
1943-068X (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCIAIG.2017.2771241, IEEE
Transactions on Computational Intelligence and AI in Games

IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES 1

The 2016 Two-Player GVGAI Competition
Raluca D. Gaina, Adrien Couëtoux, Dennis J.N.J. Soemers, Mark H.M. Winands, Tom Vodopivec,

Florian Kirchgeßner, Jialin Liu, Simon M. Lucas, Diego Perez-Liebana

Abstract—This paper showcases the setting and results of the
first Two-Player General Video Game AI competition, which ran
in 2016 at the IEEE World Congress on Computational Intelli-
gence and the IEEE Conference on Computational Intelligence
and Games. The challenges for the general game AI agents are
expanded in this track from the single-player version, looking
at direct player interaction in both competitive and cooperative
environments of various types and degrees of difficulty. The focus
is on the agents not only handling multiple problems, but also
having to account for another intelligent entity in the game, who
is expected to work towards their own goals (winning the game).
This other player will possibly interact with first agent in a
more engaging way than the environment or any non-playing
character may do. The top competition entries are analyzed in
detail and the performance of all agents is compared across the
four sets of games. The results validate the competition system in
assessing generality, as well as showing Monte Carlo Tree Search
continuing to dominate by winning the overall Championship.
However, this approach is closely followed by Rolling Horizon
Evolutionary Algorithms, employed by the winner of the second
leg of the contest.

Index Terms—General Video Game Playing, Multi-Player
Games, Real-Time Games, Monte Carlo Tree Search, Rolling
Horizon Evolutionary Algorithms, Competitions

I. INTRODUCTION

Artificial Intelligence agents can excel at playing specific
games (e.g. AlphaGo in Go [1], which uses a generic Monte
Carlo Tree Search technique combined with deep reinforce-
ment learning). Although a similar study to the one proposed
in this paper was carried out by Google DeepMind on Atari
games [2], there still hasn’t been a considerable improvement
in general agents meant to achieve a high level of play

Raluca D. Gaina, Jialin Liu, Simon M. Lucas (School of
Electronic Engineering and Computer Science, 10 Godward Square,
Queen Mary University of London, Mile End Rd, London E1
4FZ, UK; work done while at University of Essex; email:
{r.d.gaina,jialin.liu,simon.lucas}@qmul.ac.uk),
Adrien Couëtoux (Institute of Information Science (IIS), Academia Sinica,
128 Academia Road, Section 2, Nankang, Taipei 115, Taiwan; email:
adrienc@iis.sinica.edu.tw),
Dennis J.N.J. Soemers (Artificial Intelligence Lab, Vrije Universiteit Brussel,
Boulevard de la Plaine 2, 1050 Ixelles, Belgium; work done while at
Maastricht University; email: dsoemers@ai.vub.ac.be),
Mark H.M. Winands (Games and AI Group, Department of
Data Science and Knowledge Engineering, Maastricht University,
P.O. Box 616, 6200 MD, Maastricht, The Netherlands; email:
m.winands@maastrichtuniversity.nl),
Tom Vodopivec (Faculty of Computer and Information Science,
University of Ljubljana, Večna pot 113, Ljubljana, Slovenia; email:
tom.vodopivec@fri.uni-lj.si),
Florian Kirchgeßner (Ludwig-Maximilians-Universität München,
Geschwister-Scholl-Platz 1, 80539 Munich, Germany; email:
Florian.Kirchgessner@gmx.de),
Diego Pérez-Liébana (School of Computer Science and Electronic
Engineering, University of Essex, Colchester CO4 3SQ, UK; email:
dperez@essex.ac.uk)

in any given unknown real-time arcade game, without prior
training. That is where General Video Game Playing (GVGP)
comes in, offering the challenge of an advancement towards
general Artificial Intelligence through video game playing
agents that are able to adapt to new scenarios, without game-
specific heuristics designed by humans, and rely solely on
their power of correctly judging various situations and acting
appropriately.

The General Video Game AI competition (GVGAI) [3] [4]
was created in order to test these general agents on a multitude
of real-time games (currently 100, both stochastic and deter-
ministic) under the same conditions and constraints. It has
received significant international attention in the three years
it has been running and has allowed for many interesting
algorithms to be tested on the large number of problems.

A new track of this competition was added in 2016:
the Two-Player GVGAI Competition (GVGAI2P) [5], which
proposes an extended challenge on the original setting. The
aim of this competition track is not only to analyze how
agents perform in a-priori unknown real-time games (as in
the original version of the contest), but also to explore how
they adapt to the presence of other intelligent agents, either in
a competitive or a cooperative environment. Particularly, one
of the most interesting aspects of this competition is that it
encourages agents to consider a model of the other player’s
behavior. This not only addresses the most likely actions the
other player will perform next, but also its intentions - is it
competing or cooperating? - and its knowledge about the world
- what has the other agent discovered about the game?

This paper is an extension of the competition setup [5],
offering insight on the best agents submitted and an analysis
of their performance on four game sets. Therefore, the authors
of this paper are the top 5 participants in the final rankings,
together with Raluca D. Gaina, Simon M. Lucas and Diego
Pérez-Liébana as the competition organizers.

The remainder of this paper is structured as follows: Sec-
tion II looks at other work already published in the area
of GVGP and similar competitions, Section III presents the
details of the GVGAI2P framework, Section IV shows the
competition setting and ranking methods, Section V gives
an overview of the agents submitted, Section VI introduces
the results of the controllers on all game sets used in the
competition, and Section VII concludes the paper with notes
on the importance of this research and further developments.



1943-068X (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCIAIG.2017.2771241, IEEE
Transactions on Computational Intelligence and AI in Games

IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES 2

II. RELATED RESEARCH

The Google AI Challenge (2009-2011)1 is one example of
a competition that was successful on an international scale.
It was organized by the University of Waterloo’s Computer
Science Club and it looked at different specific games each
year, such as Ants (multi-player) in 2011 and the Planet
Wars and Tron (two-player) in 2010. Although this framework
was similar to the GVGAI Competition, the winning entries
were mainly driven by domain-specific heuristics. The ranking
system used in this competition was based on Elo scoring.

Online rankings used in the GVGAI2P Competition need to
be fast in order to provide feedback to competitors and return
results on time. Samothrakis et al. [6] considered the issue of
slower convergence achieved by the Elo system, along with
competitor pairing and accurate performance ranking. In their
paper, they look at the Ms Pac-Man vs Ghosts Competition, in
which agents can be submitted either for Pac-Man or the group
of ghosts. Two ranking systems tested in the paper, Glicko [7]
and Bayes Elo [8], which score same-type entries depending
on their win rate. The results suggest Glicko to be the better
method, due to the low number of games needed for rankings
to converge. Glicko-2 [9] is an improved version over Glicko
which adds a volatility ranking to better measure variation of
the player’s rating (σ; see Section IV-A). These findings and
improvements motivated the decision of using the Glicko-2
system in GVGAI2P.

Another multi-player competition is the General Game Play-
ing Competition (GGP) [10], running at the Association for the
Advancement of Artificial Intelligence (AAAI) and presenting
numerous board and puzzle deterministic turn-based game en-
vironments, both single and multi-player. The structure of this
competition is different to GVGAI, using several eliminatory
stages to declare a winner. The best performing algorithm
is tested against an expert human player as its final biggest
challenge. This competition provides the users with the rules of
the games played, while GVGAI offers no knowledge beyond
the current game state, a video-game style reward structure
and the action space. The difficulty of the GVGAI games is
increased to real-time as well, by reducing the agents’ thinking
time to milliseconds for every move (seconds for GGP).

The Geometry Friends Game AI (GFGAI) Competition [11]
comes closer to the structure of GVGAI, in the sense that it
has multiple tracks (two single player and one cooperative two-
player), it offers a sample Reinforcement Learning controller
for an easy start, and it uses different level sets for training
and testing (5 levels in each). However, the competition does
focus on a single real-time game, in which the two characters
have different abilities and need to cooperate in order to win,
whilst also being affected by physics. The final rankings are
calculated based on the time taken to complete levels and the
number of diamonds collected.

Several other competition feature multi-player real-time
decision making. The Ms Pac-Man versus Ghost Team compe-
tition [12], [13] offers participants the possibility of submitting
entries to control either Ms Pac-Man or the Ghost Team, as
well as introducing partial observability in the latest editions.

1http://aichallenge.org/

The Starcraft AI competition [14] look at Starcraft: Brood
War (Blizzard Entertainment, 1998), a complex Real-Time
Strategy game also feature partial observability and thousands
of actions available at every game step.

