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Abstract—We study collective decision-making in a model
of human groups, with network interactions, performing two
alternative choice tasks. We focus on the speed-accuracy tradeoff,
i.e., the tradeoff between a quick decision and a reliable decision,
for individuals in the network. We model the evidence aggrega-
tion process across the network using a coupled drift diffusion
model (DDM) and consider the free response paradigm in which
individuals take their time to make the decision. We develop
reduced DDMs as decoupled approximations to the coupled DDM
and characterize their efficiency. We determine high probability
bounds on the error rate and the expected decision time for
the reduced DDM. We show the effect of the decision-maker’s
location in the network on their decision-making performance
under several threshold selection criteria. Finally, we extend
the coupled DDM to the coupled Ornstein-Uhlenbeck model for
decision-making in two alternative choice tasks with recency
effects, and to the coupled race model for decision-making in
multiple alternative choice tasks.

Index Terms—Distributed decision-making, coupled drift-
diffusion model, decision time, error rate, coupled Orhstein-
Uhlenbeck model, coupled race model, distributed sequential
hypothesis testing

I. INTRODUCTION

Collective cognition and decision-making in human and
animal groups have received significant attention in a broad
scientific community [2], [3], [4]. Extensive research has led
to several models for information assimilation in social net-
works [S], [6]]. Efficient models for decision-making dynamics
of a single individual have also been developed [7], 8], [9].
However, applications like the deployment of a team of human
operators that supervises the operation of automata in complex
and uncertain environments involve joint evolution of infor-
mation assimilation and decision dynamics across the group
and the possibility of a collective intelligence. A principled
approach to modeling and analysis of such socio-cognitive
networks is fundamental to understanding team performance.

In this paper, we focus on the speed-accuracy tradeoff in
collective decision-making primarily using the context of prob-
lems in which the decision-maker must choose between two
alternatives. The speed-accuracy tradeoff is the fundamental
tradeoff between a quick decision and a reliable decision. The
two alternative choice problem is a simplification of many
decision-making scenarios and captures the essence of the
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speed-accuracy tradeoff in a variety of situations encountered
by animal groups [10], [11]. Moreover, human performance
in two alternative choice tasks is extensively studied and well
understood [7], [8], [9]. In particular, human performance in
a two alternative choice task is modeled well by the drift-
diffusion model (DDM) and its variants; variants of the DDM
under optimal choice of parameters are equivalent to the DDM.

Collective decision-making in human groups is typically
studied under two extreme communication regimes: the so-
called ideal group and the Condorcet group. In an ideal group,
each decision-maker interacts with every other decision-maker
and the group arrives at a consensus decision. In a Condorcet
group, decision-makers do not interact with one another;
instead a majority rule is employed to reach a decision. In this
paper we study a generalization of the ideal group, namely,
the ideal network. In an ideal network, each decision-maker
interacts only with a subset of other decision-makers in the
group, and the group arrives at a consensus decision.

Human decision-making is typically studied in two
paradigms, namely, interrogation, and free response. In the in-
terrogation paradigm, the human has to make a decision at the
end of a prescribed time duration, while in the free response
paradigm, the human takes his/her time to make a decision.
In the model for human decision-making in the interrogation
(free response) paradigm, the decision-maker compares the
decision-making evidence against a single threshold (two
thresholds) and makes a decision. In the context of the free
response paradigm, the choice of the thresholds dictates the
speed-accuracy tradeoff in decision-making.

Collective decision-making in ideal human groups and Con-
dorcet human groups is studied in [4] using the classical signal
detection model for human performance in two alternative
choice tasks. Collective decision-making in Condorcet human
groups using the DDM and the free response paradigm is
studied in [12], [13]. Collective decision-making in ideal
human groups using the DDM and the interrogation paradigm
is studied in [[14]. Related collective decision-making models
in animal groups are studied in [15]]. In this paper, we study
the free response paradigm for collective decision-making in
ideal networks using the DDM, the Ornstein-Uhlenbeck (O-U)
model, and the race model [16].

The DDM is a continuum approximation to the evidence
aggregation process in a hypothesis testing problem. Moreover,
the hypothesis testing problem with fixed sample size and
the sequential hypothesis testing problem correspond to the
interrogation paradigm and the free response paradigm in hu-
man decision-making, respectively. Similarly, the race model
in the free response paradigm is a continuum approximation of
an asymptotically optimal sequential multiple hypothesis test



proposed in [17]. Consequently, the collective decision-making
problem in human groups is similar to distributed hypothesis
testing problems studied in the engineering literature [18]],
[L9], [201, [21]]. In particular, Braca et al. [[19] study distributed
implementations of the hypothesis testing problem with fixed
sample size as well as the sequential hypothesis testing
problem. They use the running consensus algorithm [22] to
aggregate the test statistic across the network and show that the
proposed algorithm achieves the performance of a centralized
algorithm asymptotically. We rely on the Laplacian flow [23]
to aggregate evidence across the network. Our information
aggregation model is the continuous time equivalent of the
running consensus algorithm with fixed network structure. In
contrast to showing the asymptotic behavior of the running
consensus as in [19]], we characterize the finite time behavior
of our information aggregation model in the free response
paradigm.

An additional relevant literature concerns the sensor selec-
tion problem in decentralized decision-making. In the context
of sequential multiple hypothesis testing with a fusion center,
a sensor selection problem to minimize the expected decision
time for a prescribed error rate has been studied in [24]. In
the present paper, for a prescribed error rate, we characterize
the expected decision time as a function of the node centrality.
Such a characterization can be used to select a representative
node that has the minimum expected decision time, among all
nodes, for a prescribed error rate.

In this paper, we begin by studying the speed-accuracy
tradeoff in collective decision-making using the context of two
alternative choice tasks. We model the evidence aggregation
across the network using the Laplacian flow based coupled
DDM [14]]. In order to determine the decision-making per-
formance of each individual in the network, we develop a
decoupled approximation to the coupled DDM, namely, the
reduced DDM, and characterize its properties. We extend
the coupled DDM to the context of decision-making in two
alternative choice tasks with recency effects, i.e., tasks in
which the recently collected evidence weighs more that the
evidence collected earlier. We also extend the coupled DDM
to the context of decision-making in multiple alternative choice
tasks.

