This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at

http://dx.doi.org/10.1109/TCIAIG.2016.2642158

Creating Al Characters for Fighting Games using
Genetic Programming

Giovanna Martinez-Arellano, Richard Cant and David Woods

Abstract—This paper proposes a character generation ap-
proach for the M.U.G.E.N. fighting game that can create engaging
Al characters using a computationally cheap process without
the intervention of the expert developer. The approach uses a
Genetic Programming algorithm that refines randomly generated
character strategies into better ones using tournament selection.
The generated Al characters were tested by twenty-seven human
players and were rated according to results, perceived difficulty
and how engaging the gameplay was. The main advantages of
this procedure are that no prior knowledge of how to code the
strategies of the AI character is needed and there is no need
to interact with the internal code of the game. In addition, the
procedure is capable of creating a wide diversity of players with
different strategic skills, which could be potentially used as a
starting point to a further adaptive process.

Index Terms—Genetic programming, Al, character, fighting
games.

I. INTRODUCTION

HE development of AI characters has played an im-

portant part in the continual evolution of more realistic
gaming environments. A main goal of these characters is
to provide human-like behaviour that can lead to engaging
and challenging games [1], [2], [3], which in turn leads to
commercial success. One of the main aspects that has been
studied in the last decade to improve the gaming experience is
the incorporation of adaptive behaviour into the characters. It
has been reported that characters that can adapt to the players
level, personalising the game, are more satisfying to play than
characters that are unbeatable or too easy to beat [4].

The AI of most commercial games is based on a number of
very well established techniques, which are simple and pro-
cessor efficient, such as manually coded Finite State Machines
(FSM) [5]. In fact many game developers rely exclusively
upon these. This is a major limitation due to their deterministic
nature. Buro et al [2] provide insight into the relative lack of
sophistication of current generation Al methods used, stating
that most companies create titles under severe time constraints
and do not have the resources and the incentive to engage
in Al research. However, the authors also acknowledge that
multi-player games often do not require high Al performance
in order to become a commercial success as long as there
are enough human players interested in playing the game
online. The competitive environment online, nevertheless, can
be seen as a deterrent to participation for new players. To
overcome the limitations of FSM approaches, there has been
some work on the use of machine learning techniques such

The authors are with the School of Science and Technology, Not-
tingham Trent University, Clifton Lane, NG11 8NS, UK (e-mail: gio-
vanna.martinezarellano @ntu.ac.uk).

as Reinforcement Learning [6], Artificial Neural Networks
(ANN) [7] and Markov models [8] to improve the Al char-
acters strategy in real-time. Until now, little effort has been
made to incorporate these into commercial games. The idea
of using nondeterministic approaches is something the game
industry is still approaching slowly.

Although the adaptive methods mentioned previously have
shown progress on the development of more engaging game
play, the time and resources taken to create such Al structures
is not commensurate with the level of improvement they bring
to the game as a whole. A general drawback of this kind of
approach is that at the early stages of the game, characters
may have a very erratic behaviour, needing a certain amount of
time to develop into challenging players. A more “intelligent”
character at the early stages of the game could certainly
overcome this shortfall. However, as is well known, creating
these characters will depend on the time and expertise of the
game developer.

In this paper, an approach for the creation of Al characters
using Genetic Programming (GP) is presented. GP is used as
a refinement process of the character fighting strategies which
are initially created by a random process. The fitness (ELO
rating) of the characters is estimated according to a set of
matches played using the M.U.G.E.N. engine as framework.
The main objective is to be able to build Al characters that are
interesting to play without the need of the expert developer.
These would be created in an offline process and, additionally,
they could be used as a starting point of a possible online
adaptation of the same evolutionary approach.

II. RELATED WORK

The widely used state machine is itself a result of progres-
sion within the field of gaming AI. According to Kehoe et
al, the initial gaming Al creations were rule-based systems,
the most basic form an intelligent system can take [9]. Games
such as Pac-Man are an example of rule-based Al systems,
where the four pursuing “ghosts” make navigational decisions
based upon simple rules and the position of the player [10],
[11]. Kehoe presents FSM as a development of rule-based Al
systems, as a FSM can evaluate many rules simultaneously and
factor in the current state of the AL Each “state” can have
a completely different set of rules to determine behaviour,
with the transitions managed by the state machine itself.
The author suggests that the next step is the creation of an
adaptive Al. An adaptive Al is defined as an Al which takes
into account past interactions in determining future behaviour,
either via gathered historical data or real-time evaluation of
the success/failure of randomly chosen actions.

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at

A first step towards adaptive Al in commercial games
was the release of the Virtua Fighter 4 game for the Sony
Playstation 2. The game allows for an “Al Construct” to be
trained by the player via imitation. This approach in practice
proved unpopular. It took excessive amounts of time for a
player to teach the Al its basic capabilities, and further hours
spent watching the game play itself. Even so, it did not
yield compelling gameplay. The feature was then removed on
the following release, and has not re-emerged in any other
commercial fighting game.

Most of the research carried out on adaptive Al characters
has been done using independently coded fighting games,
which, with some exceptions [12], do not adequately replicate
modern commercial fighting games. Danzi et al developed
an adaptive Al using reinforcement learning in an attempt to
develop adaptable difficulty levels. They implemented their
own fighting game, Knock’em, which is more representative
of commercial games than other research implementations, as
it allows for a wider range of moves. To allow the adaptation
of the characters, positive reward is given if the Al character
has more health that the human player. Prior to the evaluation,
the Al character was trained against a random fighter in 500
fights. According to their experimental results, their adaptive
characters were able to match other standard Al characters
despite losing most matches.

Graepel et al applied reinforcement learning to find near
optimal policies for agents acting in a Markov decision process
(MDP) [8]. They used the commercial game Tao Feng as
a test bed. This game, based on a non-deterministic finite-
state machine, provides a wide diversity of fighting characters
and styles and has over 100 different actions available to the
player. They used two types of reward functions depending
on the change in health of both combatants. Their results
successfully demonstrated that from a starting random policy,
agents could change their behaviour to adapt to the built-in Al
and expose/exploit gaps in the rule-based built-in AL

Ricciardi et al also studied the possibility of adaptive tech-
niques for generating functional fighting Al using an enhanced
MDP [13]. Their idea was to have the Al adapt to varying
strategies carried out by the human player in real-time. This
was challenging due to limited availability of training data.
The Al characters were provided with only a few negative rules
about the game to eliminate a large empty area of the search
space, but given no further information to the character. The
adaptive characters were tested using a simplified facsimile of
a commercial fighting game and it was observed that the Al
could gradually improve as it gathered more data from human
opponents. The characters were also tested to recognise human
player patterns according to past player models, in order to
offer a better starting position for the AI. Despite achieving
good results against static Al characters, no conclusions could
be made when playing against human players, as the human
players changed tactics too frequently to allow the Al to create
a consistent model.

Ortiz et al propose an adaptive character with a three
subagent architecture that can adapt to the level of the user
using reinforcement learning [6]. Positive reward is issued at
the end of each round when the difference in health between

http://dx.doi.org/10.1109/TCIAIG.2016.2642158

the Al character and the human player is small and negative
when it increases. This type of measure allows the algorithm
to identify how closely match both players are. The closer
they are, the more engaging the game is. This reward strategy
is different from the one implemented by Danzi, who focused
on rewarding those characters with higher health. Ortiz et al
carried out a set of experiments involving 28 human players
who were asked to play between 15 and 30 rounds against
a set of Al players (both static and adaptive). Although the
authors argued that the adaptive players had the least negative
results, the most positive reviews were given to a strong static
player.