The Fighting Game AI Competition [15] focuses on the
fighting game genre. Each skill used by the players has three
sub-components that affect their decision process depending
on the stage they reach in each move. This idea relates to the
dynamic nature of the availability of actions in GVGAI, which
can vary during a game. Finally, a similar, but turn-based,
adversarial game is featured in the Showdown AI Competition
[16], which tests the skill of AI in Pokemon (Nintendo, 1996).

When trying to create a successful competition, it is im-
portant to be aware of the various features which could help
in such an endeavor. Togelius discusses this [17], suggesting
that transparency, reliability, persistence and availability are
most important. In addition, he recommends an easy start with
competition entries for participants, as well as allowing user
feedback and active peer support discussions and focusing on
evolving the competition in the future. The paper also outlines
the importance of game AI competitions in benchmarking
algorithms and attracting new research interest in the field.

III. FRAMEWORK

A. Video Game Description Language

The games in the GVGAI framework2 are written us-
ing a Java port of the Video Game Description Language
(VGDL) [18], originally written in Python and inspired by
the Game Description Language (GDL) [19] used in the GGP
Competition and in particular by the LUDI GDL used by
Browne and Marie [20]. The GVGAI2P games are restricted
to 2D real-time grid games, where avatars are limited to
horizontal and/or vertical movement, together with one special
action having various game-specific effects.

Two text files are needed to define a game in VGDL: one
for the game description and the other for the level definition.
The first is separated into four sections, describing the entities
present in a game, their interactions, their representations in
the level file, and the end game conditions. The level file
contains an ASCII character matrix of the sprites, depicting
their positions in the level. Separate Java classes are used to
implement the functionality of all elements defined.

Although the level file structure was not modified at all
for this track of the competition, the number of players must
be specified in each game description (1 by default), and
terminations and interactions must also now identify their
effects for both players (e.g. scoreChange = 2,−5 would
mean the first player receives 2 points, while the second loses
5 as a result of this interaction).

The end of the game can be reached with several different
outcomes: one player winning and the other losing, both
players losing or both players winning. This is not necessarily
an indication of the game type (cooperative or competitive),
as two winners in a competitive game signifies a draw.

2www.gvgai.net



1943-068X (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCIAIG.2017.2771241, IEEE
Transactions on Computational Intelligence and AI in Games

IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES 3

B. State Observation and Forward Model

In GVGAI2P, the only information received by AI agents
is a current state description, encapsulated in game objects.

These specify the current scores of all players, the game
tick, a grid of observations (which could contain more than
one at a specific position in the level if objects overlap; an
observation contains the category, type and position of a game
object), and a history of interactions that had occurred in the
game up until the current step. Additionally, agents can query
the objects for specific lists of observations, grouped by their
type, such as resources, NPCs, portals, etc. They can query
all avatars in the game on their legal actions, position, speed
and orientation.

The agents do not only have access to the current game
state, but possible future ones as well through the forward
model provided. It is important to note this forward model
is imperfect in stochastic games, offering just one of many
possible next states. In order to advance the state in multi-
player games, the agents must supply an array of actions for
all players, therefore needing to guess what the other players
would do in the current situation. This proposes an interesting
opponent modeling problem.

No information about the game rules is received by the
agents, although these may be estimated (unreliably) from the
interaction history (what effect certain interactions had on the
game score, what is the goal of the game, etc.).

C. AI Agents and Game Cycle

A game in GVGAI follows a regular cycle: the system
offers the game state to the agents and they reply with an
action. The actions available may vary and attempting to return
an illegal one results in no action being performed. Other
actions available are for movement (up, down, left, right) and
a special game-dependent action. This range of actions was
considered to be enough to cover most game types included in
the competition, although they may be extended in the future.

Agents submitted to the competition must comply to the
competition time budgets of 1 second of CPU time in the
constructor, used for game preparation, and 40 milliseconds
of CPU time at every game tick, to determine which action
the agent chooses to play. Exceeding this budget results in the
controller being disqualified. The agents are aware of their
player ID in order to query for the correct information.

Not all information about the current game state may be
available to a player, as some of the games in the framework
are partially observable.

IV. COMPETITION

A. Ranking System

The ranking system employed in the GVGAI2P Competi-
tion is Glicko-2, an improved version of the original Glicko
system created by Mark E. Glickman. The players have their
performance measured using three different values: a rating
(r), a rating deviation (RD) and a volatility (σ), taking on the
default values of (1500, 350, 0.06) for an unranked player, as
devised in the initial study of this system by Glickman. While

the rating is the only value the players are aware of, similar to
Elo scoring, the system makes use of the other two in order to
adjust the r value as necessary and carry out a more accurate
analysis of a player’s skill level.

The rating deviation portrays the confidence in a player’s r
value, varying depending on how often the player is involved
in games (as little information is known about a player who
has not played in a while and their skill level is expected to
change). RD can be used in conjunction with the rating to
display a more accurate interval instead of a single value for
the player’s performance. Finally, σ is the expected fluctuation
of a player’s rating, being lowest if the performance is kept
constant. All of the values are updated at the end of a pre-
defined rating period of several games, for all players, with
RD and σ influencing r.

In the GVGAI2P Competition, this system was adjusted
slightly in order to better suit the application. Each player
receives a 3-tuple (r, RD, σ) for each individual game it plays
in, as well as overall values, averaged over all games in a set.
The rating period is set to one run, which leads to the values
being updated for only 2 controllers, after they finish playing
all of the matches in one run.

Lastly, the default values for each game need to be adjusted
regularly depending on the performances during certain games,
as well as kept on a limited scale (0 − 5000). This is due to
the variety in games and performance: a general default would
result in a larger number of games needed for rankings to
converge. Therefore, the game specific defaults are regularly
recalculated as the average of all scores in that particular game.

For example, in the game “Capture Flag”, the average score
is 490. Assuming a new controller is of average quality, if it
were to start with the default rating of 1500, it would require
more games to be played for their rating to be accurate, than if
they instead started from the average rating. The most obvious
benefit of this default values adjustment can be seen in difficult
games, where ratings remain close to 0 for all controllers.

B. Games

The games in the competition range from puzzles to shoot-
ers, both competitive and cooperative, although this infor-
mation is not offered to the players. They differ in many
ways, including the environment interactions available, scoring
systems and end conditions. For example, in the cooperative
game “Akka Arrh”, the players are required to defend a locked
spaceship from aliens, while finding the key in order for
both players to enter the ship and win the game. 2 points
are awarded for each enemy killed and 10 upon entering the
spaceship. For more details on the games, the reader is referred
to the GVGAI Competition website and [5].

Each game has 5 levels, which differ in term of sprite layout
or sometimes sprite properties (e.g. sprite speed or spawn point
probability), without changing their behaviour.

Three different types of game sets, containing 10 games
each (Figure 1), are used in the competition to avoid overfit-
ting, as mentioned previously: training, validation and test. The
training games are public and available with the framework.
The validation games are secret, but available for submission



1943-068X (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCIAIG.2017.2771241, IEEE
Transactions on Computational Intelligence and AI in Games

IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES 4

Fig. 1. Games in GVGAI2P Framework: Capture the Flag, Sokoban, Bee
Keeper and Minions (from left corner, clockwise).

on the website for feedback on agent performance. Finally,
the test games are secret and unavailable until the end of the
competition, when the results are announced. All game sets
contain the same game feature distribution (scoring systems,
termination condition types, etc.); for more details, the reader
is referred to [5].

C. Competition rules

The competition is hosted on the GVGAI website and all
registered users may participate. The competitors may use
sample agents as a starting point for their entries, an attempt
to facilitate the initial process.

Controllers which meet competition requirements are paired
for runs on each of the game sets available. In the training
and validation sets, the pairing is done based on the Glicko-2
RD values (see Section IV-A) for quick feedback in online
rankings and ease of readjustment with new entries submitted.
In the test set, a round robin tournament style is employed
instead for offline ranking, due to the relatively small number
of entries, so controllers with the fewest games played are
prioritized.

In the training and validation sets, the agents play 1 ran-
domly selected level of each of the 10 games in one set per run,
with positions swapped in the second game for each match,
therefore 20 games in total. In the test set, the agents play all
5 levels of all 10 games, swapping positions for each match,
therefore 100 games in total per run. All levels are played for
final rankings with the motivation that general agents should
be able to generalize across levels of a single game as well.

