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Throughput optimality and overload behavior
of dynamical flow networks under monotone distributed routing

Giacomo Como, Enrico Lovisari, and Ketan Savla

Abstract— The paper investigates the throughput behavior of
single-commodity dynamical flow networks governed by mono-
tone distributed routing policies. The networks are modeled as
systems of ODEs based on mass conversation laws on directed
graphs with limited flow capacities on the links and constant
external inflows at certain origin nodes. Under monotonicity
assumptions on the routing policies, it is proven that a globally
asymptotically stable equilibrium exists so that the network
achieves maximal throughput, provided that no cut capacity
constraint is violated by the external inflows. On the contrary,
should such a constraint be violated, the network overload
behavior is characterized. In particular, it is established that
there exists a cut with respect to which the flow densities on
every link grow linearly over time (resp. reach their respective
limits simultaneously) in the case where the buffer capacities
are infinite (resp. finite). The results employ an l1-contraction
principle for monotone dynamical systems.

I. INTRODUCTION

Rapid technological advancements are facilitating real-time
control of infrastructure networks, such as transportation, in or-
der to achieve the efficient utilization of these networks. While
static network flows, e.g., see [1], have traditionally dominated
the modeling framework for infrastructure networks, the true
potential of the emerging technologies can only be realized by
developing control design within a dynamical framework.

In this paper, we study single-commodity dynamical flow
networks, modeled as systems of ordinary differential equa-
tions derived from mass conservation laws on directed graphs
having constant external inflow at each of possibly multiple
origins. The state of the system is the density of particles
on the links of the network, limited by possibly finite buffer
capacities. The flow of particles from a link to downstream
links, limited by the maximum flow capacity, is regulated by
deterministic rules, or routing policies, which depend on the
state of the network. Particles leave the network when they hit
at any of the possibly multiple destination nodes. We focus on
routing policies that are distributed: the routing at each link
only depends on local information consisting of density of
itself and the links downstream to it. More specifically, we
propose a novel class of monotone distributed routing policies
that are characterized by general monotonicity assumptions on
the sensitivity of their action with respect to local information.

Our objective is to prove maximum throughput and to
characterize the overload behavior in networks operating under
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monotone distributed routing policies. Our main result is in the
form of a dichotomy. If the external inflow at the origin nodes
does not violate any cut capacity constraints, then there exists
a globally asymptotically stable equilibrium, and the network
achieves maximal throughput. When the external inflow at the
origin nodes violates some cut capacity constraint, then the
network exhibits the following feature: under infinite buffer
capacities, there exists a constraint-violating cut, independent
of the initial condition, such that the particle densities on the
origin side of the cut grow linearly in time with the least
possible slope; under finite buffer capacities, there exists a
constraint-violating cut, in general dependent on the initial
condition, such that all the links constituting the cut hit their
buffer capacities simultaneously. The network is thus operated
in the most efficient way, from a throughput perspective, even
if the routing policies rely only on local information.

These results rely on the ability of the routing policy to
implicitly back-propagate congestion effects, allowing flow to
be routed towards less congested parts of the network in a
timely fashion. While algorithms for distributed computation
of maximum network flow are well known (e.g., see [2]) the
novelty of our contribution consists in proving throughput
optimality for flow dynamics naturally arising in physical
networks. The proofs are based on an l1-contraction principle
for monotone conservation laws (Lemma 1), and on a complete
characterization of all possible combinations of limiting (as
densities approach the buffer capacities) states of all the links
around every node (Lemma 3). The former, in particular, is
analogous to properties of some hyperbolic partial differential
equations: e.g., cf. Kružkov’s Theorem [3, Proposition 2.3.6]
for entropy solutions of scalar conservation laws.

The distributed routing architecture of this paper and the
ensuing result on throughput optimality is reminiscent of the
back-pressure routing algorithm for multi hop networks [4].
In [4], dynamics is imposed on the nodes of the network,
instead of the links as here. However, one can transform
our setup to fit within the one of [4] by employing a dual
graph where the roles of nodes and links are exchanged in a
suitable manner. The back-pressure routing setup allows for
arbitrary constraints on simultaneous activation of links in the
network. For specific constraints under which at most one,
among all outgoing links, at every node can be activated, then
the back-pressure routing, with the max operation replaced
with softmax, can be argued to satisfy the properties of
monotone distributed routing of this paper. Such an argument
also extends to generalizations of back-pressure policies, such
as the the MaxWeight-f policies, for strictly increasing f .

