaves). In all cases
we are aware of, their limitations are similar to those of BTs.

Many BT implementations provide techniques similar to
structured programming. They allow for subtrees to be reused
across multiple NPCs — a form of “behavior subroutines”.

During our work on Al system for an AAA OWG, we
implemented an augmented variant of BTs, but more complex
non-combat behaviors were still very challenging to develop.
Therefore we designed and implemented several new scripting
techniques to reduce the complexity of the BT codebase.
The common denominator of all the techniques was the
encapsulation of related behaviors and associated data into
a unified structure (e.g., behaviors for innkeeper and guests
in a pub along with reference to chairs in the pub). We
have noted that this is conceptually similar to the object-
oriented programming paradigm (OOP). In this paper we
present the concept of behavior objects as a natural abstraction
of the scripting techniques we implemented. We describe the

individual techniques as instances of behavior objects and note
specifics of behavior development for which direct application
of OOP concepts would be problematic and describe how we
accounted for those specifics.

Although our work is based on BTs, behavior objects are
more general and can be directly transferred to many other
NPC AI approaches that are common in the industry.

This paper is an extension of our papers on smart areas [[7]
and scheduling of small cooperative behaviors [8]]. The novel
contribution in this paper is a) the description of three previ-
ously unpublished techniques that use similar encapsulation
philosophy as smart areas, b) synthesis of general insights
from the individual use cases resulting in the concept of
behavior objects and c) thorough discussion of qualitative
feedback from the game designers and scripters.

The paper is organized as follows: first, we introduce the
problem of behavior development in greater detail (Section
and discuss related work (Section . Next, we analyze the
requirements for the system (Section , introduce behavior
objects as our proposed solution (Section [V)) and describe our
particular implementation of behavior objects (Section [VI).
Last we present qualitative evaluation of our implementation in
practice (Section and conclude the paper (Section [VIII).

II. THE PROBLEM

This section describes the constraints for Al in OWGs
in general and discusses the problem we aimed to solve. It
is based on the experience gained during our collaboration
with a game studio that is developing a high-budget OWG
and on casual discussions with game developers at various
conferences. While definitely subjective, we believe that most
of the following claims generalize to the industry as a whole.

A. Believable Behaviors

OWGs strive to maintain suspension of disbelief on the
player’s side. A well-executed game lets the player forget that
the game world is imaginary and lets them immerse in the
experience. While the player is immersed in the game, they
are more likely to act in-character, to experience the world as
its inhabitant rather than an external observer. NPC behaviors
can make a huge difference on this part: an NPC that repeats
a phrase the player has heard many times from others (as in
the Skyrim’s [2] famous “Arrow in the knee” dialogue[[), an
NPC that stays at the same place all day or walks through
a door, or simply an inappropriate animation may break the
immersion quickly. Without immersion, NPCs start to appear
more like puppets whose sole purpose is to issue quests or
provide items the player can steal; interactions with NPCs
lose meaning and become a mechanical obstacle to overcome.
Improving believability of NPC behaviors helps maintain the
suspension of disbelief and thus enrich the player’s experience.

B. Game Al Components

In a typical OWG, such as Grand Theft Auto [9] or Skyrim,
the NPC Al may be divided into two main components. As

Uhttp://knowyourmeme.com/memes/i- took- an-arrow-in-the-knee

fighting enemies is still a major part of most OWGs, combat
Al is often the largest Al subsystem. Non-combat Al governs
the rest of the NPC behavior. It may be further divided into
direct interactions with the player (e.g., dialogues, barter, ...)
and ambient AI which covers the daily life of the NPCs and
other actions they perform on their own. Ambient Al may
greatly increase the appeal of the world and make it appear
more alive to the player, yet is currently arguably the least
developed. Our main focus is on improving ambient Al.

C. Industrial Constraints

There are three main challenges for OWG Al in general.
First, in AAA computer games CPU time is a very scarce
resource as almost all of the CPU time is dedicated to graphics
and physics. In our project we got up to 5 ms per frame (100 -
150 ms per second) on a single core for all NPCs together, in-
cluding pathfinding and collision avoidance. Even if the system
would simulate only the NPCs in direct visibility to the player
(might be a few dozen) it is left with several milliseconds
per second and character for the actual action selection. This
disqualifies computationally expensive techniques such as Al
planning from use in ambient Al, despite their usefulness in
small-scale scenarios such as combat [10].

Second, the game industry needs to exercise tight control
over NPC behaviors. Unpredictable or hard-to-understand be-
havior is usually undesirable as it may break gameplay or
interfere with the flow of the game’s story.

Third, the industry is also concerned with effective (in terms
of time and money) development of the Al. Designing a large
number of complex behaviors thus introduces problems known
from software engineering: code readability and reusability
and management of the development cycle. As it is cost-
prohibitive to hire expert programmers for behavior design,
the technology used should also be relatively simple.

Due to those constraints, scripted approaches are still state
of the art for non-combat behaviors in large OWG scenarios
and will likely remain so in the near future. Variants of the
BT formalism are to our knowledge by far the most frequent.
The supplemental material for this paper provides concrete
examples of shortcomings of state-of-the-art ambient Al

D. Problem Statement

The problem is that to increase the perceived complexity of
scripted behaviors beyond the state of the art, more powerful
approaches to managing behavior code complexity are needed.
As in classical programming, separation of concerns and
hierarchical decomposition are vital for good code structure. In
particular, behaviors must be allowed to execute sub-behaviors
(e.g. reuse code for sitting on a chair within a behavior for
drinking in a pub). The nature of our project introduced
additional design objectives the new technique should fulfill:

O1: Strong guarantees must be made that gameplay-critical
behaviors (quests, combat, ...) will not be disrupted.
The behaviors must be interruptible and maintain consis-
tency even on prolonged execution (i.e., dozens of hours).
Primary use-case is the ambient Al

02:

03:

http://knowyourmeme.com/memes/i-took-an-arrow-in-the-knee

04: The behavior code has to be decoupled from the data in
the game world. In particular, using an already defined
behavior in a new context (e.g., adding a new pub to the
game world) should be possible without changing any
of the code of NPCs that use the behavior and without
modification to the pub logic.

Some NPCs should be allowed to behave differently in
the same context: e.g., in a pub, rich people behave (and
are treated) differently than poor people.

Coordination of joint behaviors among agents (a pub
brawl, a game of cards, ...) must be supported.

05:

06:

To an extent, all of these additional objectives can be
achieved with state-of-the-art scripting, but at the cost of
increased code complexity. Our aim is to meet our objectives
while reducing code complexity at the same time.

III. RELATED WORK

In both academia and industry, a prominent approach to
managing behavioral complexity is embedding intelligence in
the environment. The most common example are smart objects
as introduced by Kallmann [11]], although other approaches
also exist (see below). Smart objects are, to our knowledge,
well-established in the game industry, although in a very sim-
plified form. A smart object as used by the industry is typically
a graphical entity in the game world that is accompanied by
a character animation (or several animations) that should be
used when a character desires to use the object. The smart
object is also responsible for positioning the character at the
exact spot where the animation should be played.

A typical example of a smart object is a lever on the wall.
An NPC that wants to change the state of the lever simply
fires a “use smart object” action and the smart object takes
care of the necessary details. This way, many different levers
and switches may be present in the environment, but the Al
only needs one action to use them all properly.

Another frequent use are so-called navigation smart objects,
which are smart objects intended solely for navigating around
the environment. A navigation smart object connects a graph-
ical entity in the game world with an entry and an exit point.
When an NPC wants to move from the entry point to the exit
point, it plays the animation associated with the smart object.
Navigation smart objects typically connect disjoint areas that
could not be traversed by regular navigation — a typical
example is jumping over a barrier.

Kallmann originally proposed smart objects as more com-
plex entities that can provide multiple interacting parts, each
with its own location, mechanics, instructions for NPC posi-
tioning and optionally also with code the NPC should run to
use the given part. Kallmann’s smart objects could also run
code on their own to alter their internal state. Kallmann’s idea
is close to our goal, although several important features are
missing. Most notably it does not consider interrupts to the
behaviors, and it does not support behavior nesting.

A version of smart objects close to the Kallmann’s version
has been implemented in The Sims series [[12]. The Sims form
a very different application than OWGs, because the user is
not embodied in the environment and interactions with NPCs

and objects are triggered indirectly. The NPCs autonomous
decision making consists of selecting an appropriate smart
object (NPCs are also smart objects) to satisfy its current
needs. The basic unit of behavior in The Sims 4 is called
“interaction” (e.g., sit down). Interaction consists of anima-
tions and changes to state of the NPCs and/or the world
(e.g., NPC is now in “seated” pose, chair is occupied). These
interactions are then connected to objects in the game (e.g.,
the same sit down interaction is connected with a chair and
a bench). The interaction may further decompose into atomic
“blocks”. Those blocks are not interruptible and are always
run to completion, but blocks of multiple interactions may be
interleaved (e.g., sip a drink — look at TV, cheer — finish the
drink) and nested (e.g., cuddling while sitting on a sofa).

Although our experience indicates that smart objects are
used in many first/third person games, there are — as is often
the case with game industry — relatively few official sources
and very little detail was revealed. Among those, smart objects
are mentioned in the context of FarCry 4 [13]], Castlevania:
Lord of Shadows [14] or FE.A.R. 2 [15]. BioShock:Infinite
also has “opportunities” placed in the environment for the
sidekick character Elizabeth to interact with?l From the little
information available, all these implementations do not seem
to go much beyond levers and other simple objects.