Another platform that has been created as a test bed for
fighting games Al is the FightingICE platform, which was first
introduced in [14] and further used in [15]. This platform was
created as a tool for game competitions allowing students to
test their codes. Yamamoto et al, who created the platform,
later presented an Al of their own that uses the k-nearest
neighbour algorithm to predict its opponent’s attack action
and devise an effective countermeasure against the predicted
attach. The authors tested their Al against winners of previous
FightingICE competitions and demonstrated the strength of
their Al, beating all other Al characters. Despite their encour-
aging results, there was no experimentation carried out with
human players, and hence no conclusions can be made about
how engaging their Al characters are.

An alternative approach to Al improvement in fighting
games was constructed by Thunputtarakul et al [16], utilising
an emulated version of a commercial title in the Street Fighter
series. This approach involved the construction and training
of a “Ghost” Al, an Al structure that could rapidly observe
actions taken by a player and assess their priorities, yielding
as a result an Al which could reproduce its creator’s playing
styles even when the training time was short. Despite the
successful results, there were some limitations to the technique
such as “unlearning” styles previously encountered, rendering
the AI vulnerable to a human player who simply altered their
tactics. Further work in this area was developed by Saini [17],
who, unlike Thunputtarakul, designed a k-nearest neighbour
solution using in-game parameters, which are driving factors
for the behaviour and strategies exhibited during the match.
In order to gather data from the player being mimicked, the
suggested approach observes the human player and records
its movements and the parameters of the game. This enables
it to understand under what circumstances each strategy is
used. The data is analysed in an offline mode and a strategy is
selected using the k-nearest algorithm or a data-driven FSM.
The data capture phase is critical in this approach, as one needs
to make sure the human strategies can be captured, needing a
certain number of matches to record the human player moves.
Saini tested both of his proposed strategies against a human
player and used human observers to evaluate the moves of
the Al. According to those observers, both strategies were
capable of mimicking human strategies. A main limitation
of these approaches is that they rely on the strategic play
of human players. This was an evident limitation when the
human player changed strategies back and forth frequently.
Also these methods require the human player to spend time in

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at

potentially unrewarding ways. Miche et al present the use of
Extreme Learning Machine (ELM) as an alternative to reduce
this time and improve the player’s experience. ELM needs
less training data compared to a classical ANN in order for
an agent to learn a “proper” behaviour [18]. Hou et al also
addresses this issue, developing strategies which allow agents
in a First-Person Shooter (FPS) game to “imitate” another
agent’s behaviour through the use of internal and external
evolution of memes [19].

While adaptive and learning Al structures have been im-
plemented within fighting games on an academic level, only
a single commercial title has utilised these methods with
limited success. Game developers have turned to alternative
methods of improving Al interaction experiences such as
strategic game design choices to maximise Al strengths and
minimise failings, rather than invest large amounts of time
and resources into complex Al with uncertain returns. This
has lead to the development of frameworks which allow the
quick creation and behaviour control of Al [18], [20]. Evolu-
tionary techniques have been particularly used for the offline
development of AI characters. The aim of the evolutionary
process is to find those character moves that would be more
effective in certain environment settings of the fighting game.
Byrne et al have applied a genetic algorithm (GA) approach
to develop moves that respond to a certain game situation
using the game Toribash as test bed [21]. This game, however,
is different from commercial fighting games as the player
needs to select a set of character joints to perform a move,
rather than using pre-existing ones. The GA codifies a set
of joint moves as a solution to a given scenario (opponent’s
last move, distance, etc.). These solutions are evolved by
playing fixed opponents for several generations. A similar
approach is presented by Cho et al, where the individuals
evolved represent the different actions to be performed by the
character according to opponent’s information, both codified
in the chromosome [22]. The authors compare this approach
to ANNs and Evolutionary Neural Networks (ENN) using
their own video game. The authors also test the inclusion of
the opponent past moves codified in the chromosome. Those
individuals that “remember” previous opponent moves tend
to be more effective, however, the evolutionary process using
larger chromosomes takes longer to run. The authors conclude
that ENN are the best approach to develop Al characters both
in terms of time convergence and player quality. Neither of
these evolutionary approaches were tested for human player
satisfaction.

Genetic programming, a population-based evolutionary al-
gorithm, has been successfully and widely applied to the
creation of competitive teams for cooperative video games,
such as soccer teams [23], [24] and for individual games
such as backgammon [25] and chess [26]. To the best of
our knowledge, GP has not been applied to the creation of
Al characters for fighting games. There are several reasons
why it would be interesting to study this approach. As for
any population based algorithm, it is able to produce a set
of different solutions, in this case characters, allowing the
programmer to select a subset of individuals based on the
requirements of the particular situation. Another advantage

http://dx.doi.org/10.1109/TCIAIG.2016.2642158

Fig. 1. Snapshot of the M.U.G.E.N. game.

of this approach is that there is no need to explicitly set up
any rule or strategy to the Al character, avoiding the need of
experienced game developers.

In order to explore the potential of this approach, it was
important to find a suitable fighting game to act as a test
bed. Most of the test beds found in the literature are in-house
implementations, therefore comparison between different Al
techniques is not straightforward. For this reason, we were
interested in finding an engine that was currently widely used
and supported, in order to facilitate the evaluation of our
approach by matching our Al against publicly available Al
A suitable approximation to commercial developments was
found in the M.U.G.E.N. engine. It was therefore a matter
of coupling the GP algorithm with the engine in order to
evolve Al characters. Due to the way in which this engine is
implemented, it is not possible to adapt Al characters during
the matches, so the engine could only be used to evaluate the
characters ability. This required a certain number of design
choices, adaptations and solutions that will be explained in
detail in the following sections. To the best of our knowledge,
no other Al techniques have used this engine as test bed.

III. THE M.U.G.E.N. ENGINE

Initially released by the company Elecbyte in 1999, the
M.U.G.E.N. engine was designed as a fully customisable
fighting game engine, intended to allow users to create their
own game elements and playable characters, while retaining
and functioning exactly in the same manner as a commercial
release. The ability to script a custom Al to control these
characters was added in the 2011 release, which uses a
programmable finite state machine to dictate the AI’s actions.
The customisation of the Al is allowed, however, only before
or after a match, and not in between rounds. Figure 1 shows
a screen snapshot of the game.

The AI within the engine revolves around the concept of two
types of state - “‘change” state and “move” state. Each move
available to the character has a fixed move state number, which
when entered will play out the move’s animation and create the
requisite hit/hurtboxes that constitute the core mechanics of the
game. Each move also possesses a change state, which defines
the conditions when it will be executed, typically falling under
the category of input triggers such as “The player has just

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at

pressed button 1, perform the move associated with move 1”
or logical triggers such as “If the player has been knocked
over, pressing button 1 will not execute a move, they must
wait until their character stands up”. These triggers form the
core of the control mechanism of the game. A custom Al
within the engine either replaces or adds to the triggers within
each move’s change state, allowing for automated behaviour
to occur. For example, a logical trigger “If the opponent is
within 100 pixels, then perform move associated with button
1” could be added to the single input trigger. Each action a
character can take could then possess a single input trigger
and many logical triggers.

It should be noted that the flaws observed in a fighting game
Al are easily attributable to imperfect implementations of a
FSM; lack of adaptability, state transitions impossible for a
human player, perfect reaction times. In order to adequately
implement the GP approach, certain requirements were defined
as an attempt to mitigate some of the FSM limitations. First,
characters must adhere to all of the limitations and constraints
applied to a human player of the game. It must not be possible
for an Al to utilise a move or tactic which a human player
could not physically recreate. Second, characters must not
possess faster reaction times than would be possible for a
human player. The implementation of the GP approach would
need to incorporate these requirements in order to evolve valid
solutions.

