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Learning Constructive Primitives for Real-time
Dynamic Difficulty Adjustment in Super Mario Bros

Peizhi Shi and Ke Chen, Senior Member, IEEE

Abstract—Among the main challenges in procedural content
generation (PCG), content quality assurance and dynamic diffi-
culty adjustment (DDA) of game content in real time are two
major issues concerned in adaptive content generation. Motivated
by the recent learning-based PCG framework, we propose a novel
approach to seamlessly address two issues in Super Mario Bros
(SMB). To address the quality assurance issue, we exploit the syn-
ergy between rule-based and learning-based methods to produce
quality game segments in SMB, named constructive primitives
(CPs). By means of CPs, we propose a DDA algorithm that
controls a CP-based level generator to adjust the content difficulty
rapidly based on players’ real-time game playing performance.
We have conducted extensive simulations with sophisticated SMB
agents of different types for thorough evaluation. Experimental
results suggest that our approach can effectively assure content
quality in terms of generic quality measurements and dynamically
adjust game difficulty in real time as suggested by the game
completion rate.

Index Terms—Procedural content generation, machine learning,
content quality assurance, constructive primitive, dynamic difficulty
adjustment, real-time adaptation, Super Mario Bros.

I. INTRODUCTION

PROCEDURAL content generation (PCG) aims to gener-
ate game content automatically via algorithms [1], [2].

Recently, generating personalized game content has become an
active research area in PCG [3]. A variety of content adaptation
techniques have been proposed and applied to different game
genres ranging from platform games to first person shooter [3].
Among them, dynamic difficulty adjustment (DDA) that adapts
content difficulty for an individual player is a major strategy
for game content adaptation.

Super Mario Bros (SMB) is a classic 2D platform game [4],
which has become one of the most popular test beds for PCG
research [5], [11], [36]. In SMB, a player runs from the left
side of the screen to the right side, fights enemies, and rescues
the Princess Peach. SMB has a number of game elements
suitable for deploying PCG techniques for content adaptation,
e.g., enemies, coins, tubes and cannons. As a result, several
adaptive SMB level generators have been studied [6]–[11].

While substantial progresses have been made, there are still
several open problems in SMB content or level adaptation.
First, content quality assurance is still a fundamental issue in
SMB level adaptation since the low quality game content in-
evitably leads to negative gameplay experience [2], [12], [14].

The authors are with School of Computer Science, The Univer-
sity of Manchester, Manchester M13 9PL, United Kingdom (e-mail:
shipa@cs.manchester.ac.uk; chen@cs.manchester.ac.uk).

Filtering out the low quality content in personalized content
generation is extremely challenging as adaptive content often
has to be generated on-line. Next, the existing game adaptation
techniques can be generally divided into two categories: model-
free or model-based [3], [15]. In a model-free approach, player
model is established for adaptation based on human players’
gameplay data, e.g., playlog and controllable parameters in a
game, and their subjective feedback, e.g., affective states such
as “fun”, while player model in a model-based approach is
derived from psychological emotion theories, e.g., [18], [19]
and [20]. To the best of our knowledge, most of the existing
SMB adaptation methods fall into the model-free category and
model-based adaptation has yet to be investigated for SMB
level adaptation. In particular, the real-time model-based DDA
that the content difficulty is adjusted dynamically within a level
generation still remains unexplored in SMB level adaptation
research up to now.

Motivated by the learning-based PCG (LBPCG) framework
[14] where a quality evaluation function may be learned
from games/levels annotated by game developers, we recently
proposed an approach [21] for generating short game segments
of high quality, named constructive primitives (CPs), for SMB
based on a modified version of Infinite Mario Bros [5]. In this
approach, easy-to-design rules are first employed to remove
apparently unappealing game segments and a content quality
evaluation function working on CPs is then established via ma-
chine learning. This hybrid method would allow for addressing
the quality evaluation issue more effectively. Nevertheless,
this CP learning idea was neither investigated sufficiently nor
evaluated thoroughly in our previous work [21]. In addition,
our CP-based approach was only preliminarily applied to
online level generation to demonstrate its usefulness. Hence,
its potential still needs to be explored further.

In this paper, we further develop our hybrid CP gener-
ation idea with sufficient justification and thorough evalua-
tion. For model-based adaptation, we come up with a novel
performance-driven real-time DDA algorithm to explore the
potential of our CP-based generation idea by using SMB
as a test bed. We have thoroughly evaluated the quality of
our CPs via generic yet objective quality measurements and
a comparative study. Subsequently, the effectiveness of our
proposed CP-based DDA algorithm is thoroughly evaluated via
simulations with sophisticated SMB agents of different types.
Experimental results suggest that our data-driven evaluation
function effectively encodes multiple quality-related criteria in
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an implicit way and our model-based DDA algorithm working
on CPs yields favorable results in real-time adaptation.

The main contributions of this paper are summarized as
follows: a) the further development of our hybrid approach
to quality assurance of short game segments in SMB [21],
which lays the foundation for a new level generation approach
in different scenarios; b) a novel CP-based DDA algorithm for
real-time adaptation in SMB; and c) a thorough evaluation of
our hybrid approach to quality assurance and our CP-based
DDA algorithm via simulation.

The remainder of this paper is organized as follows. Sect. II
reviews the relevant works. Sect. III presents our approach to
generating CPs in SMB. Sect. IV describes our CP-based DDA
algorithm. Sect. V reports experimental results, and the last
section discusses remained issues and relates ours to previous
works.

II. RELATED WORK

In this section, we review the relevant works that motivate
our study presented in this paper.

Constructive PCG has been widely applied in adaptive SMB
level generation [6]–[9], [11], where human experts design a
set of constructive rules that can be converted into high-level
game parameters corresponding to concrete game levels. In
particular, there exist several constructive approaches in SMB
[8], [9], [11] that first generate game segments by exploring
the local properties and then merge segments to generate a
complete game level via a set of constructive rules. In general,
constructive rules were handcrafted with developers’ elaborate
knowledge on different content features and their remarkable
skills in rule formulation. While constructive rules may make
content adaptation easier, they have to ensure that generated
content is playable and appealing to individual players, which
heavily relies on the understanding of content space and
sophisticated knowledge/skills in rule formulation. To ensure
that generated content is playable and appealing to individual
players, the rule design is rather difficult especially when
the content space is complex. Unlike existing constructive
SMB generators, our work presented in this paper retains the
favorable properties of constructive generators but addresses
the content quality assurance issue in a different manner.

Dynamic difficulty adjustment (DDA) is a major technique
used in adaptive content generation where the difficulty of
content is dynamically adjusted to match an individual player’s
skill level and/or to optimize their cognitive/affective experi-
ence during gameplay [3], [15]. As described in Sect. I, DDA
can be carried out by either a model-free or a model-based
method [3], [15]. To the best of our knowledge, however, all
the existing SMB level adaptation methods [6]–[10] are model-
free; in other words, no model-based DDA has been studied
for SMB. Nevertheless, model-based DDA has been studied
widely in a variety of games, including real-time strategy
[23], prey/predator [22], fighting [27], role playing [25] and

car racing [26] games, especially for non-player character
(NPC) adaptation. In general, model-based DDA works on the
assumption that maximum gameplay enjoyment occurs with
the content of a moderate challenge [18]–[20], [22], and can
be carried out by different techniques such as evolutionary
algorithms (EAs), e.g., [22], [23], reinforcement learning (RL),
e.g., [25], [27], and their combination, e.g., [26]. In general,
EAs are capable of finding proper game content based on
given score metrics from large high-dimensional content space
[24] but less efficient in carrying out the real-time DDA due
to the population-based computation. In contrast, RL enables
a generator to make a rapid adaptation but is more suitable
for low-dimensional space exploration [24]. Some efforts [26]
have been made to exploit the synergy between EAs and
RL in a car racing game. Motivated by the existing model-
based DDA approaches and taking the nature of our CPs into
account, we employ RL to come up with a model-based DDA
algorithm for real-time adaptive SMB level generation. Here,
we emphasize that our algorithm works on game geometry
adaptation rather than NPC behavior adaptation studied in most
of existing model-based DDA approaches.