The dynamical formulation of this paper is also reminiscent
of dynamic traffic flow over networks, e.g., see [5], [6]. In
particular, our framework can be used to analyze dynamical
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traffic models that are related to the well-known cell trans-
mission model (CTM) [7], [5]. The CTM can be explained
for a line network as follows: a line is partitioned in cells
e = 1, . . . , N , in each of which the traffic state is described
by traffic density. The system is driven by mass-conservation
and the flow from a cell to the following is given by the
minimum of two quantities: demand of cell e, describing the
amount of vehicles that desire to enter into cell e + 1, and
supply of cell e + 1, describing the maximum amount of
vehicles that are allowed into it. Such a dynamical setup can
be shown to satisfy the monotonicity properties of this paper,
and hence one can derive tight conditions on the existence
and stability of equilibria in such settings [8]. As such, this
result is a continuous time counterpart of [9]. The CTM
setup is extended to the general network case by specifying
fixed turning ratios and by imposing FIFO (first-in-first-out)
constraints at diverging junctions [5]. In this case, the resulting
setup does not necessarily satisfy the monotonicity properties
of this paper. However, by relaxing the FIFO constraints, one
recovers the monotonicity properties, and the results of this
paper can then be utilized for analysis of such a model [8].

It is imperative to highlight the difference between this
paper and our previous work [10], [11], where we studied
dynamical flow networks in which the action of the routing
policy at a node is restricted to splitting the (given) inflow
from incoming links at that node among the links outgoing
from that node, as a function of the density on outgoing
links. Specifically, such a routing architecture did not allow
backward propagation of congestion effect. We proposed and
studied a class of locally responsive policies under such
an architecture, for the infinite buffer capacity case and for
directed acyclic network topologies. In this paper, we extend
and modify such a framework, not only by allowing finite
buffer capacities and cyclic network topologies, but more
importantly by allowing the routing policies to completely
control the flow transfer between links. Under this framework,
we are able to provide explicit conditions for global asymptotic
stability of equilibria and, unlike [10], [11], we give a detailed
characterization of the overload behavior of the network.

The paper is organized as follows: Sec. II provides a
motivating example for the study of monotone distributed
policies. In Sec. III, we propose a general model for dynamical
flow in networks. In Sec. IV we state our main results, which
are proven in Sec. V. Finally, Sec. VI states conclusions and
possible directions for future research.

We conclude by introducing some notational conventions.
For finite sets A and B, RA (RA+) is the space of real-valued
(nonnegative-real-valued) vectors whose entries are indexed
by elements of A and RA×B the space of matrices whose real
entries are indexed by pairs in A × B. M ′ ∈ RB×A is the
transpose of M ∈ RA×B. Inequalities such as x ≤ y or x < y
for vectors x, y ∈ RA are meant to hold component-wise.
We identify a network with a weighted directed multi-graph
G = (V, E , C), where V and E stand for the finite sets of nodes
and links, respectively, and C ∈ (0,+∞]E are link capacities.
For link e ∈ E , σe and τe denote its tail and head nodes,
respectively, so e = (σe, τe). While we assume there are no
self-loops, i.e., τe 6= σe for e ∈ E , we allow for parallel links.
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Figure 1. On the left, the network G analyzed in Sec. II, with node set
V = {a, b, c, d}, link set E = {1, 2, 3, 4, 5}, and capacities C1 = 2, C2 =
C3 = C4 = 1, C5 = 3. On the right, an equilibrium flow f∗.

II. A MOTIVATING EXAMPLE

Consider the network G = (V, E , C) in Figure 1, with inflow
λ = 2 from node a and equilibrium flow f∗. Our goal is to
study throughput and resilience of dynamical flows on G. As it
turns out, these properties do not depend merely on G and f∗,
but also on the specific flow dynamics. We focus on first-order
dynamics of the form

ρ̇ = A(F ′(ρ)− F (ρ))1 , (1)

where ρ = ρ(t) ∈ R5
+ is the vector of densities on the different

links; F (ρ) ∈ R6×6 is the matrix of link-to-link flows with
Fij(ρ) denoting the flow from link i to link j and with the last
row and column of F (ρ) corresponding to inflows from and,
respectively, outflows to the external world; A = [I5×5 05×1]
is the projection matrix on the first 5 components; and 1 ∈ R5

is the all-one vector. Assume that all the links have infinite
buffer capacities, i.e., the range of ρe(t) is [0,+∞] for all
e ∈ E . To reflect the structure of G and invariance of the
nonnegative orthant R5

+ for solutions of (1), assume that

F (ρ) = M(ρ)R(ρ) ,

where M(ρ) = diag(C1ϕ(ρ1), . . . , C5ϕ(ρ5), λ), with ϕ(ρ)
Lipschitz continuous and strictly increasing from ϕ(0) = 0 to
limρ→∞ ϕ(ρ) = 1, and R(ρ) ∈ R6×6 is a row-substochastic
routing matrix with Rij(ρ) ≡ 0 whenever τi 6= σj (with the
convention σ6 = d, τ6 = a). The term Ciϕ(ρi) represents
the density-dependent maximal outflow from a link i, while
Rij(ρ) stands for the fraction of such maximal outflow routed
to the downstream link j. E.g., dynamics on link 1 reads
ρ̇1 = λR61(ρ)− C1ϕ(ρ1)(R13(ρ) +R14(ρ)). Let