The major contributions of this paper are fivefold. First, we
propose a set of reduced DDMs, a novel decoupled approxi-
mation to the coupled DDM and characterize the efficiency
of the approximation. Each reduced DDM comprises two
components: (i) a centralized component common to each
reduced DDM, and (ii) a local component that depends on
the location of the decision-maker in the network.

Second, we present partial differential equations (PDEs) to
determine the expected decision time and the error rate for
each reduced DDM. We also derive high probability bounds
on the expected decision time and the error rate for the reduced
DDMs. Our bounds rely on the first passage time properties
of the O-U process.

Third, we numerically demonstrate that, for large thresholds,
the error rates and the expected decision times for the coupled
DDM are approximated well by the corresponding quantities
for a centralized DDM with modified thresholds. We also

obtain an expression for threshold modifications (referred to
as threshold corrections) from our numerical data.

Fourth, we examine various threshold selection criteria
and analyze the decision-making performance as a function
of the decision-maker’s location in the network. Such an
analysis is helpful in selecting representative nodes for high
performance in decision-making, e.g., selecting a node that has
the minimum expected decision time, among all nodes, for a
prescribed maximum probability of error.

Fifth, we extend the coupled DDM to the coupled O-U
model and the coupled race model for collective decision-
making in two alternative choice tasks with recency effects
and multiple alternative choice tasks, respectively.

The remainder of the paper is organized as follows. We
review decision-making models for individual humans and
human groups in Section We present properties of the
coupled DDM in Section We propose the reduced DDM
and characterize its performance in the free response decision-
making paradigm in Section We present some numerical
illustrations and results in Section [Vl We examine various
threshold selection criteria and the effect of the decision-
makers’s location in the network on their decision-making
performance in Section|[VI] We extend the coupled DDM to the
coupled O-U model and the coupled race model in Section
Our conclusions are presented in Section

II. HUMAN DECISION-MAKING MODELS

In this section, we survey models for human decision-
making. We present the drift diffusion model (DDM) and the
coupled DDM that capture individual and network decision-
making in a two alternative choice task, respectively.

A. Drift Diffusion Model

A two alternative choice task [7] is a decision-making
scenario in which a decision-maker has to choose between
two plausible alternatives. In a two alternative choice task,
the difference between the log-likelihood of each alternative
(evidence) is aggregated and the aggregated evidence is com-
pared against thresholds to make a decision. The evidence
aggregation is modeled well by the drift-diffusion process [7]]
defined by

dz(t) = pdt + odW(t), z(0) = xo, (1)

where 5 € R and o0 € R+ are, respectively, the drift rate
and the diffusion rate, W (t) is the standard one-dimensional
Weiner process, x(t) is the aggregate evidence at time ¢, and
xq is the initial evidence (see [[7] for the details of the model).
The two decision hypotheses correspond to the drift rate being
positive or negative, i.e., 5 € Ryq or § € R, respectively.
Human decision-making is studied in two paradigms,
namely, interrogation and free-response. In the interrogation
paradigm, a time duration is prescribed to the human who
decides on an alternative at the end of this duration. In the
model for the interrogation paradigm, by the end of the pre-
scribed duration, the human compares the aggregated evidence
against a single threshold, and chooses an alternative. In the
free response paradigm, the human subject is free to take as



much time as needed to make a reliable decision. In the model
for this paradigm, at each time 7 € R, the human compares
the aggregated evidence against two symmetrically chosen
thresholds +7n,7 € Rso: (i) if z(7) > 7, then the human
decides in favor of the first alternative; (ii) if x(7) < —n,
then the human decides in favor of the second alternative;
(iii) otherwise, the human collects more evidence. The DDM
in the free response paradigm is the continuum limit of the
sequential probability ratio test [25] that requires a minimum
expected number of observations to decide within a prescribed
probability of error.

A decision is said to be erroneous, if it is in favor of
an incorrect alternative. For the DDM and the free response
decision-making paradigm, the error rate is the probability of
making an erroneous decision, and the decision time is the
time required to decide on an alternative. In particular, for
B € Rs, the decision time T is defined by

= ll’lf{t c RZO | :v(t) € {_777 +77}}7

and the error rate ER is defined by ER = P(x(T) = —n). For
the DDM (T)) with thresholds =+, the expected decision time
ET and the error rate ER are, respectively, given by [/

1

ET = _
1+ exp (%%7)

5 " tanh (5”) and ER — )

B. Coupled drift diffusion model

Consider a set of n decision-makers performing a two
alternative choice task and let their interaction topology be
modeled by a connected undirected graph G with Laplacian
matrix L € R™*™ The evidence aggregation in collective
decision-making is modeled in the following way. At each
time ¢t € Rsq, every decision-maker & € {1,...,n} ()
computes a convex combination of her evidence with her
neighbor’s evidence; (ii) collects new evidence; and (iii) adds
the new evidence to the convex combination. This collective
evidence aggregation process is mathematically described by
the following coupled drift diffusion model [14]:

da(t) = (81, — La(t))dt + 0L, dW (1), 3)

where x(t) € R" is the vector of aggregate evidence at time ¢,
W ,.(t) € R™ is the standard n-dimensional vector of Weiner
processes, 1,, is the column n-vector of all ones, and Z, is
the identity matrix of order n. The two decision hypotheses
correspond to the drift rate being positive or negative, i.e.,
B € Ryg or B € R, respectively.

The coupled DDM (@) captures the interaction among
individuals using the Laplacian flow dynamics. The Laplacian
flow is the continuous time equivalent of the classical DeGroot
model [6], [26]], which is a popular model for learning in social
networks [27]]. However, the social network literature employs
the DeGroot model to reach a consensus on the belief of each
individual [28]], while the coupled DDM employs the Lapla-
cian flow to achieve a consensus on the evidence available
to each individual. The coupled DDM (@) is the continuous
time equivalent of the running consensus algorithm [22]] with
a fixed interaction topology.

