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Abstract

Motivated by various random variations of Hegselmann-Krause model for opin-

ion dynamics and gossip algorithm in an endogenously changing environment, we

propose a general framework for the study of endogenously varying random aver-

aging dynamics, i.e. an averaging dynamics whose evolution suffers from history

dependent sources of randomness. We show that under general assumptions on the

averaging dynamics, such dynamics is convergent almost surely. We also determine

the limiting behavior of such dynamics and show such dynamics admit infinitely

many time-varying Lyapunov functions.

1 Introduction

In this work we study random averaging dynamics, i.e. dynamics of the form x(k + 1) =
W (k + 1)x(k), where W (k + 1) is a random non-negative m × m matrix whose rows
sum up to one and {x(k)} is a random vector process evolving in R

m. These dynamics
are one of the fundamental tools in the theory of time-varying Markov chains [1, 2],
distributed computation [3], distributed optimization [3, 4, 5, 6], distributed estimation
[7, 8], distributed rendezvous [9], and opinion dynamics [10].

Until recently, most of the research in this domain has been focused on the study
of those dynamics in deterministic settings [11, 12, 13, 14, 15, 16, 17, 18]. The random
setting has also been the subject of much attention lately, due to its relevance in many
practical applications [19, 20, 21, 22, 23, 24, 25, 26, 27]. These studies are closely related
to the investigation of products of random stochastic matrices as well as to the theory of
Markov chains in random environments [28, 29, 30]. A common feature in most of the
past research in this domain is that the averaging process is affected by an exogenous
disturbances which does not depend on the history of the process but rather is imposed
on the process by some external source of error. Notable exceptions among these works
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are [27, 31] where the authors developed some sufficient conditions for convergence to
consensus of random adapted averaging dynamics. However, as will be discussed later,
many random averaging dynamics may not satisfy such conditions (and may not even
converge to consensus) even though they are stable (random) dynamics.

In this work we study products of random stochastic matrices (or equivalently random
averaging dynamics) for adapted processes. We show that many of the known results for
deterministic dynamics [18, 32] and independent random processes [26] can be extended
to a more general setting of adapted processes. In particular, we show that the main
convergence results in [18, 32, 26] hold under mild conditions on the conditional expecta-
tion of an adapted random process. As a result, we show that many random variants of
the Hegselmann-Krause model for opinion dynamics, such as asynchronous Hegselmann-
Krause dynamics, are stable. To the best of our knowledge, none of the previously known
results and techniques can address the stability of such dynamics.

The structure of this paper is as follows: in Section 2, we motivate our study by some
problems from computer science and social sciences. In Section 3, we set the mathematical
framework for the current study and discuss the main results of this work. We discuss
the proof of the main results in Section 4 which can be skipped by the readers interested
in the implications of the main theorems, which are presented in Section 5. Finally, in
Section 6, we conclude our paper.

2 Motivation

Before proceeding with the main technical contributions and setup of our paper, let us dis-
cuss some motivating problems namely, Hegselmann-Krause model for opinion dynamics
and endogenous random gossiping, .

2.1 Hegselmann-Krause Dynamics with Random Confidence Lev-

els:

In [10], a mathematical model for opinion dynamics in a society is given which is commonly
referred to as Hegselmann-Krause dynamics. The motivation there is to model how the
opinion of people in a given society is changing with time as a result of their interaction
with other agents. In this model, each agent in the society [m] = {1, . . . , m} is assumed
to have an initial belief about an issue which is assumed to be representable by a scalar.
Thus at time 0, an agent i ∈ [m] has an initial opinion xi(0) ∈ R. From this time onward,
each agent averages out her opinion with agents with similar beliefs in the society. More
precisely, let Ni(x, ǫ) = {j ∈ [m] | ‖xi − xj‖ ≤ ǫ}. Then,

xi(k + 1) =
∑

j∈Ni(x(k),ǫ)

1

|Ni(x(k), ǫ)|
xj(k). (1)

In this model, xi(k) is referred to as the opinion of the ith agent at time k and the
vector x(k) is referred to as the opinion profile of the society at time k. This model, later,
inspired a distributed rendezvous algorithm for a robotic network [9]. In this model, ǫ > 0
is called the confidence level and is assumed to be fixed and homogeneous. Using the tools
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developed in [33] and [34], such dynamics can be analyzed when the confidence level is
known deterministically and is not agent dependent. Now, consider the following three
random variations of the Hegselmann-Krause dynamics which share a common property
that the randomness affecting the dynamics is not caused by an independently identically
distributed (i.i.d) or stationary process and that the randomness depends on the current
states of the agents. :

2.1.1 Asynchronous Hegselmann-Krause Dynamics

In the original formulation of Hegselmann-Krause model, it is assumed that the agents
update their states synchronously, i.e. all the agents simultaneously update their values
using the dynamics (1). One can consider the asynchronous version of the Hegselmann-
Krause dynamics: suppose at time k ≥ 0, nature picks a random agent i(k) ∈ [m] and
the agent i(k) updates her value according to (1) and the values of the rest of the agents
remain unchanged. Due to the asymmetric nature of the sample paths of such dynamics
(i.e. while agent i(k) averages her belief with her neighbors, none of her neighbors average
their opinion with her), none of the known tools to study Hegselmann-Krause dynamics
[33, 34] can address the stability of such dynamics. The main result of this paper implies
that, as long as the probability of choosing each agent is uniformly bounded from below
by some p > 0, i.e. Pr (i(k) = j | Fk) ≥ p for all j ∈ [m] and k ≥ 0, the asynchronous
Hegselmann-Krause dynamics converges almost surely (here Fk is the σ-algebra generated
by x(0), . . . , x(k)).