III. CONSTRUCTIVE PRIMITIVE GENERATION

In this section, we first describe our motivation and main
ideas. Then, we present our approach to learning constructive
primitives (CPs) in SMB.

A. Overview

Existing SMB level generators work on a huge content
space that contains all the complete procedural levels. As
there are an enormous variety of combinations among game
elements and structures at a procedural level, such a content
space inevitably leads to a greater challenge in managing
quality assurance and making content adaptation. Nevertheless,
a complete procedural level in SMB may be decomposed into
a number of short segments as done in [8], [9], [12], [16],
[41]. Thus, partitioning a procedural level into fixed-size game
segments results in a new content space of lower complexity,
which allows us to explore the SMB content space from a
different perspective. It is anticipated that the content space
of short game segments would facilitate a constructive PCG
approach in tackling content quality assurance and real-time
content adaptation effectively.

For quality assurance, there are generally two methodologies
in developing such a mechanism in PCG [1], [14]: deductive
vs. inductive. To adopt the deductive methodology, game
developers have to understand the content space fully and
have skills in formulating/encoding their knowledge into rules
or constraints explicitly. In the presence of a huge content
space, however, it would be extremely difficult, if not im-
possible, to understand the entire content space, which might
lead to less accurate (even conflicted) rules/constraints used
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Fig. 1. The constructive primitive (CP) generation process for SMB.

Fig. 2. Typical 20× 15 game segment instances.

in PCG. Nevertheless, we observe that some constraints in
SMB are easy to identify. For example, overlapped tubes are
unacceptable and easily detected with a simple rule. On the
other hand, a learning-based PCG (LBPCG) framework [14]
was proposed where an inductive methodology is advocated
for quality assurance via learning from annotated data. As
video game content is observable but less explainable, it is
easier for developers to judge the quality of games (especially
in presence of complex content elements and structures) via
visual inspection (applying their knowledge implicitly) than to
formulate their knowledge into rules formally with sophisti-
cated skills. Thus, a quality evaluation function may be learned
from games/levels annotated by developers. This observation
suggests that exploiting the synergy between rule-based and
learning-based methods would allow for addressing the quality
evaluation issue more effectively.

With the motivation described above, we propose a hybrid
approach for generating CPs (quality yet controllable game
segments) in SMB, where both simple rules and a learning-
based method work together. Fig. 1 illustrates the main steps
of our approach. First of all, game developers choose a region
that covers main variations of game elements and structures in
SMB from the entire content space via controllable parameters.
Then all the game segments in this region are evaluated
by a set of easy-to-design conflict resolution rules. Finally,
subsequent data-driven quality evaluation function deals with
more complicated quality issues. Surviving game segments
form CPs to facilitate generating adaptive SMB levels.

B. Content Space and Its Representation

A recent study [12] suggests that in SMB, game segments
of 20 in length and 15 in height (i.e., the approximate size of
a screenful of tiles in SMB) are sufficient to express rich yet
diverse types of game elements and structures in a procedural
level for 2D platform games. As exemplified in Fig. 2, such
game segments are naturally specified by a 2D grid similar to
an image. However, this leads to a 300-dimensional content
space of massive redundancy, e.g., the uniform background.

Fig. 3. Game design elements. (A) Initial platform. (B) Gaps without/with
rock decoration. (C) Hill. (D) Cannon. (E) Tubes without/with flower enemy.
(F) Boxes without/with coins/powerup. (G) Enemies. (H) Coins. (I) Mushroom
and fire flower.

TABLE I. CONTENT FEATURES.

ID Description

1 height of initial platform
2 number of gaps

3 - 11 x, width and type of the 1st - 3rd gap
12 number of hills

13 - 18 x, width and height of the 1st and 2nd hill
19 number of cannons

20 - 34 x, y, height, wbefore and wafter of the 1st - 3rd cannon
35 number of tubes

36 - 53 x, y, height, wbefore, wafter and type of the 1st - 3rd tube
54 number of boxes

55 - 62 x, y, width and type of the 1st and 2nd boxes
63 number of enemies

64 - 78 x, y and type of the 1st - 5th enemy
79 number of coins

80 - 85 x, y and width of the 1st and 2nd coins

Instead of the 2D grid representation, we employ a list of
design elements, atomic units in PCG, as our content repre-
sentation, including initial platform, gaps without/with rock
decoration, hill, cannon, tubes without/with flower enemy,
boxes without/with coins/powerup,enemies, coins, mushroom
and fire flower, as illustrated in Fig. 3. By using this repre-
sentation, we not only specify the content space concisely but
also gain the direct control on low-level geometrical features,
e.g., coordinates of tubes and coins. As listed in Table I, 85
content features used in our representation are grouped into
15 categories where a content feature is used to specify and
control a design element in a segment. Our representation
is similar to those used in the previous work [35], [42]. In
this representation, x, y, width, height and type refer to x,
y coordinates, width, height and type of each design element,
while wbefore and wafter refer to width of the platform before
and after each tube/cannon. Among these features, types of
gap, tube, boxes and enemies are nominal features, while the
rest are ordinal features. In our content space, the design
elements in each type are sorted in a decreasing order along x
dimension. However, there are several redundant parameters in
this representation, e.g., if the number of cannons is one, then
the parameters for the second and third cannons will be useless.
In this case, we simply set all the meaningless parameters to
zero. Here, we emphasize that the design elements listed in
Table I are fully controllable; game developers can control
relevant content features to generate a specific game segment.
For example, a mountainous segment may be generated by
setting the number of hills to 1 or 2 and other features
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randomly, while a pure linear segment is generated by setting
the number of hills, y coordinate of tubes, and cannons to zero.

While design element parameters in Table I have a huge
range that specifies the entire content space, we confine our
concerned content space to a non-trivial region by setting the
maximum number of gaps, hills, tubes, cannons, boxes, coins
and enemies to 3, 2, 3, 3, 2, 2 and 5, respectively, in a game
segment. Consequently, there are roughly 9.72×1037 different
game segments in the content space used in our experiments.
This content space is sufficient to generate content with a
variety of geometrical features, level structures and difficulties
required by SMB. We believe that a larger content space may
contain more unplayable or aesthetically unappealing game
segments. For instance, a 20 × 15 game segment containing
more than five enemies or more than three cannons/gaps
is too difficult for human to play and appears aesthetically
unappealing if there are more than three tubes inside.

C. Conflict Resolution

As the content representation described in Sect. III-B
results in overlapped design elements, there are a large
number of game segments that contain conflicting
design elements in our content space. For instance,
“. . . Tube(6,0,2,0,0,flower). . . Cannon(6,0,4,0,0). . . ” represents
a game segment of at least one tube and one cannon, where
x, y, height, wbefore, wafter and type of this tube are 6,
0, 2, 0, 0, and flower, and the x, y, height, wbefore and
wafter of this cannon are 6, 0, 4, 0, and 0. As both the tube
and the cannon share the same x coordinate, the cannon and
the tube are overlapped in this game segment. This conflict
makes the segment aesthetically unappealing.