The solution to the stochastic differential equation (SDE)

is a Gaussian process, and for (0) = 0, where 0,, is the
column n-vector of all zeros,
E[z(t)] = Bt1,,
2t 1-—
Cov(xg(t), z;(t)) = L + 02 Z € (p) (p) @
for k,j5 € {1,...,n}, where )\p7 p € {2,...,n}, are non-

zero eigenvalues of the Laplacian matrix, and ugf ) is the k-
th component of the normalized eigenvector associated with
eigenvalue A, (see [14] for details).

Assumption 1 (Unity diffusion rate): In the following,
without loss of generality, we assume the diffusion rate o = 1
in the coupled DDM (3). Note that if the diffusion rate is
non-unity, then it can be made unity by scaling the drift rate,
the initial condition, and thresholds by 1/o. O

Remark 1 (Ideal network as generalized ideal group):

In contrast to the standard ideal group analysis [4] that
assumes each individual interacts with every other individual,
in (3) each individual interacts only with its neighbors
in the interaction graph G. Thus, the coupled DDM
generalizes the ideal group model and captures more general
interactions, e.g., organizational hierarchies. We refer to this
decision-making system as an ideal network. ]

III. PROPERTIES OF THE COUPLED DDM

In this section, we study properties of the coupled DDM.
We first present the principal component analysis of the
coupled DDM. We then show that the coupled DDM is an
asymptotically optimal decision-making model. We utilize the
principal component analysis to decompose the coupled DDM
into a centralized DDM and a coupled error dynamics. We then
develop decoupled approximations of the error dynamics.

A. Principal component analysis of the coupled DDM

In this section, we study the principal components of the
coupled DDM. It follows from (@) that, for the coupled
DDM (@), the covariance matrix of the evidence at time ¢
® N T

COV(m(t)) = Elnln + Z Tupup s (5)
where u, € R" is the eigenvector of the Laplacian matrix L
corresponding to eigenvalue A\, € R+ (. Since

1— 672)\;,15

2),
it follows that the first principal component of the coupled
DDM corresponds to the eigenvector 1,/+/n, i.e., the first
principle component is a set of identical DDMs, each of which
is the average of the individual DDMs. Such an averaged

DDM, referred to as the centralized DDM, is described as
follows:

< t, for each p € {2,...,n},

AZeen(t) = Bt + %1{ AW (t), Zeen(0) = 0. (6)

Other principal components correspond to the remaining com-
ponent x(t) — Zeen(t)1,, of the evidence that we define as the



error vector €(t) € R™. It follows immediately that the error
dynamics are
1
de(t) = —Le(t)dt + (I, — 1,1, )W, (t), €(0) = 0,,. (7)
n

We summarize the above discussion in the following propo-
sition.

Proposition 1 (Principal components of the coupled DDM ):

The coupled DDM (3)) can be decomposed into the centralized
DDM ([6) at each node and the error dynamics (7). Moreover,
the centralized DDM is the first principal component of the
coupled DDM and the error dynamics correspond to the
remaining principal components.

B. Asymptotic optimality of the coupled DDM

The centralized DDM ({6) is the DDM in which all evidence
is available at a fusion center. It follows from the optimality
of the DDM in the free response paradigm that the centralized
DDM is also optimal in the free response paradigm. We will
show that the coupled DDM is asymptotically equivalent to
the centralized DDM and thus asymptotically optimal.

Proposition 2 (Asymptotic optimality): The evidence xy(t)
aggregated at each node k € {1,...,n} in the coupled DDM is
equivalent to the evidence ., (t) aggregated in the centralized
DDM as t — +-o0.

Proof: We start by solving (7). Since (7) is a linear SDE,
the solution is a Gaussian process with E[e(¢)] = 0 and

¢
1

Cov(e(t)) = / e L= (1, — —1,1)e Ft=9)ds
0 n

k t
= / e 2ksds — flnlz.
0 n

n 1_6—2k,,t ( 2
Therefore, Var(ey () = % ——uP)"
erefore, Var(e(t)) pz:; o, Uy,
We further note that
t) — pt cen t
EL R

Vi

\/ Vit
2>\pt (p)
@, S
- W (t).

Note that ek(t) can be written as a scaled Weiner process
because it is an almost surely continuous Gaussian process.
Therefore,

xi(t) — Bt R 1 Zeen(t) — Bt

Vit Vnt vt

in distribution as ¢ — +o0, and the asymptotic equivalence
follows. ]
Remark 2 (Effectiveness of collective decision-making):
In view of Proposition [2] for large thresholds, each node in
the coupled DDM behaves like the centralized DDM. In the
limit of large thresholds, it follows for (€) from (2) that the
expected decision time for each individual is approximately
%, and the error rate is exp(— 26 =75"). Therefore, for a given

large threshold, the expected decision-time is the same

W(t) =

under collective decision-making and individual decision-
making. However, the error rate decreases exponentially with
increasing group size. |

Definition 1 (Node certainty index): For the coupled
DDM (E]) and node k, the node certainty index [14], denoted
by ug, is defined as the inverse of the steady state error
variance in (7), i.e.,

1 Z <p>2.
p=

It has been shown in [14] that the node certainty index
is equivalent to the information centrality [29] which is
defined as the inverse of the harmonic mean of the effective
path lengths from the given node to every other node in
the interaction graph. Furthermore, it can be verified that
Lk > 2nAomin/(n — 1), where Ao is the smallest posi-
tive eigenvalue of the Laplacian matrix associated with the
interaction graph.

C. Decoupled approximation to the error dynamics

We examine the free response paradigm for the coupled
DDM, which corresponds to the boundary crossing of the n-
dimensional Weiner process with respect to the thresholds +1n.
In general, for n > 1, boundary crossing properties of the
Weiner process are hard to characterize analytically. Therefore,
we resort to approximations for the coupled DDM. In partic-
ular, we are interested in mean-field type approximations [30]]
that reduce a coupled system with n components to a system
with n decoupled components.

We note that the error at node k£ is a Gaussian process
with zero mean and steady state variance 1/puy. In order to
approximate the coupled DDM with n decoupled systems, we
approximate the error dynamics at node k by the following
Ornstein-Uhlenbeck (O-U) process

deg(t) = —%Ek( )+ dW (1),

for each k € {1,...,n}. Note that different nodes will have
different reahzatlons of the Weiner process W (t) in (§); how-
ever, for simplicity of notation, we do not use the index k in
W (t). We now study the efficiency of such an approximation.
We first introduce some notation. Let pu € RY be the vector of
py k€ {1,...,n}. Let diag(-) represent the diagonal matrix
with its argument as the diagonal entries. Let A, be the p-th
eigenvalue of L + diag(p/2) and let @) be the associated
eigenvector.