2.1.2 Hegselmann-Krause Dynamics in the Presence of Link-Failure

Consider the Hegselmann-Krause dynamics as described above. Suppose that at each time
instant k ≥ 0, each link between the agents is broken with some probability pk ∈ [0, 1],
i.e. at time k ≥ 0, an agent j ∈ Ni(x(k), ǫ) is removed from this set with probability
pk (j 6= i). Note that, when the link-failures are happening independently, there is a
possibility that agent j is removed from the set Ni(x(k), ǫ) even though i is not removed
from Nj(x(k), ǫ). One of the implications of the results developed in this work is that the
Hegselmann-Krause dynamics converges in the presence of arbitrary link-failure.

2.1.3 Hegselmann-Krause Dynamics with Random Confidence Intervals

Consider the original Hegselmann-Krause dynamics as discussed above. Suppose that at
time k, the confidence level of each agent is drawn from a distribution E(k) independent
of the other agents. As before, if the confidence level of the agents in this society are
drawn randomly and independently, there is a chance that agent i observes agent j in its
neighborhood while agent i does not belong to the neighborhood of agent j. Using our
main results, we will argue that regardless of the distribution of the random confidence
interval, such dynamics is stable and convergent almost surely.
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2.2 Asymmetric Endogenous Gossiping

Here, we discuss an extension of the asymmetric gossip algorithm introduced in [35]
to time-varying networks. In the original gossip algorithm [36, 37], we have a set [m]
of m agents and each of them has an initial scalar xi(0). At each discrete time instant
k = 0, 1, 2, . . ., nature picks two agents i, j with some probability Pij > 0 from a connected
graph G = ([m], E) (i.e. {i, j} ∈ E). Then the two agents set:

xi(k + 1) = xj(k + 1) =
1

2
(xi(k) + xj(k)), (2)

and the value of the other agents remain unchanged, i.e. xℓ(k + 1) = xℓ(k) for k 6= i, j.
Now, suppose that at each time instance k ≥ 0, nature picks an ordered pair of agents
(i(k), j(k)) randomly (and possibly dependent on the history of the process and her earlier
choice). One interesting case of such a choice (e.g. in multi-hop wireless network) is
when nature picks i(k) ∈ [m] uniformly and then, it picks j(k) ∈ Ni(x(k), ǫ) uniformly,
where Ni(x(k), ǫ) is the agents with similar belief to agent i (as defined in the previous
subsection). Then, agent i(k) sends her value xi(k) to agent j(k) and agent j(k) updates
her value as

xj(k)(k + 1) = (1− γ(k))xj(k)(k) + γ(k)xi(k)(k)), (3)

where γ(k) is a random variable with support in [l, h] for 0 < l ≤ h < 1.
Again due to the endogenous random nature of this dynamics, none of the previously

known analysis technique applies here. In Section 3, we show that if for all k ≥ 0 and
i, j ∈ [m]

Pr ((i(k), j(k)) = (i, j) | Fk)

≥ αPr ((i(k), j(k)) = (j, i) | Fk) , (4)

where Fk is the history of the random evolution up to time k, α ∈ (0, 1) is a constant, and
γ(k) is independent of (i(k), j(k)), then the random dynamics (3) is convergent almost
surely.

An instance of this dynamics is studied in [38]. It is not hard to see that the model
studied in [38] satisfies (4).

3 Averaging Dynamics for Adapted Processes

In this section, we present the main result of this paper. We start our discussion by
reviewing some notations that will be used throughout the rest of this paper. Then, we
present the main results of this paper and discuss their implications for the study of the
random dynamics discussed above.

Let (Ω,M,Pr (·)) be a probability space. Also for any k ∈ Z
+, let W (k) : Ω → Sm

be a measurable random stochastic matrix where Sm is the set of stochastic matrices in
R

m×m (which are non-negative matrices with the property that the entries in each row
add up to one). We refer to such a sequence of random matrices as a random stochastic
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matrix process. Finally, for a matrix W and non-trivial subsets S, T ⊂ [m] (i.e. S, T 6= ∅
and S, T 6= [m]), let:

WST =
∑

i∈S

∑

j∈T

Wij .