As the GVGAI2P Competition ran two legs in 2016, at the
IEEE World Congress on Computational Intelligence (WCCI)
and the IEEE Conference on Computational Intelligence and
Games (CIG), the agents were tested on four game sets in total.
The participants had the chance to update their entries between
legs. The validation and test sets from the first leg were used
for training and validation in the second leg, respectively. Full
details of all games are available on the website.

The controllers receive points on each game in a set based
on their performance, following a Formula-1 scoring system:
the first ranked is awarded 25 points, the second ranked

receives 18, then 15, 12, 10, 8, 6, 4, 2, 1 and 0 for the rest of
the participants. The performance is measured by Glicko rating
in training and validation sets (using win percentage, in-game
scores and timesteps as tie-breakers, in this order), and by win
percentage in test sets (using in-game scores and timesteps
as tie-breakers, in this order). The points in all games are
summed up to report an overall performance in one game set.
The overall points in the test sets are then summed up at the
end of a competition year for the final Championship rankings,
a structure that has been already used in the literature [21].
Note that, albeit a difference in F1 scores is not necessarily
significant, this ranking system provides a valid procedure to
determine a competition winner for GVGAI, as it both rewards
generality across games and higher positions in the rankings
per scenario. The use of an F1 scoring system is not new in
the competitions in the field [21], [22].

V. CONTROLLERS

This section presents the sample controllers included in the
framework, followed by the competition entries in the order
of their final ranking. All of the subsections follow a similar
structure for ease of comparison: an overview of the algorithm
implemented and its opponent model, its use of online and
offline learning, strengths and weaknesses of the agents and
any domain knowledge included in their heuristics.

A. Sample Controllers

Two of the sample controllers are very simple methods:
DoNothing (does not perform any action) and SampleRandom
(returns a random action from those available). The other four
are more advanced and use two different types of heuristics
to approximate the values of game states.

The SimpleState heuristic looks to maximize the game score,
while also minimizing the number of NPCs and the distance
to NPCs and portal. In addition, a large penalty is applied for
losing the game and a large bonus is awarded for winning.

The WinScore heuristic is a stripped down version of
SimpleState, taking into account only the game score and the
end state cases (bonus for winning and penalty for losing).

1) SampleOneStepLookAhead (OneStep): This controller
is the most basic of the four advanced agents. It uses the
SimpleState heuristic to analyze all of the actions available to
it in one game step. The action chosen for execution is the one
which leads to the highest value returned by the heuristic. This
agent implements a simple opponent model which assumes the
opponent will do a random move, as long as it will not result
in them losing the game. Therefore, the next step is checked
for the opponent as well, using ACTION NIL as the action
performed by the agent in question.

2) SampleGA: This controller uses one of the two most ad-
vanced techniques, a Rolling Horizon Evolutionary Algorithm
(RHEA) [23], taking sequences of actions as individuals and
applying various evolutionary methods, including mutation,
uniform crossover, and tournaments. The action returned is the
first of the best individual found at the end of the process. Each
individual’s fitness is calculated by advancing the forward
model through the sequence of actions and evaluating the



1943-068X (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCIAIG.2017.2771241, IEEE
Transactions on Computational Intelligence and AI in Games

IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES 5

game state reached at the end with a WinScore heuristic. This
algorithm uses a random opponent model (i.e. assumes the
opponent will do a random move out of those available).

3) SampleMCTS: This controller uses a Monte Carlo Tree
Search (MCTS) [24] technique, which keeps game states and
statistics gathered in the nodes of the tree, while advancing
through the game with the available actions, employing a
random opponent model throughout. It follows four steps:
selection, expansion, simulation and back-propagation.

The algorithm first searches the tree for a node not yet
fully expanded, using the tree policy (UCB1 in the sample
controller, C =

√
2, meant to reach an appropriate balance

between exploration and exploitation; see Equation 1). It then
expands this node and performs a Monte Carlo simulation
from the new node added to the tree, during which actions are
randomly selected to advance the state, until a set limit has
been reached. The resultant state is evaluated using a WinScore
heuristic and the value is backed up the tree.

a∗ = arg max
a∈A(s)

{
Q(s, a) + C

√
lnN(s)

N(s, a)

}
(1)

4) SampleOLMCTS: This controller is an Open Loop [25]
version of the sample MCTS, the difference lying in the fact
that this algorithm does not store the game states in the tree
nodes. Therefore the forward model is used repeatedly to
re-evaluate states, giving a more accurate representation in
stochastic games in particular. The heuristics, policies and
opponent model used are the same as in the MCTS agent.

B. 1st - Championship Winner - adrienctx (VA-OLETS) -
Adrien Couëtoux

1) Background: Value Approximation Open Loop Expecti-
max Tree Search (VA-OLETS) is an upgraded version of a pre-
vious controller, OLETS [3], which is itself inspired by [26].
This controller attempts to fix one of the main weaknesses of
tree search based agents, namely the absence of generalization
between observations. It does so by continuously learning an
approximate value function depending on observations and
then injecting it into the inner workings of the tree search.

2) Main Algorithm: OLETS (see Algorithm 1; we note
P(n) the parent node of n, which is empty if and only if n
is the root node, and s(n) the first state observation seen in
node n) is a tree-based open loop controller, similar to the
sampleOLMCTS agent. It stores sequences of actions in a
tree, as well as their associated statistics (empirical average
reward, standard deviation, number of simulations, etc). It then
uses this data to bias further simulations, virtually pruning
actions that have shown poor empirical performance in past
observations. To avoid building intractably tall trees, OLETS
adds only one node per simulation. It evaluates the newly
added leaves by using the game score, which serves as an
approximation for the real value of these nodes.

The main innovation of VA-OLETS is to learn an ap-
proximation of the value function from past observations,
instead of relying solely on the game score. In this specific
implementation, the approximation relies on a linear model.
V̄θ(ϕ(s)) = θϕ(s) represents the value of being in state s,

given a parameter vector θ, and input features ϕ(s). The
resulting approximation V̄θ(ϕ(.)) is used within VA-OLETS to
give leaves a value called rM , which is then back-propagated
through the tree and thus used to balance simulations between
branches.

There is one input feature for each category and type
of visible object: the distance between the avatar and the
closest object from that category and type. All distances are
normalized, so that each ϕ(s) element is between 0 and 1.

These features are also used to improve the controller’s ex-
ploration. While OLETS gives a bonus to unexplored places in
the observation grid, VA-OLETS gives a bonus to unexplored
points in the feature space. For example, if the avatar has
never been near an object of a certain category and type,
the controller will assign a positive bias to state observations
where the avatar is close to any object of that category and
type, regardless of its specific location in the grid. This is
designed to increase the exploration of the feature space, in
order to improve the quality of the value approximation.

The opponent model is random, to make simulations as
fast as possible and build a large tree at each time step. The
same configuration of the algorithm was submitted to both
competition legs.

3) Online and Offline Learning: VA-OLETS learns a good
approximation of the value function by minimizing a loss
function, based on the current model and observed data. An
observation is defined as a 4-tuple (s, a, s′, r), with s being
the initial state, a the chosen action, s′ the next state, and r the
immediate reward measured as a game score change. The loss
function is then defined as the L2 norm of V̄θ(ϕ(s))−r. During
the online phase, after each new observation, θ is updated
by mini batch Stochastic Gradient Descent (SGD) [27]. Mini
batch SGD allows for fast updates that respect the limited
online time budget in this challenge.

During development, the training set games were used to
choose the learning rate and mini batch size for the SGD.

4) Strengths and Weaknesses: VA-OLETS obtained partic-
ularly good results on games that are about collecting multiple
items or hunting another moving object. This is probably due
to an efficient exploration of the feature space during the first
few seconds of a match and the learned approximate value
function afterwards. This controller’s performances were the
poorest on games with long term objectives, such as racing
games. Since the search tree is kept short, in favor of its width,
it is not surprising that VA-OLETS fails to learn about events
that happen many time steps down the line.

5) Domain Knowledge: The only domain knowledge that
VA-OLETS uses is the definition of the input features. These
rely on the human observation that, for most games, an
important information is the distance between the avatar and
the closest object of each category and each type. As a result,
if there are multiple objects of a certain category and type,
VA-OLETS implicitly neglects all but the closest one.