µ(C,R) := lim inf
t→+∞

1

t

∫ t

0

(F36(ρ(s)) + F56(ρ(s))) ds

denote the throughput of flow dynamics (1), i.e., the long-term
average inflow at the destination node d. A perturbation of (1)
is a dynamical system with the same network topology and
routing matrix, but a potentially different vector of link capac-
ities, C̃. In the following, we shall be interested in measuring
how much can such perturbations reduce the throughput of the
system. Assume that the unperturbed dynamics (1) admits an
equilibrium ρ∗ ∈ R5 with

AM(ρ∗)R(ρ∗)1 = AR′(ρ∗)M(ρ∗)1 = f∗ ,

so that in particular µ(C,R) = λ = 2, and define the resilience
function ν( · ) by letting, for δ ≥ 0,

ν(δ) := inf
0≤C̃≤C

{ ∑
1≤i≤5

(Ci − C̃i) : µ(C̃, R) < λ− δ
}
.
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Figure 2. Trajectories of the solutions of (1) under routing matrix R(2)

(dashed lines) and R(3) (solid lines), with initial condition ρ(0) = 0. At
time t1, the capacity on link 3 drops to C̃3 = 1/6, and at time t2 it drops
to C̃3 = 0. Under R(2) and after t1, C̃3 + C4 = 7/6 is smaller than the
total outflow from link 1, so the densities on links 3 and 4 grow unbounded.
The min-cut capacity C2 + C̃3 +C4 = 13/6 remains instead strictly higher
than λ = 2, so the monotone distributed policy steers the network to a new
equilibrium. After t2, the min-cut capacity drops to 2, the constraint is thus
violated, and the densities of links 1, 2, 3 and 4 grow unbounded.

Resilience function has a natural interpretation as the effort
required by an adversary, who is choosing C̃ ≤ C, to cause a
throughput loss δ, given that the routing policy is R(ρ). Note
that, if CG = 3 stands for the min-cut capacity of G, then
necessarily ν(δ) ≤ CG−λ+δ = 1+δ for 0 ≤ δ ≤ λ. Indeed,
reducing the capacities of the links of a minimal cut in such a
way that the perturbed min-cut capacity C̃G does not exceed
λ, then the throughput drops from λ to at most C̃G .

We now characterize the resilience function of three differ-
ent routing matrices. Let us start with a fixed routing matrix

R(1)(ρ) ≡


0 0 1/2 1/2 0 0
0 0 0 0 1 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 1

2/3 1/3 0 0 0 0

 .

Let the network be at equilibrium f∗ before the perturbation.
Under fixed routing R(1), a capacity reduction on link 3 does
not change its inflow f∗3 = 2/3. If f∗3 ≥ C̃3 the density ρ3(t)
cannot but grow unbounded and a throughput loss of f∗3 − C̃3

occurs. Thus, the resilience function satisfies ν(1)(δ) ≤ C3 −
f∗3 + δ = 1/3 + δ for 0 ≤ δ < 2/3. Additionally reducing
capacity on link 4 shows that ν(1)(δ) ≤ C3+C4−f∗3−f∗4 +δ =
2/3 + δ for 2/3 ≤ δ < 4/3, and similarly up to δ = 2. In
fact, these bounds can be shown to be tight and the resilience
function to be the one plotted in grey in Figure 3.

Now, let R(2)(ρ) be a locally responsive routing matrix [10],
[11] with all entries coinciding with those of R(1)(ρ) except

R
(2)
13 (ρ) = 1−R(2)

14 (ρ) =
e−ρ3

e−ρ4 + e−ρ3
,

R
(2)
61 (ρ) = 1−R(2)

62 (ρ) =
2e−ρ1

2e−ρ1 + e−ρ2
.

(2)

In this case, reducing the capacity of link 3 only does not
cause any throughput loss if C̃3 > 1/3. In fact, even if link
3 cannot handle its initial inflow f∗3 , the system is able to
adapt by rerouting the flow out of node b and exploit the

4
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3
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0

ν(δ)

2

3

2 δ

Figure 3. Resilience as a function of the throughput loss δ given the three
routing matrices presented in Sec. II: the solid grey, dashed black, and solid
black lines illustrate ν(1)(δ), ν(2)(δ), and ν(3)(δ), respectively.

unused capacity on link 4, so that a new equilibrium is reached
provided that f∗1 = f∗3 + f∗4 < C̃3 + C̃4.