Our main focus in this paper is the dynamics

x(k + 1) = W (k + 1)x(k), for k ≥ 0, (5)

where x(0) : Ω → R
m is a random vector (i.e. each entry of x(0) is measurable with respect

to M), and provide a convergence result for such dynamics. We refer to such dynamics
as random averaging dynamics. As highlighted in [32], [34], [18], for different models and
types of averaging dynamics, the main idea involved in the proof of convergence is that
there is a balancedness between nodes in averaging dynamics. Our goal is to extend those
results to history-dependent random processes.Motivated by the study in [26], we say that
a random stochastic matrix process {W (k)} is balanced if

E[WS̄S(k + 1) | W (k), . . . ,W (1), x(0)] (6)

≥ αE[WSS̄(k + 1) | W (k), . . . ,W (1), x(0)] ,

for any non-trivial S ⊂ [m] and some α > 0 and any k ≥ 0, where S̄ = [m] \ S is
the complement of the set S (with respect to [m]). We refer to α as the balancedness
coefficient.

Also, following [24] for any random stochastic matrix process {W (k)}, let us define
the random undirected graph G∞ = ([m], E∞) to be the graph with the edge set

E∞(ω) = {{i, j} |
∞
∑

k=0

(Wij(k, ω) +Wji(k, ω)) = ∞}.

We refer to this graph as the infinite flow graph of the process {W (k)}.
The first main result of this paper characterizes the convergence and stability proper-

ties of a broad class of adapted random averaging dynamics.

Theorem 1. For any balanced adapted random stochastic matrix process {W (k)}, such
that for all i ∈ [m] and k ≥ 0, we have Wii(k) ≥ γ > 0 almost surely, the dynamics (5)
converges almost surely. Moreover, limk→∞ xi(k, ω) = limk→∞ xj(k, ω) if and only if i, j
belong to the same connected component of G∞(ω).

As we will show later in Section 5, convergence and stability of all the dynamics
discussed in Section 2 follows immediately from Theorem 1. However, Theorem 1 alone
does not provide any insight into the rate of convergence to an equilibrium. Our next
result shows the existence of infinitely many (stochastic) Lyapunov functions for the
study of such systems. As in the case of independent processes [26], we show that for any
convex function g, there exists a Lyapunov function adapted to g for processes portrayed
in Theorem 1.
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Corollary 1. For any balanced adapted random stochastic matrix process {W (k)} sat-
isfying the assumptions of Theorem 1, there exists an adapted random stochastic vector
process {π̄(k)} such that for any convex function g : R → R, the random process {Vk}
defined by

Vk =

m
∑

i=1

π̄i(k)g(xi(k))− g(π̄T (k)x(k)),

is a super-martingale and hence, convergent, almost surely.

In other words, if we look at the random process {Vk}, we always have

E[Vk+1 | W (k), . . . ,W (1), x(0)] ≤ Vk.

Note that the choice of convex function g is arbitrary in the above theorem. For example
for the case of g(t) = t2, we have Vk =

∑m

i=1 π̄i(k)x
2
i (k) − (π̄T (k)x(k))2 which is the

(random) empirical variance of x(k) with respect to the random probability distribution
π̄(k). This results opens up many doors to study such dynamics using different Lyapunov
functions.

4 Proof of the Main Theorem

In this section, we provide a proof of Theorem 1. Before discussing the proof, let us
introduce some notations that will be used subsequently. For notational simplicity, we
present the proof of the main results based on filtration formalism, i.e. we use notion of
conditional expectation E[· | Fk] instead of E[· | W (k), . . . ,W (1), x(0)], where Fk is the
smallest sub-σ-algebra of (Ω,M) such that x(0),W (1), . . . ,W (k) are measurable with
respect to it. So, let {Fk} be such a filtration for (Ω,M). Indeed, all the following
discussion follows for any filtration for x(0),W (1),W (2), . . . ,. With a slight abuse of
notation we say that {W (k)} is an adapted processes to {Fk} if W (k) is measurable
with respect to Fk and x(0) is measurable with respect to F0. We say that a mapping
S : Ω → P([m]) is a random subset of [m] = {1, . . . , m} if S is measurable with respect
to ([m],P([m]) where P([m]) is the set of all subsets of [m]. Moreover, we say that a
sequence {S(k)} of random subsets is adapted to {Fk} if S(k) is measurable with respect
to Fk.

In our development an object, regular sequence, plays a central role. As defined in
[39] in the deterministic setting, a sequence {S(k)} of subsets of [m] is called regular if
|S(k)| = |S(0)| ≥ 1 for all k, i.e. the cardinality of S(k) does not change with time. We
say that {S(k)} is an adapted regular sequence if S(k) is adapted in the sense above and
also |S(k)| = ℓ almost surely for some ℓ ∈ [m]. It should be clear that in a deterministic
setting, i.e. the case that Fk = {∅,Ω} for all k ≥ 0, the two definitions coincide.

Now, let us define a weakly reciprocal adapted processes as follows.