C. 2nd - MaastCTS2 - Dennis Soemers
1) Background: MaastCTS2 uses Open Loop Monte-Carlo

Tree Search (MCTS), like the SampleOLMCTS sample con-
troller, with a number of enhancements. It is computationally



1943-068X (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCIAIG.2017.2771241, IEEE
Transactions on Computational Intelligence and AI in Games

IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES 6

Algorithm 1 VA-OLETS
1: procedure VA-OLETS(s, T )
2: T ←root . initialize the tree
3: Data← ∅ . initialize observed transitions
4: Initialize V̄θ(ϕ(.))
5: while elapsed time < T do
6: RUNSIMULATION(T , s, V̄θ(ϕ(.)), Data)
7: UPDATEMODEL(Data)
8: return action = arg maxa∈C(root) ns(a)

9: procedure RUNSIMULATION(T , s, V̄θ(ϕ(.)), Data)
10: n←root(T ) . start by pointing at the root
11: Exit←False
12: while ¬Final(s) ∧ ¬Exit do . Navigating the tree
13: if n has unexplored actions then
14: a←Random unexplored action
15: s←Forward Model(s, a, randomOpponent)
16: Data← add this transition
17: n←NewNode(a, Score(s), ϕ(s))
18: Exit←True
19: else . use node scoring to select a branch
20: a ← arg maxa∈C(n) rM (a) w.p. ε, random

otherwise
21: n← a
22: s←Forward Model(s, a, randomOpponent)
23: Data← add this transition
24: ne(n)← ne(n) + 1
25: Re(n)← Re(n) + Score(s)
26: while ¬P (n) = ∅ do . update the tree
27: ns(n)← ns(n) + 1

28: rM (n) ← Re(n)
ns(n)

+ (1−ne(n))
ns(n)

(V̄θ(ϕ(s(n))) +

maxc∈C(n) rM (c))
29: n← P (n)

30: procedure UPDATEMODEL(Data)
31: Run mini batch SGD on the Data

expensive to advance game states in the GVGAI framework.
This means that MCTS-based controllers can only base deci-
sions on relatively few simulations. Therefore, the main goal
of the search enhancements in MaastCTS2 is to make every
simulation as informative as possible.

2) Main Algorithm: Before running MCTS, MaastCTS2
starts with a one-ply Breadth-First Search in every game
tick to prune unsafe actions. This is referred to as safety
prepruning and was previously used in Iterated Width in
GVGAI [28]. Progressive History [29] and N-Gram Selection
Technique [30] are used as the selection and playout policies
of MCTS, respectively. These policies introduce a bias towards
playing actions that performed well in previous simulations.
The search tree generated by MCTS in one frame is stored
in memory, and parts of the tree that may still be relevant are
reused in the next frame. These enhancements have previously
been described in more detail [31] for the single-player variant.

The version submitted to WCCI 2016 uniformly chooses
random actions for the opponent in the selection and playout

steps of MCTS. The opponent model for the version submitted
to CIG 2016 is more advanced. For every action a that an
opponent can play, every node keeps track of an opponent
score Qopp(a). The value of Qopp(a) in a node is the average
of all the scores for the opponent, back-propagated through
that node in simulations where a was selected as the opponent
action in that node. Opponent actions are selected using an ε-
greedy strategy. In every node, a random action is uniformly
chosen with probability ε = 0.5, and the action a that
maximizes Qopp(a) is selected with probability 1− ε.

3) Online and Offline Learning: MaastCTS2 does not use
any offline learning. It has various parameters that could
likely be better tuned through offline learning, but, for the
competitions of 2016, they have only been tuned manually.

For every object type i observed during a game, MaastCTS2
keeps track of a weight wi. These weights are adjusted online
based on experience gathered through MCTS simulations.
Intuitively, wi is intended to have a high value if interactions
with objects of type i have been observed to lead to score
gains or game wins, and it is intended to have a low value if
interactions with such objects have been observed to lead to
score or game losses. These weights are used in a heuristic
evaluation function, which is described below. More details on
the implementation and references to previous research that
inspired this idea can be found in [31].

The selection and playout policies used (Progressive History
and N-Gram Selection Technique) can also be viewed as a
form of online learning. These policies are biased towards
actions which had a positive outcome in previous simulations.

4) Strengths and Weaknesses: MaastCTS2 does not per-
form well in situations where the heuristic evaluation function
(described in more detail below) does not correlate with the
game-theoretic value, and changes in game score are sparsely
observed. In such situations, MCTS cannot perform like a
Best-First Search algorithm and instead explores the search
space uniformly. Examples of such games are Tron, Samaritan
(only as player two), and Team Escape.

The agent appears to perform particularly well in games
where changes in game score can be observed frequently,
or where its heuristic evaluation function provides useful
information. In such situations, the MCTS algorithm naturally
dedicates more search effort to more promising parts of the
search tree and the online learning techniques also provide
more useful information.

5) Domain Knowledge: MaastCTS2 uses domain knowl-
edge in a heuristic evaluation function for evaluating non-
terminal states at the end of MCTS simulations. This is done
because many simulations are cut off early, before resulting
in a terminal game state. This evaluation function computes a
linear combination of five features for a game state s:
• A feature that rewards proximity to objects of type i with

positive learned weight wi, and punishes proximity to
objects of type i with negative weight wi. This models
the importance of interacting with objects.

• A feature that rewards gathering resources. In many
games, it is beneficial to collect resources and they should
only be used for a specific purpose (which typically
provides a score gain able to offset the punishment).



1943-068X (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCIAIG.2017.2771241, IEEE
Transactions on Computational Intelligence and AI in Games

IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES 7

• A feature that rewards the agent if s has a lower number
of objects of type i with a negative weight. Therefore, it
considers it good to get rid of harmful objects.

• A feature that punishes the agent if there are many
movable objects in s adjacent to walls or other obstacles.
This heuristic was implemented specifically for puzzle
games, like Sokoban, where the goal is to push boxes
towards certain goals; if boxes are against walls, the
puzzle becomes impossible to solve.

• A feature that punishes the agent for objects of type i
with a weight wi > 0.5 that are completely surrounded
by obstacles, including the avatar. It is considered that
objects with large weights should remain reachable.

The output of this heuristic function is finally added to a
regular evaluation function, which takes into account the game
score and adds or deducts a large constant value for wins or
losses. These features were mainly identified as being useful
heuristics in the single-player variant of the agent, so they were
used in the two-player variant as well. None of the features
are useful in all games, but they are also rarely detrimental.

D. 3rd - WCCI Leg Winner - ToVo2 - Tom Vodopivec
1) Background: The ToVo2 controller was inspired by two

AI fields: reinforcement learning (RL) [32] and Monte Carlo
Tree Search (MCTS) [24]. The former offers strong tech-
niques for updating the gained knowledge, whereas the latter
offers strong selection and exploration policies. Considering
this, for the backbone of this controller, the Sarsa-UCT(λ)
algorithm [33] was chosen, which combines the advantages of
both fields – it is a generalization of the UCT algorithm [34]
with the Sarsa(λ) algorithm [35]. UCT is a very general and
widely-adopted MCTS algorithm, whereas Sarsa(λ) is one of
the most established and well-understood temporal-difference
(TD) learning [32] algorithms. Sarsa-UCT(λ) is an instance of
a temporal-difference tree search algorithm.

2) Main Algorithm: ToVo2 is implemented on top of the
sampleOLMCTS controller from the GVGAI Framework. The
value-function is represented by a direct-lookup table that is
incremented online. Each entry maps one state-action pair,
therefore there is no generalization across the state space
– there is no value-function approximation and no use of
features. Transpositions are not considered (hence a tree is
built and not a directed graph). The representation does not
memorize state observations, so the forward model is invoked
at each step of both the MCTS tree and playout phases.

Combining the UCB1 policy [36] with TD-learning requires
local normalization of value estimates [33]: for each tree node,
the algorithm remembers the all-time minimum and maximum
values of its children nodes and uses these as bounds for
normalization to [0, 1], before computing the UCB value.

A configuration of Sarsa-UCT(λ) similar to the standard
UCT [24] algorithm (used in the sampleOLMCTS controller)
has been submitted to several single-player GVGAI compe-
titions (the ToVo1 controller). ToVo1 is regarded as a proof
of concept and does not achieve top positions, since its
configuration is very basic.

In contrast, for the two-player competitions, Sarsa-UCT(λ)
was configured to exploit more of its potential. The algorithm

observes not only the final reward, but also intermediate re-
wards (the same as the original UCT algorithm) by computing
the difference in score after every game tick. It expands the tree
with all the visited nodes in an iteration and retains it between
searches. It gradually forgets old knowledge (through the
updated step-size parameter of RL methods) and it searches for
the shortest path to the solution through the reward discount
factor (a parameter also in the original UCT). The opponent is
modeled as a completely random player and is assumed as part
of the environment – its value-estimates are not memorized.
The scoring considers the win state of the opponent with a
weight of 33%, compared to the weight of the own win state.