IV. IMPLEMENTATION OF THE GP APPROACH

Genetic Programming [27] is a biologically inspired com-
putation technique based on the evolution of individuals (i.e.
programs) over time, through events such as crossover and
mutation. Each of these programs represent a set of instruc-
tions to solve a specific problem. In a typical GP implemen-
tation, solutions are coded in a binary tree structure where
interior nodes represent functions/logical operators and leaves
represent terminals (data on which functions are applied). In
the case of the M.U.G.E.N. Al, each program (character) is
composed of a set of sequential blocks that represent the
fighting strategy. In our approach, these blocks form the
genetic code that underlies the evolutionary process. The
binary representation was therefore replaced by a sequential
one, where each node represents a block or move which can be
randomly mutated over time. The components of the genetic
algorithm were implemented within the M.U.G.E.N. system
as follows:

A. Creation of Initial Population

In order to create valid characters for the initial population
of the evolutionary process, it is necessary to randomly gener-
ate valid groups of triggers to place within the change states of
a character. To do this, a template version of a state definition
must be created. This template retains all of the change states
present in the original functional character, but removes any
input triggers and replaces them with dependency upon an Al
variable (a flag variable that renders the character unresponsive
to player input and grants sole control to the Al).

http://dx.doi.org/10.1109/TCIAIG.2016.2642158

In order to be able to apply the genetic operators upon
the generated Al, it was necessary to define the “terminals”
or potential actions that an Al could perform, which would
be manipulated by later genetic operators. The structure of
the M.U.G.E.N. engine custom AI made this a relatively
simple process. Each move available to the character is already
isolated into a unique block of code. The default character
provided within the M.U.G.E.N. engine possesses 34 such
terminals, each relating to either a move (punch, kick, throw,
sweep, etc) or an action (run forward, jump, run backwards).
Thus if suitable randomly selected triggers were to be placed
within each of these terminals, a functional AI would be
generated with full access to all the moves a player of that
character would have. This fulfils the first requirement stated
previously regarding the incorporation of only human feasible
moves into the Al character.

Each of these blocks of code would then contain between
one and four trigger points; triggers that when combined,
represent one instance where the move can be performed.
Within each trigger point, it was necessary to generate a
trigger or combination of triggers which would cause the Al to
perform the change state. A full list of the triggers recognised
by the internal workings of the M.U.G.E.N engine is provided
externally by the creators of the engine [28]. There are 113
in total. We removed the triggers that are purely intended as
system functions or those irrelevant to the character used for
testing (AlLevel, ParentDist, IsHelper and others). The triggers
that were retained consist only of information visible to a
human player examining the screen. They are as follows:

1) P2BodyDistX, P2BodyDistY: these return the relative
position of the opponent on the screen in the X and Y
directions. Inclusion of these triggers potentially allows
an Al to see where its opponent is and act accordingly.

2) GuardDist: this trigger returns true if the opponent has
entered an attacking state and the Al is within distance to
guard it. By including this trigger, the Al can potentially
become aware that it is currently being attacked.

3) P2MoveType, P2StateType: these evaluate the current
state the opponent of the Al is in, in terms of both
movement (crouching, standing, jumping) and state (at-
tacking, idle, being hit). These triggers allow the Al to
react based on the current actions of the opponent in a
wider context than the earlier GuardDist trigger.

4) MoveContact, MoveGuarded: these return true when
the Al has either connected with an attack move, or has
successfully blocked an attack move by the opponent.
The former allows an Al to detect when it has gained
an advantage and potentially follow up successful ag-
gression with extra actions. Conversely, the latter allows
it to detect when it has successfully defended against an
attack and enact retaliation.

These seven triggers form the basis of the observation ability
of the generated AI within the game world. While much
smaller than the full list, this is enough to allow an AI to
observe and react, forming a randomly generated “strategy”
that it would use to play the game.

The game engine reads the change states within the Al

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at

code sequentially and halts when one is activated, so terminals
located at the end of the file would be less likely to be
checked by the engine, reducing the probability that their
moves will be performed. This means that the order in which
the terminals are placed is important, not just their content.
Therefore, both the contents and the order of the terminals
should be randomised. Every character is coded in a .cmd file
which contains a general header, a set of five fixed terminals
and then the randomised terminals. Each terminal consists of
the specification of the action to be carried out when it is
activated followed by a list of triggers. The list of triggers is
effectively a standard sum of products anded with some overall
conditions.

The game engine checks change states approximately every
1/60th of a second. If conditions arise whereby a change state
would be activated, it will occur and be enacted with a time
far shorter than a human player could achieve. In order to
increase these Al reaction times, each trigger group within
a terminal needs to include a random chance of activation.
Introducing a 50% chance of activation does not mean that
the move is used only half of the time it is appropriate. Given
the frequency that the engine checks every state, it means
that on average the time taken for the engine to enact that
change state under suitable conditions is increased by 50%,
simulating a reaction time element. Furthermore, these random
number checks were subject to further random variation; a
high probability of success would mean the move would be
used more quickly and frequently, while a lower chance would
mean the move was available, but often neglected in favour of
alternatives. Randomising these factors in an Al has numerous
benefits with regards to Al quality. If the character can favour
moves, it can be seen to have a “play style”, and if it has
variation in its timing, it can be seen as more “human” in its
ability to react to the game world.

B. Definition of a fitness function

In order to evaluate whether a generated Al is performing
well, a fitness function must be defined. The system chosen
would need to be robust, designed to provide a comparative
evaluation of ability and be capable of functioning in an envi-
ronment where new entities are added or removed frequently.
It should also allow for variance in individual performance,
producing results over many matches rather than relying on a
single Boolean win/loss performance condition as the basis of
its rankings. This is due to the fact that testing a fighting game
Al character for competence is a more difficult process than
simply applying the results of a deterministic equation. The
matches themselves are not solely dependent upon the actions
of one player; the reactions of the second player also heavily
contribute to success or failure. In addition to this, the actions
of the characters are randomised and so each bout between
any given pair of characters will be different.

For the reasons stated above, the ELO system was selected.
This ranking system is currently used by the United States
Chess Federation (USCF) for worldwide ratings of player
skill. It has also been adopted by many popular competitive
multiplayer games such as Backgammon, Go and Scrabble,

http://dx.doi.org/10.1109/TCIAIG.2016.2642158

and to videogames across several genres, including but not
limited to League of Legends, Counterstrike and Pokemon,
with some variations in their implementations. The ELO
system works upon the principle that the performance of a
given player in any given match is a random variable within
a normal distribution, and that the overall rating of a player
needs to take into account the skill of the opponent as well
as whether a win or lose outcome is reached. An equation
is applied to current ratings to predict the probability of one
player securing a win against the other. The results of this
equation are then used to calculate how many points will
be added to the rating of the winner and how many will be
subtracted from the rating of the loser. In order to calculate the
expected score of a player the following formulas are used:

1
Bp1 = 1 + 10(Rr2—Rp1)/400 (D
- 1
Epz2= 1 + 10(Rp1-Rp2)/400)

P1 and P2 corresponding to player one and player two and R1
and R2 to their corresponding current ratings. After a match
is played between the two players, the ratings are adjusted by
an amount proportional to the difference between the expected
score and the actual result. The formula used is:

Rpy = Rpy + K(Spy — Ep) 3)

where K is a factor that controls the strength of the adjustment
and S is a Boolean indicating a win or a loss. These are the
standard ELO formulae. We have used a K factor of 50 which
is accepted as a reasonable value when the ratings are not
already well established.