Definition 1. We say that an adapted stochastic matrix process {W (k)} is weakly recip-
rocal with coefficient α if for any regular adapted sequence {S(k)}, we have:

E
[

WS̄(k+1)S(k)(k + 1) | Fk

]

≥ αE
[

WS(k+1)S̄(k)(k + 1) | Fk

]

(7)

for some α > 0.
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Note that the restriction of the weakly reciprocal processes to deterministic chains of
stochastic matrices is equivalent to the notion of balanced asymmetric chains as defined
in [18].

Also note that if {S(k)} is a regular adapted process, {S̄(k)} is also a regular adapted
process which implies α ≤ 1 in (1).

The major challenging step towards proving Theorem 1 is to show that the balanced
processes described in the statement of the result are weakly reciprocal.

Proposition 2. Let {W (k)} be a balanced process (see (6)) with coefficient a ∈ (0, 1]
such that Wii(k) ≥ γ almost surely for some γ ∈ (0, 1] and all i ∈ [m] and k ≥ 0. Then
{W (k)} is weakly reciprocal with coefficient α = γa

4m
.

Proof. Suppose that the assumptions of the assertion hold and let {S(k)} be an arbitrary
adapted regular sequence. Fix k ≥ 0. The strategy to prove the assertion is to partition
the probability space into two events: Ωg, where S(k+1) and S(k) are roughly the same,
and its complement, Ω̄g = Ω \Ωg. If S(k+1) and S(k) are roughly the same, then by the
balanced assumption on the chain, we show that the weakly reciprocal condition follows.
If S(k) and S(k + 1) are substantially different, then the condition Wii(k) ≥ γ will help
us to show the weakly reciprocal condition.

Consider the measurable set Ωg ∈ Fk, defined by

Ωg =

{

ω | E
[

1S(k+1)6=S(k) | Fk

]

<
1

2m
E
[

WS(k+1)S̄(k)(k + 1) | Fk

]

}

.

Then, we have:

E
[

WS̄(k+1)S(k)(k + 1) | Fk

]

= E
[

WS̄(k+1)S(k)(k + 1) | Fk

]

1Ωg
+ E

[

WS̄(k+1)S(k)(k + 1) | Fk

]

1Ω̄g
,

(8)

where Ω̄g = Ω \ Ωg is the complement of the set Ωg. Note that

WS̄(k+1)S(k)(k + 1) = WS̄(k+1)S(k)(k + 1)(1S(k+1)=S(k) + 1S(k+1)6=S(k)). (9)

If S(k+1) 6= S(k) for some ω ∈ Ω, then for i ∈ S(k+1, ω)\S(k, ω), we haveWS̄(k+1)S(k)(k+
1) ≥ Wii(k+1) ≥ γ which follows from the assumptions of the proposition. Using this in
(9), we get:

E
[

WS̄(k+1)S(k)(k + 1) | Fk

]

= E
[

WS̄(k+1)S(k)(k + 1)(1S(k+1)=S(k) + 1S(k+1)6=S(k)) | Fk

]

≥ E
[

WS̄(k+1)S(k)(k + 1)1S(k+1)6=S(k) | Fk

]

≥ γE
[

1S(k+1)6=S(k) | Fk

]

. (10)

Also on Ω̄g, we have E
[

1S(k+1)6=S(k) | Fk

]

≥ 1
2m

E
[

WS(k+1)S̄(k)(k + 1) | Fk

]

. Therefore,

E
[

WS̄(k+1)S(k)(k + 1) | Fk

]

≥
γ

2m
E
[

WS(k+1)S̄(k)(k + 1) | Fk

]

1Ω̄g
+ E

[

WS̄(k+1)S(k)(k + 1) | Fk

]

1Ωg
.

(11)
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So, it remains to analyze E
[

WS̄(k+1)S(k)(k + 1) | Fk

]

on Ωg. Let us partition this event
into two other events Ωga and Ωgb = Ωg \ Ωga, where:

Ωga =

{

ω ∈ Ωg | E
[

WS(k)S̄(k)(k + 1)Fk

]

≥
2m

a
E

[

1 ¯S(k+1)6=S(k) | Fk

]

}

.

Let us first analyze the expected flow over the event Ωga. Note that WS̄(k+1)S(k)(k +
1),WS̄(k)S(k)(k + 1) ∈ [0, m] almost surely. Using this, we have:

E
[

WS̄(k+1)S(k)(k + 1) | Fk

]

1Ωga
≥ E

[

WS̄(k+1)S(k)(k + 1)1S(k+1)=S(k) | Fk

]

1Ωga

= E
[

WS̄(k)S(k)(k + 1)1S(k+1)=S(k) | Fk

]

1Ωga

=

(

E
[

WS̄(k)S(k)(k + 1) | Fk

]

− E
[

WS̄(k)S(k)(k + 1)1S(k+1)6=S(k) | Fk

]

)

1Ωga

≥

(

E
[

WS̄(k)S(k)(k + 1) | Fk

]

−mE
[

1S(k+1)6=S(k) | Fk

]

)

1Ωga
. (12)

Now, note that S(k) is measurable with respect to Fk and hence, we have:

E
[

WS̄(k)S(k)(k + 1) | Fk

]

=
∑

S⊂[m]
|S|=|S(k)|

1S(k)=SE[WS̄S(k + 1) | Fk]

≥ a
∑

S⊂[m]
|S|=|S(k)|

1S(k)=SE[WSS̄(k + 1) | Fk]

= E
[

WS(k)S̄(k)(k + 1) | Fk

]

.