The ToVo2 controller is augmented with two specifically-
designed enhancements related to the MCTS playout phase:
• Weighted-random playouts. The algorithm performs a

weighted random selection of actions in the playout. The
weight of each action is set uniformly randomly at the
beginning of each playout. This causes the avatar to be
more explorative and revisit the same states less often.

• Dynamic playout length. The ToVo2 controller starts each
search with short playouts and then it prolongs them as
the number of iterations increases. This emphasizes the
search in the immediate vicinity of the avatar, but, when
there is enough computation time, also the search for
more distant goals that might be otherwise out of reach.

The same configuration of the algorithm was submitted to
both competition legs.

3) Online and Offline Learning: The algorithm uses no
prior knowledge and no offline training. During development,
the learning parameters were tuned manually through experi-
mentation. The following are the parameter values: exploration
rate Cp =

√
2, reward discount rate γ = 0.99, eligibility trace

decay rate λ = 0.6, 50% of knowledge forgotten after each
search. The dynamic playout length starts at 5, then increases
by 5 every 5 iterations, up to a maximum length of 50.

The value-normalization method adapts the bounds for each
node, which is similar to tuning the exploration rate Cp online.

Online learning is implicit to the MCTS backup process:
as described above, the algorithm uses TD-learning backups
instead of Monte Carlo backups for state-value estimation.

4) Strengths and Weaknesses: The main strength of the
ToVo2 agent is its generality. It can be applied as a backbone
to other, more complex, methods in the same way as basic
MCTS algorithms, while performing better. Furthermore, it has
plenty of unexplored potential, given that it currently ignores
state observations, does not generalize across states, does not
use transpositions and uses primitive opponent-modeling.

It has similar strengths and weaknesses as classic MCTS
algorithms: its performance is high in arcade games with short-
term rewards, average in arcade games with long-term rewards
and poor in puzzle games. Its weighted-random playouts are
beneficial in traditional arcade games where exploration of the
two-dimensional space is desirable, but can be detrimental in
puzzle games, where the exact sequence of moves is critical.

ToVo2 achieved top positions in most games from the first
three sets, but performed poorly on the fourth set, where in
half of the games it scored even less than the sampleOLMCTS
controller. Rough experiments confirm this is due to the



1943-068X (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCIAIG.2017.2771241, IEEE
Transactions on Computational Intelligence and AI in Games

IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES 8

configuration of the dynamic playout length enhancement. We
analyzed a number of qualitative features of these games, but
we identified no significant correlation.

5) Domain Knowledge: The algorithm uses the two
heuristic-based enhancements described previously: dynamic
playout length and non-uniform random playouts. Otherwise,
apart from the manual optimization of parameters, it uses no
other expert or domain knowledge and no handcrafted rules.

E. 4th - CIG Leg Winner - Number27 - Florian Kirchgeßner

1) Background: Like the sampleGA controller, Number27
consists of a genetic algorithm. But, instead of using separate
populations with multiple action sequences, a single one is
used, as the time distribution to improve multiple populations
results in overall weaker results. MixMax [37] was first used
as a risk-seeking behavior for the MCTS algorithm and was
herein adapted to achieve the opposite result, namely to make
the algorithm more defensive in the vicinity of opponents.

2) Main Algorithm: While the genetic algorithm ensures
proper local movement, a heuristic permits the player to look
beyond the horizon of simulated sequences. Its purpose is to
encourage the urge to explore and getting a sense of which
objects are valuable. With the knowledge of each object type’s
worth, a value map is created by combining each object’s
corresponding range of influence (see Figure 2). The result
is similar to a heat map, with areas of varying attractiveness
formed by an especially beneficial object, clusters of many
low-valued ones or the presence of threats.

Fig. 2. Value map of the game Zelda after 10 game ticks.

As the value map does not guarantee proper movement
across the level and results in the player getting stuck in
corners, dead ends or enclosed sections, a penalty for re-
maining in the same area was introduced. Additionally, this
technique encourages exploration when the player only ex-
ploits a single source of points and resembles a pheromone-
based approach [25]. When eventually choosing the optimal
action, a distinction is made between deterministic and non-
deterministic conditions. If the same arrangement results in a
different score, then the likelihood of certain outcomes has to
be considered. Whenever the following states are determin-
istic, the action with the highest simulated score is chosen.
However, for differing results, a variation of the MixMax
algorithm is used. This approach combines the average scores
of sequences with the same initial action and the maximal
score out of the same sequences using Equation 2.

(1−maxFactor) ·avgScore+maxFactor ·maxScore (2)

The proportions are reflected in maxFactor and are deter-
mined by the number of divergent game states: With more
differences, the maximal score is taken into account less,
which results in a more cautious play style.

During simulations, the opponent’s action is chosen com-
pletely at random, while in previous implementations losses
were being avoided. However, making assumptions about
which action will be taken made the controller vulnerable to
unexpected outcomes and the loss avoidance took valuable
computation time. With a random approach, all movement
possibilities are considered and, when the opponent gets close,
the player is more wary of them.

The same algorithm was submitted to both competition legs,
but with different configurations.

3) Online and Offline Learning: While no offline learning
was conducted, the algorithm is capable of evaluating the level
during the game. The frequency of an object type is used as an
initial value estimate, with a higher score for unique objects
and a lower score for common ones. As an encouragement to
inspect all existing types, an exploration bonus increases the
basic value. This bonus is not only applied at the beginning
of the game, but also when meaningful development occurs.
Eventually, the change in game score after interacting with an
object is determined, by monitoring the consequential events
created by the framework and by assigning the game score
difference to the object type stated in the event.

4) Strengths and Weaknesses: Because the genetic algo-
rithm has a fixed simulation depth, the controller is incapable
of solving puzzle games. It also does not understand the
need for teamwork, since the second player is considered a
randomly acting object. On the other hand, Number27 is able
to quickly evaluate the game by inspecting existing objects
and getting an overview of the level. The result is the ability
to progress through the majority of the games at a respectable
rate. Furthermore, adjusting risk and caution rates allows the
player to survive levels with multiple aggressive enemies.

5) Domain Knowledge: The controller does not differen-
tiate between the various game genres and tackles all in the
same way. Only for axis-restricted games, the range of object
influences is adjusted to allow the player to notice them on
the value map. Therefore, the algorithm is able to score across
most games in the test and validation sets and fits the intention
of creating a general video game playing controller.

F. 5th - CatLinux - Jialin Liu
1) Background: Rolling Horizon Evolutionary Algorithms

(RHEAs) are inspired by Rolling Horizon planning (some-
times called Receding Horizon Control (RHC) or Model Pre-
dictive Control (MPC), which is commonly used in industry),
together with simulation-based algorithms, for online decision
making in a dynamic stochastic environment. In a state,
RHEAs evolve a population of action sequences (individuals),
where the length of each sequence equals the fixed depth of
simulation. An optimal action sequence is recommended based
on a forecast of the finite time-horizon. Only the first action
of the optimal sequence is applied to the problem, then the
prediction horizon is shifted forward and the optimization is
repeated with updated observations and forecasts.



1943-068X (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCIAIG.2017.2771241, IEEE
Transactions on Computational Intelligence and AI in Games

IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES 9

Perez et al. [23] applied a Rolling Horizon Genetic Algo-
rithm (RHGA) to the Physical Traveling Salesman Problem
(PTSP). RHGA is shown to be the most efficient evolutionary
algorithm on the GVGAI Competition framework [25]. A
Rolling Horizon version of a Coevolution Algorithm (RHCA)
was introduced and applied to a two-player battle game by
Liu et al. in [38].

2) Main Algorithm: Different to previous work, where the
population is reset at each time step, CatLinux uses a so-called
shift buffer technique in RHGA. As a fixed-length moving
optimization horizon is used at each time step, the actions
in each sequence are shifted along with the movement of the
prediction horizon, then the action at the end of each sequence
is randomly initialized. The parameters, population size λ,
number of elites µ, mutation probability p and simulation
depth D are arbitrarily set to 10, 4, 0.1 and 10, respectively.

The same configuration of the algorithm was submitted to
both competition legs.

3) Online and Offline Learning: The controller does not
involve any offline learning. Further work would consider
the use of offline learning to recommend action sequences to
start with, instead of using a randomly initialized population.
CatLinux uses implicit learning from the RHEA method,
similar to the sampleGA controller.