The initial score given to all characters after creation is set
to 1000. Next, a set of matches is carried out to find their actual
ratings. A ranking of 1000 would remain the average rating
regardless of how many matches were played. The stronger
Al characters would be expected to achieve a rating above
1000 whilst the weaker ones would be below 1000. For each
of the generations of the evolutionary process, this process is
repeated but any characters that are retained unchanged will
start from their existing rating.

In order to define how many matches a character should play
in order to arrive to a realistic score in comparison to other
characters within the same generation, a set of experiments
were carried out. First an initial population of 30 individuals
was created, setting their initial ranks to 1000. A round robin
tournament was then performed, each individual playing a
total of 29 matches. The change in the rank is shown in
Figure 2. It can be observed that after the first 5 matches,
is difficult to identify good players from poorly performing
ones. Somewhere between match 10 and match 15 a consistent
pattern starts to emerge.

After the first round robin, two more round robins were
performed to observe if there were any further changes in the
scores. Results are shown in Figure 3.

As it can be seen, most of the individuals show a reasonably
stable score after 30 matches, with some exceptions. A second
experiment was carried out by taking only two individuals

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at

1600 T T
Top Tier Individual —+—

Middle Tier Individual —>—

Middle Tier Individual —*—

1500 h -V
Low Tier Individual —&—

T

1400

T
!

1300

T
!

1200

1100

ELO Rating

1000 F

900

800 B

700 B

15
Round Robin Match
Fig. 2. ELO rating of four individuals during a first round robin. The top
tier individual corresponds to the best individual so far in the league. Middle
tier individuals are positioned in the middle of the league table. The low tier
individual is the worst so far in the league.

1600 T

Top Tier Individual ——
Middle Tier Individual —<—
Middle Tier Individual —*—

1
s00 Low Tier Individual —&—

T
!

1400

T
!

1300

T
!

1200

1100

ELO Rating

1000 s
900

800

700

600 | | | | |
40 50
Round Robin Match

90

Fig. 3. ELO rating of four individuals during 3 round robin tournaments.
The top tier individual corresponds to the best individual so far in the league.
Middle tier individuals are positioned in the middle of the league table. The
low tier individual is the worst so far in the league.

to allow us to observe how the win ratio would evolve over
a larger number of matches. Two randomly selected players
from the previous 30 were chosen and set to play 90 matches.
Figure 4 shows how the percentage of matches won changes
and eventually stabilises.

Based on these results, it was then decided to set the number
of matches for each player per generation to 30.

Next, we needed to define the way the opponents for those
matches were to be selected. In later generations some of the
players will already have a rating because they have been
carried over unchanged from an earlier generation (see Section
C below). Because we needed to keep the total number of
matches per player down to 30, we could not hold a full round
robin tournament. Instead, the population was grouped into
three approximately equal divisions. The elite players from
earlier generations were placed together to enable their relative
rating to be refined further. Each individual was set to play a
match against a random opponent within the division. After

http://dx.doi.org/10.1109/TCIAIG.2016.2642158

100 T T
Individual A ——
Individual B —»—

90

80 -

70 - 1

50 - B

40 p

Percentage Win Rate [%]

20 1

90
Match

Fig. 4. Percentage of games won between two players during 90 matches.

each match the ratings were re-calculated, new divisions were
created and the process was repeated. After 30 matches the
ratings were used to sort the individuals into fitness order to
facilitate the selection process as described below.

C. Defining a selection method

The algorithm uses three parameters in order to create
each new generation; one to select the number of individuals
that will survive (elitism), a second one to determine the
number that will be created by crossover and a third one to
determine the number of randomly created new individuals.
The randomly created individuals will keep some diversity in
the population. The elitism will allow the individuals with
high ranking to survive. Also, highly ranked individuals will
be used to create new individuals in future generations by
crossover. These parameters can be set to different values
and only an experimental process would allow to determine
which are the most adequate. For the purposes of obtaining
some preliminary results, these were set to 5% for elitism,
5% for new randomly generated individuals and 90% for new
individuals from crossover and mutation.

To determine which individuals will survive and which ones
to select for crossover, the population is first sorted by rating
following the matches performed for the fitness re-calculation.
After sorting, the percentage of individuals to survive will
be taken from the “league table” starting from the top and
copied to what will become the new population. The new
individuals created by crossover and mutation are generated
by randomly selecting two parents from the top third of the
population. Each pair of randomly selected individuals are
used to generate two new ones. Mutation is applied with a
very low probability to the newly generated individuals and
then they are integrated to the new population. Finally, in
a third step, the set of new randomly generated individuals
are added to the new population. Once the new population is
complete, it replaces the previous one.

D. Genetic Operators

The use of genetic operators is essential for the evolutionary
process as it will allow the creation of fitter individuals. This

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at

Evolution

["Sort Population !

[»tgy_El-Q_Bgﬁr}g___;é Initialisation
NEW Population Creation
of initial
ELO population
Tournament

5 Creation of new E
RANDOM Individuals|

[IRAAA AL el i

Creation of new
individuals by crossver
and mutation

)

M.U.G.E.N. Engine

Fig. 5. Illustration of the GP implementation and its interaction with the
M.U.G.E.N. engine.

is achieved by extracting and carrying the good aspects of
current individuals into future generations. The crossover is
performed by selecting genetic material from two individuals
and combining them to generate a new one. For this applica-
tion in particular, the terminals, which correspond to the blocks
or moves of the characters, are selected randomly from each of
the parents. For example, a first child could be created from
two parents with four terminals each by randomly selecting
terminals 1, 2 and 4 from the first parent and terminal 3
from the second. Conversely, the second child would possess
terminals 1, 2 and 4 from the second parent and terminal 3
from the first.

As mentioned previously, the order in which terminals are
located in the file will impact the performance of the Al. For
this reason, the implementation of the mutation was carried
out by taking the newly generated individual and randomising
the order of the terminals. As in any other application of
GP, mutation is a parameter to be determined experimentally.
although the general approach is to set it to a small value. The
next section will present more detail on this aspect.

Because of the way these genetic operators work neither
the number of terminals nor their internal complexity can
increase. Consequently the common problem that exists in
genetic programming of overcomplex solutions cannot arise
here.

An illustration of the GP approach for Al character creation
is given in Figure 5. It can be observed that there is a
continuous interaction between the GP and the game engine as
information is gathered from every match in order to calculate
the fitness of each individual at each generation. The process
stops after a fixed number of generations.

V. EXPERIMENTS AND DISCUSSIONS

The implementation described in the previous section had
two main objectives. First, to be able to construct Al characters
using an evolutionary approach, where the expertise of the
game developer was not needed. The creation of Al that could
beat the default Al provided by the M.U.G.E.N. engine would
be considered a success. The second objective was to develop

http://dx.doi.org/10.1109/TCIAIG.2016.2642158

TABLE I
GP PARAMETERS WHICH WERE USED FOR THE INITIAL SET OF
EXPERIMENTS

Parameter value

Number of Matches for ELO Rating 30

Number of Divisions and Size 3 divisions, 33% of the
population each

Elitism 5%
New Individuals by Crossover 90%
New Random Individuals 5%
Mutation Probability 3%

an Al character that could demonstrate some level of strategy
that could be engaging and satisfying for the human player.