Replacing this equality in (12), we have:

E
[

WS̄(k+1)S(k)(k + 1) | Fk

]

1Ωga

≥

(

aE
[

WS(k)S̄(k)(k + 1) | Fk

]

−mE
[

1S(k+1)6=S(k) | Fk

]

)

1Ωga
.

But on Ωga, we have E
[

WS(k)S̄(k)(k + 1)Fk

]

≥ 2m
a
E

[

1 ¯S(k+1)6=S(k) | Fk

]

. Therefore,

E
[

WS̄(k+1)S(k)(k + 1) | Fk

]

1Ωga
≥

a

2
E
[

WS(k)S̄(k)(k + 1) | Fk

]

1Ωga
. (13)

On Ωgb, we have:

E
[

WS̄(k+1)S(k)(k + 1) | Fk

]

1Ωgb
≥ E

[

WS̄(k+1)S(k)(k + 1)1S(k+1)6=S(k) | Fk

]

1Ωgb

≥ γE
[

1S(k+1)6=S(k) | Fk

]

1Ωgb
≥ γE

[

WS(k)S̄(k)(k + 1) | Fk

]

1Ωgb

≥
γa

2m
E
[

WS(k)S̄(k)(k + 1) | Fk

]

1Ωgb
. (14)

Combining (13) and (14), we conclude that:

E
[

WS̄(k+1)S(k)(k + 1) | Fk

]

1Ωg
≥

γa

2m
E
[

WS(k)S̄(k)(k + 1) | Fk

]

1Ωg
. (15)
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The next step is to relate E
[

WS(k)S̄(k)(k + 1) | Fk

]

1Ωg
to E

[

WS(k)S̄(k+1)(k + 1) | Fk

]

1Ωg
.

For this, we have:

E
[

WS(k)S̄(k)(k + 1) | Fk

]

1Ωg
= E

[

WS(k)S̄(k)(k + 1)(1S(k+1)=S(k) + 1S(k+1)6=S(k)) | Fk

]

1Ωg

≥ E
[

WS(k)S̄(k)(k + 1)1S(k+1)=S(k) | Fk

]

1Ωg

= E
[

WS(k+1)S̄(k)(k + 1) | Fk

]

1Ωg
− E

[

WS(k+1)S̄(k)(k + 1)1S(k+1)6=S(k) | Fk

]

1Ωg

≥

(

E
[

WS(k+1)S̄(k)(k + 1) | Fk

]

−mE
[

1S(k+1)6=S(k) | Fk

]

)

1Ωg
.

But on Ωg we have E
[

1S(k+1)6=S(k) | Fk

]

≤ 1
2m

E
[

WS(k+1)S̄(k)(k + 1) | Fk

]

. Therefore,

E
[

WS(k)S̄(k)(k + 1) | Fk

]

1Ωg
≥

1

2
E
[

WS(k+1)S̄(k)(k + 1) | Fk

]

1Ωg
. (16)

Combining (15) and (16), we conclude that:

E
[

WS(k)S̄(k)(k + 1) | Fk

]

1Ωg
≥

1

2
E
[

WS(k+1)S̄(k)(k + 1) | Fk

]

1Ωg
. (17)

Replacing (17) in (15) and using (11), we finally find:

E
[

WS̄(k+1)S(k)(k + 1) | Fk

]

≥
γ

2m
E
[

WS(k+1)S̄(k)(k + 1) | Fk

]

1Ω̄g
+

γa

4m
E
[

WS(k+1)S̄(k)(k + 1) | Fk

]

1Ωg

≥
γa

4m
E
[

WS(k+1)S̄(k)(k + 1) | Fk

]

.

Q.E.D.

The next step is to show that any random averaging dynamics generated by weakly
reciprocal adapted process is convergent up to a random permutation. More precisely, let
an ordering of a vector x ∈ R

m be a vector z ∈ R
m such that zi = xπ(i) for all i ∈ [m],

where π : [m] → [m] is a permutation on [m], and z1 ≤ z2 ≤ · · · ≤ zm. Similarly, for
a random vector x : Ω → R

m, we say a random vector z : Ω → R
m is an ordering of x

if z(ω) is an ordering of x(ω) for (almost) all ω ∈ Ω. Then, we show that if {x(k)} is
generated by a weakly reciprocal matrix process {W (k)}, its ordering converges almost
surely (although {x(k)} itself may not be convergent). The proof technique is based on
the proof technique in [40] and [18], and the developed machinery above.