4) Strengths and Weaknesses: CatLinux is simple and effi-
cient. The shift buffer makes use of the information obtained
during the previous generations and accelerates the conver-
gence to the optimal sequence. The main weaknesses are (i)
the use of a random opponent model and (ii) at each game
tick t, the legalActions is the set of actions available from
state st, which possibly differs to the set from state st+1. The
latter cannot be solved by simply updating the legalActions
during the simulations, as applying an identical action twice to
an identical state can result in two distinct states if the game is
stochastic. The controller performed strongly on puzzle games,
but it scored below average in cooperative games.

5) Domain Knowledge: The only domain knowledge
CatLinux uses is the legal actions of both players, the score,
and the winning state of the current player. The parameters
are arbitrarily chosen: neither the parameters nor the heuristic
were optimized based on the training or validation set. Never-
theless, CatLinux outperformed all of the sample controllers.

G. Other controllers

1) 7th - YOLOBOT: This agent is a two-player version of
its single-player counterpart submitted to the Single Player
planning track of GVGAI. It first uses a system to select
an appropriate technique for the game played, making a
difference between deterministic (Breadth-first Search) and
stochastic (Monte Carlo Tree Search) games. It also employs
a target selection system, using MCTS to move towards its
current target. Its opponent model is random.

2) 8th - NextLevel: This agent implements an enhanced
version of MCTS with a limited rollout depth (4) and attempts
to learn information about the game using the event history
provided. It assumes the opponent will perform a random
action that will not lose them the game, therefore utilizes a

similar opponent model as implemented in the sample One
Step Look Ahead controller.

3) 13th - webpigeon: This agent uses OLMCTS with a
simple agent prediction system which assumes the opponent
will always help, compared to the random opponent model
from the sample agent, therefore aimed at cooperative games.
This was the main reason this controller finished last in the
rankings, as most games in the framework are competitive.

VI. RESULTS

The results for the test sets of both legs in 2016, WCCI
and CIG, as well as the final Championship rankings, are
presented in Tables II, III and IV. The complete rankings
and details of performance on individual games, as well as
timing disqualifications, can be accessed on the competition
website. The average Glicko ratings on all games are reported
only as an indication, they do not reflect the generality aspect
presented by the Formula-1 points. There were 13 valid unique
entries, 5 of which were sample controllers. A 14th entry was
submitted, but it was disqualified due to crashing in all games.

ToVo2 was the winner of the first leg of the competition
(Table III), obtaining a larger number of points than adrienctx,
who came second. However, although it ranked at the top of
the table in most games, it was second to last in the cooperative
game “The Bridge”. The other cooperative game in the set,
“Fire Truck”, was dominated by the random controller, as the
concept of the game was not grasped by any controller, which
meant that performing random moves lead to better results.
The competitor coming in last on this set only managed to
gather 9 points in total over 3 different games.

The second leg, presented at CIG (Table IV), was won by
Number27, and the gap between participants (the first three in
particular) was closer than in the previous test set. adrienctx
came in second again, after achieving top scores in most games
but ending up bottom of the table in 3 games: “Mimic”,
“Reflection” and “Upgrade-X”, in which more simple and
general algorithms took the lead. Webpigeon ranked last again,
with only 4 points collected in one game, “Mimic”, where it
achieved an average win rate of 48%.

It is interesting to note that the winners of the individual
legs did not come first nor second in the final Championship
ranking (Table II), where they were overtaken by adrienctx and
MaastCTS2 (who came second and third, respectively, in both
previous sets). This suggests that the competition system does
indeed award more general agents, who may not necessarily
be the best at a particular task or subset of tasks, but achieve
a high level of performance across a range of problems.

An analysis into the game types shows that most agents
struggle considerably more in cooperative games, the average
scores and win rates being very close to 0 (with the exception
of the games “Team Escape” and “Wheel Me”). This is thought
to be due to the weak opponent models which do not consider
the other player as an entity interacting with the environment
in similar ways and working towards the same goals.

In addition, there are several other games in which average
performance, as indicated by Glicko ratings, is fairly low, such
as “Minions” from the WCCI test set, “Football” from the



1943-068X (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCIAIG.2017.2771241, IEEE
Transactions on Computational Intelligence and AI in Games

IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES 10

Controller Main Techniques Other Enhancements Offline
Learning

Online
Learning

Opponent Model

adrienctx Monte Carlo Tree Search Value map 4 4 Random
MaasCTS2 Monte Carlo Tree Search,

Breadth-First Search
Progressive history,
N-Gram selection

7 4 ε-greedy

ToVo2 Monte Carlo Tree Search,
Sarsa-UCT(λ)

Weighted-random playouts,
Dynamic playout length

7 4 Random

Number27 Genetic Algorithm, MixMax Value map, Pheromone diffusion 7 4 Random
CatLinux Rolling Horizon

Evolutionary Algorithm
Shift buffer 7 4 Random

SampleOLMCTS † Monte Carlo Tree Search 7 7 4 Random
YOLOBOT Monte Carlo Tree Search,

Breadth-First Search
Game type identification,

Target selection
7 4 Random

NextLevel Monte Carlo Tree Search Value Map 7 4 Simple predictor
loss prevention

SampleMCTS † Closed Loop
Monte Carlo Tree Search

7 7 4 Random

SampleGA † Genetic Algorithm 7 7 4 Random
Random † Random Action Selection 7 7 7 None
OneStep † Best Immediate Action 7 7 7 Simple predictor,

loss prevention
webpigeon Monte Carlo Tree Search 7 7 4 Assumes

cooperative
TABLE I

CONTROLLER TECHNIQUES SUMMARIZED. †DENOTES A SAMPLE CONTROLLER.

WCCI validation set, and “Cops N Robbers” and “Sokoban”
from the training set. Except for “Cops N Robbers”, which is
a special case, these are games with a large search space and
little to no intermediate rewards offered after long sequences
of actions. Therefore, the agents are unable to look far enough
into the future to figure out optimal solutions. Puzzle games
have traditionally proven to be more of a challenge to general
agents, portrayed in these results by both versions of the classic
game of “Sokoban” (competitive and cooperative) reporting
only 1 win during the entire competition.

In the case of “Cops N Robbers”, although the average
Glicko score is fairly low (260), the win rates range from
7% to 79%. This is explained by the Glicko volatility, which
has the lowest values in this game, indicating inconsistency
in performance, most likely caused by the clear asymmetry of
the game and a slight bias towards the Cop entity. Although
this is accounted for by mirroring player order in all games,
the average win rate remains at only 43%.

One notable aspect is the fact that the average Glicko ratings
on the test sets generally do go down with the ranks computed
using the Formula-1 system. This validates the usage of the
system for highlighting generality, as the average scores may
be biased towards controllers that perform very well in some
games but very poorly in others, instead of controllers able to
maintain a good skill level across multiple games.

The games which saw the best performances were “Bee
Keeper” and “Minesweeper” from the WCCI validation set,
and “Egg Hunt” and “War Zone” from the CIG test set. All of
these games are competitive and highly interactive, benefiting
from multiple rewards and short term feedback for actions.
Except for “Egg Hunt”, they are also symmetrical, which is
an advantage for agents with weak opponent models (as is
the case for all competition entries). Although the win rate is
highest in these games, there is still a difference of at least
800 Glicko points and 60% win rate between the first and last
ranked players. This pinpoints the large skill depth and the

Rank Username WCCI 2016 CIG 2016 Total
1 adrienctx 141 130 271
2 MaasCTS2 124 125 249
3 ToVo2 171 75 246
4 Number27 108 135 243
5 CatLinux 106 79 185
6 SampleOLMCTS † 94 85 179
7 YOLOBOT 66 106 172
8 NextLevel 46 89 135
9 SampleMCTS † 61 63 124
10 SampleGA † 36 43 79
11 Random † 27 35 62
12 OneStep † 21 41 62
13 webpigeon 9 4 13

TABLE II
FINAL CHAMPIONSHIP RESULTS. †DENOTES A SAMPLE CONTROLLER. THE
WINNERS ARE HIGHLIGHTED IN GRAY (OVERALL AND INDIVIDUAL LEGS).

numerous types of different problems the agents face, as well
as the difficulty in achieving a generally good performance.
Various strategies emerge in some games, such as “Up High”,
in which players might either attempt to increase their own
scores or hinder the opponent instead to gain the lead.