A. Initial Validation of the Technique

As in other machine learning techniques, the quality of
the results of the GP approach and the speed with which
they are produced may be affected by the values of the input
parameters. Given the random nature of the process it is also
possible that a particular set of results could be good or bad
by pure chance. The initial choice of parameters is based on
previous experience of similar systems and the need to produce
results in a reasonable time. A size of 100 characters was
established as a starting number that could be further changed
if needed depending on the results. To ensure that the results
were repeatable, five runs using this size were executed for 30
generations, with a starting mutation rate of 3%. The rest of
the parameters that were set for all runs are shown in Table I.

From these initial runs, it was important to make sure that
the evolutionary process was actually creating characters with
better performance than the ones created randomly at the start
of the process. Our ELO system cannot be used to judge the
performance of one generation versus another. This is because
all the newly generated players are injected into the system
with an initial default rating of 1000, thus pulling the average
rating of the whole generation back towards that value.

To ascertain how the performance was changing from one
generation to another, another run was made, but this time
all new characters of each generation (excluding the ones
that survived from previous generations) were matched up
against a constant set of 30 elite players obtained from the
final generation of the original runs. These matches were
completely separate from the matches played by the characters
to calculate their ELO as part of the evolutionary process,
and did not affect that process. Figure 6 shows the average
percentage win rate of new characters through time when
matched against the same group of elite players.

The figure shows how there is an immediate increase of the
winning percentage in the first few generations up to genera-
tion 8. Then the population average win rate increased more
slowly, reaching a maximum average of 48% at generation
30. These results indicated that fitter characters were being
created by the process. To allow multiple runs to be made
in parallel we used standard university laboratory personal
computers, which are available in large numbers. On these
machines runs with 100 individuals take on average 75 minutes
per generation. This means that a 30 generation would take

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at

50% T T T T T

45%

IS
N
*

35%

@
N5
B

Average Win Percentage [%]

25%

20% L L L L L
5 10 15 20 25 30

Generation

Fig. 6. Average win percentage of new players of each generation matching
them against the same “elite” group.

around 37 hours to complete and a 100 generation run would
take approximately 125 hours.

Once the evolutionary process was proved to be working
well with our initial set of parameters, further runs were
made with different population sizes (100 and 300), number of
generations (30 and 100) and mutation rates (0%, 1%, 3%, 6%,
15% and 20%). Initial testing of the characters generated from
populations of 300 did not show any siginificant improvement.
Since these runs were very time consuming we decided not to
pursue the larger populations further and hence they are not
included in the results presented here. The best performing
characters from the final generation of each run then formed
the set that were taken forward for further testing against
manually created Al characters and human players.

There are several types of result that could be established.

1) How good a player each of these characters was in
absolute terms against other Al characters.

2) How effective these characters were in terms of their
ability to win against a human opponent.

3) How these characters were perceived by a human oppo-
nent in terms of difficulty and satisfaction.

4) The extent to which these results depend on the param-
eters used for the genetic algorithm process.

To this end we ran the following tests:

1) Round robin tournaments between our Al characters and
the standard Al characters mentioned earlier.

2) Human tests, involving a group of students who ex-
pressed an interest in playing fighting games. The total
number of students participating was 27. These players
were of varying abilities, which may have affected their
results and perceptions. However we did not have a large
enough number to segregate them on that basis and still
retain a statistically significant result.

B. Testing Against standard Al Characters

We assessed the playing abilities of the various Als using
round robin tournaments. These were all assessed using win
percentage rather than ELO. In a full round robin there is no

http://dx.doi.org/10.1109/TCIAIG.2016.2642158

80 T T T T T T T
GA Characters o
KFMStd =
KFMCapCom »
70 KFMVism v ~
WeakKFM o
60 B
. [} .
.
5 R RN $: g°e
.
2 sof . LI B . |
k] .
< N
&
x 40 B
w
ke
3 30+ R
2
kol
it
20 1
10 B
.
-
0 L L L L L L L
0 10 20 30 40 50 60 70 80

Result for Single Round Robin

Fig. 7. Average win percentage of GA players and manually generated players
in a 15x round robin tournament plotted against their win percentage in a
single round robin.

advantage in using ELO, and indeed it has the disadvantage
that the results can be affected by the order of the matches.
Some trial tournaments were held to determine the choice of
characters to be used for the human testing and to obtain
some initial information about the effect of different parameter
choices. Subsequently the characters that had been chosen for
human testing were given a more exhaustive test by repeating
the complete round robin 15 times and accumulating the
results. The set of characters used for this test consisted of
41 GA characters plus the following four manually created
characters: Kung Fu Man (KFMStd) which is the default Al
provided by the engine. Capcom Kung Fu Man (KFMCap),
which possesses all the abilities of KFMStd as well as new
ones which are present in a variety of Capcom games such
as power charge, fireballs, knee kick super combo. The V-
ism variant (KFMVism) which is also based on KFMStd
but has one extra ability, the custom combo attack, which is
performed much faster than in regular gameplay. Finally the
Weak Kung Fu Man (WeakKFM) is a character that performs
a very defensive strategy against any player.

The choice of these players was determined by the following
considerations:

1) To maintain objectivity we should use only Als that had
been generated by others.

2) The Als should not have abilities such as super fast
reactions that can make a player impossible to beat. In
other words they should obey similar constraints to those
that we set ourselves when setting out the framework
for generating the GA characters. This also has the
advantage that such players would not stand out too
obviously under human testing.

The GA characters used had a variety of different mutation
rates (from 1% to 20%). Some characters were created over
30 generations whilst others used 100 generations. The results
of this exercise are shown in Figure 7.

The results of the multi-round robin are plotted on the y axis
against the single round robin on the x axis. This test shows
a convergence towards the mean for all of our GA generated

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at

characters as they can be seen to be much more tightly grouped
in the y axis than the x axis. This indicates that the actual
playing strengths of the different GA characters are very
similar. To confirm this we computed the standard deviation
of the results for the GA characters only for each individual
round robin and also for the average of all the tournaments.
The average standard deviation for an individual round robin
was 7.00. If there were no intrinsic differences between the
characters one would expect the standard deviation to fall
away like 1/v/N. In that case the standard deviation of the
averaged results for all 15 tournaments would be 1.81. The
actual result was only slightly higher at 2.15. Consequently
we conclude that the playing strengths of the GA characters
cannot have been affected to any great extent by changing
the mutation rate since different values of this parameter were
represented in the characters tested. For the same reason it
is clear that runs longer than 30 generations are not needed.
The manually created characters that we tested were all shown
to be weaker in the initial test and this result was confirmed
by the exhaustive test as can be seen from the graph. In the
15x round robin KFMStd scored 6%, WeakKFM scored 0%
and KFMVism scored 3%. Only KFMCap achieved a result
near to that of our GA characters (45%). The weakest GA
character scored 48% and the strongest 58%. These results
raised an issue as to whether the GA was in fact converging
on a particular pattern every time, however examination of
the code within the GA generated characters showed that they
were in fact quite different.

Since the GA characters used different generation counts
and mutation rates we concluded that the limiting factor is
the choice of triggers and responses that we included, not
the GA parameters. The overall structure of the M.U.G.E.N.
engine may also restrict the possibilities. We checked this
by doing runs using zero mutation without adding the new
random individuals at each generation. At an earlier stage we
also performed tests on characters from runs with a larger
population size (300). None of these changes had a big enough
effect on the outcomes to suggest that these characters would
not also converge towards the mean in a longer test. From
this we concluded that the initial random population contains
sufficient variation for the evolutionary process to reach its
endpoint without further injection of randomness.

It is not surprising that the GA characters had all achieved
roughly the same playing strength as that is the likely result of
any evolutionary process. Provided that the mechanism works
at all, the details of the process mostly affect the speed with
which it happens. Thus the end result is only dependent on
the fitness function.