Notably the S.T.A.L.K.E.R. series extended smart objects
to “smart terrains” that provide more long-term behaviors to
all NPCs in a specific area [16].

Another interesting approach is presented in Hitman: Ab-
solution. Here, the AI uses objects called ‘“situations” to
coordinate multiple NPCs [17]. The situation object assigns
roles to the subscribed NPCs and alters their knowledge based
on events in the game world (e.g., how aggressively should the
NPC react). The NPCs then take that knowledge into account
in their own decision making. The drawback of this approach
is that every NPC needs to include specific code for every
situation it may participate in. Furthermore, the code for the
situation is scattered among multiple NPCs.

With regards to the major available game engines,
CryEngine Free SDK seems to have the best support for
embedding intelligence in the environment [18]]. In CryEngine
Free SDK a “smart object rule” can be assigned to any entity in
the game. The rule consists of a condition and an Al script to
be executed, when the condition is met. This approach allows
for simple creation of a wide variety of active non-character
entities (landmines, machines, ...), but the approach is more
problematic when providing behaviors for NPCs as the script
within the rule executes in parallel with the NPC’s logic. In
all but the simplest situations the script within the rule would
have to manually synchronize/communicate with the NPC’s
logic to prevent the rule from threatening the consistency of the
NPC’s state or from interrupting a gameplay-critical behavior,
introducing unnecessary coupling of the respective code. There
is also no support for communication when multiple NPCs
use the same object. In general the “smart object rules” of
CryEngine Free SDK are great tools for what CryEngine was
intended for — quick action in first-person shooters — but

Zhttp://www.youtube.com/watch?v=2viudg2jsES

http://www.youtube.com/watch?v=2viudg2jsE8

they are not very suitable for ambient Al in complex persistent
worlds.

Unity3D and Unreal Engine have no built-in support for
embedding intelligence into the environment, although there
are Al middleware solutions that provide some support. One
example is Autodesk Gameware Navigatimﬂ that includes
support for navigation smart objects (as described above).

In academia, the concept of smart objects has been extended
by crowd simulation research to whole areas. In [[19] the envi-
ronment is overlaid with a grid, where each cell may dictate a
movement behavior for the agents in it. In [20] “situation based
behavior selection” is presented. The system detects situations
in the environment and instructs the agents participating in the
situation what should they do. While situation based behavior
selection is very general, the situations tested in the paper are
mostly triggered by entering a location.

Stocker et al. [21] introduced “Smart Events” — specific
objects providing NPCs with ready-made responses to external
events. An important problem is that Smart Events provide the
same behaviors for all types of characters and do not provide
means for coordination among the characters.

The simulation of Shao and Terzopoulos [22] features
autonomous pedestrians in a virtual railway station. Several
social behaviors (e.g., buying tickets, spectating an art show)
with coordination (e.g., queue at the ticket booth) mediated
by specialized environment objects are introduced. However,
every character must be explicitly prepared for all the social
behaviors it may perform, limiting scalability.

Further, the crowd simulation approach cannot be directly
translated to OWGs as crowd simulation is intended to be
believable from a larger perspective, but does not necessarily
retain believability when individual characters are tracked.

Brom et. al. [23] take the idea of smart objects further with
“smart materializations”. In their work the world is inhabited
by agents using the belief-desire-intention (BDI) architecture.
The only way to act on intentions is to choose a smart
materialization which is a behavior fragment embedded in the
environment. The smart materialization may in turn introduce
subintentions, which are again resolved in the same manner.
For example the character may adopt a “have fun” intention.
A pub in the environment would provide a materialization that
realizes the “have fun” intention by instructing the agent to go
to the pub and adopt subintentions “buy a beer” and “drink
a beer”. A simple scheme to choose the best materialization
among those that achieve the same intention is implemented.
This work has provided substantial inspiration for us.

While smart materializations have many of the desired
properties, they lack the possibility to create behaviors or their
parts without any materialization. Also BDI architecture is
seldom used as a game Al architecture, probably because it is
relatively complex and not well known to the developers.

Orthogonally to embedding intelligence in the environment
(or outside of NPCs in general), Bryson [24]] advocated using
object-oriented programming principles in behavior design. In
her view, every capability of an agent should be represented as
an object. Bryson’s approach however has no explicit support

3http://gameware.autodesk.com/navigation

for agent coordination neither does she outline the use of
objects of a finer granularity.

A different approach to modularizing behaviors is provided
by ScriptEase [25]]. ScriptEase lets users create behaviors by
using generative design patterns (GDPs) which are essentially
parameterized code generators. This approach allows for great
flexibility as the scripter can make low-level modifications
to the generated code but does not account for hierarchical
decomposition of complex behaviors.

IV. ANALYSIS

The greatest complication in addressing the problems out-
lined in Section [l is the need to maintain interactive be-
lievability to a reasonable degree. For example, if the user
performs a violent act on the street, the NPCs nearby should
not keep walking to a pub, but should rather run away scared.
This in turn should result in few people arriving to the pub
which should affect the way innkeeper behaves.

While the actual execution of the behavior is relatively
simple, the possibility of interruption at any time and huge
amount of edge cases to be handled (e.g., no innkeeper present
at the pub) makes the code grow substantially in size and
complexity. With a naive approach it would be very difficult
to maintain, test and debug the resulting codebase.

The key to managing complexity is modularization. A key
prerequisite for proper modularization are behavior execution
semantics that ensure that upon interruption, the NPC remains
in a well-defined state and that the interrupting behavior does
not need to be aware of the exact state of the interrupted behav-
ior. Further, to make implementation of cooperative behaviors
easier, it is useful to have explicitly shared data structures
and/or communication channels so that the communication
channels do not have to be negotiated at runtime.

Some form of modularization is already present in state-
of-the-art game AI systems. It consists mostly of reusing
behavior fragments across multiple behaviors. Using classical
programming terminology, this is conceptually equivalent to
calling subroutines in structured programming. This however
seems not satisfactory for our case as it would be difficult to
properly connect behavior code (e.g., a behavior subroutine
for a guest in a pub) with necessary data (e.g., positions of
chairs in the pub) and references to other NPCs (e.g., the
innkeeper) without tightly coupling the code to a particular
data or creating ad-hoc methods for data acquisition.

We have used two main modularization approaches: a)
embedding intelligence into the environment and b) taking
inspiration from object-oriented programming (OOP).

Embedding intelligence into the environment means that
instead of the NPC knowing how to behave in a specific
context (behaving at a location, using an object, ...) the
context itself provides behaviors for the NPCs. The greatest
advantage of embedded intelligence is that it allows adding
new contexts to the game world without modifying the NPC
code (as in objective OH).

OOP was our inspiration in multiple ways. It naturally
connects code and data and provides encapsulation of code
into larger structures. OOP promotes hiding of internal in-
formation from unintended manipulation from the outside.

http://gameware.autodesk.com/navigation

Uses

BO Instance - Pub_4

Holder - NPC_1

Provides

1 |
: Brain code :

e
! Behavior code ! - Order ngye

Guest

Main Behavior

NPC State

Holder - NPC_8

siled

Uses

Environment Data '

Pub_4 :
Waitress

rd

Innkeeper

Provides

Main Behavior

Beh. instance - Waitress

Behavior State

NPC State

siled

Beh. instance - Guest
Legend:

Behavior State

s|led

ICode definition | | Code execution

. | BOInstance - Chair_3 R "
3 e oy |
] : Environment Data 3 i]
4 . . I
< Is Occupied? y Provides

! BO Instance - Chair_27

Beh. instance - Sit

Data

Template link

In-game
bject
objec <

Fig. 1. An example usage of behavior objects: a pub with multiple chairs. The code for individual behaviors and central decision logic is provided in BO
templates (purple, dotted), that are shared by multiple instances (pink, solid). The instances execute code and encapsulate state and environment data — links
to in-game entities and other BOs. NPC_1 represents a waitress — it uses “Waitress” behavior provided by the pub and manages data used by the behavior.
NPC_8 is a guest in the pub — it uses the “Guest” behavior provided by the pub, which further uses “Sit” behavior provided by a chair.

OOP is also connected to well-tested methods to handle
coordination among multiple threads, which relates closely
to coordination among multiple NPCs. Last but not least,
OOP is accompanied with methodology of decomposing a
large problem into self-contained objects that then delegate
specialized work to each other and can be tested independently.
On the other hand, as most of the behaviors we considered
have only very small fractions in common, implementing
inheritance to ease code sharing among behavior objects is not
necessary and would only complicate things further. A simple
form of polymorphism is however desired; in particular it is
useful to allow the NPC to use a given behavior from different
objects that provide the behavior. For example, the NPC may
want to perform a “have fun” behavior without caring whether
the object being requested for the behavior represents a pub
or a playground. The simplest way to achieve this is to let any
behavior be requested from any object as long as the object
has the behavior defined. In OOP context this practice is called
“duck typing” and is frequently used in scripting languages.

V. PROPOSED SOLUTION — BEHAVIOR OBJECTS

Behavior objects (BOs) are the behavioral parallel to object-
oriented programming (OOP). Objects in OOP consist of code
(methods) and data (fields). The code is defined once for a
class of objects, while data are specific to object instances.
When a method is invoked on an object, it manipulates the
object’s data to provide a desired result.

BOs consist of code (behaviors), data and central decision
logic which we call the brain. Code and brain is defined in
a BO template, the data is specific to a BO instance (this
addresses the objective Od). When an NPC uses a behavior
provided by a BO, it executes the behavior in its own context
and lets it access the NPC’s internal state. The NPC becomes
a holder of the behavior. The behavior however still has
access to the BO instance data which provide further context
for execution and provide an implicit communication channel
to other NPCs using behavior from the same BO instance
(addressing objective O6). The brain (if present) manages
the individual behaviors and may actively influence their
execution, either by manipulating the BO instance data or by

explicit communication with NPCs holding BO’s behaviors.
The BO instance data come in two very different flavors:
environment data, which are links to entities in the game
world, and state, which is internal to the object.