To address this issue, we first discard those game segments
of geometrically conflicted design elements via a set of simple
rules in our approach. Our rules for the above situations are
similar to those presented in [35], [42]; i.e., any overlapping
among gap, enemy, tubes, cannons, boxes, and coins are
forbidden, whilst hills of different heights are allowed to be
overlapped and enemy/tube/cannon may also be overlapped
with hills in a game segment.

Application of the above-mentioned rules to the entire
content space leads to a tailored content space. Learning CPs
merely works on this tailored content space.

D. Learning Constructive Primitives

After filtering out those obviously unappealing game seg-
ments via rules described in Sect. III-C, the tailored content
space still contains a lot of low quality segments, e.g., seg-
ments of unreachable coins and boxes, unplayable segments,
segments of unbalanced resources and aesthetically unappeal-
ing structures. Inspired by the LBPCG framework [14], we
would learn a quality evaluation function from annotated
game segments to detect unplayable/unacceptable segments.

Fig. 4. The constructive primitive learning process.

Thus, the problem in our CP learning is formulated as binary
classification. For such a classifier, its input is the 85D feature
vector of a game segment and its output is a binary label that
predicts the quality of a game segment.

To carry out the aforementioned idea, however, we have
to tackle a number of non-trivial problems. After conflict
resolution, there are still a huge number of game segments
in the tailored content space. It is computationally intractable
to deal with all the segments in this content space. To tackle
this problem, sampling appears to be a suitable technique as
it can generate a much smaller data set of the same properties
owned by an original content space. To make a learning-based
quality evaluation function, training examples are essential but
have to be provided by game developer(s). Although the use
of sampling leads to a computationally manageable data set,
annotating all the segments in this sampled data set is not only
laborious and time-consuming but also may not be necessary
if their distribution can be estimated. Clustering analysis pro-
vides a manner for exploring the distribution and the structure
underlying the sampled data set. Furthermore, we adopt the
active learning methodology that enables us to train a classifier
with only a small number of most informative game segments
annotated by game developer(s) during active learning. To
carry out an effective active learning, we exploit the clustering
results to minimize the number of annotated game segments
required by active learning since game segments residing in
all the different clusters are likely to hold the main properties
of the entire tailored content space. Thus, clustering analysis
not only facilitates active learning but also reveals non-trivial
properties of a content space, which allows for using other
techniques, e.g., visualization, to understand a large content
space and to identify the cause of misclassification in active
learning (c.f. Sect. V-A).

As depicted in Fig. 4, our CP learning process hence consists
of three stages: sampling (to be computationally tractable),
clustering analysis (to explore the distribution and the structure
underlying the sampled data set) and active learning (to estab-
lish an effective classifier with minimal labeled game segments
backed by the clustering analysis). The main techniques used
in each stage of our CP learning are presented below.

1) Sampling: For sampling, we apply the simple random
sampling (SRS) with replacement [28] to the tailored content
space for a manageable data set. In comparison with other
sampling approaches, SRS is unbiased and enables each game
segment in this tailored content space to be selected with the
equal probability. Moreover, it is capable of handling unknown
data distribution without using any prior knowledge. Thus,
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SRS becomes a proper sampling technique for our approach
as we do not know the accurate distribution of our tailored
content space.

In sampling, we have to address the issue on the size of
a sample that can retain all non-trivial properties underlying
the tailored content space. Due to its unknown distribution, we
need to apply the sample size determination (SSD) algorithm
suggested in [28], [29] to determine the size of our sample.
According to the SSD algorithm, the proper sample size, N,
for a given data set is estimated by

N ≈ z2δ2

d2
=

1.962 × 49.7749

0.102
= 19121.32 ≈ 19000, (1)

where z stands for the z-score of 1.96 for a 95% confidence
interval, and d is 0.10 that refers to a small tolerable difference.
These values are default in the SSD algorithm. δ2 refers to
the maximum variance of the content space among different
features. The value of δ2 is 49.7749, which is approximated
by the largest variance estimated on several samples of the
tailored content space [29]. With the approximation in (1), we
sample the tailored content space to yield a sampled data set
of 19,000 game segments.

2) Clustering: For clustering analysis, we employ the CURE
algorithm [30] on the sampled data set since it is applicable to
a data set of unknown data distribution [31] and can uncover
the structure underlying data by automatically determining
the proper number of clusters underlying a data set [32].
To use the CURE, one has to pre-set four hyper-parameters:
the number of clusters, sampling rate, shrink factor and the
number of representative points. By using the dendrogram
tree resulting from this hierarchical clustering algorithm, the
number of clusters is automatically decided by the longest k-
cluster lifetime defined in [32]. The rest of parameters are set
to defaults as suggested in [30]; i.e., 0.5 for shrink factor, 2.5%
for sampling rate, and 10 representative points, respectively.

As there are three different feature types in our content
representation, i.e., numeric, nominal and ordinal, we employ
the mixed-variable distance metric [31] in the CURE. The
mixed-variable distance d(i, j) between objects i and j is
defined by

d(i, j) =

∑F
f=1 d

(f)
ij

F
,

where F denotes the number of features in the content repre-
sentation and d(f)ij refers to the contribution of feature f to the
overall distance between objects i and j. Suppose the value of
f for the ith object is xif , the distance regarding this feature,
d
(f)
ij , is measured with a metric dependent on its feature type:

• When f is numeric: d(f)ij =
|xif−xjf |

maxhxhf−minhxhf
, where h

runs over all objects in the data set for feature f .
• When f is nominal: d(f)ij = 0 if xif = xjf and d(f)ij = 1

otherwise.
• When f is ordinal: compute the zif =

rif−1
Mif−1 , where

rif ∈ {1, ...,Mf} are the corresponding ranks of Mf

ordered states that f has. Then, an ordinal feature is
converted into numeric via zif .

The above treatment used in the mixed-variable distance metric
normalizes distances contributed by different features [31],
respectively. These normalized distances tend to eliminate the
bias introduced by a feature of a large permissible range and
make the overall distance d(i, j) within a range of [0, 1].

Clustering analysis with the CURE algorithm on the sam-
pled data set leads to 58 clusters, and the detailed experimental
results are reported in Sect. V-A1.

3) Active Learning: For active learning, a validation set
that holds main properties of the content space is required to
evaluate/monitor the generalization performance during active
learning. By considering the segment distribution information,
we first select a small number of segments randomly from each
cluster to form such a validation set of 800 segments totally,
where the number of segments selected from each cluster is
proportional to the cluster size. The first author of this paper, an
experienced game player, labels all 800 game segments in the
validation set via visual inspection; up to five seconds are taken
in annotating any segments in our experiments. As a result, a
binary label is assigned to a segment to indicate its quality;
+1/-1 is a label of good/poor quality. The qualitative labeling
criteria are based on the annotator’s own knowledge/experience
and guided by the existing literatures. Below we summarize
the main aspects considered during the annotation:
• Playability. There should exist a path between entrance

of game level and exit, which allows players to finish
the game [1].

• Resource balance. Design elements within a quality
segment should be distributed in terms of balance [2],
[39], [42].

• Difficulty curve. A quality segment should not contain
unexplainable difficulty spikes/curve [2], [42].

• Reachability. All the resources (e.g., coins and boxes)
in a quality segment should be reachable [13].

• Aesthetic properties. A quality segment should con-
tain meaningful, aesthetically appealing and reasonable
structures [2], [12], [39].