However, this is no longer the case if C̃3 ≤ 1/3, as then
f∗1 ≥ C̃3 + C̃4 and both ρ3(t) and ρ4(t) necessarily grow
unbounded in t, with a throughput loss of f∗1 − C̃3− C̃4. This
shows that the resilience function satisfies ν(2)(δ) ≤ 2/3 + δ,
for 0 ≤ δ < 4/3. In fact, results in [11] on diffusivity of locally
responsive routing, i.e., a subadditive property for aggregate
outflow increases in subnetworks as a function of capacity
reductions, can be used to show that this bound is tight, and
that ν(2)(δ) has the graph plotted in Figure 3.

Finally, consider a routing matrix R(3)(ρ) coinciding with
R(2)(ρ) in all but its (1, 3)-th and (1, 4)-th entries, given by

R
(3)
13 (ρ) = R

(2)
13 (ρ)h(ρ) , R

(3)
14 (ρ) = R

(2)
14 (ρ)h(ρ) ,

where

h(ρ) =
e−ρ4 + e−ρ3

e−ρ1 + e−ρ4 + e−ρ3
∈ [0, 1] (3)

can be interpreted as a flow control term. Figure 2 shows
the trajectories of the link densities when a perturbation is
applied at time t1 such that C̃3 = 1/6. Observe that, although
f∗1 = 4/3 > 7/6 = C̃3 + C̃4, the link densities remain
bounded in time and approach a new equilibrium. In fact, the
mechanism allowing the network to absorb the perturbation
can be understood rather intuitively: link 3 is not capable to
sustain its initial inflow f∗3 , nor links 3 and 4 are collectively
able to sustain f∗1 , thus both ρ3(t) and ρ4(t) increase, thereby
decreasing h(ρ). This in turn forces the outflow from link 1
to decrease and hence ρ1(t) to grow, namely, density increase
is back-propagated towards the origin, a mechanism that was
completely absent in [11]. Then, the dynamic routing at node
a redirects more flow towards link 2, such an increase being
still small enough that densities on none of the links grow
unbounded. In this way, the network is able to absorb the
perturbation and reach a new equilibrium. Indeed, the main
results of the present paper imply that in this case the resilience
function ν(3)(δ) = 1+δ is the maximum possible. Specifically,
Theorem 1 shows that, as long as the inflows do not violate any
cut capacity constraints in the network, flow dynamics with
the same properties as (1) with routing R(3)(ρ) always admit
a globally asymptotically stable equilibrium, while Proposition
2 implies that if the min-cut capacity is smaller than the inflow
in the network, either from the beginning or as the result of
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Figure 4. Sequences of link failures under finite buffer capacities using
routing matrices analogous to those in Sec. II. Link 3 is perturbed only, with
C3 − C̃3 equal to ν(1)(0) = 1/3, ν(2)(0) = 2/3, and ν(3)(0) = 1,
respectively.

a perturbation, then the throughput is equal to the min-cut
capacity itself, and is thus the maximum possible.

Finally, it is possible to consider an analogous setting with
finite buffer capacities Be, where a link e is irreversibly
removed from the network the first time that ρe(t) = Be,
i.e., when link e fails. While referring to Sec. III and [12] for
a precise formulation of this setting with routing analogous
to R(3)(ρ) and R(2)(ρ), respectively, we anticipate here that
results paralleling the above-discussed infinite buffer capacity
case can be established for the resilience function. Figure
4 reports the sequence of link failures for the three routing
matrices when a perturbation affecting only link 3 is applied
such that C3 − C̃3 = ν(r)(0), for r = 1, 2, 3. For the
fixed routing matrix R(1), a perturbation in link 3 such that
C̃3 = 2/3 makes link 3 to fail first, thus forcing node b to
route all its outflow to link 4 and making it fail, which in turn
causes the failure of the upstream link 1, thus forcing node
a to route all its outflow to link 2 and making it fail. For
the routing matrix R(2)(ρ), a perturbation in link 3 such that
C̃3 = 1/3 first forces links 3 and 4 to fail simultaneously, then
links 1 and 2 fail simultaneously since their inflow λ = 2 is not
smaller than C2. In contrast, for the routing matrix R(3)(ρ),
a perturbation in link 3 such that C̃3 = 0 makes links 1, 2, 3
and 4 fail simultaneously. This is because the routing matrix
R(3)(ρ) exploits the available capacity by redistributing the
flow in the best way to avoid link failures as long as possible.
Observe that the failed links are those on the origin side of the
bottleneck cut consisting of links 2, 3, and 4, whose capacity
upon perturbation equals the inflow λ = 2. As we shall see in
Proposition 1, this is a special case of a general result holding
true for flow dynamics with the same properties as those of
(1) with routing matrix R(3)(ρ).