Proposition 3 (Efficiency of the error approximation):
For the coupled error dynamics (7) and the decoupled
approximate error dynamics (8), the following statements
hold:

(i) the expected error E[e(t)] and Eley(t)] are zero uni-

formly in time;
(ii) the error variances E[ex(t)?] and E[ex(t)?] converge
exponentially to ;le;
the steady state correlation between ¢ (t) and e(¢) is

~ 1 _(p)y2 2

= g —(u - —.

Mk _12)\13( k ) n
p=

ex(0) =0, ®)

(iii)

tilmoo corr(eg(t), e (t



Proof: The combined error and approximate error dynam-
ics are

St e P

where &(t) is the vector of e (t),k € {1,...,n}.
The combined error dynamics (9) is a linear SDE that can
be solved in closed form to obtain

. [Zgg] =exp (= [0 giugl2) ]t) L‘iggﬂ _ [gz] .

This establishes the first statement.
We further note that the covariance of [:Eg} is

t
< 1 T
COV(LEEH) :/O exp (= [ § dig(2)]s) [ 3}711”1%

L ]dt+[1 non n]dwn(t),

9

[f=2101] 12 ] exp (= [ G giag(z) |s)ds.  (10)
Some algebraic manipulations reduce (I0) to
t
t
Cov(e(t)) = / e 2lsds — —1,1,
0 n
1 — e Ml
Cov(eg(t),ex(t)) = ——, and
223
¢
g (4 1 diag(
E[e(t)e(t)T] :/ (7 (™5™ )s _ Zqq T e 5" 5) g5,
0 n

It immediately follows that the steady state variance of € and
€ is 1/u. This establishes the second statement.

To establish the third statement, we simplify the expression
for E[e(t)e(t) '] to obtain

Hpt

N l—e Mty 2(1—em2)
Elev()er(t)] = ) ——=——(@))* = =——.
= 2N nflg
Thus, the steady state correlation is
Eler(t)er(t "1 2
i, () ()] = o5, W -
VE@?EEL (1] 51 2
and this establishes the proposnion. ]

Remark 3 (Efficiency of the error approximation): For a
large well connected network, the matrix L + d'ag(“ ) will
be dominated by dlag(“ diag() and accordingly its elgenvectors will
be close to the standard basis in R”. Thus, the steady state
correlation between €, and €, will be approximately 1—% ~ 1,
and the error approximation will be fairly accurate. O

IV. REDUCED DDM: FREE RESPONSE PARADIGM

In this section we use the O-U process based error approxi-
mation (8) to develop an approximate information aggregation
model for each node that we henceforth refer to as the reduced
DDM. We then present partial differential equations for the
decision time and the error rate for the reduced DDM. Finally,
we derive high probability bounds on the error rate and the
expected decision time for the reduced DDM. We study the
free response paradigm under the following assumption:

Assumption 2 (Persistent Evidence Aggregation): Each
decision-maker continues to aggregate and communicate
evidence according to the coupled DDM (3) even after
reaching a decision. (]

A. The reduced DDM

We utilize the approximate error dynamics to define
the reduced DDM at each node. The reduced DDM at node
k at time ¢ computes the evidence yi(t) by adding the
approximate error £ (t) to the evidence ., (t) aggregated by
the centralized DDM. Accordingly, the reduced DDM at node
k is modeled by the following SDE:

FT M e Ll [ T

dex(t)
where Wi(t) and Was(t) are independent standard one-
dimensional Weiner processes.

In the free response paradigm, decision-maker k& makes a
decision whenever y(t) crosses one of the thresholds =+
for the first time. If 8 € Ry and yg(t) crosses threshold
+n,(—ng), then the decision is made in favor of the correct
(incorrect) alternative. Note that even though each individual
in the network is identical, the model allows for them to have
different thresholds. For simplicity, we consider symmetric
thresholds for each individual; however, the following analysis
holds for asymmetric thresholds as well.

B— Brek(t)

2
_ prer(t)
2

B. PDE: s for the decision time and the error rate

The error rate is the probability of deciding in favor of an
incorrect alternative. The decision time is the time required
to decide on an alternative. If 3 € Ry (8 € R.g),
then an erroneous decision is made if the evidence crosses
the threshold —mn (+7%) before crossing the threshold +7y
(—nr). Without loss of generality, we assume that § € R<.
We denote the error rate and the decision time for the k-
th individual by ER; and T}, respectively. We denote the
expected decision time at node k£ by ET}.

We now determine the error rate and the expected decision
time for the free response paradigm associated with the
reduced DDM (TT)). For an SDE of the form (TT)), the error rate
and the decision time are typically characterized by solving the
first passage time problem for the associated Fokker-Planck
equation [31]. For a homogeneous Fokker-Planck equation,
the mean first passage time and the probability to cross the
incorrect boundary before crossing the correct boundary is
characterized by PDEs with initial conditions as variables. We
now recall such PDEs and for completeness, we also present
a simple and direct derivation of these PDEs that does not
involve the Fokker-Plank equation.

Proposition 4 (PDEs for error rate and decision time):
For the reduced DDM (TI)) with arbitrary initial conditions
yi(0) = yp € [~k and €4 (0) = €} € [, 7wl Tk —
~+o00, the following statements hold:

(i) the partial differential equation for the expected decision

time is

(5 B uksk) OET}, ,uksk OET

2 oYY 2 0%
l(n +1 82ETk 82ETk 62ETk) -1
2V o gy TOR0e) T 90’ ’



with boundary conditions ETg(-,+n;) = 0, and

(ii) the partial differential equation for the error rate is

(5 B /~Lk5k> OERy ukeg OERy

2 Ay 2 0%

l(n +1 82ERk 82ERk 82ERk> _

2% n gy Oypo=}, — 0eY? ’
with  boundary conditions ERk(,nx) = 0,
ERk(,—mx) = 1, ERk(fk,r) = 0, and
ERk(fT_}k, ) =1.