A simple example of a BO is a chair with a “sit” behavior
— here the environment data consists only of the chair; the
object state is a flag indicating whether the chair is in use, and
the behavior consists of three animations (sitting down; idle
while sitting; standing up). The chair has no brain. A complex
example is a BO that manages a pub. It contains behaviors for
guests, the innkeeper and the waitress. The environment data
consist of links to chair BO instances (as above) inside the
pub and the area the pub covers; the state is a list of orders
for drinks. See Figure [1| for a diagram of the situation.

The brain of the pub BO handles requests for seats and
drinks and sends messages to guests to inform them where to
sit and to the innkeeper and the waitress to instruct them to
prepare and deliver drinks respectively. This makes the pub a
central point of communication, which allows multiple wait-
resses/innkeepers to be added to the pub without changing the
code. Since the code for guests, the innkeeper and waitress is
all in the BO, the development of the communication protocols
for seat and order management is greatly simplified as all
its uses are from within the BO. To use OOP terminology,
the communications are private to the pub object. Most of
the rules of thumb used in object-oriented analysis can be
easily translated to the behavior case to help design a good
decomposition of behaviors into BOs.

A. Differences from OOP

We found three notable issues specific to behavior de-
velopment that preclude direct application of classical OOP
approach. These issues motivate the main differences between
BOs and OOP. First, the state of an NPC is implicitly shared
by all behaviors the NPC may execute, which complicates en-
capsulation. Second, behaviors have different execution model
than programs. Third, execution of behaviors is highly parallel
— all NPCs and BO brains act like separate threads. This
section details these three issues and how we addressed them
with BOs.

1) Shared State: The fact that the NPC’s state (position,
speed, active animation) is shared by multiple behaviors makes
encapsulation of code more difficult. As a general rule, a
behavior should terminate only when all the changes to NPC’s
state have been fully completed or rolled back and a behavior
should always check the NPC’s state anew when it resumes
execution after an interrupt. This is well supported by the
underlying BT formalism.

The reality of the game engine has forced us to make an
important exception to the above rule: Since a behavior may
require an extensive computation or data exchange with other
NPCs/BOs to determine the next action, the system cannot
guarantee that a new behavior will issue an action on the same
frame in which the old behavior has ended. This would result
in movement and animation artifacts where the NPC stays still
for one or two frames during a behavior transition. To remedy
this, a behavior should terminate before its last movement
and/or animation action completes. Every behavior is then
required to issue an animation and/or a movement action (or
force the NPC to stop) at the beginning of its execution.
This way, the transitions are instantaneous and the animation
subsystem can take both new and old animations into account
when choosing an appropriate transition animation. As almost
all behaviors start with movement or animation anyway, this
approach required very little modification to behavior code and
worked reasonably well in practice.

2) Execution of Behaviors: In OOP, executing a method
results in a full change of context — the methods lower on the
stack do not influence the execution of the method. Behaviors
are different, because they are injected: using a behavior of a
BO results in inserting a new subtree in the BT that drives the
NPC and thus the parent behavior still influences execution. In
particular a node closer to the root may switch to a different
child and terminate the injected behavior — see Figure [2] for
an example. Note that fully replacing the current behavior of
the NPC is not a viable option as the BO behavior would then
need to be able to react to high-priority external events (e.g.,
combat) on its own, reducing modularity of the code.

We have considered two flavors of behavior injection: Either
it is on-request — NPC behavior actively requests a behavior
from a BO and is in direct control of the injection (as in
the example), or on-command — a behavior is imperatively
injected into NPC behavior structure based on conditions
external to the NPC (e.g. injecting code to handle a combat
event). Nevertheless, even the on-command injection still
keeps the top-level NPC logic in-place and it is the top-level
logic which decides when and if at all the injected code is
executed (this helps to maintain consistency — objective OF)).
For most of our use-cases, the on-request method is more
appropriate: it is the NPC that decides to perform a work
behavior and the actual request for the behavior should be
made at the time of such decision. However, we use on-
command injection as well.

Note that the injection principle can be applied to for-
malisms other than BTs. For example, when finite-state ma-
chines (FSMs) [5] are used, a special “use behavior object”
state may be expanded to a new FSM prior to transition to
that state. For a belief-desire-intention architecture, methods

Start 3:00am

Timing switch | Timing switch |

Night Day Night Day
A/ A/ ; A/
Request: Request: Request: Request:

sleep_behavior work_behavior sleep_behavior work_behavior

Injected
behavior 1

7:00am 11:00am

Timing switch Timing switch

Night
Y

Request:
sleep_behavior

Request:
sleep_behavior

Request:

Request:
> work_behavior

work_behavior

Injected
behavior 1

Injected
behavior 2

Termination request

Legend: Node being executed

Fig. 2. Injecting behavior into an NPC’s main behavior. In this case, it is the
NPC that actively requests a behavior of a given type to be injected. Since the
higher-priority nodes are still being evaluated when performing the injected
behavior, the high-level NPC decision making may terminate the injected
behavior when necessary. A similar logic handles the ambient Al of NPCs in
our game.

|
|
|
|
|
|
|
|
|
|
|
|
|
-

Inactive node

A Subtree

to act on certain intentions may be injected, etc. However,
BTs naturally provide a very clean support for decomposition
and hierarchical structuring of behaviors which aligns nicely
with the BO approach.

3) Parallel Execution: While OOP languages provide
mechanisms to handle parallelism, BOs differ in the scale of
the problem — effectively every NPC and BO instance acts
as a separate thread, and thus parallelism has to be accounted
for at the architecture level and not ad-hoc at the code level.

The main problem arising from the parallel nature of game
Al is safe and consistent data access and sharing required for
coordinated behavior (O6). While it is safe to directly access
immutable data belonging to a different thread, access to
mutable data needs to be more careful to avoid race conditions.
There are multiple solutions to this problem in OOP, but we
consider it best to make each thread (NPC, BO brain) solely
responsible for its mutable data. Mutable data of other threads
can be accessed only indirectly by sending messages to a)
request data from another thread, b) provide data to another
thread or c) request a change of data belonging to another
thread. The receiver then handles those messages within its
own updates. Using the message system as the sole mechanism
for sharing mutable data is in most cases sufficient to ensure
that the behaviors are robust to any possible interleaving with
other behaviors.

BO Instance Holder NPC
;] NPC State ; Legend:
Direct access

Fig. 3. Possible data access between a BO instance and a holder. In direct
access the data may be explicitly referenced, while indirect access requires
sending messages to read/write data.

! Behavior Object 1
____________________________________ el
S S A
| Smart Entity ! Situation
1
| Embedded in environment] Lightweight
| Long-lived ! Short-lived
Smart Object L Smart Area
Simple behaviours < Complex behaviors
Single purpose Multipurpose

0

Quest SO

Navigation SO -
Quest-related behaviors

Possibly complex behaviors
Monitors quest execution

Used transparently
in navigation

Fig. 4. A simple class diagram of various types of behavior objects and their
basic properties. Abstract categories have dashed borders, while full borders
correspond to types of BOs that are actually used in the game.

In most cases, BO’s environment data is immutable at
runtime and thus may be directly referenced from anywhere.
Internal state on the other hand is almost always mutable and
thus cannot be referenced directly from other threads. Since
an injected behavior is executed within the main behavior of
an NPC, it has full access to the NPC’s internal state but the
state of the injected behavior cannot be directly referenced by
the BO’s brain and vice versa (see Figure [3).

Like OOP, the BO approach is not a silver bullet to solve
all behavior design problems, but it has the potential to
mitigate complexity and enable scripters to create more lifelike
behaviors within a given timeframe.

VI. IMPLEMENTATION

In this section we describe the implementation of BOs for
our game. The most common type of BOs we use are smart
entities: BOs that embed intelligence into the environment.
We developed four kinds of smart entities: smart objects,
navigation smart objects, smart areas and quest smart objects.
We also created situations as a very different type of BOs.
Figure [] shows the relationships between types of BOs we
implemented. and Table || gives examples of BOs that are
implemented in the game.

This section introduces the Al system which formed a
base for our code, discusses smart entities and their variants
and introduces situations. An overview of our tool support
and screenshots of the environment are given in the online
supplemental material.

TABLE I
EXAMPLES OF IMPLEMENTED BEHAVIOR OBJECTS

S-areas Pub, Shop, Field, City, ...

S-objects Chair, Bench, Bowl for eating, Door (navigation) ...
Situations Small talk, Beggar and a rich man, Collective dance, ...
Quests Bailiff’s lost keys, Horse race, Bow training, ...

A. Underlying Al System

Our implementation is built on top of an existing Al system,
which is described in [26]. The basic character decision
making is performed by a variant of behavior trees [4]]. The
behavior tree (BT) formalism is extended with variables and a
custom type system which allows for complex structured types
and type inheritance.

From the perspective of behavior injection, there are four
very important aspects: The first one is the extended execution
model of the BT nodes that ensures consistent initialization
and cleanup of subtrees; in particular it allows a specific
cleanup behavior to be executed when the behavior is inter-
rupted. This feature is critical to allow behavior objects and
NPCs to maintain consistency (objective O2)).