Proposition 3. Let {W (k)} be an adapted stochastic matrix process that is weakly recip-
rocal with coefficient α and let {x(k)} be a dynamics generated by {W (k)}.

a. Let z(k) be an ordering of x(k). Then, limk→∞ z(k) = z(∞) exists almost surely.

b. Consider the infinite flow event

Ω∞ = {ω ∈ Ω |
∞
∑

k=1

WS̄(k+1)S(k)(k) = ∞

for any adapted regular sequence {S(k)}}.

9



Then, for almost all ω ∈ Ω∞, we have limk→∞(zi(k) − zj(k)) = 0, i.e. agents reach
consensus. As a result, on Ω∞, we almost surely have limk→∞ x(k) = c1 for a random
variable c.

c. Suppose that Wii(k) ≥ γ > 0 almost surely for all i ∈ [m] and k ≥ 0. Then,
limk→∞ x(k) exists almost surely.

Proof. a. Fix an ℓ ∈ [m]. Let Sℓ(k) : Ω → P([m]) be the index of the lower ℓ entries of
x(k), i.e. Sℓ(k) is a random subset of [m] such that (i) |Sℓ(k)| = ℓ, and (ii) for almost
all ω ∈ Ω, and for all i ∈ Sℓ(k, ω) and j ∈ S̄ℓ(k, ω), we have xi(k, ω) ≤ xj(k, ω). Note
that S(k) is measurable with respect to Fk. Now, let

Vℓ(k) =
ℓ

∑

i=1

βizi(k) =
∑

i∈S(k)

βπ−1(i)xi(k),

where β = α
2
. Note that Vℓ(k) is measurable with respect to Fk and also, since {z1(k)}

is an increasing sequence and {zm(k)} is a decreasing sequence almost surely (see e.g.
[41]),

mz1(0) ≤ mz1(k) ≤ Vℓ(k) ≤ mzm(k) ≤ mzm(0),

and therefore, |Vℓ(k)| ≤ ‖z(0)‖∞ and as a result {Vℓ(k)} is bounded almost surely.
Using some algebraic steps and the fact that W (k) is stochastic almost surely, as
shown in Eq. (31) and Eq. (32) in [18], it follows that almost surely:

Vℓ(k + 1)− Vℓ(k) ≥
ℓ−1
∑

p=1

(

βpWSp(k+1)S̄p(k)(k + 1)− αp+1WS̄p(k+1)Sp(k)(k + 1)

)

∆zp(k),

where ∆zp(k) = zp+1(k) − zp(k). Applying conditional expectation on both sides of
the above inequality and using the weakly reciprocal property of {W (k)}, it follows
that:

E[Vℓ(k + 1)− Vℓ(k) | Fk] ≥
ℓ−1
∑

p=1

E[βpWSp(k+1)S̄p(k)(k + 1)− βp+1WS̄p(k+1)Sp(k)(k + 1) | Fk]∆zp(k)

≥
ℓ−1
∑

p=1

E

[

2βp+1WS̄p(k+1)Sp(k)(k + 1)− βp+1WS̄p(k+1)Sp(k)(k + 1) | Fk

]

∆zp(k)

=
ℓ−1
∑

p=1

E
[

βp+1WS̄p(k+1)Sp(k)(k + 1) | Fk

]

∆zp(k).

(18)

From Doobs’s Martingale Convergence Theorem (Theorem (2.10) [42]), one can im-
mediately see that Vℓ(k) is convergent almost surely for any ℓ ∈ [m]. Finally, since
z1(k) = β−1V1(k) and zℓ+1(k) = β−ℓ−1(Vℓ+1(k)−Vℓ(k)), it follows that limk→∞ z(k) =
z(∞) exists almost surely.
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b. Since the process {Vℓ(k)} is bounded almost surely, from (18), it follows that:

∞
∑

k=0

m−1
∑

ℓ=1

ℓ−1
∑

p=1

E
[

βp+1WS̄p(k+1)Sp(k)(k + 1) | Fk

]

∆zp(k) < ∞.

But since βp+1WS̄p(k+1)Sp(k)(k + 1)∆zp(k) ≤ d(x(0)) is bounded almost surely, from
the dominated convergence theorem for conditional expectations ([42], page 262), it
follows that

E

[

∑

k≥0
ℓ∈[m−1]

ℓ−1
∑

p=1

βp+1WS̄p(k+1)Sp(k)(k + 1)∆zp(k)

]

< ∞

and hence, we almost surely have:

∞
∑

k=0

m−1
∑

ℓ=1

ℓ−1
∑

p=1

βp+1WS̄p(k+1)Sp(k)(k + 1)∆zp(k) < ∞.