C. Testing Against Human Players

During human testing the student volunteers initially played
some matches against each other to familiarise themselves with
the game mechanics without exposure to any particular Al
player. They then played against each of 11 Al opponents (the
M.U.G.E.N. set up allows 12 characters to be present of which
one must be the human player). Of these opponents one was
always the standard Al issued with the game, one or two were

http://dx.doi.org/10.1109/TCIAIG.2016.2642158

chosen from the other manually created Als and the remainder
were selected from our GA created characters. A total of 41
GA generated characters were used, selected from runs with a
variety of parameter values. To produce statistically significant
results for individual Als some characters were more heavily
tested. Extra tests were done later to improve the statistical
base further, and in these sessions two existing characters
were included along with some new ones. The students were
unaware of which characters were which and were free to play
their opponents in any order they chose. Each round was a best
of three bouts. The students were asked to play two rounds
against each opponent, running through the complete set and
then repeating. After each round they were asked to record the
result and give a score for the perceived difficulty of playing
against the opponent and also for the entertainment value or
satisfaction of that opponent. These difficulty and satisfaction
scores were on a scale of 1(worst)-5(best).

Not all students completed two rounds though others came
back more than once and ended up playing up to four rounds
against a particular opponent. All the win/loss scores were
averaged and converted into a single number between O and
1, where a 1 would indicate that the Al won every individual
bout. In every case where the student entered multiple assess-
ments of difficulty or satisfaction for a character, these scores
were also averaged before further processing. Thus, at this
stage of the process, we had three numbers for each student-
Al combination.

All three types of scores were then normalised for each
student by subtracting the score achieved by the standard Al
The scores could therefore be positive or negative, although
in practice most were positive because of the poor relative
performance of the standard Al. We did this because different
students tested different Als so otherwise the results could
have been distorted by some students being more generous
with their ratings than others.

We decided to approach the statistical analysis of the human
based results by using randomised simulations.

The most obvious way of generating the simulated data
would be to randomise the scores, perceived difficulty rat-
ings and satisfaction ratings by replacing them with random
numbers in the specified range. However this then leaves
the question of what distribution should be used for these
numbers. Ideally the distribution should match that of our
actual data. The simplest way to achieve this is to retain the
scores and ratings that each student generated, but allocate
them randomly to the Als. This would mean that the average
win/loss performance of each student and the ’calibration’ or
emphasis that each gave to difficulty and satisfaction would
be retained.

Each simulated experiment was generated by taking the
results of the actual experiment and randomly re-ordering
the labels of the Als. The random re-assignment was done
separately for each student. The process is illustrated by Table
II, which shows how the random simulation worked. (The data
shown here is just to illustrate the method, it is not actual data.)

It can be seen from the table that the content of the
columns labelled AI (shaded) have been randomised whilst
the remaining columns are unaltered. Note also that there is

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at

TABLE II
RANDOM SIMULATION METHOD

Experimental Data

Student 1 Student 2 Student 3
Al Sc Df St Al Sc¢c Df St Al Sc Df St
1 0.1 3 2 1 0 2 2 1 02 4 2
2 0.2 4 4 2 0.1 2 4 2 0.3 4 2
3 0.15 4 2 3 0.2 5 3 3 0.1 5 5
4 04 4 1 4 0.2 5 1 4 0.6 5 2

Randomised Simulation 1

Student 1 Student 2 Student 3
Al Sc Df St ATl Sc Df St AI Sc Df St
2 0.1 3 2 4 0 2 2 4 0.2 4 2
3 0.2 4 4 2 0.1 2 4 3 0.3 4 2
4 0.15 4 2 3 0.2 5 3 1 0.1 5 5
1 0.4 4 1 1 0.2 5 1 2 0.6 5 2

Randomised simulation 2

Student 1 Student 2 Student 3
Al Sc Df St Al Sc¢ Df St Al Sc Df St
3 0.1 3 2 3 0 2 2 3 0.2 4 2
4 0.2 4 4 1 0.1 2 4 4 0.3 4 2
2 0.15 4 2 2 0.2 5 3 1 0.1 5 5
1 0.4 4 1 4 0.2 5 1 2 0.6 5 2

Al ID number of the Al that was tested

Sc: Score of the Al against the human opponent
Df: Perceived difficulty

St: Satisfaction

TABLE III
SCORE, DIFFICULTY RATING AND SATISFACTION RATING FOR THE
VARIOUS AIS RELATIVE TO KFMSTD

Result No. of Score Difficulty Satisfaction
for results (p value) (p value) (p value)
GA Av.* 263 0.19 (0.0%*) 1.31 (0.0%*) 1.40 (0.0%*%)
KFMCap 16 0.019 (0.42) 0.55 (0.065) 0.75 (0.0047)
KFMVism 18 0.0037 (0.49) -0.18 (0.32) -0.11 (0.37)
Weak kfm 10 -0.033 (0.38) -0.33 (0.25) 0.25 (0.31)
GA 01 14 0.29 (0.00077) 1.09 (0.0051) 1.41 (0.00022)
GA 02 32 0.19 (0.002) 1.39 (0.0%*) 1.71 (0.0%%)
GA 03 17 0.17 (0.017) 1.01 (0.0017) 1.47 (0.00002)
GA 04 17 0.32 (0.00005) 1.51 (0.00001) 1.53 (0.00001)
GA 07 14 0.21 (0.016) 0.96 (0.0063) 0.66 (0.016)
GA 08 14 0.19 (0.027) 1.41 (0.00007) 1.13 (0.00005)
GA 17 17 0.16 (0.037) 1.63 (0.0%**) 1.26 (0.00001)
GA 45 13 0.26 (0.0028) 1.63 (0.00004) 0.96 (0.001)
GA 46 13 0.24 (0.0059) 1.60 (0.00003) 1.19 (0.0001)

* A grand total of 41 GA created characters were tested. The number of tests
varied, most being tested 3 or 4 times. The results for characters tested 10
times or more are shown explicitly. The average quoted here is taken over all
of the characters but is weighted to give equal significance to each test.

*% In these cases the random process did not succeed in finding an event that
matched or beat the measured data so p has an upper bound of approximately
0.00001.

a separate Al column for each student volunteer. For each
result we counted the number of times, within the 100,000
simulations, for which the value was more extreme (ie further
away from the expected average value) than the actual result.
It is this count, expressed as a fraction of 1, that is reported
as the p value in the results that follow.

The scores, perceived difficulties and satisfaction ratings for
the various Als are shown in Table III. Note that because
KFMStd has been used as a fixed point to normalise all
the other Als it is not shown in the table. The original raw
values for KFMStd were: Win rate 0.028, Difficulty 1.84,

http://dx.doi.org/10.1109/TCIAIG.2016.2642158

TABLE IV
MUTATION RATE AND NUMBER OF GENERATIONS USED TO CREATE THE
VARIOUS AIS PRESENTED IN TABLE III.

Character ~ Mutation No. of Generations
GA 01 0.03 30
GA 02 0.03 100
GA 03 0.03 100
GA 04 0.03 100
GA 07 0.01 100
GA 08 0.01 30
GA 17 0.06 100
GA 45 0.15 100
GA 46 0.20 100
TABLE V

SCORE, DIFFICULTY RATING AND SATISFACTION RATING FOR THE
VARIOUS AIS RELATIVE TO KFMCAP

Result Score Difficulty Satisfaction
for (p value) (p value) (p value)

GA Av - KFMCap 0.17 (0.012) 0.77 (0.0093) 0.65 (0.0072)
GA 02 - KFMCap 0.17 (0.034) 0.84 (0.016) 0.96 (0.003)
GA 04 - KFMCap 0.30 (0.0033) 0.97 (0.015) 0.78 (0.018)
GA 07 - KFMCap 0.19 (0.026) 0.42 (0.14) -0.089 (0.38)
GA 17 - KFMCap 0.14 (0.082) 1.09 (0.0041) 0.51 (0.063)

Satisfaction 2.19. As with the AI versus Al test, the GA
generated characters comfortably beat the standard Al on
all categories and the associated p values are all below the
commonly used threshold of 0.05. Detail of the parameter
setting for the creation of these Al are presented in Table
V.