III. DYNAMICAL FLOW NETWORKS WITH MONOTONE
DISTRIBUTED ROUTING

For a network G = (V, E , C), we introduce the following
notation, illustrated in Figure 5. Let E+v := {e ∈ E : σe =
v} and E−v := {e ∈ E : τe = v} be the sets of incoming
and, respectively, outgoing links of a node v. For a link e,
let E+e := E+τe and E−e := E−σe

be, respectively, the sets of its

e

σe τe

U
∂U+

∂U−

e

Ee = {e} ∪ E+e

E−e E+e

Figure 5. On the left, the dark grey and light grey areas encompass links
in E−e and in E = {e} ∪ E+e , respectively. On the right, the grey area
encompasses the nodes of a cut U . Links in ∂−U and ∂+U are shown in dashed
grey and black arrows, respectively; links in E+U \ ∂

+
U are shown in solid

arrows.

downstream and upstream links, and let

Ee := E+e ∪ {e} . (4)

For a subset U ⊆ V , define

E+U := ∪u∈UE+u , E−U := ∪u∈UE−u ,
∂+U := {e : σe ∈ U , τe /∈ U} , ∂−U := {e : σe ∈ V\U , τe ∈ U} .

Let D := {v ∈ V : E+v = ∅} be the set of destination nodes.
Consider a vector of inflows λ ∈ RV\D+ whose v-th entry λv
stands for the external inflow in node v, and let O := {v ∈
V : λv > 0} be the set of origin nodes. Let a cut be a non-
empty subset of non-destination nodes U ⊆ V \D and denote
its capacity by CU :=

∑
e∈∂+
U
Ce and its aggregate external

inflow by λU :=
∑
v∈U λv .

It proves convenient to introduce the augmented network
Ga = (Va, Ea, Ca) (see Figure 6) with node and link sets
Va = V ∪ {w}, Ea = E ∪ E−O ∪ E+D , respectively, where

E−O := {ev :=(w, v) : v ∈ O}, E+D := {ed :=(d,w) : d ∈ D},
and Cev = Ced = +∞ for all v ∈ O and d ∈ D. The
extra node w may be thought of as representing an external
world, playing the double role of source of the flow entering
in the network at the origins, and sink of the flow exiting
from the destinations, respectively. From now on, we adopt the
notation Eev = E+ev := E+v , for all v ∈ O, and let E−e and E−v
include links in E−O , and E+e and E+v include links in E+D , thus
using these symbols consistently with the augmented graph
Ga. Throughout, we shall make the following assumption.

Assumption 1. The set of destinations D is nonempty, and
the augmented network Ga is strongly connected.

Assumption 1 is equivalent to the properties that, in G, for
every v ∈ V \ D, there exists a directed path from v to some
destination node d ∈ D and, for every u ∈ V \O, there exists
a directed path from some origin node o ∈ O to u. Note that
Assumption 1 implies that there is no subset A ⊆ V that is
unreachable in Ga, i.e., such that ∂−A = ∅ and λA = 0.

Remark 1. Cut capacities determine potential bottlenecks for
network flows. In particular, the max-flow min-cut theorem
[13], [14] states that

max
λ

max
U
{λU − CU} = 0 , (5)

where the internal maximization runs over all cuts U and the
external maximization runs over all external vectors of inflows
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Figure 6. A network G and the augmented network Ga. The links in E−O
and E+D , added in Ga, are shown in dotted line. The set of origins and the
set of destinations are shown in dark grey and light grey, respectively.

λ ∈ RV\D+ for which there exists some flow vector f ∈ RE∪E
−
O

+

such that feo = λo for o ∈ O,
∑
e∈E+v fe −

∑
e∈E−v fe = 0

for v ∈ V \ D and fe ≤ Ce for e ∈ E . In the special case of
a single origin O = {o}, equation (5) reduces to maxλo =
minU CU , i.e., the maximum admissible inflow equals the min-
cut capacity. Observe that this result is a purely static one as
it only concerns potential equilibrium flows.

We now move on to introducing flow dynamics over G. We
consider autonomous dynamical systems of the form

ρ̇ = AinF ′(ρ)1−AoutF (ρ)1 , (6)

where: ρ(t) ∈ RE+ is a vector state whose e-th entry
ρe(t) represents the time-varying density on link e; F (ρ) ∈
R(E∪E−O )×(E∪E+D)

+ is the matrix of link-to-link flows with Fij(ρ)

denoting the flow from link i to link j; Ain ∈ RE×(E∪E
−
D ) and

Aout ∈ RE×(E∪E
−
O ) are appropriate projection matrices from

E ∪ E−D and E ∪ E−O , respectively, onto E ; and 1 is the all-
one vector (of the correct dimension). In order to match the
topology and capacity constraints modeled by G, the inflow λ,
and invariance of the nonnegative orthant RE+, it is assumed
that: Fij(ρ) ≡ 0 if τi 6= σj ; (F (ρ)1)eo ≡ λo for all o ∈ O;
and Fij(ρ) = 0 for all j whenever ρi = 0. We shall refer to
(6) as a dynamical flow network.