Proof: We start with the first statement. Let the expected
decision time for the reduced DDM with initial condition
(y2,£9) be ETy(y2,£Y9). Consider the evolution of the reduced
DDM over an infinitesimally small duration ~ € R+ (. Then

{mm—ﬁ}lﬂ”f'M[? ﬂ%ﬂ%'

Ek(h) — 82 _Nk;k
By continuity of the trajectories of the reduced DDM it follows
that ET(y2,€%) = h + E[ETk(yk(h),ex(h))], where the
expectation is over different realizations of (yx(h),er(h)). It
follows from Taylor series expansion that

E[ETy (y(h), 21 (h)|~ETa(yf. £5) = (8-

Mkfg OET,. 1 (82ETk
2 0e) 0’

2 ) oy}

B Wi () + Wa(h)?

O?ET
0yj.0e}

O?ETy,
aek

where o(h?) represents terms of order h2. Substituting
ET,(y), %) = h + E[ETy(ye(h), ex(h))], and E[W, (h)?] =
E[W>(h)?] = h in the above expression, the PDE for the
expected decision time follows. The boundary conditions
follow from the definition of the decision time. The PDE for
the error rate follows similarly. [ |

The expected decision time and the error rate can be
computed using the PDEs in Proposition ] These PDEs are
nonlinear and to the best of our knowledge do not admit a
closed form solution; however, they can be efficiently solved
using numerical methods.

+ 2

E[Wa(h)?] + “—E Wa(h)?) + o(h?),

C. Bounds on the expected decision time and the error rate

In order to gain analytic insight into the behavior of the
expected decision time and the error rate for the reduced DDM,
we derive bounds on them that hold with high probability. We
first recall the following result from [32] on the first passage
time density of the O-U process for large thresholds. Let Tp’ghs :
R — R>( be the first passage time for the O-U process
as a function of the threshold. Moreover, let Tp’“agq denote the
mean value of Tpalgq

Lemma 5 (First passage time density for O-U process):
For the O-U process (8), and a large threshold 75 € R, the

first passage time density is
1 t
0 _
f(ng, tley, = 0) = TE () &P ( W)

pass pdbb

uke:g) OETy ,

where Tpd;(n,i) = ik(\/%w(zz\\;f) + ¢(nk\\f)>,
p(z) = ¢ dr, and Y(z) = e e dsdr.

Lemma? [5] suggests that for largg thr%sholds the first passage
time density is an exponential random variable. However, the
expression for the mean first passage time does not provide
much insight into the behavior of the first passage time density.
In order to gain further insight into the first passage time
density, we derive the following bounds on the mean first
passage time.

Lemma 6 (Bounds on the O-U mean first passage time):
For the O-U process (8), and a large threshold 7y, the mean
first passage time Tp,ss(n5) satisfies:

TE (f) < STk o2,

pass\'lk/) = \/ﬁ and

T () > 2 (VA1) et o1 L
ass\7] - 7( *).
P e N Ve . 2

Proof: We start by bounding function ¢. We note that

2

Fr oo (e* —1)
> - dr = ——»-«—~.
() _/0 ze T 2z

Moreover, it trivially follows that p(z) < ze*
We now derive bounds on 3. We note that

-1

/ / 2se~%" dsdr = / ET;T dr
Lle) - D1

Furthermore, using the bounds on the error function from
equation (7.1.14) of [33]], we obtain

9>

- 22 422 2°

2 e e_T2 ﬁ 2
z) < eT e |dr < 7262:
w()i‘/o (2 7-+\/7'2+2> T= 2

Substituting these lower and upper bounds in the expression
for Tpdbs(n,‘i) in Lemma |5, we obtain the expressions in the
lemma. |

We now derive high probability bounds on the O-U pro-
cess Since the bounds on the first passage time are
dommated by the term e’k “ux/ 2 in the following we ex-
plore bounds associated with thresholds of the form n; =
K/\/ix, K € R5¢ so that the probability of crossing these
thresholds does not vary much with the centrality of the node.
Before we derive high probability bounds, we define function
Plower : Rs0 X Rs0 X Ryg — (O, 1) by

]Plower(K7 Mk, t) =

exp ( - t(ﬁék(ﬁ(\e/g[( )

n eKT2 -1 1))*1>
2K? 2 '

Lemma 7 (Uniform bounds for the O-U process): For
the error dynamics (B) and a large constant K € R, the
following statements hold:



(i) the probability that the error ¢ is uniformly upper

bounded by \/% until time ¢ is

K
]P( < 7) >]P0wer Ka at 5
2y ) % ) 2 Pl 1)

(i1) the probability that the error ¢ is uniformly bounded in
the interval [f\/%, \/%] until time ¢ is

K
< —) > — 1.
P(J&%‘fﬁ] lex(s)] < \/lTk) > 2Prower (K, pig, 1) — 1

Proof: We start by with establishing the first statement.
We note that

P(agyents > ) =P(i( ) <)

It follows from Lemma [3 that
(%)

P(Tpliss(\/fl%) < t) <1—exp (T’f .
B

pass
Substituting, the lower bound on the mean first passage time
from Lemma [6] we obtain

K
]P)<T]f‘;ss(7) § t) S 1- ]P)lower(K; ‘Ll,k,t),
VHE
and the first statement follows.
By symmetry of the O-U process (§) about ¢, = 0, it

follows that
HD(TC (—7)<t><1—P1 (K, pig, t)
58 > > ower \ £} s ).

pass T

It follows from union bounds that

K
IP)( max (Er(S 27>§21*Plower K7 kat )
s lon(s)] 2 ) < 2 (K s )
and the second statement follows. ]

We now utilize the uniform bounds for the O-U process to
derive bounds on the expected decision time and error rate for
the reduced DDM.