Here, we emphasize that the annotator labels a game segment
via visual inspection only by taking into account the above-
mentioned aspects. In other words, the annotator merely ap-
plies his knowledge/experience implicitly in visual inspection
(without any explicit yet well-formulated rules in mind).

In general, there are two error types in binary classification:
false negative (type-I error) where a high quality segment is
misclassified as low quality and false positive (type-II error)
where a low quality segment is misclassified as high quality.
Obviously, a type-II error could result in a catastrophic effect
while a type-I error is less harmful as it simply shrinks
the content space slightly. As a result, we formulate our
classification as a cost-sensitive learning problem where the
type-II error incurs a higher cost in learning. By looking
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Algorithm 1 Active Constructive Primitive Learning
Input: Sampled data set U and clustering results on U .
Output: WRF binary classifier.
Initialization: Based on the clustering analysis results,
create a validation set V of 800 examples.
Active Learning:
Annotate 100 segments randomly selected from U via visual
inspection to form a training set L.
Train WRF on L to obtain an initial binary classifier.
repeat

for all xi ∈ U do
Label xi with the current WRF.
Calculate the uncertainty score si of xi.

end for
Annotate 100 segments of the highest uncertainty score
in U to form a new training set L.
Re-train the WRF with the examples in L.

until The overall accuracy on V does not increase.
return Classifier WRF.

into several state-of-the-art classification techniques, we found
that the weighted random forest (WRF) [33], a cost-sensitive
oblique random forest [34] classifier, fully meet our require-
ments for active learning. As an ensemble learning approach,
a WRF works based on decision trees trained on randomly
partitioned data subsets for classification. Such a classifier can
handle a data set of different feature types and offers the
feature importance information during active learning, which is
extremely useful for developers. To address the cost-sensitive
issue, the WRF applies class weights to the information gain
during finding optimal splits. In the terminal nodes of each
tree, the class prediction is determined via weighted majority
vote. The final class prediction of the WRF is also determined
via the weighted vote of individual trees. In our experiments,
the “optimal” hyper-parameters of the WRF are decided via
validation suggested in [33]: 1.3:1 for cost ratio, 30 trees, 5
combined features, 30 feature groups selected at each node
and 9 in depth.

Active learning is undertaken on the entire sampled data
set excluding 800 segments used to form the validation set
described at the beginning in Sect. III-D3. We initially choose
100 segments randomly and label them via visual inspection.
Then we use these 100 examples to train an initial WRF. Based
on the initial WRF, our active learning works on uncertainty
sampling for efficiency. In each iteration of active learning, we
find 100 segments of the highest uncertainty scores defined
by si = 1 − P (ŷ|xi), where ŷ is the predicted label of
segment xi and P (ŷ|xi) is the probability of this prediction
yielded by the current WRF. Then we annotate those 100
segments to form new examples for re-training the WRF. The
active learning carries on until the accuracy of this WRF on
the validation set no longer increases. Our active learning
algorithm is summarized in Algorithm 1. The detailed results

TABLE II. DIFFICULTY-LEVEL PARAMETER FOR GAME ADAPTATION.

Level Description

1 number of enemies = 0; number of gaps ≤ 2; number of flower tube = 0;
number of cannons = 0; width of gap < 3; gaps without rock

2 number of gaps = 0; number of enemies = 1; number of cannons = 0;
number of flower tube = 0

3 number of gaps ≤ 1; width of gap < 3; 1 ≤ number of enemies ≤ 2;
number of cannons = 0

4 number of cannons ≤ 1; 1 ≤ number of enemies ≤ 4
5 number of cannons ≥ 1; number of enemies ≥ 3

Algorithm 2 Generating a CP of a Specified Difficulty Level
Input: A specified difficulty level.
Output: A CP of this specified difficulty level.
Generation:
Choose a region of interest from the content space via
difficulty parameters described in Table II.
repeat

Randomly select a game segment g from the region of
interest.
Evaluate game segment g via conflict resolution rules and
data-driven evaluation function.

until Evaluation results are positive.
return Game segment g

on active learning are reported in Sect. V-A2.
Once the evaluation function is learned, it will be used

(along with the conflict resolution rules described in Sect.
III-C) to produce CPs in a generate-and-test way. In the next
section, we develop an algorithm that combines proper CPs via
controllable parameters, which leads to a new adaptive level
generator for real-time DDA in SMB.

IV. CP-BASED DYNAMIC DIFFICULTY ADJUSTMENT

In this section, we propose a DDA algorithm by applying
the CPs described in Sect. III to real-time content adaptation.
This algorithm works on the model-based assumption; i.e,
maximum gameplay enjoyment occurs with the content of a
moderate challenge [18]–[20], [22], and the appropriate chal-
lenge level can be reflected by the game playing performance.

For the model-based DDA, it is essential to define game
difficulty levels and to measure the game playing performance.
In our CP-based approach, the difficulty-level definition is
motivated by the difficulty/leniency metric presented in [35],
which suggests that the difficulty of a SMB level may be
determined by main design elements. In our work, we use
enemies, gaps, cannons and flower tube to define five difficulty
levels by controlling relevant features manually. We further
use 14 existing SMB agents [36] to refine our difficulty
categories according to their completion rates on different
CP-based games. To test the effectiveness of our difficulty
level definition, each agent plays 30 games at each difficulty
level. The averaging complete rates at difficulty levels 1-5
are 0.71, 0.54, 0.46, 0.42 and 0.38, respectively. It suggests
that our difficulty level definition summarized in Table II
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can considerably affect the completion rate. As described in
Algorithm 2, a CP of the specified difficulty level can be
generated by controlling the content features shown in Table II
with support of the conflict resolution rules and the data-driven
quality evaluation function described in Sect. III. Measuring
a player’s performance may be complicated if all different
factors have to be considered. In this paper, we only take into
account the survivability on CPs, which will be discussed later
on.

In our work, we make use of CPs for real-time DDA, i.e.,
the performance is measured locally on a CP rather than on a
procedural level and the DDA is done instantly in response to a
player’s performance on the last played CP. This is naturally a
sequential decision process as only the performance regarding
the last played CP affects the difficulty level of the next CP to
be generated. Thus, we formulate this as a Markovian decision
process (MDP) [37] and our goal is hence to find an optimal
policy that maximizes the expected long-term performance via
adjusting the difficulty of generated CPs. To attain this goal,
we define a regret ρ at time T (i.e., after T CPs have been
played) as the absolute difference between an expected survival
rate and the expectation of rewards:

ρ =
∣∣∣θopt − 1

T
E
[ T∑
t=1

rt
]∣∣∣, (2)

where θopt is a pre-set optimal survival rate on any CP in a
level and rt is a binary reward: rt = 1 if the player survives
on the CP played at time t and 0 otherwise. For instance,
θopt = 0.8 means that the performance of the survival rate 0.8
is expected for any CP in an adaptive level. For a given θopt,
levels of proper difficulties can be generated for a player to
gain the expected performance. Thus, minimizing the regret in
(2) is key to our DDA. To solve this optimization problem, we
employ the Thompson sampling [38], an effective and efficient
heuristic method used in binary reward case in MDP.