To every link e ∈ E we associate a possibly finite buffer
capacity Be ∈ (0,+∞] and loosely use the phrase a set of
links getting congested to refer to the fact that the densities
on those links approach their respective buffer capacities. We
will focus on dynamics inR :=

∏
e∈E [0, Be) and require F (ρ)

to be Lipschitz continuous on R, so that standard analytical
results imply, for every ρ◦ ∈ R, the existence and uniqueness
of a solution {ρ(t) : 0 < t < κ(ρ◦)} of (1) starting from
ρ(0) = ρ◦ which is well defined up to

κ(ρ◦) := sup{t ≥ 0 : ρ(t) ∈ R, ρ(0) = ρ◦} ,
i.e., as long as ρ(t) stays within R. Note that, because of
invariance of the nonnegative orthant, κ(ρ◦) coincides with
the first time the solution of (6) starting from ρ(0) = ρ◦ hits
the buffer capacity on some link.

We focus on flow dynamics that are distributed in the
following sense: the flow from e ∈ E ∪ E−O to a downstream
link j ∈ E+e ⊆ E ∪ E+D depends only on the local density
vector

ρe := {ρk : k ∈ Ee} ,

ρe

ρj

Bj

Be0

ρ̄e

e j

Figure 7. The set R•e when e ∈ E has a unique downstream link j ∈ E .
It corresponds to the grey area with the solid line boundary, except the point
ρ̄e = {Be, Bj} (represented as •).

where we recall that Ee = E+e ∪{e} by (4). We will emphasize
such functional dependence on local densities by writing the
flow from e ∈ E ∪ E−O to j ∈ E+e ⊆ E ∪ E+D as

Fej(ρ) = fe→j(ρ
e) , (7)

and referring to the family of flow functions f = {fe→j(ρe)}
as a distributed routing policy. We will also use the notation

f ine (ρ) :=
∑
j∈E−e

fj→e(ρ
j) , foute (ρe) :=

∑
j∈E+e

fe→j(ρ
e)

for the total inflow and outflow, respectively, of a link e ∈ E ,
so that (6) reads

ρ̇e = f ine (ρ)− foute (ρ) , e ∈ E . (8)

Note that since
∑
e∈E−v f

out
e (ρ) =

∑
e∈E+v f

in
e (ρ) for v ∈ V ,

(8) and (6) imply mass conservation at the nodes.
Next, we formalize some fundamental properties of a class

of distributed routing policy. As some of these characterize the
behavior in the limit as some links get congested, we need to
introduce the following notation: For e ∈ (E ∪ E−O ) \ E−D , put
ρe := {Bj : j ∈ Ee}, and let

R•e :=

{∏
j∈Ee [0, Bj ] \ {ρe}, if e ∈ (E ∪ E−O ) \ E−D

[0, Be), if e ∈ E−D
(9)

denote the set of possible densities on e and links downstream
to e when not all of these links are congested (see Figure 7).
Finally, let the set of feasible outflows on the links downstream
to e under capacity constraint be defined as

Fe :=

{{
x ∈ RE

+
e

+ :
∑
j∈E+e xj ≤ Ce

}
, if e ∈ E ∪ E−O \ E−D

[0, Ce], if e ∈ E−D .

Definition 1. Let G = (V, E , C) be a network satisfying
Assumption 1 with vector of inflows λ ∈ RV\D+ and buffer
capacities {Be ∈ (0,+∞] : e ∈ E}. A distributed routing
policy f is a family of Lipschitz-continuous maps

fe : R•e → Fe , e ∈ E ∪ E−O , (10)

such that fe(ρe) = {fe→j(ρe)}j∈E+e satisfy, at the origins

foutev (ρev ) ≡ λv, ∀v ∈ O (11)

and, for all e ∈ E and ρe ∈ R•e ,

ρe = 0 =⇒ foute (ρe) = 0 , (12)

ρe = Be =⇒ foute (ρe) = Ce , (13)
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and, for all e ∈
(
E ∪ E−O

)
\ E−D , k ∈ E+e , ρe ∈ R•e

ρk = Bk =⇒ fe→k(ρe) = 0 . (14)

Observe that the domain of fe is R•e , thus for e 6∈ E−D it
is not defined at the point ρe = {Bj : j ∈ Ee}, where (14)
and (13) cannot hold simultaneously. On the other hand, fe

is well defined when at least one of the links around e is not
congested. Also, note that (12) and (14) imply that foute (ρe) =
0 if ρe = 0, i.e., there is no outflow from a link e which is
empty, or if ρj = Bj for any j ∈ E+e , i.e., if the densities on
all the links outgoing from τe are at their buffer capacities.