Proposition 8 (Performance bounds for the reduced DDM ):

For the reduced DDM (TI) at node k with large thresholds
+n, and a sufficiently large constant K € Ry, the
following statements hold with probability higher than
2Hblower(I(a M, ETk)) -1

(1) the expected decision time satisfies

S v (o~ ) <o,

B
< P s (e + L))

< 3 T
(i) the error rate satisfies
! < ERg
1+ exp (Zﬁn(nk + \/%))
1

< .
“ l4exp (2ﬁn(nk — \/%))

Proof: Tt follows from Lemma [/| that until a given time ¢,
the error process (§)) belongs to the set [—K/\/u, K/,/1] with

probability greater than 2Pjgwer (K, pig, t) — 1. For the reduced
DDM at node k, the time of interest is the decision time
t = Ty. Furthermore, Piyyer(K, i, t) is a convex function
of t. Hence, from the Jensen inequality, the error is bounded
in the set [—K/\/u, K/\/i] at the time of decision with
probability greater than 2Pjgyer (K, pig, ETg)) — 1. This implies
the effective threshold for the centralized DDM component in
the reduced DDM at node k is greater than n, — K/,/ix
and smaller than 7y, + K//u; with probability greater than
2Piower (K, g, ETy)) — 1. Since the decision time increases
with increasing threshold and the error rate decreases with
increasing threshold, inequalities for the decision time and the
error rate follow from the corresponding expressions in (2). W

V. NUMERICAL ILLUSTRATIONS

Consider a set of nine decision-makers and let their inter-
action topology be modeled by the graph shown in Figure [T}
For this graph, the node certainty indices are pu; = 8.1,
po = p3 = pa = p5 = 4.26, and p16 = p7 = pg = po = 1.6.
We first compare the performance of the reduced DDM with
the coupled DDM. We pick the drift rate 5 at each node as
0.1. We obtained error rates and decision times at node 6
for the coupled DDM and the reduced DDM through Monte-
Carlo simulations, and we compare them in Figure[2] Note that
throughout this section, for better pictorial depiction, we plot
the log-likelihood ratio of no error log( 1;%:’“) instead of the
error rate ERj. The log-likelihood ratio of no error decreases
monotonically with the error rate. We also computed first
passage time distributions at node 6 for the coupled DDM and
the reduced DDM with a threshold equal to 3, and we compare
them in Figure It can be seen that the performance of the
reduced DDM approximates the performance of the coupled
DDM very well.

OO0
O~ =

Interaction graph for decision-makers.

Fig. 1.

We compare the error rates and decision times for the
coupled DDM with the centralized DDM in Figure [3| For the
interaction topology in Figure [I| and 5 = 0.1, we performed
Monte-Carlo simulations on the coupled DDM to determine
the error rates and the decision times at each node as a function
of threshold value. Note that the difference in the performance
of the coupled DDM and the centralized DDM is smaller for a
more centrally located decision-maker. Furthermore, for large
thresholds, the expected decision time graph for the coupled
DDM is parallel to the expected decision time graph for
the centralized DDM. Thus, at large thresholds, the expected
decision time graph for the coupled DDM at node k can
be obtained by translating the expected decision time graph
for the centralized DDM horizontally to the right. Such a
translation corresponds to a reduction in the threshold for
the centralized DDM. Moreover, this reduction should be a
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Fig. 2.  Error rates, decision times, and the first passage time distribution
of the reduced DDM compared with the coupled DDM. Solid black, dashed
red, and black dashed-dotted lines represent the coupled DDM, the reduced
DDM, and the centralized DDM, respectively. Note that the performance
of the centralized DDM, which is asymptotically equivalent to the coupled
DDM, is significantly different from the performance of the coupled DDM
for finite thresholds.
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Fig. 3. Comparison of the performance of the coupled DDM with the
performance of the centralized DDM at each node. The dotted black line
represents the performance of a centralized decision-maker. The blue X, the
red +, and the green triangles represent the performance of the coupled DDM
for decision-makers 1, 2, and 6, respectively.

function of the centrality of the node. This observation is in
the spirit of our bounds in Proposition 8] In fact, insights from
Proposition [§] and these numerical results suggest that for a
given instance of the coupled DDM, and large thresholds, there
exists a constant K such that the coupled DDM at node k is
equivalent to a centralized DDM with threshold 7, — K / k-

We now numerically investigate the behavior of the constant
K. Let AT}, be the difference between the expected decision
times at node k for the centralized DDM and the coupled DDM
at large thresholds. Then, the threshold for the centralized

DDM should be reduced by SAT}, to capture the performance
of the coupled DDM at node k. We now investigate the
threshold correction AT}, as a function of the centrality u of a
node in the interaction graph and the drift rate. To this end, we
performed Monte-Carlo simulations with Erdos-Réyni graphs,
and we plot AT}, as a function of 1//p in Figure f#(a)}
For the Monte-Carlo simulations, we pick the number of
nodes n uniformly in {3, ...,10}, and connect any two nodes
with probability 1.1 x log(n)/n. We set the threshold 7y
at each node equal to 3. It can be seen in Figure f(a)| that
the threshold correction AT}, varies linearly with 1/,/x. We
further compute the the slope of the linear trend in Figure f(a)]
as a function of the drift rate, and plot it in Figure f(b)] We
observe that the function K : Ry — R+ defined by

O
O = J50a+ 57

captures the numerically observed slope as a function of the
drift rate well. The function K (f) is the red dashed curve in

Figure [A(b)]
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(a) Threshold correction for 5 = 0.1 (b) Proportionality Constant

Fig. 4. (a) Threshold correction as a function of the node centrality. (b)
Slope of the linear trend in (a) as a function of the drift rate 3. The solid
black line represents numerically computed slopes and the dashed red line
represents the fitted function K (f3).

We refer to the centralized DDM with threshold 7;*" =
max{0,nx — K()//fx} as the threshold corrected central-
ized DDM at node k. We compare the performance of the
coupled DDM with the threshold corrected centralized DDM
at nodes 1,2, and 6 in Figure [5] It can be seen that the
threshold corrected centralized DDM is fairly accurate at large
threshold values and the minimum threshold value at which
the threshold corrected centralized DDM starts to capture
the performance of the coupled DDM well depends on the
centrality of the node.