Let θi denote a player’s survival rate at difficulty level i
(i = 1, · · · , 5). Thus, a player survives with the probability θi
and reciprocally dies with the probability 1−θi when they play
a CP of difficulty level i. During gameplay, one plays a number
of CPs of different difficulty levels sequentially. When a CP of
difficulty level at = i is completed at time t, a binary reward
is assigned. Given the player’s survival rate θi corresponding
to at, the reward likelihood is

P (rt|at = i, θi) = θrti (1− θi)1−rt . (3)

Furthermore, let DT = (at, rt)
T
i=1 denote the historical profile

regarding corresponding difficulties and rewards after T CPs
have been played. By using a conjugate prior, θi ∼ Beta(1, 1),
the posterior distribution of survival rate based on the likeli-
hood in (3) is P (θi|DT ) ∝

∏T
t=1 P (rt|at, θi)P (θi), which

leads to θi|DT ∼ Beta(αi+1, βi+1) where αi and βi are
the number of survives and deaths when playing the CPs of
difficulty level i in DT .

Algorithm 3 CP-based DDA for Real-time Content Adaptation
Input: Optimal survival rate θopt.
Initialization: t←0, αi←1 and βi←1 for i = 1, · · · , 5.
repeat
t← t+ 1.
if t==1 or rt−1 == 0 then

For each i ∈ {1, · · · , 5}, sample θi from Beta(αi, βi).
Choose action at = argmini |θopt − θi|.

else
For each i ∈ {max(1, at−1−1), at−1,min(at−1+1, 5)},
sample θi from Beta(αi, βi).
Choose action at = argmini |θopt − θi|.

end if
Generate the chosen CP of at using Algorithm 2.
if rt == 1 then
αat
←αat

+ 1. //the player survives
else
βat
←βat

+ 1. //the player dies and a new game starts
end if

until Gameplay stops.

For content adaptation, we follow the typical setting in real
SMB games: at the beginning, a player is put in small state, i.e.,
the weakest form of Mario, where the player is not allowed
to use powerful weapons (e.g., throwing fireballs) and then
turns into other states by powering up with a mushroom or fire
flower. Based on the gameplay information recorded in DT ,
CPs are randomly produced according to Beta(αi+1, βi+1)
and the CP of difficulty level i is chosen as a game segment
to play if it results in the least regret defined in (2). After
a CP of difficulty level i is played, the posterior probability
Beta(αi+1, βi+1) is updated based on the performance of
the CP. Thus, this content adaptation process continues until a
player quits. Our real-time DDA is summarized in Algorithm 3.

V. EXPERIMENTAL RESULTS

In this section we report experimental results on the CP
learning and the real-time DDA. The game engine adopted
in our experiments is a modified version of the open-source
Infinite Mario Bros used in the Mario AI Championship [11],
[36]. The source code used in our experiments as well as more
experimental results not reported in this paper are publicly
available on our project website1.

A. Results on Constructive Primitive Learning

Based on the learning algorithms described in Sect. III, we
report results on clustering analysis and active learning to
explore our content space and to demonstrate the benefit of
our data-driven evaluation function.

1http://staff.cs.manchester.ac.uk/∼kechen/CP-Mario.html

http://staff.cs.manchester.ac.uk/~kechen/CP-Mario.html
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TABLE III. RELATIONSHIP BETWEEN CLUSTERS AND MAIN FEATURES.

Feature

#Clusters Value
0 1 2 3 4 5

Number of Gaps 56(46) 54(9) 21(3) 6(0) - -
Number of Hills 57(48) 49(9) 30(1) - - -
Number of Cannons 50(34) 55(15) 33(9) 13(0) - -
Number of Tubes 51(39) 45(16) 17(3) 9(0) - -
Number of Boxes 39(22) 53(19) 33(17) - - -
Number of Enemies 43(9) 47(15) 52(10) 55(6) 53(7) 42(11)
Number of Coins 50(30) 56(19) 33(9) - - -
Difficulty Level - 26(3) 29(0) 41(6) 54(42) 36(7)

Fig. 5. Exemplary game segments in different clusters.

1) Cluster Analysis: Application of the CURE clustering
algorithm described in Sect. III-D2 leads to 58 clusters. While
all the clustering results are available on our project website,
Table III summarizes the non-trivial properties of clusters on
seven content features that mainly affect the appearance and
styles of game segments. As a content feature has a permissible
value range, we hence report the properties of clusters based
on each permissible value of a feature in Table III where
M(N) denotes that there are M clusters containing those game
segments of a specific value for a given content feature and
N out of those M clusters have more segments of this value
than those of different values regarding this content feature.
For example, the first element in Table III is with respect to
all the segments containing no gap, i.e., the number of gaps
equals zero, and 56(46) indicates that such segments appear
in 56 clusters where 46 out of those 56 clusters have more
segments containing no gap than those with gaps.

In general, M states the number of clusters a feature
is distributed and N indicates the number of clusters this
feature is predominant. Hence, both M and N facilitate
the understanding of the segment distribution in the tailored
content space. For instance, M is 57, 49 and 30, respectively,

Fig. 6. Performance evolution on the validation set during active learning.

corresponding to the value of feature NumHills = 0, 1 and
2. It suggests that those segments with the feature NumHills
of different values are widely spread in many clusters. In
contrast, the corresponding N values are 48, 9, 1, respectively,
which indicates hills of different numbers are not distributed
uniformly in those clusters containing hills. It is observed from
Table III that segments of different content features are not
distributed uniformly, and the tailored content space contain
more segments specified by only a few design elements since
segments with many design elements are likely to commit to
illegitimate overlapping and hence removed by the conflict
resolution rules prior to clustering. Thus, the use of conflict
resolution rules causes a bias to segments of fewer design
elements in our CP generation. The clustering results also
reveal the distribution of segments of different difficulty levels
(c.f. Table II). Here, we adopt the same notation to report the
distribution of segments of difficulty levels 1-5 in Table III.
For instance, 26(3) in the bottom row of Table III indicates
that there are 26 clusters containing segments of level 1 where
only three clusters contain more segments of level 1 than those
belonging to other levels.

For intuition, we visualize exemplary game segments in a
number of clusters in Fig. 5. It is observed: a) segments in
cluster 18 have at least one set of boxes and two sets of
coins; b) segments in cluster 38 include at least one tube; c)
segments in cluster 50 contain at least two sets of boxes and
one cannon; and d) there are at least three enemies, one cannon,
and one set of boxes in segments belonging to cluster 57. The
exemplification shown in Fig. 5 suggests that our clustering
analysis is meaningful since segments within the same cluster
contain similar content while those in different clusters vary in
terms of geometry and structures. Hence, we use the clustering
results to facilitate the subsequent active learning.

2) Active Learning: Fig. 6 illustrates the evolutionary per-
formance of our active learning on the validation set described
in Sect. III-D3, including type-I and -II error rates as well as
their average, the half total error rate (HTER). It is shown
in Fig. 6 that active learning reaches an optimum at 1,200
queries with a total of 1,300 queries. While the optimal HTER
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TABLE IV. THE TOP 20 MOST IMPORTANT FEATURES IN THE CONSTRUCTIVE PRIMITIVE LEARNING.

Rank Description Rank Description Rank Description Rank Description

1 x coordinate of the 1st enemy 6 width of the 1st hill 11 width of the 1st box 16 width of the 2nd box
2 y coordinate of the 1st box 7 y coordinate of the 1st cannon 12 number of enemies 17 type of the 2nd box
3 x coordinate of the 1st hill 8 type of the 1st enemy 13 y coordinate of the 1st enemy 18 x coordinate of the 2nd enemy
4 height of the 1st hill 9 width of the 2nd coin 14 width of the 1st hill 19 y coordinate of the 2nd enemy
5 number of hills 10 x coordinate of the 1st box 15 y coordinate of the 1st tube 20 y coordinate of the 2nd coin

is around 11.18%, the corresponding type-I and -II error rates
are around 16.67% and 5.69%, respectively. Fortunately, those
segments resulting in type-II error do not include unplayable
game segments in our experiments; in other words, all the
unplayable segments in validation set were classified correctly.