Now, if for some ω ∈ Ω∞, and some i ∈ [m], we have limk→∞(zi(k) − zi−1(k)) =
zi(∞)−zi−1(∞) > 0, then since

∑∞
k=1WS̄i(k+1)Si−1(k)(k+1) = ∞ on Ω∞, it follows that

∑∞
k=1WS̄i(k+1)Si−1(k)(k+1)(zi(k)−zi(k)) = ∞. But since

∑∞
k=0

∑m−1
ℓ=1

∑ℓ−1
p=1 β

p+1WS̄p(k+1)Sp(k)(k+
1)∆zp(k) < ∞ it follows that for almost all points in Ω∞, we have zi(∞)−zi−1(∞) = 0.
Therefore, limk→∞(xi(k) − xj(k)) = 0 for almost all ω ∈ Ω∞ and for all i, j ∈ [m]
which by Theorem 1 in [41] implies that limk→∞ x(k) = c(ω)1 for some c(ω) ∈ R and
almost all ω ∈ Ω∞.

c. Suppose that for all k ≥ 0 and i ∈ [m], Wii(k) ≥ γ almost surely and suppose
that on a set Ω′ ⊂ Ω, limk→∞ x(k) does not exist. Without loss of generality, we
may assume that there exists i ∈ [m] such that limk→∞ xi(k) does not exists on
the set Ω′ (otherwise, we can restrict our discussion to such a set). First notice
that limk→∞ z(k) 6= c1 on Ω′, otherwise, as in the previous case, this implies that
limk→∞ x(k) = c1. Now, fix an ω ∈ Ω′ and consider the corresponding sample path
of the dynamics. Let {a1, . . . , aq} = {z1(∞), . . . , zm(∞)} with a1 < . . . < aq be the
distinct values of the entries of z(∞) for the sample point ω (q ≤ m). Note that,
for any ǫ ≤ 1

4
min1≤p<q(ap+1 − ap), there exists a time instance Tǫ ≥ 0 such that for

k ≥ Tǫ, xi(k) is at the ǫ-neighborhood of one of the points in {a1, . . . , aq}. This point
is unique because ǫ ≤ 1

4
min1≤p<q(ap+1 − ap). Let the index of that point be p(k),

i.e. |xi(k) − ap(k)| < ǫ for k > Tǫ. But since limk→∞ xi(k) does not exists, it follows
that there is a sequence of the increasing time instances k1 < k2 < . . . such that
p(kt) 6= p(kt+1). This implies that S(kt+1) 6= S(kt) for some ℓ, as defined in part a.
and also, zℓ+1(kt)− zℓ(kt) ≥

1
4
min1≤p<q(ap+1 − ap). But since Wii(kt + 1) ≥ γ almost

sure for all i, it follows that WS̄(kt+1)S(kt)(kt + 1) ≥ γ, and hence,

∞
∑

k=0

m−1
∑

ℓ=1

ℓ−1
∑

p=1

βp+1WS̄p(k+1)Sp(k)(k + 1)∆zp(k) = ∞,
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for the sample point ω ∈ Ω′. But based on part b. this happens almost never, and
hence, it follows that Pr (Ω′) = 0 and hence, .
Q.E.D.

Theorem 1 directly follows from a combination of Proposition 2 and Proposition 3:
by Proposition 2, balanced random matrix processes {W (k)} with the property that
Wii(k) ≥ γ almost surely for all k ≥ 0 and i ∈ [m] are weakly reciprocal and based on
part c. of Proposition 3, it follows that the dynamics system (5) is almost surely convergent
for such random matrix processes.

Another immediate consequence of the above theorem is that the evaluation of any
symmetric and continuous function along the trajectories of the random dynamics gener-
ated by adapted weakly reciprocal process is convergent. More precisely, let σ : [m] → [m]
be an arbitrary permutation over the set [m]. For a vector x ∈ R

m, let y = xσ be the vector
defined by yi = xσ(i). A function V : Rn → R is said to be symmetric if V (xσ) = V (x) for
any x ∈ R

m and permutation σ. An example of a symmetric function is V (x) =
∑m

i=1 xi.

Corollary 2. Let {x(k)} be a dynamics generated by a weakly reciprocal adapted process
{W (k)} and let V : Rn → R be a continuous symmetric function. Then, limk→∞ V (x(k))
exists almost surely.

Proof. By Proposition 3, limk→∞ z(k) exists, where z(k) is an ordering of x(k). Since V (·)
is symmetric, it follows that V (x(k)) = V (z(k)) and hence,

lim
k→∞

V (x(k)) = lim
k→∞

V (z(k)) = V ( lim
k→∞

z(k)),

where the last equality follows from the continuity of V (·). Q.E.D.

Now consider any initial condition x(t0) = ei (more precisely, x(t0, ω) = ei)) where
t0 ≥ 0 is an arbitrary starting time. Applying Corollary 2 to function V (x) = 1

m
1Tx, we

conclude that for any t0 ≥ 0, the random vector:

π(k) = lim
k→∞

1

m
eTW (k) · · ·W (k),

is well-defined. Also, note that we almost surely have πT (k+1)W (k+1) = πT (k) for any
k ≥ 0. Thus, if we define

π̄(k) = E[π(k) | Fk] , (19)

the following result follows immediately.

Corollary 3. Any weakly reciprocal adapted stochastic matrix process {W (k)} admits an
adapted absolute probability process (as defined in [26]), i.e. an adapted random vector
process {π̄(k)} such that for any k ≥ 0, we have:

E
[

π̄T (k + 1)W (k + 1) | Fk

]

= π̄T (k).