VI. OPTIMAL THRESHOLD DESIGN FOR THE
SPEED-ACCURACY TRADEOFF

In this section, we examine various threshold selection
mechanisms for decision-makers in the group. We first discuss
the Wald-like threshold selection mechanism that is well suited
to threshold selection in engineering applications. Then, we
discuss the Bayes risk minimizing mechanism and the reward
rate maximizing mechanism, which are plausible threshold
selection methods in human decision-making. In the following,
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Fig. 5. Comparison of the performance of the coupled DDM with the
performance of the threshold corrected centralized DDM at each node. The
blue X, the red +, and the green triangles represent the performance of the
coupled DDM for decision-makers 1, 2, and 6, respectively. The blue dashed
lines, the red solid lines with dots, and the green solid lines represent the
performance of the threshold corrected centralized DDM for decision-makers
1, 2, and 6, respectively.

we focus on the case of large thresholds and small error
rates, and assume that the threshold correction function K
is known. We also define the corrected threshold as 7;>" =

max{0,nx — K/\/fk}.

A. Wald-like mechanism

In the classical sequential hypothesis testing problem [25],
the thresholds are designed such that the probability of error
is below a prescribed value. In a similar spirit, we can pick
threshold 7 such that the probability of error is below a
desired value «y € (0,1). Setting the error rate at node k
equal to oy, in the threshold corrected expression for the error
rate, we obtain

wald

K 1 1—
(5)_1_71%( Oék).
Ve 28n ay,

Therefore, under the Wald’s criterion, if each node has to

achieve the same error rate «, then the expected decision time
at node k is:

wa; 1 —2a (K(B) 1 e
) = 5 (U + g (57)

i.e., a more centrally located decision-maker has a smaller
expected decision time.

B. Bayes risk minimizing mechanism

The Bayes risk minimization is one of the plausible mech-
anisms for threshold selection for humans [7]. In this mecha-
nism, the threshold 7, is selected to minimize the Bayes risk
(BRy) defined by

BRk = CkERk + ETk,

where ¢, € R>( is a parameter determined from empirical
data [7]. It is known [[7] that for the centralized DDM (6} the
threshold n;°" under the Bayes risk criterion is determined by
the solution of the following transcendental equation:

2er B2 — ABnaeT 4 e 20T o20mi — ),

(12)

Furthermore, if the cost ¢y, is the same for each agent, then the
corrected threshold obtained from equation is the same
for each decision-maker. Consequently, the error rate and the
expected decision time are the same for each agent. However,
the true threshold 7 is smaller for a more centrally located
agent.

C. Reward rate maximizing mechanism

Another plausible mechanism for threshold selection in
humans is reward rate maximization [7]. The reward rate
(RRy) is defined by

1 —ERy
ET) + Ti[notor + Dy + ER}CD;;: ’

RRy =

where 77" is the motor time associated with the decision-
making process, Dy is the response time, and D} is the
additional time that decision-maker & takes after an erroneous
decision (see [7] for detailed description of the parameters). It
is known [[7] that for the centralized DDM (@), the threshold
ni" under the reward rate criterion is determined by the
solution of the following transcendental equation:

PO 1 = 262n(Dy + DY + TP — /).

Moreover, if the parameters T,;“"“’r, Dy, and DZ are the same
for each agent, then the corrected threshold 7;°" obtained
from equation (I3) is the same for each decision-maker.
Consequently, the error rate and the expected decision time
are the same for each agent. However, the true threshold 7y
is smaller for a more centrally located agent.

We now summarize the effect of the node centrality on
the performance of the reduced DDM under four threshold
selection criteria, namely, (i) fixed threshold at each node, (ii)
Wald criterion, (iii) Bayes risk, and (iv) reward rate in Table I}

13)

TABLE 1
BEHAVIOR OF THE PERFORMANCE WITH INCREASING NODE CENTRALITY.

Fixed threshold
Wald
Bayes risk
Reward rate

Expected
decision time

Error rate ‘

Threshold ‘ Bayes risk ‘ Reward rate

increases

decreases
constant
constant

decreases
constant
constant
constant

constant
decreases
decreases
decreases

increases
constant
constant

decreases
constant
constant

VII. EXTENSIONS TO OTHER DECISION-MAKING MODELS

In this section we extend the coupled DDM to other
decision-making models. We first present the Ornstein-
Uhlenbeck (O-U) model for human decision-making in two
alternative choice tasks with recency effects, and extend the
coupled DDM to the coupled O-U model. We then present the
race model for human decision-making in multiple alternative
choice tasks, and extend the coupled DDM to the coupled race
model.

A. Ornstein-Uhlenbeck model

The DDM is an ideal evidence aggregation model and
assumes a perfect integration of the evidence. However, in
reality, the evidence aggregation process has recency effects,



i.e., the evidence aggregated later has more influence in the
decision-making than the evidence aggregated earlier. The
Ornstein-Uhlenbeck (O-U) model extends the DDM for hu-
man decision-making to incorporate recency effects and is
described as follows:

da(t) = (8 — 0x(t))dt + cdW (1), z(0)=0,  (14)

where § € R>( is a constant that produces a decay effect
over the evidence aggregation process [7]. It can be seen
using the Euler discretization of that the O-U model is
the continuum limit of an autoregressive (AR(1)) model, and
assigns exponentially decreasing weights to past observations.

The evidence aggregation process is Markovian, sta-
tionary and Gaussian. The mean and the variance of the evi-
dence z(t) at time ¢ are (1 —e~%)/0 and o (1 —e~2%%) /20,
respectively. The two decision hypotheses correspond to the
drift rate being positive or negative, i.e., 5 € Rsg and
B € R, respectively. The decision rules for the O-U model
are the same as the decision rules for the DDM. The expected
decision time and the error rate for the O-U model can be
characterized in closed form. We refer the reader to [7] for
details.

B. The coupled O-U model

We now extend the coupled DDM to the coupled O-U
model. In the spirit of the coupled DDM, we model the
evidence aggregation across the network through the Laplacian
flow. Without loss of generality, we assume the diffusion rate
is unity. The coupled O-U model is described as follows:

dx(t) = (—(L + 0Z,)x(t) + f1,)dt + dW (1), 2(0) = 0,,

where € R"™ is the vector of evidence for each agent, L €
R™*" s the Laplacian matrix associated with the interaction
graph, 8 € Ry is a constant, 5 € R is the drift rate and
W ,.(t) is the standard n-dimensional Weiner process.