To demonstrate our active learning results vividly, we
show several correctly classified and misclassified segments
in Fig. 7. For clarification, segments are correctly classed
if their labels assigned by our classifier are consistent with
the developer’s labels and those are misclassified otherwise.
Segments in Fig. 7(T) are correctly labeled as positive. These
high quality segments contain playable structures, reachable
resources and a meaningful combination capturing an area
of challenge and conveying a sense of progression. However,
these segments generated by our approach do not seem to
appear in handcrafted SMB levels. Segments in Fig. 7(I) should
have been labeled as positive since these segments look like
appealing short episodes in a procedural level. Unfortunately,
they are misclassified as negative by our classifier, which leads
to type-I error. Segments in Fig. 7(N) are correctly classified
as negative: Fig. 7(N).1 consists of unplayable structure which
does not allow a player to pass through; Fig. 7(N).2 contains
simple structures and hence lacks a sense of progression;
Fig. 7(N).3 and Fig. 7(N).5 appear aesthetically unappealing
since arbitrarily lumped enemies, gap, boxes, and tubes are less
meaningful; and Fig. 7(N).4 contains unreachable boxes. In
contrast, segments in Fig. 7(II) should have also been labeled
as negative but misclassified by our classifier, which results
in type-II error. It is seen that all game elements, i.e., enemy,
cannon, tube flower, in Fig. 7(II).1 and Fig. 7(II).2 are located
in a narrow zone in the middle of those game segments.
In literature [2], such a situation is named ‘unexplainable
difficulty spikes” that indicates a sudden difficulty increase
and hence classified as low quality [2], [42]. Enemy, coins
and hill in Fig. 7(II).3 are concentrated in a narrow zone in the
middle of the segment, which is also regarded as low quality in
literature [39]. Fig. 7(II).4 and Fig. 7(II).5 appear aesthetically
unappealing by visual inspection.

By means of clustering results, we find that, to a great
extent, the nature of the WRF accounts for misclassification
as it needs to optimize the information gain in a statistical
sense [31], [34]. We observe that game segments located
nearby in the content space (i.e., game segments of a short
distance) tend to be assigned the same label by our active
learner. For instance, Fig. 7(I).5 is a negative example located
in cluster 37. The rest of the segments from cluster 37 are

Fig. 7. Test game segments labeled by our classifier. (T) Correctly classified
positive segments. (I) Segments leading to type-I error. (N) Correctly classified
negative segments.(II) Segments leading to type-II error.

also assigned as negative by our classifier. A similar problem
occurs on Fig. 7(I).2 and Fig. 7(I).4. In addition, segments
of similar content but distributed in different clusters are also
likely to be misclassified. For instance, Fig. 7(N).4 is similar to
Fig. 7(II).4 and Fig. 7(II).5 as they all have boxes above gaps,
tubes and enemies, but these segments are located in different
regions of content space due to the combination with other
design elements. Likewise, Fig. 7(I).1 and Fig. 7(I).3 are in
a similar situation. Such segments look similar with human
visual inspection but often spread over different regions in
the content space. This observation resulting from clustering
analysis suggests that we are encountering a well-known yet
challenging multi-modal classification problem where data
within a specific class may distribute in different clusters
[31], and it is hard for a classifier including the WRF to
yield the error-free performance. Regardless of the WRF,
“rare segments”, e.g., Figs. 7(II).1-3, are highly prone to
misclassification as such segments are scattered widely with
low density in the content space and hence less likely to be
drawn in queries during active learning.

As a WRF can automatically find proper content features
that maximize the information gain [34], we use the WRF
to measure and rank the importance of content features in
our CP learning. As a result, Table IV lists the top 20 most
important features. It is observed from Table IV that the
position and geometrical information on game elements, e.g.,
their width and height, are among the most important features
in our data-driven quality evaluation. Moreover, we find that
the first design element, e.g., gap, hill, or enemy, plays a
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more important role than the subsequent design elements in a
segment (c.f. Sect. III-B). Due to the nature of the WRF, those
content features often lead to small information gain and are
hence likely to have a low importance score.

In summary, the above experimental results demonstrate that
the evaluation function learned from the sum total of 2,100
labeled game segments (1,300 for active learning and 800 for
validation) effectively eliminates low quality game segments
in terms of its performance on the validation set.

B. Quality Assessment of Constructive Primitives

While the effectiveness of our data-driven evaluation func-
tion has been assessed from a machine learning perspective in
Sect. V-A, we further examine the quality of CPs generated
with this evaluation function by using a number of generic yet
objective content quality measurements that have been already
validated thoroughly in [39].

In our experiment, we employ the objective quality metrics
[39] that statistically measure content quality based on a
number of procedural levels generated by a level generator,
including strategic resource control (fffs), area control (fffa),
area control balance (bbba), and exploration (EEE). Among these
metrics, fffs measures how close treasures, e.g., coins, boxes,
are to enemies; fffa measures how far the placement of design
elements, e.g., enemies, tubes, cannons, are away from each
other; bbba measures how balanced a distribution of design
elements is; and EEE measures the exploration efforts to reach
the exit from entrance. To a great extent, EEE indicates the
content geometric complexity. In our experiment, the EEE scores
are normalized to the range of [0,1]. The formal definition of
these metrics can be found in [39]. Apart from above metrics,
we further use Peter Lawford’s A* agent [36] to evaluate the
playability (PPP ) of game levels as this agent can survive on
almost all playable levels regardless of their difficulty levels.

As a CP is a short game segment rather than a complete
level, it is impossible to make a direct comparison between
CPs and complete levels produced by other level generators.
To enable the comparison, we generate a complete level by
cascading CPs or game segments. In our experiments, we thus
generate two sets of procedural levels : Sets A and B. In
Set A, a level is composed of randomly selected CPs that
are classified as high quality by our data-driven evaluation
function, while a level in Set B consists of those randomly
generated game segments that survive from conflict resolu-
tion rules but are rejected by our evaluation function. For
a thorough evaluation, we compare our approach with those
sophisticated SMB level generators, Notch [5] and Grammar
Evolution (GE) [35], as well as several generators developed
for Mario AI Championship [11]. Each of generators including
ours generates 100 procedural levels for evaluation where a
level has a size of 200 in width and 15 in height. In other
words, a CP-based level is composed of 10 game segments of
equal size: eight CPs, one initial and one ending segments. In

Fig. 8. Quality assessment results with different metrics for various SMB
level generators.

our experiments, the default parameters as suggested in their
works are always used for a fair comparison.

We conduct a Wilcoxon rank sum test to confirm a hypoth-
esis that our CP-based levels in Set A outperform other SMB
level generators stated above in terms of the aforementioned
objective quality metrics (via a pairwise comparison). Fig. 8
shows the 95% confidence interval for the mean of quality
scores in terms of different metrics2. From Fig. 8, it is evident
that our levels in Set A generally yield favorable results in
terms of different metrics. Our levels in Set A result in a
higher fffs score than those generated by all others apart from
GE. This suggests that acting as their “guardians”, treasures,
e.g., coins and boxes, in our CP-based levels are close to
enemies [39]. Our levels in Set A further lead to a higher
fffa score than all others and a bbba score not lower than all
apart from Shimizu’s, Takahashi’s and Baumgarten’s, which
implies that design elements, e.g., enemies, tubes, cannons,
in our CP-based levels are reasonably distributed in light of
balance. As described in Sect. III-D3, resource balance is one
of our labelling criteria, which accounts for higher fffa and
bbba scores on Set A over Set B. In general, EEE reflects the
complexity of game geometry. The EEE scores of levels in Sets
A and B appear relatively low due to the content space adopted
in our experiments (c.f. Sect. III-B), e.g., there are two hills
at most, which leads to less complex levels than those used in
other works. For playability measured by PPP , our levels in Sets
A along with Notch’s and Takahashi’s levels do not produce
unplayable levels while others do in this experiment. The much
higher PPP value on Set A over Set B benefits from active
learning as playability is considered in labelling segments for
training examples.