The second one is the hierarchy of subbrains. Subbrains
represent individual components of the NPC logic (ambient
Al, combat, . ..) ordered by priority and connected in a manner
similar to the subsumption architecture [27]]. If the subbrain
becomes active, it executes a BT associated with it. If a higher-
priority subbrain tries to run, the BT of the lower-priority
subbrain is stopped, including proper behavior cleanup. The
subbrain priorities are fixed per NPC template and assigned by
scripters. If more complex handling is required, the scripters
may create a special “switching” BT running in parallel with
the subbrains and enforce activation/deactivation of specific
subbrains through dedicated BT nodes. The subbrain interac-
tion is important for the situation BOs and to decouple combat
logic and ambient Al in order to make sure that combat is
always functional (objective Q[I).

The third one is the possibility to create named links
between game entities and to query the link graph at runtime
with complex queries (e.g., find all objects with “child” link
to an object linked to me with a “parent” link). We use this
link system to connect BO instances with the environment
data they need (e.g., a pub is connected to all seats within;
a quest is connected to an item the player should find). This
way instances have specific data, but the data is decoupled
from behavior code (objective Of).

The fourth one is a mature messaging system. NPCs and BO
brains may have multiple inboxes, each having its own mes-
sage type. The system manages thread-safe message queues
for each inbox.

B. Smart Entities

A smart entity (SE) is a behavior object associated with a
specific entity in the game 3D world. We use two basic types
of SEs — smart areas (s-areas), which are associated with

an area in the game world (e.g., a pub), and smart objects
(s-objects), which are associated with a specific object (e.g.,
a door). S-objects are further divided into regular, navigation
and quest s-objects.

We will first discuss the common properties of SEs and
later deal with their differences. Note that while there are
huge differences in the way different types of SEs are used in
practice, there are only minor differences in their implemen-
tation. This provided significant speed-up of development and
allowed reuse of the same behavior development tools.

SE contains all the information the NPCs need to behave
appropriately in the context of a game entity (e.g., scripts for
the innkeeper and for the guests, scripts for opening the door).
If necessary, the SE’s brain coordinates various NPCs within
(e.g., assigns free seats to the guests, chooses NPCs to engage
in a brawl, handles queues near the door ...). As such, SE
together with the in-game entity form a standalone package
that may be plugged in to the virtual world and be used by
NPCs without modification to NPC code (objective Od)). The
SE may also disable certain behaviors and limit the maximal
number of NPCs that may hold a given behavior at one time.

1) Behavior Injection for Smart Entities: To ensure that
gameplay-critical behavior remains uninterrupted (objective
dI), we have decided that the injection should be performed
on-request. We have thus added a new BT node that requests
a behavior from SE (further referred to as request node).

There are two possible configurations for the request node
that are handled in a slightly different way: 1) the designer
explicitly states the name of the behavior that should be
requested and 2) the behavior is left unspecified. In the former
case it is checked, whether the SE provides a behavior with
the given name, whether the behavior is currently enabled and
that the maximal number of holders for this behavior is not
exceeded. If any of the conditions is not satisfied, the SE
returns failure and the request node fails. In the latter case,
the first available behavior is chosen, failing only if there are
no behaviors available. This is used especially in the context
of s-objects which often provide only one behavior. Another
use is for the special case, when the NPC wants a smart area to
just give it any behavior, which is useful for “idle” behaviors.
This is specific to ambient Al (objective O3).

If a more complex logic for requesting behaviors is neces-
sary, the NPC requests a high-level behavior from the SE. The
high-level behavior then conditionally requests more specific
behaviors from the SE. This approach is used primarily when
NPCs should behave differently in the same context based on
their traits, preferences or knowledge (objective OB).

If the requested behavior is available, it is instantiated in a
data structure called behavior descriptor which is passed to
the request node. The behavior descriptor contains meta data
about the behavior (e.g., when it should be dropped) and an
instance of a BT that achieves the behavior, which we call
injected subtree. The injected subtree is then added as the
only child of the request node and the tree continues execution
by evaluating the subtree. The injected subtree has access to
the NPC’s state and data and thus may modify the behavior
appropriately (e.g., a rich guest in a pub orders more expensive
food — objective O3).

If needed, the behavior descriptor contains new message
inboxes that should be added to the NPC to allow synchro-
nization and communication (objective Of6).

As synchronized action of multiple holders is often required
(objective Off), the descriptor also refers to the SE’s local
context in which locks are resolved (the context is part of
the instance state). This ensures that using a fixed lock name
across multiple SE instances is safe. For example, when NPCs
sitting around a table (a BO instance) in the pub want to
synchronize movement during a toast, they may all explicitly
reference “toast” lock. Since the lock name is resolved relative
to the BO instance, holders of the same behavior at another
table instance will receive a different lock when referencing a
“toast” lock. This improves code readability and prevents the
necessity to share a lock explicitly by messages.

As requests may be nested, it is technically possible to
request the same behavior twice from the same object. But
this is considered a runtime error, as the expressive power of
recursion would do more harm than good in a game setting.

2) Smart Entity’s Brain: The basic decision making of the
SE is passive: for each behavior, the SE maintains information
whether it is enabled (i.e., whether new instances of the behav-
ior may be requested) and the maximum number of instances
that may be adopted at the same time. This information is used
upon request processing.

Some SEs, especially areas, however need to have brains to
actively influence the behaviors. The brain contains a behavior
tree that gets updated regularly and may either modify the
passive decision making based on external conditions (e.g.,
disallow “drinking” behavior in a pub if no innkeeper is
present) or it may perform some coordination among behavior
holders inside the area (e.g., instruct a pair of customers to
play cards together). The coordination is done by sending
messages between the SE and the behavior holders. Since
the NPCs are now controlled by the injected subtrees, the
SE can make strong assumptions about NPCs responses to
its messages. Even if the NPC terminates the injected subtree,
the cleanup logic of the behavior will notify the SE of this fact
and allow for recovery. This central control of joint actions is
an important aspect of our implementation as it removes the
need for NPC negotiation (related to objective).

There are special BT nodes specific to the SE brain that
enable/disable behaviors and that send messages to holders
of a certain behavior. The brain BT can access variables
containing references to behavior holders and system data
(e.g., what behaviors are enabled). The BTs for the NPC
behaviors then may use a special node to send messages to
the SE that the NPC received behavior from.

In many scenarios, the SE needs to perform some action
whenever an NPC adopts a certain behavior (e.g., assign a
free seat to a customer in a pub) or when an NPC drops the
behavior (e.g., innkeeper says goodbye to the leaving guest).
To streamline the development in such scenarios and to make
the BTs of the SE brain and the behaviors more readable,
we have introduced event handlers to the SE brain. An event
handler is simply a BT that is executed until completion for
each instance of an event.

All of the SEs implement two events OnAdopt — an NPC

adopts a behavior — and OnDrop — an NPC drops a behavior.
S-areas introduce two more events that fire whether the NPC
has requested a behavior or not: OnEnter — an NPC enters
the area — and OnExit — an NPC leaves the area.

The SE adds events to an event queue. If the event queue is
non-empty upon updating the SE, the handler tree of the event
to be processed is updated instead of the main tree. In order
to keep handler code simpler and without safety checks and
to simplify debugging, the handler trees are executed without
interruption. The designers however must make sure that the
handler trees complete quickly. Our current practice is to only
update the state of the SE or send messages inside the handler
trees and perform any actual actions on the main tree. To
prevent the main tree from starving at least one update to the
main tree is guaranteed between two successive events.

3) Linking Data to Smart Entities: As there is an in-
game entity (e.g., pub area, chair 3D model) attached to
every SE instance, it is possible to use the linking feature
of the underlying Al system to connect the instance to its
environment data. This is easily done and visualized in the
game editor. For example, the pub area has a link labeled
“seat” to all chairs available for guests in the particular pub
and further labeled links for the beer tap and other notable
locations in the area. Upon initialization, the SE gathers the
immutable environment data from the links to its internal
variables to simplify access.

C. SE: Smart Objects

S-objects are SEs with the simplest intended use. They
mostly handle short behaviors associated with specific in-game
objects (sitting on a chair, opening door, cooking on a fire,
...). The environment data of s-objects is usually only the 3D
model they are attached to. To reduce system load, majority of
s-objects do not have their own brain and act only passively.

Still most of the s-object behaviors cannot be reduced to
animations only, because we aim for high behavioral fidelity.
For example, when sitting on a chair, we want the NPC to
move the chair a little away from the table with its hand,
go closer to the table and drag the chair back to its original
position while sitting down. To properly align the chair with
the NPC, it must be first attached to the NPCs hand by its
back, then the hand is detached and later the NPCs bottom
is attached to the chairs seat. Without the attachment, the
chair might easily become slightly out of sync with the NPC
producing an eerily looking result — this is a limitation of
game engines in general and cannot be easily overcome. Since
the s-object provides complete code and not only an animation,
we are able to handle these issues easily.

Although our s-objects are used for the simplest use-cases
in our game, they are still much more powerful than s-objects
in other OWGs that we know of. Apart from the simple uses
outlined above, more complex scenarios are supported. The
most elaborate s-object we have deployed so far is a bench
that allows up to 4 NPCs to sit on it. Since the bench is
attached to a table, NPCs cannot stand up directly, but need
to move to the end of the bench and then leave. If an NPC in
the middle wants to go away, the NPC on the side stands up,
clears the way and then sits back again.