We shall be interested in a special class of distributed
routing policies, as per the following.

Definition 2. A distributed routing policy f is monotone if,
for all e ∈ E ∪ E−O , ρe ∈ R•e , the functions {fe} satisfy

∂fe→j
∂ρk

(ρe) ≥ 0, ∀ j ∈ E+e , k ∈ Ee \ {j} , (15)

∂

∂ρk
foute (ρe) ≤ 0, ∀ k ∈ E+e , (16)

for almost every ρe ∈ R•e . A monotone distributed policy is
strongly monotone if, for all e ∈ E ∪ E−O , and almost every
ρe ∈ R•e , the inequalities in (15) and (16) are strict.

Under monotone distributed routing policies, (1) defines a
cooperative dynamical system (see [15]), since

∂f ine
∂ρk

(ρ) ≥ 0,
∂foute

∂ρk
(ρ) ≤ 0 ∀e, k ∈ E , e 6= k .

(17)
Then, Kamke’s theorem [15, Th. 1.2] implies that (1) is a
monotone system [15], i.e.,

ρ(0) ≤ ρ̃(0) ⇒ ρ(t) ≤ ρ̃(t) , ∀t ∈ [0, κ(ρ̃(0))) , (18)

and thus clearly κ(ρ◦) ≤ κ(0) for all ρ◦ ∈ R.

Remark 2. As shown in Lemma 2, (1) belongs to the class
of compartmental systems, a class of monotone systems exten-
sively used in the study of flow networks, such as transporta-
tion networks [16]. It is also interesting to point out that, in
the PDE literature, monotonicity is a property know to hold
for entropy solutions of scalar conservation laws such as the
traffic equation [3, Proposition 2.3.6].

The monotonicity properties of the proposed policies de-
scribe both the behavior the particles in the network and the
effect of flow control. In particular, (15) describes the fact
that while particles might have preferred paths, they tend to
deviate to avoid congested links, i.e., the higher ρk, the less
the flow towards k. Instead, (16) requires that when density is
increasing downstream of a link, the total flow from the link
should not increase. We notice that this allows these policies to
implicitly back-propagate, towards the origins, the information
that some branches of the network are getting congested.

We conclude this section with an example of monotone
distributed routing.

Example 1. For every link e ∈ E , let ϕe : [0, Be)→ [0,+∞)
be Lispchitz continuous, strictly increasing, and such that
ϕe(0) = 0 and limρe↑Be

ϕe(Be) = +∞. E.g., for βe > 0,

ϕe(ρe) = βeρe/(Be − ρe) if Be < +∞, or ϕe(ρe) = βeρe if
Be = +∞. Define

fe→j(ρ
e) =


Ce (1− γe) γj/Z if e ∈ E \ E−D ,
Ce (1− γe) if e ∈ E−d , d ∈ D, j = ed ,

λvγj/Z if e = ev, v ∈ O, j ∈ Eev ,
where γi := exp(−ϕi(ρi)) and Z :=

∑
k∈Ee γk. Observe that

fe→j(ρe) is defined for ρe ∈ Re where Re :=
∏
j∈Ee [0, Bj)

if e /∈ E and Re = [0, Be) for e ∈ E−D and can be extended
by continuity to R•e (as defined in (9)), but not to the point
ρe. Then, it can be readily verified that this defines a strongly
monotone distributed routing policy.

IV. MAIN RESULTS

In this section, we present the main contributions of the
paper. The first result is Theorem 1, which states a dichotomy.
If the inflow is less than the capacity of every cut, then there
exists a globally asymptotically stable equilibrium density
ρ∗ ∈ R. Otherwise, the network is divided in two parts by
a cut S, such that the densities on the links in E+S approach
their buffer capacities simultaneously.

Theorem 1. Let G = (V, E , C) be a network satisfying
Assumption 1 with vector of inflows λ ∈ RV\D+ , and f
be a monotone distributed routing policy. For ρ◦ ∈ R, let
{ρ(t) : 0 ≤ t < κ(ρ◦)} be the solution of the dynamical flow
network (1) with initial condition ρ(0) = ρ◦. Then,

(i) if maxU {λU − CU} < 0, then κ(ρ◦) = +∞ for every
initial density ρ◦ ∈ R; moreover, if f is strongly mono-
tone, then there exists an equilibrium density ρ∗ ∈ R
such that limt→∞ ρ(t) = ρ∗ for every initial density
vector ρ◦ ∈ R.