Of the manually created Als, only the Capcom character
scored well enough to be a noticeable improvement on KFM-
Std. Given the p values it is apparent that even this advantage is
only really valid in the satisfaction category. However, since
its scores are higher than those for KFMStd we have also
calculated relative scores and p values of the best and worst
GA characters versus KFMCap.

As can be seen from Table V most of the GA characters are
better than KFMCap on most categories. The main exception
was GAO7 which was inferior on satisfaction, although that
result is not statistically significant. A few other results have
p values which are too high for a conclusion to be drawn
with confidence. These are GA17 on satisfaction, GAO7 on
difficulty and GA17 on score.

Thus the results show that in general terms the GA created
characters are superior to the manually coded Als that were
tested.

It is interesting to consider whether score, perceived diffi-
culty and satisfaction are all effectively measuring the same
thing. To determine this we calculated the correlations between
score, perceived difficulty and satisfaction. This was done
twice, once for all the characters and then again with only
the GA characters included. The results are shown in Table
VL

When all the characters are included the results show a
strong correlation between all three quantities. However when
only GA characters are included, the correlations are weaker
and the correlation between score and satisfaction is espe-

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at

TABLE VI
CORRELATION BETWEEN SCORE, DIFFICULTY AND SATISFACTION

Measured All Characters ~ GA Characters only
Correlation (p value) (p value)
Score vs Difficulty 0.75 (0.0%) 0.56 (0.003)
Difficulty vs Satisfaction 0.79 (0.0%) 0.52 (0.008)
Score vs Satisfaction 0.6 (0.001) 0.28 (0.11)

* In these cases the random process did not succeed in finding an event that
matched or beat the measured data so p has an upper bound of approximately
0.00001.

cially weak and consequently not statistically significant. Our
interpretation of this is that the students disliked very weak
players but when evaluating players of roughly equivalent
strength other factors came to the fore. When considering GA
players only it seems that some students equated score with
difficulty (correlation 0.56) whilst others associated difficulty
with satisfaction (correlation 0.52). However relatively few can
have made both associations because otherwise the correlation
between score and satisfaction would have been greater than
the recorded value of 0.28.

D. Impact of Genetic Algorithm Parameters

The final issue that we considered was the question as
to whether the parameters used in the genetic programming
algorithm would have an effect on the performance of the
characters against human players. The convergence towards
the mean observed in Figure 7 suggests that we may not be
able to establish such a connection. However we have analysed
our data to see whether the differences between different GA
characters are big enough for these effects to be observable.

We therefore calculated the difference between the score
of each individual GA character and the mean of all the
remaining GA characters. The results are shown in Table VII.

The first thing to note is that in most cases the difference
from the mean is clearly not statistically significant. However
there are a few cases that have low enough p values to require
discussion. Only one score difference has a low p value, that
is 0.03 for GAO4. In the difficulty category all the p values
are too high for any statistical significance. In the satisfaction
category GAO7 appears to be below average with a low p
value. GA45 is also below average, with a p value that is
marginal, whilst GA02 is above average with a similar p value.
These values do seem to be significant, however there are not
enough of them to support a further analysis of the effect of the
GA parameters. In addition, we must also be cautious because
these instances have been located by searching through a group
of 10 candidates and hence one would expect at least one p
value of around 0.1 to arise from pure chance every time.
To make sure of this result we did calculate the correlations
between the GA parameters and the human test results. None
of the correlations had a magnitude greater than 0.1 and all
of the p values were clearly above the generally accepted
threshold of 0.05 for a result to be considered statistically
significant.

http://dx.doi.org/10.1109/TCIAIG.2016.2642158

TABLE VII
DIVERGENCE FROM THE MEAN OF DIFFERENT GA CHARACTERS

Result Score Difficulty Satisfaction
for (p value) (p value) (p value)

GA 01- GA Av. 0.1 (0.12) -0.23 (0.27) 0.0081 (0.5)
GA 02- GA Av. -0.005 (0.48) 0.09 (0.36) 0.35 (0.06)
GA 03- GA Av. -0.03 (0.36) -0.32 (0.14) 0.07 (0.4)
GA 04- GA Aw. 0.14 (0.03) 0.22 (0.24) 0.14 (0.32)
GA 07- GA Av. 0.016 (0.43) -0.37 (0.15) -0.8 (0.004)
GA 08- GA Av. -0.008 (0.48) 0.1 (0.4) -0.29 (0.16)
GA 17- GA Av. -0.035(0.34) 0.34 (0.15) -0.15 (0.29)
GA 45- GA Av. 0.07 (0.22) 0.34 (0.19) -0.46 (0.06)
GA 46- GA Av. 0.05 (0.28) 0.30 (0.22) -0.22 (0.23)

VI. CONCLUSION

We have shown that genetic programming can be used
to create Al characters for the M.U.G.E.N fighting game.
Minimal human intervention is required in the process and
unlike other techniques the method does not require any
modification of the game engine itself.

Testing the resulting characters in terms of performance
against publicly available hand coded AI characters showed
that the characters produced by the evolutionary process were
significantly better than hand coded ones. KFMCap was the
only one that achieved a result near to that of our GA
characters.

Further testing with human players showed that, although
the GP characters were only able to win a few matches, they
still outperformed the hand coded Al in terms of wins and
were also rated more highly for perceived difficulty and user
engagement. The correlation observed between satisfaction
and perceived difficulty scores among all Al characters suggest
that, in general, human players tend to dislike very weak Al
characters. However, when they are presented with characters
that are roughly equivalent in strength, their perception varies.
This suggests that there are other factors that may determine
the perception of the human player.

All of these results were seen to be insensitive to the
population size and mutation parameters of the algorithm.
The analysis of the results suggest that the performance of
the characters is determined by the choice of triggers and
responses used in the creation process and that any additional
randomness in the evolutionary process (e.g. new random
characters, mutation operator) does not affect the effectiveness
of the algorithm.

The practical implications of applying a GP approach to
generate Al are that substantial savings could be made in
Al generation by utilising GP to ’grow’ Al characters for
games rather than directly implement them by hand. Another
advantage is that the method automatically produces a large
set of different characters.

Future work will be focused on carrying out more extensive
experimentation with human players and investigating if new
adaptations to the GP approach could improve the present
results by, for example, changing the natural selection rules
or the tournament design. Increasing the range of triggers will
also be studied to assess its impact on how quickly a more
complicated logic can emerge.

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at

ACKNOWLEDGMENT

The authors would like to thank Adam Slack, the President
of the Nottingham Trent University Developers Society, the
computing students from Nottingham Trent University for
their participation and feedback during the Al testing and to
Dr. Caroline Langensiepen and Wenge Xu, for reviewing the
manuscript and providing some helpful suggestions.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

(17]

REFERENCES

J. E. Laird, “Using a computer game to develop advanced ai,”
Computer, vol. 34, no. 7, pp. 70=75, Jul. 2001. [Online]. Available:
http://dx.doi.org/10.1109/2.933506

M. Buro and T. M. Furtak, “Rts games and real-time ai research,” in In
Proceedings of the Behavior Representation in Modeling and Simulation
Conference (BRIMS, 2004, pp. 51-58.