In summary, this comparative study suggests that our data-
driven evaluation function works well in generating quality
game content. In particular, the substantial gain for levels in
Set A over those in Set B clearly shows the effectiveness of
our active learning in content quality assurance.

2The PPP value here differs from that in [40] due to different Mario agents
and start state settings; they used Baumgarten’s agent in fire state, while we
use Lawford’s agent in small state.
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Fig. 9. Results on completion rates yielded by 14 agents on static and adaptive game sets with different θopt.

Fig. 10. Completion rates of different agents in a gameplay episode of 30 levels: adaptive vs. static. (A) Oliveira’s agent (θopt = 0.8). (B) Oliveira’s agent
(θopt = 0.7). (C) Lopez’s agent (θopt = 0.8). (D) Lopez’s agent (θopt = 0.7). (E) Baumgarten’s agent (θopt = 0.8). (F) Baumgarten’s agent (θopt = 0.7).

C. Results on Real-time DDA
According to [7], the use of agents for a DDA test may bene-

fit from stable agents’ behavior, their diversified playing styles
and a wide range of skills. In our simulations, we hence employ
14 sophisticated yet different SMB agents (submitted to the
Gameplay track of the Mario AI Competition [36]), Lawford’s,
Sloane’s, Baumgarten’s, Ellingsen’s, Lopez’s, Schumann’s, Po-
likarpov’s, Forward, Erickson’s, Perez’s, CyberNeuron, Scared,
Tulacek’s and Oliveira’s agents, to test our CP-based real-
time DDA algorithm. For performance evaluation, we use the
completion rate and the online learning behaviour.

1) Completion Rate: Progression is one of the most com-
monly used criteria to evaluate a DDA algorithm [36]. As a
result, we adopt completion rate, a variant of progress defined
in [36], for performance evaluation. Completion rate refers to
the ratio of the actual distance travelled over to the length
of a game level being played; that is, the distance from the
x-coordinate of the start to the x-coordinate where the player
died divided by the total width of the level. For reliability, each
of 14 agents plays on four sets of adaptive games generated by
Algorithm 3 corresponding to different optimal survival rates,

θopt = 0.70, 0.80, 0.87, 0.95, where each set consists of 200
levels and a level is limited to a maximum length of 200. For
a baseline, we also randomly generate 200 levels of the same
size and refer them to static games as no DDA is applied and
each agent also plays all the games in this static game set.

Fig. 9 shows the 95% confidence interval for the mean of
completion rates achieved by 14 agents on four aforementioned
game sets. As shown in Fig. 9, Lawford’s, Sloane’s and
Baumgarten’s agents outperform other agents in terms of the
averaging completion rate thanks to the A* algorithm used in
their implementation. Hence, we regard these three agents as
“skillful players” and, accordingly, all the rest as “novices”.
It is observed from Fig. 9 that our real-time DDA algorithm
works well for all the novice agents given the fact that their
completion rates on adaptive game sets are considerably higher
than those on the static game set, which implies easier levels
were dynamically generated to improve their performance.
Nevertheless, the DDA performance varies for three skillful
agents. While the completion rates of Baumgarten’s agent are
achieved as expected, our algorithm does not work well for
Lawford’s and Sloane’s agents. According to [36], these two
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Fig. 11. Exemplar procedural levels generated by our CP-based DDA algorithm for 14 different agents when the optimal survival rate θopt is set to 0.8.
(A) Lawford’s agent. (B) Sloane’s agent. (C) Baumgarten’s agent. (D) Ellingsen’s agent. (E) Lopez’s agent. (F) Schumann’s agent. (G) Polikarpov’s agent. (H)
Forward agent. (I) Erickson’s agent. (J) Perez’s agent. (K) CyberNeuron agent. (L) Scared agent. (M) Tulacek’s agent. (N) Oliveira’s agent.
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agents almost always survive from all the procedural levels
regardless of difficulty. Thus, our algorithm hardly finds games
from the current content space (c.f. Sect. III-B) to challenge
them unless this content space is expanded by including much
more difficult games. From Fig. 9, it is also evident that a
higher value of θopt generally leads to a higher completion
rate, which suggests our algorithm works properly for DDA.

2) Online Learning Behavior: We further examine the on-
line learning behavior of our DDA algorithm with three repre-
sentative agents: Oliveira’s, Lopez’s and Baumgarten’s agents.
Oliveira’s and Lopez’s agents are novices but have different
playing styles, while Baumgarten’s agent is a skilful player.
In our simulation, each of three agents played in a gameplay
episode consisting of 50 successive game levels generated by
our DDA algorithm by setting θopt = 0.80 and 0.70, where a
game level is composed of up to 10 CPs and, in other words,
its length is limited to 200 at maximum. For comparison, three
agents also played an episode of 50 randomly generated static
game levels of the same length. For reliability, we repeated
this simulation for 30 trials and the mean and the standard
error of completion rates achieved by three agents are shown
in Fig. 10.

From Fig. 10(A) and 10(C), it is seen that the averaging
completion rates of Oliveira’s and Lopez’s agents are signif-
icantly higher than those on static games (p<.005 in both
cases) after playing five and 14 game levels, respectively,
thanks to the adaptation that generates the levels appropriate to
Oliveira’s and Lopez’s agents. In contrast, the completion rates
of Baumgarten’s agent gradually decrease as observed from
Fig. 10(E) where the averaging complete rates on adaptive
game levels are always significantly lower than those on
their static counterparts after 17 levels were played (p<.005)
thanks to the adaptation that keeps generating more and more
difficult levels. From Fig. 10 (A), (C), and (E), it is also
seen that the convergence time of Lopez’s and Baumgarten’s
agents is longer than that of Oliveira’s agent since the survival
rate of those two agents on static games is closer to the
optimal survival rate θopt = 0.80. This suggests that the
convergence time for a specific agent could be minimized by
finding a proper yet personalized optimal survival rate θopt.
Furthermore, it is clearly seen from Fig. 10 that the game
completion rates on adaptive games resulting from θopt = 0.70
are lower than those on their counterparts corresponding to
θopt = 0.80 due to increasing difficulties in adaptive games
for θopt = 0.70. The above simulation results indicate that our
DDA algorithm is able to generate easy or challenging games
flexibly by controlling the optimal survival rate θopt.