D. SE: Navigation Smart Objects

Navigation s-objects are an extension of regular s-objects.
Navigation s-objects work as a link between two navigable
areas that would be disconnected otherwise. The most common
ones are doors or barriers that can be jumped over. The purpose
of the navigation s-object is to provide a behavior that the
NPC should use to traverse the link. As in the regular s-object
case, we needed a more powerful mechanism than just playing
animations. A good example is a door: not only does the NPC
play an animation, it also must be properly synchronized to
the door and, more importantly, a queue of NPCs waiting for
the door must be handled reasonably. For this purpose, the
doors are linked to nearby places where NPCs should wait
for their turn in the door and explicitly manage the queue,
including giving way to the player. We have chosen this central
approach in favor of distributed solution using steerings or
similar techniques because given the specifics of our Al and
animation systems and various minor design requirements, the
central control allows for much better results, although with
some extra work.

Navigation s-objects also differ from regular s-objects in
injection method. The navigation s-object behavior is injected
on-command — the NPC does not partake in the decision to
use the s-object, it is the navigation system that decides that
the particular s-object is used during movement. The injected
subtree is then inserted as a child of the move node and
updated accordingly. Once the injected subtree finishes, the
move node resumes its normal execution if the subtree was
successful or fail if the subtree failed. The injected subtree is
removed from the move node in both cases.

E. SE: Smart Areas

Smart areas (s-areas) are smart entities connected to whole
areas in the game world, which has several implications for
the way they work. Most notably, s-areas capture higher-level
behaviors than s-objects. Often the s-area delegates the low-
level functionality to s-objects. In the pub example, the chairs
or benches in the pub area are s-objects that provide “sit”
behavior that is then requested from the “guest” behavior. A
typical s-area thus has a large amount of environment data
which consist mostly of smart objects it uses.

1) Behavior Requests and Smart Area Hierarchy: In con-
trast to s-objects, where the NPC has to possess an explicit
reference to an s-object instance while requesting a behavior,
an s-area may be used implicitly as “the s-area I am currently
in”. While in some cases it turned out to be more useful
to use s-areas with explicit references as well, implicit area
referencing is useful when the NPC wants to perform any
particular behavior from a larger group of behaviors.

A typical example is “relax” behavior: the NPC wants to
perform any relaxing activity that is available in the area it is
in (e.g., drinking or dancing in a pub, idly resting at a field or
watching comedians in the city center). It is actually beneficial,
if the relaxing activity is different when requested repeatedly.
We call behaviors where an NPC is not bound to a particular
area general. This is in contrast with specific behaviors, such
as “work” where the NPC has a specific place where it works

Store work
Store work SA in behavior in variable Request behavior
variable $workSA $workBeh "work" (implicit)

T T T T T T T T T T T e A T

i Smart Area - City :

| [

' [

| Sequence I e

| | 3
e

| Set Request behavior | &

| $targetLoc = $workSA $workBeh from $workSA | =

| 4 I

I Request behavior |

| "move" from $thisSA |

! [

r v Smart Area - City :

| | &
[

| | =
@

| I3

| Move to I s

| $targetLoc Drop | <

| the torch |

L e a4

Fig. 5. Handling specific behaviors at high-level smart area to control

movement within the area. The $thisSA variable is provided by the system and
refers to the s-area that provided the behavior. Note that when s-area behaviors
are nested, $thisSA will refer to a different value in different subtrees.

and this should be the same every time it works and thus an
explicit reference should be used.

There is however a catch in using general behaviors: to
reference an s-area implicitly, the NPC must be inside the area.
But how does the NPC know, where a pub is if all it requires
is to relax? As mentioned in our design objectives, the pub
location should not be hardcoded in the NPC’s behavior. Our
solution was to introduce parent-child relationship between s-
areas and make the whole city an s-area and make the pub
its child. Now the city (the city designer) knows the locations
of all pubs and other relaxing areas within. The NPC thus
requests a “relax” behavior implicitly and the city s-area gives
it a BT that consists of a sequence of a move node that
moves the NPC to the pub and a request node that requests a
“drinking” behavior in the pub.

However it later proved necessary to involve higher-level
areas in specific behavior execution as well. The reason behind
this is that the s-area should be able to control or modify all
movement of NPCs within its bounds (e.g., make the NPC
pick-up a torch when moving at night). A high-level s-area is a
good place to store this kind of behavior as it applies globally
to all movements within the area. The code for this move
behavior is generic and not bound to any particular behavior
(the target location is passed to the injected subtree through a
shared variable, because our system currently does not support
parameters to behavior requests). An example of injection of
this kind of movement behavior is shown in Figure [3]

As of now, sleeping, eating and most of working behaviors
are specific, but the pastime behaviors (fun, prayer, ...)
and some non-distinctive working behaviors (e.g., fishing or

Smart Area - Pub

Sequence

Set variable $nextBehavior
to "Drink seated"

Use smart object: chair
behavior: default

Request behavior:
$nextBehavior

Smart Area - Pub

Drink
seated

Fig. 6. Using smart object to “decorate” a behavior in a smart area. In actual
implementation, the node structure at the s-object behavior root is a bit more
complicated, but is conceptually equivalent to the structure in the figure.

hunting) are general.

A different problem we aimed to solve with s-area hierarchy
is that an NPC that is currently in a pub may decide it wants
to pray, but the pub should not be required to know of all
churches in the city. It is thus a good idea to ask the city in such
a case. For this reason, if the current s-area cannot provide any
applicable behavior, the request node asks the parent s-area. To
avoid confusion, we have adopted the practice that behaviors
in leaf areas have distinct names from behaviors in the parent
area and for general behaviors, only the behaviors from the
higher-level areas are requested. This way, the higher-level
areas always take part in decisions about general behaviors
that take place within its bounds and may for example balance
the amount of NPCs in individual pubs in the city.

There is however one possible exception, when defining
the same behavior in both child and parent areas might be
desirable. This would be the case with general behaviors like
“go to toilet”, where the NPC should stay in the same s-area,
if it may perform the behavior there, but should be able to
ask a parent area, if this is not possible. As of now, we have
however not identified any such behavior that the design team
would want to have implemented in the game.

We have also introduced a default top-level area, covering
the entire game world. This way general behaviors can be
requested anywhere on the game map and the default area is
able to guide the NPC to an s-area that provides such behavior.

2) Using Smart Objects Inside Smart Areas: One of the
interesting problems we tried to solve was how to properly
use s-objects, in particular chairs, inside s-areas. The typical
problem is as follows: the pub s-area wants the NPC to sit
down, wait for a beer and drink it, then stand up. While sitting
down and standing up should be delegated to a s-object, it is
necessary that the behavior in between remains controlled by
the s-area while still letting the s-object make sure, that the
NPC does not remain seated if the behavior is terminated.

To keep the s-object in control of init/done behaviors, the

solution we adopted is that the s-area behavior requests the
s-object behavior which in turn requests a “private” s-area
behavior that expects the NPC to be seated. The name of
the private behavior is passed through a shared variable. An
example of the setup is given in Figure [6]

F. SE: Quest Smart Objects

We divide quests into two categories with regard to the way
they affect NPCs: quests that do not require NPCs to change
their behavior are called behavior-preserving and those that do
are behavior-changing. An example of a behavior-preserving
quest is a guard asking the player to kill bandits living in the
woods. The bandits behave the same way they would without
the quest (attack the player when they see them) and the
guard keeps guarding the village. The only change is in dialog
options the guard provides — once the bandits have been killed
a new dialogue to congratulate the player on success in the
quest is activated.

The quest system in our game is event-based and handles
behavior-preserving quests very easily. A quest is composed
of a series of steps. Individual steps of an active quest listen to
events in the game (player picking up items, killing enemies,
...). These events then trigger progression of the quest to next
steps. The quest steps are also bound to dialogues that the
NPCs use and allow/disallow various dialog options.

Behavior-changing quests are however more demanding. We
did not want NPCs participating in a quest to completely aban-
don their daily cycles and stand at one place, waiting for the
player. Instead, behavior changing quests may directly modify
daycycles of the participating NPCs. Initially we envisioned a
new type of behavior object to encapsulate behaviors related
to a given quest, but to save development time, we decided
to use quest smart objects to handle this task. A behavior-
changing quest delegates execution of some of its steps to
a quest s-object. The quest s-object then notifies the quest
of completion/failure of the assignment by the player. This
communication is done through the message system.

The quest smart objects are technically the same as regular
s-objects which allowed us to directly reuse code for both the
game and the editor, but they are used very differently. The
most notable difference between regular s-objects and quest s-
objects is that quest s-objects are connected to quest anchors
— game entities not visible in the game. Quest anchor’s only
function is to connect the quest s-object to its environment
data. Quest s-objects also always have brains that guide the
execution of the quest step(s). The quest s-object then may
instruct the NPC to exchange a part of its daycycle with a
behavior requested from the quest s-object.

If the quest requires the NPC to change its behavior com-
pletely, regardless of the day cycle, the appropriate approach
would be to introduce new higher-priority quest subbrain to the
NPC. The quest s-object would then activate the quest subbrain
which will in turn request a behavior from the quest s-object.
However all of the quests implemented so far are designed
to keep at least the basic daycycle intact (in particular let the
NPC sleep at nights).

G. Situations

A situation is a very different kind of BO than smart entities.
It encapsulates a short coordinated behavior involving multiple
NPCs. Typical examples of situations in our context are two
villagers pausing for a small talk, a collective dance in the
pub or a brawl. An important aspect of situations in our
implementation is that they serve mostly as “eye candy”, i.e.,
they should not significantly alter the state of the game world.
This is important because it lets the Al system run situations
without considering their consequences for the current state
of the game. Situations have deliberately very low priority so
that any “important” behavior always overrides the situation.