G. N. Yannakakis and J. Hallam, “Towards optimizing
entertainment in computer games,” Appl. Artif. Intell., vol. 21,
no. 10, pp. 933-971, Nov. 2007. [Online]. Available:
http://dx.doi.org/10.1080/08839510701527580

S. Bakkes, C. T. Tan, and Y. Pisan, “Personalised gaming: A motivation
and overview of literature,” in Proceedings of The 8th Australasian
Conference on Interactive Entertainment: Playing the System, ser. 1E
’12. New York, NY, USA: ACM, 2012, pp. 4:1-4:10. [Online].
Available: http://doi.acm.org/10.1145/2336727.2336731

C. Fairclough, M. Fagan, B. M. Namee, and P. Cunningham, “Research
directions for ai in computer games,” in Proceedings of the Twelfth Irish
Conference on Artificial Intelligence and Cognitive Science, 2001, pp.
333-344.

B. S. E. Ortiz, K. Moriyama, K.-i. Fukui, S. Kurihara, and
M. Numao, “Three-subagent adapting architecture for fighting
videogames,” in Proceedings of the 11th Pacific Rim International
Conference on Trends in Artificial Intelligence, ser. PRICAI’10. Berlin,
Heidelberg: Springer-Verlag, 2010, pp. 649-654. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1884293.1884361

B. H. Cho, S. H. Jung, Y. R. Seong, and H. R. Oh, “Exploiting
intelligence in fighting action games using neural networks,” IEICE
- Trans. Inf. Syst., vol. E89-D, no. 3, pp. 1249-1256, Mar. 2006.
[Online]. Available: http://dx.doi.org/10.1093/ietisy/e89-d.3.1249

T. Graepel, R. Herbrich, and J. Gold, “Learning to fight,” Proceedings
of the International Conference on Computer Games: Artificial Intelli-
gence, Design and Education, pp. 193-200, 2004.

D. Kehoe, “Designing artificial intelligence for games,”
https://software.intel.com/en-us/articles/designing-artificial-intelligence-
for-games-part-1, June 2009, Accessed: 2015-08-13.

J. D. Bonet and C. Stauffer, “Learning to play pac-man using incremental
reinforcement learning,” in Proceedings of the Congress on Evolutionary
Computation, 1999.

S. Samothrakis, D. Robles, and S. Lucas, “Fast approximate max-n
monte carlo tree search for ms pac-man,” Computational Intelligence
and Al in Games, IEEE Transactions on, vol. 3, no. 2, pp. 142-154,
June 2011.

G. Danzi de Andrade, H. Pimentel Santana, A. W. Brotto Furtado, A. R.
Gouveia Do Amaral Leitao, and G. Lisboa Ramalho, “Online adaptation
of computer game agents: A reinforcement learning approach,” in II
Workshop de Jogos e Entretenimento Digital, 2003, pp. 105-112.

A. Ricciardi and P Thill, “Adaptive ai for fighting
games,” http://cs229.stanford.edu/proj2008/RicciardiThill-
AdaptiveAlForFightingGames.pdf, 2008, Accesed on 2015-08-15.

F. Lu, K. Yamamoto, L. H. Nomura, S. Mizuno, Y. Lee, and R. Tha-
wonmas, “Fighting game artificial intelligence competition platform,” in
Consumer Electronics (GCCE), 2013 IEEE 2nd Global Conference on.
IEEE, 2013, pp. 320-323.

K. Yamamoto, S. Mizuno, C. Y. Chu, and R. Thawonmas, “Deduction of
fighting-game countermeasures using the k-nearest neighbor algorithm
and a game simulator,” in Computational Intelligence and Games (CIG),
2014 IEEE Conference on. 1EEE, 2014, pp. 1-5.

'W. Thunputtarakul and V. Kotrajaras, “Data analysis for ghost ai creation
in commercial fighting games.” in GAMEON, 2007, pp. 37-41.

S. S. Saini, “Mimicking human player strategies in fighting games using
game artificial intelligence techniques,” Ph.D. dissertation, Loughbor-
ough University, 2014.

(18]

[19]

[20]

(21]

[22]

[23]

[24]

[25]

[26]
[27]

(28]

http://dx.doi.org/10.1109/TCIAIG.2016.2642158

Y. Miche, M.-H. Lim, A. Lendasse, and Y.-S. Ong, “Meme
representations for game agents,” World Wide Web, vol. 18, no. 2, pp.
215-234, 2015. [Online]. Available: http://dx.doi.org/10.1007/s11280-
013-0219-3

Y. Hou, L. Feng, and Y. S. Ong, “Creating human-like non-player game
characters using a memetic multi-agent system,” in I[EEE WCCI-1JCNN,
2016.

C. S. Ho, Y.-S. Ong, X. Chen, and A.-H. Tan, “Fame, soft flock
formation control for collective behavior studies and rapid games
development,” in Lecture Notes in Computer Science, 2012, pp. 258—
269.

J. Byrne, M. O’Neil, and A. Brabazon, “Optimising offensive moves in
toribash using a genetic algorithm,” in 16th International Conference on
Soft Computing Mendel 2010, 2010.

B. Cho, C. Park, and K. Yang, “Comparison of ai techniques for
fighting action games - genetic algorithms/neural networks/evolutionary
neural networks,” in 6th International Conference on Entertainment
Computing, 2007.

S. Luke et al., “Genetic programming produced competitive soccer
softbot teams for robocup97,” Genetic Programming, vol. 1998, pp. 214—
222, 1998.

S. M. Gustafson and W. H. Hsu, Layered learning in genetic program-
ming for a cooperative robot soccer problem. Springer, 2001.

Y. Azaria and M. Sipper, “Gp-gammon: Genetically programming
backgammon players,” Genetic Programming and Evolvable Machines,
vol. 6, no. 3, pp. 283-300, 2005.

A. Hauptman and M. Sipper, GP-endchess: Using genetic programming
to evolve chess endgame players. Springer, 2005.

J. R. Koza, Genetic programming: on the programming of computers by
means of natural selection. MIT press, 1992, vol. 1.

Elecbyte, “Mugen wiki: Category: Triggers,”

http://elecbyte.com/wiki/index.php/Category:Triggers, 2010, Accessed
on 2014-04-17.

G Martinez-Arellano received the MSc degree in
Computer Science from the Centro de Invetigacion
Cientifica y Educacién Superior de Ensenada (CI-
CESE) in Ensenada, B. C., México in 2007 and the
PhD degree in Computer Science from Nottingham
Trent University, Nottingham, UK in 2015. She
is currently lecturer in the School of Science and
Technology at Nottingham Trent University. Her
current research interests include machine learning,
forecasting, modelling and data mining.

Richard Cant received a First Class Honours De-
gree in Physics from the University of Manchester
in 1975. After completing Part III of the Mathe-
matics Tripos at the University of Cambridge in
1976, he undertook research in Theoretical Physics
at Imperial College, London. He was awarded a
PhD in 1980. He continued research in Theoretical
Physics as a Research Assistant at the University of
Manchester until 1982. For the following 9 years he
worked as a System Designer for Ferranti Computer
Systems in Stockport before returning to academic

life as a Senior Lecturer at the then Nottingham Polytechnic in 1991. His
current research interests centre around computer generated imagery and
artificial intelligence. A particular interest is the application of Al to games
including the automatic synthesis of virtual environments and the creation of
plausible AI characters.

David Woods graduated from Nottingham Trent University in 2014 with
First Class Honours in Computer Science. He also won the prize for the best
project.

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