12



Proof. Let {π̄(k)} be the vector process defined by (19). Then, we have

E
[

π̄T (k + 1)W (k + 1) | Fk

]

= E
[

E
[

πT (k + 1) | Fk+1

]

W (k + 1) | Fk

]

= E
[

πT (k + 1)W (k + 1) | Fk

]

= E
[

πT (k) | Fk

]

= π̄T (k).

Q.E.D.

Since any asymmetric balanced chain admits an adapted absolute probability process,
by Theorem 2 in [26], Corollary 1 follows.

5 Implications

In this section, we revisit the motivational problems mentioned in Section 2. We first
revisit the random variations of Hegselmann-Krause dynamics and then we discuss the
endogenous gossiping dynamics and how Theorem 1 can be used to study them.

5.1 Hegselmann-Krause Dynamics and Asymmetric Endogenous

Gossiping

It is not hard to see that all the random instances of the Hegselmann-Krause dynamics
discussed in Section 2 are examples of the dynamics (5). For example for the case of the
asynchronous Hegselmann-Krause dynamics, suppose that i(k) is a random agent picked
by nature at time k ≥ 0. Then, we have:

Wi(k)j(k + 1)=

{

1
|Ni(k)(x(k),ǫ)|

if j ∈ Ni(k)(x(k), ǫ)

0 otherwise

where ǫ is the confidence level of agents. Note that if the process {i(k)} is an adapted
process and if we also have Pr (i(k) = ℓ | Fk) ≥ p for any ℓ ∈ [m], then for any i, j ∈ [m]
we have

E[Wij(k + 1) | Fk] ≥
p

m
E[Wji(k + 1) | Fk] .

It is not hard to see that a similar condition holds for the other random instances of
the Hegselmann-Krause dynamics proposed in Section 2, i.e.

E[Wij(k + 1) | Fk] ≥ ηE[Wji(k + 1) | Fk] ,

for some η > 0. Also, in all of those models, Wii(k) ≥
1
m

for any i ∈ [m] and k ≥ 0.
Similarly, the asymmetric endogenous gossiping dynamics (3) is another example of the

dynamics (5). In this case, for ℓ 6= j(k), we have Wℓℓ(k) = 1, Wj(k)j(k)(k + 1) = 1− γ(k),
Wj(k)i(k)(k + 1) = γ(k) and the rest of the entries are zero. In this case, if α(k) is
independent of choice of (i(k), j(k)) and (4) also holds, then we have:

E[Wij(k + 1) | Fk] ≥ αlE[Wji(k + 1) | Fk] .

Also note that in this case, we have Wii(k) ≥ 1− h > 0 for all i ∈ [m] and k ≥ 0.

13



Note that both the Hegselmann-Krause dynamics and the endogenous gossiping dy-
namics share the common property of

E[Wij(k + 1) | Fk] ≥ ηE[Wji(k + 1) | Fk] , (20)

for some η > 0. Following the terminology in [43], we say that {W (k)} has adapted
sub-symmetric property if it satisfies (20). In fact, this property insures the balanced
property, as for any non-trivial S ⊂ [m], we have:

E[WSS̄(k + 1) | Fk] =
∑

i∈S

∑

j∈S̄

E[Wij(k + 1) | Fk]

≥ η
∑

i∈S

∑

j∈S̄

E[Wji(k + 1) | Fk]

= ηE[WS̄S(k + 1) | Fk]

Therefore, we have the following corollary.

Corollary 4. Let {W (k)} be an adapted sub-symmetric matrix process and Wii(k) ≥ γ

almost surely for all i ∈ [m] and k ≥ 0. Then any dynamics {x(k)} generated by {W (k)}
is convergent.

As a result of the above corollary, the various random instances of the Hegselmann-
Krause dynamics as well as asymmetric endogenous gossiping dynamics satisfying (4) is
convergent almost surely.
Acknowledgement. We would like to thank anonymous reviewers for the valuable
comments and suggestions for the improvement of this work.

6 Conclusion

In this work, we have studied averaging dynamics driven by random adapted stochastic
matrix processes. We showed that under so-called balanced conditions and strictly pos-
itive diagonal entries of the underlying matrix process, such dynamics converge almost
surely. Our proof relies on various properties of novel objects, weakly reciprocal matrix
processes, and their connection to balanced processes with strictly positive diagonal en-
tries. We also showed that those dynamics admit infinitely many (stochastic) Lyapunov
functions which open the door to rate of convergence analysis of the corresponding averag-
ing dynamics. Using our main results, we showed that asynchronous Hegselmann-Krause
dynamics, Hegselmann-Krause dynamics with link failure, and endogenous asymmetric
gossip algorithms converge almost surely.

We believe that the application domain of the results and tools developed in this work
goes beyond the few examples discussed here. Applications of these results in distributed
optimization in endogenously changing environment, Markov-chains in random environ-
ments, convergence rate analysis of consensus dynamics in random environments, and
distributed learning are remained to be explored in future works.
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