Technically, situations are run within a specific situation
subbrain of the NPC, which has a higher priority than ambient
Al, but lower priority than any other subbrain. Thus if only
an ambient behavior is being performed, and the NPC should
start performing a situation, the ambient Al is suspended and
the behavior given by the situation is started. This could still
lead to undesirable results (such as an NPC starting to dance
in the middle of a conversation). To keep the ambient Al
in some control over situation execution, the NPC has to
explicitly subscribe to the situation system. This is achieved
by decorating a subtree of the ambient Al behavior with a
special node that subscribes the NPC when the execution of the
subtree starts and unsubscribes when the execution is finished.
This makes it possible for situations to be developed almost
independently of the rest of the AI code, as the potential
negative interactions with other behaviors are minimized by
design (protecting gameplay-critical behaviors - objective QT).

A situation template describes several roles, each providing
a behavior for one of the NPCs that participate in the situation.
Roles also have associated conditions that an NPC must satisfy
to take the given role (e.g., to engage as an aggressor in a
pub brawl, the NPC must be drunk). The situation templates
are connected to s-area templates to allow for area-specific
situations. Once a component called situation manager decides
that a particular situation template should be instantiated,
it tries to find suitable NPCs using constraint satisfaction
techniques. After the NPCs are chosen, an instance of the
situation is created and the behaviors are injected on-command
as the main tree for the situation subbrain making the subbrain
active. More details on the inner workings of the situation
manager and the whole situation subsystem are out of scope
of this paper and can be found in [J].

If any of the chosen NPCs cannot execute the situation or
terminates the situation prematurely (e.g., because a higher-
priority subbrain becomes active), all other participants also
abort the situation. Once again, the clean-up behaviors are
guaranteed to be executed, keeping the system in a consistent
state (objective OZ). After all participants finish their behav-
iors, the situation instance is destroyed.

As a behavior object, situation is lightweight compared to
SEs. This is mostly because situations are much more specific
than SE behaviors and that situation instances are short-lived.
In particular, situations do not have their own brain, as central
decision making is usually not necessary and in the rare cases
when it is, one of the holders may handle the central logic.

For coordination purposes (objective Of), all participants
are given explicit references to all other participants and a
local synchronization context is maintained for the situation.
The situation also provides the participants with up-to-date
information on the state of the other participants, especially if
they already started the given behavior or if they dropped the
behavior and thus may no longer be expected to cooperate.

VII. EVALUATION

The evaluation in this paper consists of two main parts: qual-
itative observations gathered in 16 months since the scripters
first used smart areas for development and two rounds of
semi-structured interviews we performed with scripters. In our
previous work, we have also performed quantitative evaluation,
which we sum up before the new results in this paper.

A. Summary of Evaluation in Previous Work

In our previous work, we have performed quantitative
evaluation of scripters’ performance using BTs and using BTs
with s-areas [7]. While part of the measured metrics showed
statistically significant differences, the sample size and the
scope of the tasks assigned to the participants was limited and
we concluded that the “data provide some support that s-areas
are better, when modifications are frequent — which is the
case in real development — but the results are not clear and
further research is needed.” We have however not managed to
perform a new quantitative study for this paper.

Qualitative feedback was also gathered, including the fact
that “subjects were relatively quick at understanding code
created with s-areas. Judged by the researcher monitoring
experiment progress, the subjects using s-areas had no trouble
finding the code for a particular behavior [in contrast to
subjects not using s-areas].”

We have also tested the computational load the Al system
— including SEs — imposes on the CPU and found that it
is fast enough for production [26]. The system consumes less
than 1 ms on average with 30 complex NPCs running and
less than 2 ms with 300 simple NPCs running. However, the
large amount of s-objects turned out to be a bottleneck. In
response we decided to reduce the number of s-objects that
have their own brains and to update those that have brain less
frequently to ensure swift execution even with larger worlds.
BO instances also share pools of instantiated BTs and inboxes
to reduce memory footprint while keeping the performance
benefit of preallocated and preconstructed objects.

B. General Observations

In general, the virtual world works well using BOs and
the structuring of behaviors into objects lets scripters concen-
trate on individual aspects of the world (pub, shop, church,
...) while only minor problems arise during integration of
the individual objects into the world (objective OF). As an
example, one of the scripters was recently tasked with adding
ambient Al to a freshly created village. This required placing
approximately 60 s-areas and 200 s-objects in the world,
linking them to environment data and performing basic tests.
The scripter completed all those tasks by himself in two days.

S-areas and all types of s-objects are considered stable and
have been deployed in a public alpha version of the game.
The situation system is still in preliminary use but unlikely to
change significantly.

We have also noted that s-areas, quest s-objects and situa-
tions closely correspond to the way game designers think about
the world: it is natural for them to describe the behaviors that
NPCs should manifest in a pub separately of other behaviors
the NPC perform in their daily cycles.

So far, 30 types of s-areas and over 40 types of s-objects
of release quality have been developed and released in the
public alpha version. Nine situations were developed to test
the situation system, but these situations will be subject to
heavy changes before inclusion in a release build. 7 quests
have been released in the public alpha version and multiple
others have been developed in release quality.

We received mixed feedback to the fact that s-areas have
strict boundaries. Boundaries introduce issues to handle when
the movement to the area fails for some reason or produces
unnecessary movement, in case the s-area instructs the NPC
to leave the area (e.g., to gather wood outside the area). On
the other hand, strict boundaries are beneficial from debugging
perspective — one can be sure, that since the NPC is outside
the area, it cannot receive a behavior from it.

Another lesson learnt is that it is vital to keep the s-
object behaviors small and focused on a single task while
providing detailed control to the parent s-area. An example
that used to be problematic is feeding fire in a house. In
an initial implementation, the house s-area told the NPC to
use a fire s-object. If the fire s-object realized there is no
wood, it instructed the NPC to use an s-object representing a
pile of wood outside the s-area. Now the s-area believed that
someone was performing fire feeding behavior and should be
done quickly, but in fact, the NPC was outside the area on
a much lengthier task. Our current implementation is that if
there is no wood, the fire feeding behavior fails. The s-area is
notified of the reason for the failure and assigns a “find wood”
behavior to the NPC. This way the s-area is more aware of
what is going on and may react to individual events.

The above example also illustrates where the system evolved
to: the individual behaviors are kept small and are hierar-
chically requested from a large number of BOs. One further
example is the pub. The pub directs NPCs to table s-objects
which in turn delegate the actual sitting to several attached
chair s-objects. The table also manages a bowl s-object that
manages pieces of chicken (also s-objects). To eat, the NPCs
thus request eating behavior from the table, which requests
behavior from the bowl, which requests behavior from the
chicken pieces. This arrangement is instructive and scripters
are happy that building a new pub can be done by simply
arranging the premade s-objects and connecting them with
links. Further, any element can be replaced without changes
to the others (e.g., a plate instead of a bowl, a piece of pork
instead of chicken) and the individual behaviors are easy to
debug. The downside is that the abundance of s-objects is
taxing on the system by both the need to manage the s-objects
and by making the NPCs trees deeper and thus slower to
evaluate. However, this load seems manageable so far.

TABLE I
QUESTIONS IN THE FIRST ROUND OF INTERVIEWS. THE REASON WHY WE
INCLUDED THE INDIVIDUAL QUESTIONS ARE SHOWN IN ITALICS.

Q1 What were the tasks you worked on recently? Frame the interview
and provide source for specific examples for the rest of the interview.

Q2 What activity consumes the most of your development time? Discover
the main bottlenecks for production.

Q3 Give an example of a code segment/snippet that is often repeated
across behaviors and has to be copied each time and a segment that is
well reused across behaviors. Discover a situation where BOs are not
applicable in practice, although they should be in theory. Understand
the potential for Al code reuse.

Q4 Describe the process of implementing a behavior from a design request
to the final code. Discover how BOs fit (or do not fit) in the overall
production pipeline.

Q5 How would your behavior code change if you could only use plain
tree injection (without BOs). Understand what features of BOs are
considered important.

Q6 What was the most complex/difficult task you have worked on in this
company? The most challenging tasks are likely to demonstrate the
full power (or lack thereof) of a system.

Q7 Describe the process of resolving an issue reported by the QA
department. Discover whether BOs help/hinder debugging.

Q8 What do you dislike about the scripting tools? Gather all the problems
scripters face when writing code.

Q9 Describe your ideal scripting tool. Gather constructive suggestions
and let the scripters compare BOs to hypothetical alternatives.

C. Qualitative Feedback

We performed two rounds of semi-structured interviews
with all 6 scripters currently employed by the company. Except
for the technical design lead, these are all of the company
employees that use BOs on a daily basis.

We have chosen a qualitative approach because there are
few scripters in the company and thus quantitive conclusions
would be weak. The experiences of the individual scripters are
also not comparable, as the scripters specialize and solve very
different problems. Recruiting external subjects to extend the
sample size is not practical, as a large amount of knowledge
has to be mastered, before a user is able to deal with tasks
at least remotely connected to actual practice. Structured
interviews have their limitations, nevertheless they have given
us valuable insights for further development of our variant of
BOs and we consider them of interest to anyone trying to
implement their own.

Shneiderman and Plaisant [28]] recognize five basic usability
measures: time to learn, speed of performance, rate of errors
by users, retention over time and subjective satisfaction. We
focused on subjective user satisfaction as this is the only
category where we can, to some extent, separate the effects of
using BOs from the features and quirks of the underlying Al
system and BT implementation.

The first round of the interviews consisted of broadly
formulated questions on the general usage of the Al system
(including BOs), while the second round had more focused
questions linked to the design objectives of BOs.