Similar to the coupled DDM, it can be shown that the
solution to the coupled O-U model is a Gaussian process with
mean and covariance at time ¢ given by

1— —0t
Ez(t)] = %h, and
12t ) )
Cov(zx(t), z;(t)) = ZW ko Uj s
p=1
where A,,p € {1,...,n} are the eigenvalues of the Laplacian

matrix L and u(?) are the associated eigenvectors.

Similar to Section principle component analysis fol-
lowed by the error approximations yield the following reduced
O-U model as a decoupled approximation to the coupled O-U
model at node k:

Ay ()] _ [ B-0ue)+(0-%)en(®) 7= 1] [dw()
[dsk(t) B — By (t) L dWa(t) |’

where y; is the evidence aggregated at node k, ¢ is the

error defined analogous to the error in the reduced DDM, and
AN 1 (P)y\2

Vi =2 pa gog oy (e ) o
Furthermore, similar to Proposition ] partial differential

equations to compute the expected decision time and the error
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Fig. 6.  Error rates and decision times for reduced O-U model compared
with the coupled O-U model. Solid black and dashed red lines represent the
coupled O-U model and the reduced O-U model, respectively.

rate for the reduced O-U process can be derived. For parameter
values in Section [V|] and # = 0.1, a comparison between the
performance of the coupled O-U model and the reduced O-U
model is presented in Figure [6]

C. The race model

Consider the decision-making scenario in which the
decision-maker has to choose amongst m possible alternatives.
Human decision-making in such multi-alternative choice tasks
is modeled well by the race model [[16] described below.

Let the evidence aggregation process for an alternative a €
{1,...,m} be modeled by the DDM

dz?(t) = pdt + odW*(2), (15)

where x%(t) is the evidence in favor of alternative a at time
t, 5% is the drift rate, ¢ € R is the diffusion rate, W% (t) is
the realization of the standard one-dimensional Weiner process
for alternative a. The decision hypotheses correspond to the
drift rate being positive for one alternative and zero for every
other alternative, i.e., 5% € R+, for some ag € {1,...,m},
and 8% =0, for each a € {1,...,m} \ {ao}.

For the evidence aggregation process and the free
response paradigm, the decision is made in favor of the first
alternative a € {1,...,m} that satisfies

z(t) —max{2’(t) | j € {1,...,m}\ {a}} > 0%,

where n® is the threshold for alternative a. For a prescribed
maximum probability R of incorrectly deciding in favor of
alternative a, the threshold is selected as n* = log((m —
1)/mR®).

For the race model (I3) and the decision rule (I6), the
mean reaction time and the error rate can be asymptotically
characterized; see [[16] for details. The race model is the con-
tinuum limit of an asymptotically optimal sequential multiple
hypothesis test proposed in [17].

(16)

D. The coupled race model

We now develop a distributed version of the race model (T3)).
Without loss of generality, we assume the diffusion rate is
unity. In the spirit of the coupled DDM, we use the Laplacian
flow to aggregate the evidence across the network. Let the



evidence in favor of alternative a at node k and at time ¢
be x¢(t). Let Zx(t) € R™ be the column vector with entries
zf(t),a € {1,...,m} and Z(¢t) € R™" be the column vector
formed by concatenating vectors Zj(t) € R™. We define the
coupled race model by

AdZ(t) = —(L @ L,)&(t)dt + (1, ® B)dt + AW ., (1), (17)

with initial condition £(0) = O0,,,, where ® denotes the
Kronecker product, 3 € R™ is the column vector with
entries 8% a € {1,...,m}, and Wmn(t) is the standard
mn-dimensional Weiner process. Note that dynamics are
equivalent to running a set of m parallel coupled DDMs, one
for each alternative.

For the evidence aggregation process (I7), node k£ makes a
decision in favor of the first alternative a € {1,...,m} that
satisfies

afi(t) —max{zl(t) | j € {L,...,m}\ {a}} >,

where 7} is the threshold for alternative a at node k.

We define the centralized race model as the race model
in which at each time all the evidence distributed across the
network is available at a fusion center. Such a centralized
DDM is obtained by replacing o in (I3) with 1/y/n. It can
be shown along the lines of Proposition [] that the coupled
race model is asymptotically equivalent to the centralized race
model, and hence, is asymptotically optimal.

As pointed out earlier, the coupled race model is equivalent
to a set of m parallel coupled DDMs. Thus, the analysis
for coupled DDM extends to the coupled race model in a
straightforward fashion. In particular, for each alternative, the
evidence aggregation process can be split into the centralized
process and the error process, which can be utilized to con-
struct reduced DDMs for each alternative. Furthermore, similar
to the case of the coupled DDM, threshold corrections can be
computed for the coupled race model.

VIII. CONCLUSIONS AND FUTURE DIRECTIONS

In this paper, we used the context of two alternative
choice tasks to study the speed-accuracy tradeoff in collective
decision-making for a model of human groups with network
interactions. We focused on the free response decision-making
paradigm in which each individual takes their time to make
a decision. We utilized the Laplacian flow based coupled
DDM to capture the evidence aggregation process across
the network. We developed the reduced DDM, a decoupled
approximation to the coupled DDM. We characterized the
efficiency of the decoupled approximation and derived partial
differential equations for the expected decision time and error
rate for the reduced DDM. We then derived high probability
bounds on the expected decision time and error rate for
the reduced DDM. We characterized the effect of the node
centrality in the interaction graph of the group on decision-
making metrics under several threshold selection criteria.
Finally, we extended the coupled DDM to the coupled O-
U model for decision-making in the two alternative choice
task with recency effects, and the coupled race model for the
multi-alternative choice task.

There are several possible extensions to this work. First,
in this paper, we utilized the Laplacian flow to model the
evidence aggregation process across the network. It is of
interest to consider other communication models for evi-
dence aggregation across network, e.g., gossip communication,
bounded confidence based communication, etc. Second, in this
paper, we assumed that the drift rate for each agent is the same.
However, in the context of robotic groups or animal groups, it
may be the case that only a set of individuals (leaders) have
a positive drift rate while others individuals (followers) may
have zero drift rate. It is of interest to extend this work to such
leader-follower networks. Third, it is of interest to extend the
results in this paper to more general decision-making tasks,
e.g., the multi-armed bandit tasks [34].
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