Table I summarizes the competition entries. The most
preferred techniques were Monte Carlo Tree Search (MCTS)
and Evolutionary Algorithms (EA). MCTS dominated most of
the competition and its learning through back-propagation of
Monte Carlo simulations led to these algorithms understanding
cooperative games better, as well as allowing them to adapt to
asymmetric games, where they would have to play different
roles in the same environment. However, EAs proved to be
better puzzle solvers, in which the sequence of moves matters
the most, as well as excelling in games with longer lookaheads.

VII. CONCLUSIONS

This paper gives a detailed account of a new track of
the General Video Game AI Competition that focuses on
two-player games and introduces new interesting and more



1943-068X (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCIAIG.2017.2771241, IEEE
Transactions on Computational Intelligence and AI in Games

IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES 11

Rank Username G-1 G-2 G-3 G-4 G-5 G-6 G-7 G-8 G-9 G-10 Total Points Avg. Glicko-2 Rating
1 ToVo2 25 15 12 18 15 18 18 0 25 25 171 1077.73
2 adrienctx 2 10 10 12 25 8 25 25 6 18 141 979.99
3 MaastCTS2 4 18 18 0 10 25 15 15 18 1 124 1049.97
4 Number27 8 25 25 6 0 2 12 18 12 0 108 1006.99
5 CatLinux 15 8 15 0 8 15 10 12 15 8 106 959.85
6 SampleOLMCTS † 18 2 8 2 18 12 6 8 8 12 94 950.83
7 YOLOBOT 0 12 0 4 4 10 1 10 10 15 66 826.73
8 SampleMCTS † 12 6 6 1 6 6 8 2 4 10 61 845.96
9 NextLevel 10 1 2 8 12 4 0 6 1 2 46 825.56
10 SampleGA † 0 4 4 15 2 0 4 1 2 4 36 822.00
11 Random † 1 0 0 25 0 1 0 0 0 0 27 622.76
12 OneStep † 6 0 1 10 0 0 0 4 0 0 21 714.36
13 webpigeon 0 0 0 0 1 0 2 0 0 6 9 447.48

TABLE III
FINAL RESULTS OF THE WCCI LEG. †DENOTES A SAMPLE CONTROLLER. THE TOP SCORES ARE HIGHLIGHTED, THE DARKER THE COLOUR, THE BETTER
THE SCORE. G-1: ACCELERATOR, G-2: BREEDING DRAGONS, G-3: DROWNING, G-4: FIRE TRUCK, G-5: GHOSTBUSTERS, G-6: MINIONS, G-7: OOPS!

BROKE IT, G-8: THE BRIDGE, G-9: UP HIGH, G-10: WATCH OUT!

Rank Username G-1 G-2 G-3 G-4 G-5 G-6 G-7 G-8 G-9 G-10 Total Points Avg. Glicko-2 Rating
1 Number27 18 18 10 25 15 12 2 6 25 4 135 961.74
2 adrienctx 25 15 18 2 2 18 15 2 18 15 130 946.11
3 MaastCTS2 12 25 15 0 18 25 0 10 12 8 125 959.68
4 YOLOBOT 15 10 25 0 12 0 4 0 15 25 106 925.32
5 NextLevel 2 1 12 1 25 6 10 12 8 12 89 890.42
6 SampleOLMCTS † 4 6 4 10 8 15 6 18 4 10 85 931.53
7 CatLinux 9 12 6 18 10 10 0 4 10 1 79 875.38
8 ToVo2 10 8 8 8 4 4 1 8 6 18 75 903.51
9 SampleMCTS † 6 4 2 6 6 8 8 15 2 6 63 918.51
10 SampleGA † 1 2 1 0 0 2 12 25 0 0 43 897.30
11 OneStep † 0 0 0 12 1 1 25 1 1 0 41 716.26
12 Random † 0 0 0 15 0 0 18 0 0 2 35 617.01
13 webpigeon 0 0 0 4 0 0 0 0 0 0 4 259.26

TABLE IV
FINAL RESULTS OF THE CIG LEG. †DENOTES A SAMPLE CONTROLLER. THE TOP SCORES ARE HIGHLIGHTED, THE DARKER THE COLOUR, THE BETTER

THE SCORE. G-1: EGG HUNT, G-2: FATTY, G-3: I SAW SANTA, G-4: MIMIC, G-5: REFLECTION, G-6: TRAIN RIDE, G-7: TREASURE MAP, G-8:
UPGRADE-X, G-9: WAR ZONE, G-10: WHEEL ME

complex problems, encouraging closer player interaction. This
widens the search space for a general AI agent, as it not only
has to be able to handle various types of problems, but also
cope with another intelligent entity in the environment.

Games have always provided an excellent test bed for AI
research. Traditionally much of this effort was focused on
classic games, but recent years have seen heightened levels
of focus given to video games, which require rapid reactions
and arguably more human-like intelligence. The GVGAI two-
player track offers a greater and more open-ended challenge,
with other players to compete or collaborate with.

The final results obtained at the end of the competition
show that, while agents are able to solve some of these new
tasks, there is still plenty of room for improvement. Most of
the entries do not seek to model the other player’s behavior
beyond random moves (with few exceptions which avoid self-
destructive actions or ε-greedy) and there are no specific
attempts to try to identify if the opponent is competing or
cooperating. How to predict, react and adapt to the opponent’s
actions in a general video game setting still remains an unre-
solved challenge. Recent published work [39] analyzes simple
opponent models that are able to outperform random, such as
building a probabilistic model of the opponent’s actions.

The best algorithm submitted won second place in both
individual legs before winning the 2016 Championship, im-
plementing a version of Open Loop Expectimax Tree Search.

Statistical Tree Search techniques have shown to be a dominat-
ing technique in this framework and competition. However, the
fourth and fifth ranked players in the final Championship rank-
ings suggest that there is promise for Evolutionary Algorithms
to reach MCTS performance, as Number27’s Genetic Algo-
rithm implementation won the CIG leg of the competition.

Future work regarding the competition will take two differ-
ent multi-agent paths: games in which there are more than
two players, possibly grouped in teams, and games where
one player controls more than one avatar. These are vastly
different problems, one looking at social intelligence and agent
interaction, while the other has resource management and
multi-objective optimisation tasks underlying the gameplay.
However, both are very interesting challenges to be explored
in the General Video Game Playing field.

Furthermore, the work carried out in GVGAI can be applied
to a wider range of problems, as the games consist of practical
and varied challenges such as navigation, puzzle-solving,
quick decision making, adversarial tests or collaboration.
There are plans of expanding to problems of broader interest,
such as zero-sum games or iterated prisoner’s dilemma, which
should be solved with the same general algorithms.

Finally, although the emphasis of the current paper is to find
the most intelligent GVGAI agents, we see enormous potential
for using a diverse set of GVGAI agents to assist with play-
testing novel games and novel game content. Since the agents



1943-068X (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCIAIG.2017.2771241, IEEE
Transactions on Computational Intelligence and AI in Games

IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES 12

are so general, they can be used to directly measure important
aspects of a game, such as skill depth, and less directly to
estimate aspects of expected human player experience.

ACKNOWLEDGMENTS

The authors would like to thank all participants of the
competition for their work and submitted controllers. This
work was partially funded by the EPSRC CDT in Intelligent
Games and Game Intelligence (IGGI) EP/L015846/1

REFERENCES

[1] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. van den
Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanc-
tot, S. Dieleman, D. Grewe, J. Nham, N. Kalchbrenner, I. Sutskever,
T. Lillicrap, M. Leach, K. Kavukcuoglu, T. Graepel, and D. Hassabis,
“Mastering the Game of Go with Deep Neural Networks and Tree
Search,” Nature, vol. 529, no. 7587, pp. 484–489, 01 2016.

[2] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski
et al., “Human-level Control Through Deep Reinforcement Learning,”
Nature, vol. 518, no. 7540, pp. 529–533, 2015.

[3] D. Perez-Liebana, S. Samothrakis, J. Togelius, T. Schaul, S. Lucas,
A. Couetoux, J. Lee, C.-U. Lim, and T. Thompson, “The 2014 General
Video Game Playing Competition,” in IEEE Transactions on Computa-
tional Intelligence and AI in Games, vol. 8, no. 3, 2016, pp. 229–243.

[4] D. Perez-Liebana, S. Samothrakis, J. Togelius, S. M. Lucas, and
T. Schaul, “General Video Game AI: Competition, Challenges and
Opportunities,” in Thirtieth AAAI Conference on Artificial Intelligence,
2016, pp. 4335–4337.

[5] R. D. Gaina, D. Perez-Liebana, and S. M. Lucas, “General Video
Game for 2 Players: Framework and Competition,” in Proceedings of
the IEEE Computer Science and Electronic Engineering Conference
(CEEC), 2016.