1) First round of interviews: The interviews consisted of
nine questions and took 30 - 60 minutes. Table [LI| shows the
questions and the information we expected to gather from
the answers. In general, we tried not to mention BOs in

the questions to make scripters more likely to report when
they used alternative solutions and to prevent bias. While we
asked the scripters to report on the Al system as a whole, we
expected all the answers to reflect on BOs to an extent, as the
vast majority of in-game behaviors are built with BOs.

First, we will focus on issues with the system, which were
mostly reported for questions 3, 8 and 9. The scripters reported
a number of usability problems with the underlying Al system,
especially with the BT editor and debugger, but only three
concerns that could be linked to BOs were raised. The most
common issues related to BOs (mentioned by 4 scripters) were
the usability problems inherent in debugging large trees (e.g.,
“the trees do not fit well on a single screen”). This is mainly an
issue with our BT editor, but is related to BOs, because every
injection adds depth to the tree. Second came the necessity
to use global variables to parameterize injected behaviors (4
mentions by 2 scripters, see Figure [5] for an example). One
scripter also mentioned that he dislikes that all s-objects need
to be connected to an in-game entity, although for some quest
s-objects there is no natural connection. Overall, BOs are
seldom the source of frustration of scripters, although they are
used on a daily basis. The answers also support our previous
work [29] where we show, that quality tooling support is vital
for a technique to succeed in practice.

Except for a few references to usability issues with the Al
system, questions 4, 6 and 7 did not provide any valuable
insight into BO usage. The other questions however conveyed
some interesting feedback.

The most time-consuming activities (Q2) were debugging
in general and updating code after a backwards incompatible
change has been made to the underlying Al system (both
mentioned by 4 scripters). Good debugging support is thus
vital to a success of a tool. One scripter reported development
of synchronized behaviors as the most time consuming and
one reported that he spends most time in figuring out, how
exactly should the relatively broad requirements from game
designers be implemented at the low level.

Examples given for good encapsulation (Q3) were very
specific to our system and do not provide a valuable insight
into BO usage. However, 7 examples were given of frequently
copy-pasted code. All of those were small snippets consisting
of up to 8 nodes and were not suitable candidates for BO-
based implementation (e.g., searching the link network for a
useful object, aligning animations to game entities). While this
means that BOs let the scripters reuse larger code structures
without problems, it also indicates a room for improvement
of the Al system: creating a reusable BT snippet should be
made easy, especially it should be straightforward to pass data
(parameters) to an injected tree.

Best insights into BOs were provided by QS. Scripters
reported that without BOs they would reimplement: the ability
to connect behavior and data (4 mentions); a local com-
munication hub/an entity that handles messages related to a
given context (3 mentions); a central logic (brain) for a set of
behaviors (2 mentions) and a container of related behaviors (1
mention). One scripter also mentioned that BOs help him write
consistent code and another stated that he “would implement
something very similar”. We see that the defining properties

TABLE III
QUESTIONS IN SECOND ROUND OF INTERVIEWS. THE DESIGN OBJECTIVES
THAT MOTIVATED THE QUESTIONS ARE SHOWN IN ITALICS.

Q10 When writing code, do you take into account the possibility of
interruption by quest/combat? How? (qZ] and qg])

Q11 Is there a difference in using BTs and BOs in quest logic and in
ambient AI? ((13_’])

Q12 What are the necessary steps to place a new instance of an s-area/s-
object in the game world? (@)

Q13 Have you implemented any behavior where the attributes of an NPC
would change the way the NPC behaves in a given context? (qﬂ)

Q14 What was the most difficult synchronization/coordination task you
implemented? Why? (qﬂ)

of BOs (connecting code and data and a centralized point for
coordination) were indeed perceived as important.

2) Second round of interviews: The interviews consisted of
five questions which aimed to elicit feedback on how do BOs
fulfill the design objectives of the system (see Table and
took 10 - 30 minutes.

Q10 was bound to objectives O] and O2] Only one scripter
reported that he has written complex code with interruptions
in mind. He has been responsible for making behaviors work
when interrupted with a dialogue. While it was not hard to
let the NPC finish an uninterruptible task prior to dialogue,
main difficulties stemmed from the fact, that the behavior has
to resume to the point where the dialogue started, while some
of the NPC’s state resides only in the animation system, inac-
cessible to the BT. In particular, an animation may be queued
for execution, but not actually started when the dialogue is
invoked (see Section for the reasoning behind this).

To remedy this, an improvement in the animation handling
was implemented, letting the scripters to directly access anima-
tion state and to create “lambda BTs” — a BT counterpart to
lambda functions in classical programming languages. Lambda
BTs are subtrees that are attached to events in the animation
system. These subtrees then get executed regardless of the
progress in the main BTs and can send messages that are
handled in an appropriate moment by the main BT.

The same scripter and three other colleagues have imple-
mented simpler interruption-aware code that handled halting of
the subtree (stopping the behavior without the need to resume
to the original state). Two of those reported that it was easy
and one other reported that BTs support halting well.

We see that the system demonstrates capability to prop-
erly handle “hard” interruptions when the NPC discards the
running behavior completely, while further refinements are
necessary to the “soft” interruptions where the behavior is
expected to maintain its state after the interruption has finished.

Q11 was intended mainly to check whether our focus on
ambient Al (objective O3) has not introduced problems in
quest handling. This does not seem to be the case as no scripter
reported notable problems with writing quest behaviors. The
only problem that was mentioned was the fact that quest logic
intersects with multiple systems with overlapping capabilities:
quest s-objects, the dialog system and the quest system (see
Section for details). The consequences are twofold: 1)
writing quests requires the scripter to interact with several

different user interfaces and 2) there are multiple ways to
distribute the quest logic among the systems. Our current
consensus is that when a quest uses an s-object (i.e. when
the quest alters behaviors of NPCs), then all of the quest logic
is implemented within the s-object and the other systems only
pass messages to the s-object.

Other than that, three scripters considered quest behaviors
to be very similar to ambient Al and two scripters considered
quest behaviors to be simpler in general than ambient Al
One scripter has not implemented any quest yet. Although
we did not ask directly about quest s-objects, two scripters
said that quest behaviors differ in that quest s-objects serve
as a central entity to coordinate the quest. This indicates that
quest s-objects do their job well.

For Q12, all scripters reported that to create a new instance
of a BO, they never needed to do more than link the BO to the
appropriate environment data. Two scripters explicitly said that
the process was quick, while two reported on usability issues
with the linking system. This shows that behavior code is well
decoupled from data and that objective O] was fulfilled.

With regards to different behaviors of NPCs based on their
attributes (objective OP] Q13), only one scripter has already
implemented such a behavior. This was a military camp, where
soldiers are assigned different work tasks based on their rank.
He didn’t report any problems in achieving this, but further
investigation is still needed.

As for synchronization and coordination (objective O]
Q14), all scripters encountered tasks that required explicit syn-
chronization of NPCs, but two only in a very simple context.
Only one scripter built synchronization outside the scope of a
BO and he referred to this case as the most difficult to handle.
Another scripter explicitly mentioned that s-areas were helpful
for coordination. Three scripters considered synchronization
to be non-problematic, while two reported usability issues
with debugging and implementing synchronized behaviors.
One scripter also reported that he finds parallel behaviors
challenging in principle. Two scripters reported usability issues
with the message system that make writing message-oriented
code tedious. Two scripters described the need to reduce the
scope of possible NPC states when coordinating behaviors for
quests — when NPCs need to cooperate on a quest, they
are usually instructed to stay at a well-defined place and
perform only very simple activities so that other NPCs can
make simplifying assumptions on their state.

One scripter reported a performance issue that arose while
he was implementing advanced door handling behavior where
NPCs form a queue, but there are dynamic priorities for NPC
ordering (e.g., if the door is locked, an NPC that has a key is
given priority). This resulted in multiple rounds of messages
being exchanged between NPCs. As two-way communication
cannot be performed within a single frame and there was a
relatively lot of computation involved between the messaging,
the system exhibited visible lag when many NPCs tried to
use the same door at once. This will be resolved by both
simplifying the code and by giving larger time budget to
evaluate trees of s-objects that are heavily used.

In general the data indicates that synchronization and coor-
dination is handled by BOs in a satisfactory manner, although

improvements can be made, especially in tools and usability.

VIII. CONCLUSION AND FUTURE WORK

In this paper we have described behavior objects as a tool
to manage script complexity in OWGs. We have shown five
use cases for BOs within the Al system for an upcoming
AAA role-playing OWG. The behavior object concept has
withstood field testing and was deployed in multiple forms
within a public alpha version of the game. Qualitative feed-
back and lessons learned during the implementation were
presented. The available feedback suggests that BOs are a
suitable approach for managing complexity in NPC behaviors,
fulfilling all design requirements. Vast majority of the issues
scripters experience when writing and debugging BO code are
usability problems and incomplete tooling support. A simple
improvement to be realized in short term is to provide more
computational resources to heavily used BOs.

While our initial development of smart entities and situa-
tions was driven simply by the needs of the Al system, we
have noticed the similarity of the concepts to object-oriented
programming. In this paper we have established the connection
between behavior objects and OOP explicitly, as it helped us
drive further development of our particular implementation
and provided inspiration. We believe that inspiration by OOP
can be useful for the next generation of game Al and lead
to dramatic improvements in code manageability, as OOP has
done for classical programming. Our implementation is based
on behavior trees, but BOs should be usable in all reactive
action-selection mechanisms that are in frequent industry use.

As a future work we plan to extend our BT formalism by
letting injected trees have explicit parameters. We also plan to
use the BO concept in other AI components. An example is
a possible use of a variant of smart objects to drive combat
events (e.g., a table that allows the player/NPC to perform a
special combo by throwing the opponent at the table).