For demonstration, we illustrate exemplified procedural lev-
els generated by our DDA algorithm for 14 different agents
in Fig. 11. In those levels shown in Fig. 11(A)-(C) for three
skillful players, Lawford’s, Sloane’s and Baumgarten’s agents,
there are more enemies, cannons and gaps than those generated
for other 11 agents. Those levels shown in Fig. 11(D)-(K)

are at the intermediate difficult level where there are several
enemies, gaps, cannons and flower tubes, which tends to match
their skill capacities of Ellingsen’s, Lopez’s, Schumann’s,
Polikarpov’s, Forward, Erickson’s, Perez’s and CyberNeuron
agents. In those levels shown in Fig. 11(L)-(N) for complete
novices, Scared, Tulacek’s and Oliveira’s agents, there exist
fewer enemies (two of the three levels have no enemies at
all) than those generated for more skillful agents as illustrated
in Fig. 11(A)-(K). It is observed from Fig. 11(L)-(N) that
those levels generated for three complete novices are much
less appealing than others. In our simulations not reported
here due to the limited space, we notice that three complete
novices generally do not perform well for most of game levels
generated by all the SMB level generators described in Sect.
V-B including ours in terms of game completion given the fact
that they are very easily killed by gaps, enemies, tube flowers,
and cannons due to a lack of required skills. To enable three
complete novices of very limited skills to maintain a survival
rate towards θopt = 0.8, our DDA algorithm has to find those
CPs of few gaps without tube flowers, cannons, and enemies
in constructing proper adaptive games, which is responsible
for those unappealing levels shown in Fig. 11(L)-(N).

In summary, it is evident from the simulation results reported
above that our CP-based DDA algorithm works effectively
in dynamically adjusting the content difficulty in response to
agents’ local performance of playing a level in real time.

VI. DISCUSSION

In this section, we discuss the issues arising from our work
and relate ours to pervious works.

As elucidated in Sect. III-D, clustering analysis facilitates
understanding our content space and generating a validation
set for active learning. A fundamental requirement for effective
active learning demands a validation set that consists of only
a small number of representative game segments holding as
many statistical properties of the content space as possible.
There might be an alternative yet more efficient way3 to gen-
erate such a validation dataset. Instead of clustering analysis,
one could apply their prior knowledge to choose several key
content features and then use those features to partition the
content space into a number of regions corresponding to differ-
ent combinations of their feature values. Likewise, a validation
set is formed by choosing a small number of segments from
each of the different regions resulting from this partition. While
the partition method is more efficient in generating a validation
set, our statistical analysis on the representativeness [28], a
measurement on the statistical properties that a sample inherits
from the sampled population, suggests that a validation set
generated with clustering analysis has higher representative-
ness than that yielded by the aforementioned content space
partition method. Despite a computational burden, clustering

3An anonymous reviewer suggested a partition method.
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analysis may be rewarded with a more informative validation
set for active learning.

In terms of game content quality, automatically generated
SMB levels are generally worse than those handcrafted levels
[2]. Apart from constructive approaches reviewed in Sect. II,
there are other approaches in SMB to address this issue but
most of them handcraft evaluation functions for quality assur-
ance, e.g., [35], [41], [42]. However, formulating a complete
set of heuristic rules is challenging since game content is
observable but less explainable and hard to abstract. Instead,
Reis et al. [12] merged human-annotated game segments to
form quality levels. Unlike ours, theirs has to make a great
deal of effort in obtaining enough annotated segments for level
generation and needs to address the controllability issue in
addition. On the other hand, other researchers aim to generate
high quality levels with human-authored levels rather than
domain knowledge. Dahlskog and Togelius [16] used design
patterns learned from human-authored SMB levels to generate
levels. Snodgrass and Ontañón [43] learned Markov chains
from human-authored SMB levels to formulate constructive
rules for level generation. Summerville and Mateas [44] used
the LSTM to learn sequences from existing human-authored
procedural levels and the path information. However, formu-
lating reliable yet effective constructive rules or diverse de-
sign patterns from human-authored levels without any domain
knowledge might be very difficult since there are a limited
number of such levels; there are only 32 human-authored
levels in SMB [16], [43]. Thus, additional information, e.g.,
path information, has to be required to assure the playability
of game levels [44]. In contrast, we explore and exploit the
synergy between rule-based and learning-based methodologies
to produce quality building blocks, constructive primitives. Our
data-driven evaluation function implicitly encodes multiple
quality-related criteria via developers’ visual inspection on
training segments. Thus, our approach significantly distin-
guishes from handcrafting constraints, e.g., [35], [41], [42],
formulating constructive rules, e.g., [6]–[9], and learning mod-
els/patterns from a limited number of human-authored levels
[16], [40], [43], [44]. As a learning-based approach, however,
ours does not yield the error-free performance, which implies
low quality segments could appear in a procedural level. In
general, different developers may have different opinions on
game quality. Although this subjectivity is a general issue
regardless of methodologies, our current work is limited as
only one developer is employed to annotate data for active
learning. Nevertheless, this issue may be tackled via crowd-
sourcing, which has been attempted in [12].

For real-time DDA, we hypothesize that there is a strong
relationship between performance, e.g., survival rate, and
gameplay experience based on the previous studies [18]–[20],
[22]. Hence, we formulate our DDA as a binary reward MDP
problem and solve it with Thompson sampling. It is noticed
that some model-based approaches [25]–[27] proposed under

other game genres also treat DDA an MDP problem. In their
approach, however, the degree of player’s survival/winning
rate, e.g., Q-learning and dynamic scripting, is not tunable
directly. It is also unclear how to use these approaches to
tackle a binary reward MDP problem. Nevertheless, our work
in DDA is subject to a number of limitations: (a) our proposed
DDA algorithm is model-based and the hypothesis based on
psychological theories has yet to be confirmed by human
players in SMB; b) the adaptation process does not seem
rapid for agents; and (c) it still remains unknown on how to
find a proper optimal survival rate for an individual player.
In addition, our rule-based difficulty level definition for game
segments (c.f. Table II) tends to explore the whole content
space for generating diverse games but seem less accurate,
which accounts for less stable performance in adaptation.

The previous works [8], [9] have investigated segment-
based experience-driven content adaptation in SMB, where
they learned a mapping from player’s behavior, e.g., playlog,
and the segment properties, e.g., controllable parameters, onto
the player’s affective states. By means of their methods, our
CP-based DDA algorithm can be straightforwardly converted
into a model-free algorithm for experience-driven DDA. Based
on the experience on a CP self-reported by a player, we can
establish a mapping function required by a model-free method
in the same manner. Moreover, our CP-based generator could
adapt game content even more easily since all the properties of
game content can be directly controlled via CPs. Unfortunately,
the existing model-free methods in SMB [8], [9] entirely
rely on the self-reported feedback on short segments, which
severely interrupts the gameplay experience [3]. Thus, such an
extension does not seem promising. On the other hand, the use
of subjective feedback on an entire procedural level has also
been studied in SMB, e.g., [6], [7], [10], which could minimize
interruption of the gameplay experience. Nevertheless, such
techniques are not applicable to real-time DDA studied in this
paper. Hence, it remains as an open problem how to adapt
content via CPs in the presence of subjective feedback on an
entire procedural level.

In conclusion, we have presented a novel approach to real-
time DDA in SMB via learning constructive primitives and
carried out a thorough evaluation. Experimental results suggest
that our data-driven content quality evaluation function works
well for content quality assurance and our CP-based DDA
algorithm is capable of adjusting content difficulty in real time
to match different agents’s performance. As our CPs are fully
controllable, they are also applicable to online level generation
in SMB as demonstrated in our previous work [21]. With the
insight into CPs gained in this paper, our previous CP-based
online SMB level generation method certainly needs to be
further investigated for improvement. In our ongoing work, we
are going to tackle all the remaining issues discussed above
by exploring state-of-the-art machine learning techniques and
alternative content representations. Furthermore, we would
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explore the feasibility in extending our approach to other video
game genres, e.g., first-person shooter.
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