[6] S. Samothrakis, D. Perez-Liebana, P. Rohlfshagen, and S. M. Lucas,
“Predicting Dominance Rankings for Score-based Games,” in IEEE
Transactions on Computational Intelligence and AI in Games, vol. 8,
no. 1, 2014, pp. 1–12.

[7] M. E. Glickman, “Parameter Estimation in Large Dynamic Paired
Comparison Experiments,” Applied Statistics, vol. 48, pp. 377–394,
1999.

[8] A. E. Elo, The Rating of Chess Players, Past and Present. New York:
Arco Pub., 1978.

[9] M. E. Glickman, “Example of the Glicko-2 system,” Boston University,
2012.

[10] M. Genesereth, N. Love, and B. Pell, “General Game Playing: Overview
of the AAAI Competition,” in AI Magazine, vol. 26, no. 2, 2005, p. 62.

[11] R. Prada, P. Lopes, J. Catarino, J. Quitrio, and F. S. Melo, “The
Geometry Friends Game AI Competition,” in IEEE Conference on
Computational Intelligence and Games, 2015, pp. 431–438.

[12] P. Rohlfshagen and S. M. Lucas, “Ms Pac-Man versus ghost team CEC
2011 competition,” in Proceedings of IEEE Congress on Evolutionary
Computation (CEC), 2011, pp. 70–77.

[13] P. R. Williams, D. P. Liebana, and S. M. Lucas, “Ms. Pac-Man
Versus Ghost Team CIG 2016 competition,” in IEEE Conference on
Computational Intelligence and Games, CIG, 2016, pp. 1–8.

[14] S. Ontan, G. Synnaeve, A. Uriarte, F. Richoux, D. Churchill, and
M. Preuss, “A Survey of Real-Time Strategy Game AI Research and
Competition in StarCraft,” 2013.

[15] F. Lu, K. Yamamoto, L. H. Nomura, S. Mizuno, Y. Lee, and R. Tha-
wonmas, “Fighting Game Artificial Intelligence Competition Platform,”
in Proceedings of the 2nd IEEE Global Conference on Consumer
Electronics, 2013, pp. 320–323.

[16] S. Lee and J. Togelius, “Showdown AI Competition,” in IEEE Confer-
ence on Computational Intelligence and Games, CIG, 2017.

[17] J. Togelius, “How to Run a Successful Game-based AI Competition,”
in IEEE Transactions on Computational Intelligence and AI in Games,
vol. 8, no. 1, 2013, pp. 95–100.

[18] T. Schaul, “A Video Game Description Language for Model-based
or Interactive Learning,” in Proceedings of the IEEE Conference on
Computational Intelligence in Games, 2013, pp. 193–200.

[19] N. Love, T. Hinrichs, D. Haley, E. Schkufza, and M. Genesereth,
“General Game Playing: Game Description Language Specification,” in
Technical Report LG-2006-01, Stanford University, Stanford, CA, 2006.

[20] C. Browne and F. Maire, “Evolutionary Game Design,” IEEE Transac-
tions on Computational Intelligence and AI in Games, vol. 2, no. 1, pp.
1–16, March 2010.

[21] D. Loiacono, P. L. Lanzi, J. Togelius, E. Onieva, D. A. Pelta, M. V.
Butz, T. D. Lonneker, L. Cardamone, D. Perez, Y. Sáez et al., “The
2009 Simulated Car Racing Championship,” IEEE Transactions on
Computational Intelligence and AI in Games, vol. 2, no. 2, pp. 131–
147, 2010.

[22] D. Perez, E. J. Powley, D. Whitehouse, P. Rohlfshagen, S. Samothrakis,
P. I. Cowling, and S. M. Lucas, “Solving the Physical Traveling
Salesman Problem: Tree Search and Macro Actions,” IEEE Transactions
on Computational Intelligence and AI in Games, vol. 6, no. 1, pp. 31–45,
2014.

[23] D. Perez-Liebana, S. Samothrakis, S. M. Lucas, and P. Rolfshagen,
“Rolling Horizon Evolution versus Tree Search for Navigation in
Single-Player Real-Time Games,” in Proceedings of the Genetic and
Evolutionary Computation Conference (GECCO), 2013, pp. 351–358.

[24] C. B. Browne, E. Powley, D. Whitehouse, S. M. Lucas, P. I. Cowling,
P. Rohlfshagen, S. Tavener, D. Perez, S. Samothrakis, and S. Colton, “A
Survey of Monte Carlo Tree Search Methods,” IEEE Transactions on
Computational Intelligence and AI in Games, vol. 4, no. 1, pp. 1–43,
mar 2012.

[25] D. Perez-Liebana, J. Dieskau, M. Hnermund, S. Mostaghim, and S. M.
Lucas, “Open Loop Search for General Video Game Playing,” in
Proceedings of the Genetic and Evolutionary Computation Conference
(GECCO), 2015, pp. 337–344.

[26] A. Weinstein and M. Littman, “Bandit-Based Planning and Learning
in Continuous-Action Markov Decision Processes,” in International
Conference on Automated Planning and Scheduling, 2012, pp. 335–338.

[27] W. A. Gardner, “Learning Characteristics of Stochastic-gradient-descent
Algorithms: A General Study, Analysis, and Critique,” Signal Process-
ing, vol. 6, no. 2, pp. 113–133, 1984.

[28] T. Geffner and H. Geffner, “Width-Based Planning for General Video-
Game Playing,” in Proceedings of the Eleventh Artificial Intelligence and
Interactive Digital Entertainment International Conference, A. Jhala and
N. Sturtevant, Eds. AAAI Press, 2015, pp. 23–29.

[29] J. A. M. Nijssen and M. H. M. Winands, “Enhancements for Multi-
Player Monte-Carlo Tree Search,” in Computers and Games (CG 2010),
ser. Lecture Notes in Computer Science. Springer Berlin Heidelberg,
2011, vol. 6515, pp. 238–249.

[30] M. J. W. Tak, M. H. M. Winands, and Y. Björnsson, “N-Grams and
the Last-Good-Reply Policy Applied in General Game Playing,” IEEE
Transactions on Computational Intelligence and AI in Games, vol. 4,
no. 2, pp. 73–83, 2012.

[31] D. J. N. J. Soemers, C. F. Sironi, T. Schuster, and M. H. M. Winands,
“Enhancements for Real-Time Monte-Carlo Tree Search in General
Video Game Playing,” in Proceedings of the IEEE Conference on
Computational Intelligence and Games. IEEE, 2016, pp. 436–443.

[32] R. S. Sutton and A. G. Barto, Reinforcement Learning : An Introduction.
MIT Press, 1998.

[33] T. Vodopivec, S. Samothrakis, and Šter Branko, “From Monte Carlo Tree
Search to Reinforcement Learning and Back,” manuscript submitted for
publication, 2016.

[34] L. Kocsis and C. Szepesvári, “Bandit Based Monte-Carlo Planning,”
in Proceedings of the Seventeenth European Conference on Machine
Learning, ser. Lecture Notes in Computer Science, J. Fürnkranz,
T. Scheffer, and M. Spiliopoulou, Eds., vol. 4212. Berlin/Heidelberg,
Germany: Springer, 2006, pp. 282–293.

[35] G. A. Rummery and M. Niranjan, “On-line Q-learning Using Connec-
tionist Systems,” Cambridge University Engineering Department, Tech.
Rep. 166, September 1994.

[36] P. Auer, N. Cesa-Bianchi, and P. Fischer, “Finite-time Analysis of the
Multiarmed Bandit Problem,” Machine Learning, vol. 47, no. 2-3, pp.
235–256, May-June 2002.

[37] F. Frydenberg, K. Andersen, S. Risi, and J. Togelius, “Investigating
MCTS Modifications in General Video Game Playing,” in Proceedings
of the 2015 IEEE Conference on Computational Intelligence and Games,
2015, pp. 107–113.

[38] J. Liu, D. Pérez-Liébana, and S. M. Lucas, “Rolling Horizon Coevo-
lutionary Planning for Two-Player Video Games,” in Proceedings of
the IEEE Computer Science and Electronic Engineering Conference
(CEEC), 2016.

[39] J. M. Gonzalez-Castro and D. Perez-Liebana, “Opponent Models Com-
parison for 2 Players in GVGAI Competitions,” in Computer Science
and Electronic Engineering Conference (CEEC), 2017 9th. IEEE, 2017,
p. to appear.