ACKNOWLEDGEMENT

This research is partially supported by the Czech Science
Foundation under the contract P103/10/1287 (GACR), by
student grant GA UK No. 559813/2013/A-INF/MFF and by
SVV project number 260 224.

Special thanks belong to Warhorse Studios and its director
Martin Klima for making this research possible by their
openness to novel approaches and by letting researchers work
in close cooperation with the company.

REFERENCES

[1] Rockstar Games, “Red Dead Redemption,” http://www.rockstargames.
com/reddeadredemption/, 2010, last checked: 2015-05-05.

[2] Bethesda Game Studios, “Elder Scrolls V: Skyrim,” http://www.
elderscrolls.com/, 2011, last checked: 2015-05-05.

[3] D. Isla, “Handling complexity in the Halo 2 Al,” Game Developers
Conference, 2005, http://www.gamasutra.com/view/feature/130663/gdc_|
2005_proceeding_handling_.php| Last checked 2015-05-05.

[4] A. Champandard, “Understanding behavior trees,” AIGameDev.com,
2007, http://aigamedev.com/open/article/bt-overview/, Last checked
2015-05-05.

[5] D. Fu and R. Houlette-Stottler, “The ultimate guide to FSMs in games,”
in Al Game Programming Wisdom II. Charles River Media, 2004, pp.
283-302.

[6]
[7]

[8]

[9]

[10]

(11]

(12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

P. Schuytema and M. Manyen, Game Development with Lua. Charles
River Media, 2005.

M. Cerny, T. Plch, M. Marko, P. Ondracek, and C. Brom, “Smart areas:
A modular approach to simulation of daily life in an open world video
game,” in Proceedings of 6th International Conference on Agents and
Artificial Intelligence, 2014, pp. 703-708.

M. Cerny, C. Brom, R. Bartak, and M. Antos, “Spice it up! Enriching
open world NPC simulation using constraint satisfaction,” in Proceed-
ings of Tenth Annual AAAI Conference on Artificial Intelligence and
Interactive Digital Entertainment, 2014, pp. 16-22.

Rockstar Games, “Grand Theft Auto V,” http://www.rockstargames.com/
V/, 2013, last checked: 2015-05-05.

A. Champandard, “Planning in games: An overview and lessons
learned,” AlIGameDev.com, 2013, http://aigamedev.com/open/review/
planning-in-games/| Last checked 2015-05-05. [Online]. Available:
http://aigamedev.com/open/review/planning-in-games/|

M. Kallmann and D. Thalmann, “Modeling behaviors of interactive
objects for real-time virtual environments,” Journal of Visual Languages
& Computing, vol. 13, no. 2, pp. 177-195, 2002.

P. Ingebretson and M. Rebuschatis, “Concurrent interactions in The
Sims 4,” Game Developers Conference, 2014, http://www.gdcvault.com/
play/1020190/Concurrent-Interactions-in-The-Sims Last checked 2015-
04-13.

D. Isla, “Far Cry’s Al: A manifesto for systemic gameplay,” Game/Al
Conference, Vienna, 2014, http://gameaiconf.com/recording/far-cry-4/
Last checked 2015-09-25.

J. Parera, “Combat AI and animations in CASTLEVANIA: Lord
of Shadows,” AIGameDev.com, 2013, http://aigamedev.com/premium/
interview/castlevania-lord-shadows/ Last checked 2015-09-25.

A. Champandard, “A guide to creating rich and varied behaviors
(FE.AR. 2 Al analysis),” AIGameDev.com, 2011, http://aigamedev.com/
premium/tutorial/fear2-analysis/ Last checked 2015-09-25.

D. Iassenev and A. Champandard, “A-Life, emergent AI and
S.T.ALK.E.R.” AlGameDev.com, 2008, http://aigamedev.com/open/
interviews/stalker-alife/, Last checked 2014-09-25. [Online]. Available:
http://aigamedev.com/open/interviews/stalker-alife/

M. Vehkala, “Crowds in Hitman: Absolution,” AIGameDev.com,
2012, http://aigamedev.com/ultimate/video/hitmancrowds/, Last checked
2015-05-05. [Online]. Available: http://aigamedev.com/ultimate/video/
hitmancrowds/

Crytek, “Smart object system,” in CRYENGINE Manual, 2013,
http://docs.cryengine.com/display/SDKDOC2/Smart+Object+System
Last checked 2015-09-24.

F. Tecchia, C. Loscos, R. Conroy-Dalton, and Y. Chrysanthou, “Agent
behaviour simulator (ABS): A platform for urban behaviour develop-
ment,” in Proceedings of Game Technology 2001, 2001, CD-ROM.

M. Sung, M. Gleicher, and S. Chenney, “Scalable behaviors for crowd
simulation,” in Computer Graphics Forum, vol. 23, no. 3, 2004, pp.
519-528.

C. Stocker, L. Sun, P. Huang, W. Qin, J. M. Allbeck, and N. 1. Badler,
“Smart events and primed agents,” in /0th International Conference on
Intelligent Virtual Agents. Springer, 2010, pp. 15-27, INCS 6356.

W. Shao and D. Terzopoulos, “Autonomous pedestrians,” Graphical
models, vol. 69, no. 5, pp. 246-274, 2007.

C. Brom, J. Lukavsky, O. §er)’/, T. Poch, and P. §afrata, “Affordances
and level-of-detail Al for virtual humans,” in Proceedings of Game Set
and Match, vol. 2, 2006, pp. 134-145.

J. Bryson, “Intelligence by design: Principles of modularity and coor-
dination for engineering complex adaptive agents.” Ph.D. dissertation,
Massachusetts Institute of Technology, 2001.

M. McNaughton, M. Cutumisu, D. Szafron, J. Schaeffer, J. Redford,
and D. Parker, “Scriptease: Generative design patterns for computer
role-playing games,” in Proceedings of the 19th IEEE international
conference on Automated software engineering, 2004, pp. 88-99.

T. Plch, M. Marko, P. Ondracek, M. Cerny, J. Gemrot, and C. Brom, “An
Al system for large open virtual world,” in Proceedings of Tenth An-
nual AAAI Conference on Artificial Intelligence and Interactive Digital
Entertainment, 2014, pp. 44-51.

R. A. Brooks, “Intelligence without representation,” Artificial Intelli-
gence, vol. 47, pp. 139-159, 1991.

B. Shneiderman and C. Plaisant, Designing the user interface: Strategies
for effective human-computer interaction. Pearson Education, 2005.
J. Gemrot, M. Cerny, and C. Brom, “Why you should empirically
evaluate your Al tool: From SPOSH to yaPOSH,” in Proceedings of 6th
International Conference on Agents and Artificial Intelligence, 2014, pp.
461-468.

http://www.rockstargames.com/reddeadredemption/
http://www.rockstargames.com/reddeadredemption/
http://www.elderscrolls.com/
http://www.elderscrolls.com/
http://www.gamasutra.com/view/feature/130663/gdc_2005_proceeding_handling_.php
http://www.gamasutra.com/view/feature/130663/gdc_2005_proceeding_handling_.php
http://aigamedev.com/open/article/bt-overview/
http://www.rockstargames.com/V/
http://www.rockstargames.com/V/
http://aigamedev.com/open/review/planning-in-games/
http://aigamedev.com/open/review/planning-in-games/
http://aigamedev.com/open/review/planning-in-games/
http://www.gdcvault.com/play/1020190/Concurrent-Interactions-in-The-Sims
http://www.gdcvault.com/play/1020190/Concurrent-Interactions-in-The-Sims
http://gameaiconf.com/recording/far-cry-4/
http://aigamedev.com/premium/interview/castlevania-lord-shadows/
http://aigamedev.com/premium/interview/castlevania-lord-shadows/
http://aigamedev.com/premium/tutorial/fear2-analysis/
http://aigamedev.com/premium/tutorial/fear2-analysis/
http://aigamedev.com/open/interviews/stalker-alife/
http://aigamedev.com/open/interviews/stalker-alife/
http://aigamedev.com/open/interviews/stalker-alife/
http://aigamedev.com/ultimate/video/hitmancrowds/
http://aigamedev.com/ultimate/video/hitmancrowds/
http://aigamedev.com/ultimate/video/hitmancrowds/
http://docs.cryengine.com/display/SDKDOC2/Smart+Object+System

	I Introduction
	II The Problem
	II-A Believable Behaviors
	II-B Game AI Components
	II-C Industrial Constraints
	II-D Problem Statement

	III Related work
	IV Analysis
	V Proposed Solution — Behavior Objects
	V-A Differences from OOP
	V-A1 Shared State
	V-A2 Execution of Behaviors
	V-A3 Parallel Execution

	VI Implementation
	VI-A Underlying AI System
	VI-B Smart Entities
	VI-B1 Behavior Injection for Smart Entities
	VI-B2 Smart Entity's Brain
	VI-B3 Linking Data to Smart Entities

	VI-C SE: Smart Objects
	VI-D SE: Navigation Smart Objects
	VI-E SE: Smart Areas
	VI-E1 Behavior Requests and Smart Area Hierarchy
	VI-E2 Using Smart Objects Inside Smart Areas

	VI-F SE: Quest Smart Objects
	VI-G Situations

	VII Evaluation
	VII-A Summary of Evaluation in Previous Work
	VII-B General Observations
	VII-C Qualitative Feedback
	VII-C1 First round of interviews
	VII-C2 Second round of interviews

	VIII Conclusion and Future Work
	References