(ii) if maxU {λU − CU} > 0, or if maxU {λU − CU} = 0
and if f is strongly monotone, then, for every initial
density ρ◦ ∈ R, there exists a cut S such that

lim
t→κ(ρ◦)

ρe(t) = Be, ∀e ∈ E+S . (19)

Theorem 1, together with maxU {λU − CU} < 0 being
a necessary condition for the network to admit an equilib-
rium, implies that monotone distributed policies are maxi-
mally stabilizing. In terms of resilience, Theorem 1 reads
ν(0) = λV\D − CG , i.e., throughput loss only occurs if the
capacity is reduced in such a way that the min-cut capacity
constraint is violated.

Remark 3. This framework can easily be applied to scenarios
where nodes have maximum outflow capacity Cv and/or finite
buffer capacity Bv to store-and-forward particles. In order to
bring this setup within the purview of Theorem 1, one can
replace every node v ∈ V \D with a pair of nodes v1 and v2,
which inherit incoming and outgoing links, respectively, from
node v, and are connected by a directed link (v1, v2) with
flow and buffer capacities equal to Cv and Bv , respectively.
On the other hand, for a destination node d ∈ D, we assign
the buffer and outflow capacities to the link (d,w). From an
implementation perspective, this construction allows one to
interpret the routing at node v as the combination of routing
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at v1 and v2 with the buffer of link (v1, v2) serving as the
internal state.

Remark 4. Theorem 1 can be extended to time-varying
inflows λ(t). In particular, input-output monotonicity [17]
implies that the solutions of (1) with time-varying inflows
λv(t) and constant inflows λ̃v := supt≥0 λv(t), v ∈ V \ D,
respectively, satisfy ρ(t) ≤ ρ̃(t) when started from initial
conditions ρ(0) ≤ ρ̃(0). Then, it follows from Theorem 1 that,
if maxU{λ̃U − CU} < 0, then lim sup ρ(t) ≤ lim ρ̃(t) = ρ̃∗

as t→∞ under strongly monotone distributed routing.
For the infinite buffer capacity case, a stronger result holds.

Let λ̂v := lim sup 1
t

∫ t
0
λv(t) dt. It is then possible to show that

maxU{λ̂U − CU} < 0 implies that every trajectory remains
bounded in time under monotone distributed routing.

A. Overload behavior with finite buffer capacities

The following proposition gives a more detailed charac-
terization of what happens when the capacity constraints are
violated in the case of finite buffer capacities.

Proposition 1. Let G = (V, E , C) be a network satisfying
Assumption 1 with vector of inflows λ ∈ RV\D+ and finite
buffer capacities Be ∈ (0,+∞), e ∈ E , and f be a monotone
distributed routing policy. Assume that maxU {λU − CU} >
0 . Then, for every ρ◦ ∈ R,

κ(ρ◦) ≤ min
U :λU>CU

∑
e∈E+U

(Be − ρ◦e)
λU − CU

, (20)

and there exists a cut S, possibly depending on ρ◦, such that
λS > CS and

ρe(t) < Be , ∀e ∈ E , 0 ≤ t < κ(ρ◦) ,

lim
t→κ(ρ◦)

ρe(t) = Be, ∀e ∈ E+S , (21)

where {ρ(t) : 0 ≤ t < κ(ρ◦)} is the solution of the dynamical
flow network (1) with initial condition ρ(0) = ρ◦.

Proposition 1 states that, if the buffer capacities are finite
and some cut constraints are violated, then, for every initial
density ρ◦, all the links in E+S , where S is a cut such that
λS > CS , will reach their buffer capacities simultaneously
at time κ(ρ◦). We notice that, when there are multiple cuts
violating the capacity constraint, then the cut S may depend on
the initial condition ρ◦. The dependence on the initial density
ρ◦ is also evident in (20). While it may be tempting to identify
the cut U minimizing the right hand side of (20) with the cut
S of (21), it is worth stressing that (20) is merely an upper
bound on κ(ρ◦). In fact, in contrast to the right-hand side of
(20), the cut S of (21) may depend on finer details of the
routing policy, rather than just its inflow and buffer capacities.

B. Overload behavior with infinite buffer capacities

The following result, similar to Proposition 1, characterizes
the way congestion occurs in case of infinite buffer capacities.

Proposition 2. Let G = (V, E , C) be a network satisfying
Assumption 1 with vector of inflows λ ∈ RV\D+ and buffer
capacities Be = +∞, e ∈ E . Let f be a strongly monotone

distributed routing policy. Assume that maxU {λU − CU} ≥ 0.
Let

U∗ :=
⋃
U∈M

U , M := argmax
U

{λU − CU} . (22)

Then, for every ρ◦ ∈ R, the solution ρ(t) of the dynamical
flow network (1) with initial condition ρ(0) = ρ◦ ∈ R is such
that κ(ρ◦) = +∞ and

lim
t→+∞

ρe(t) = +∞ , ∀e ∈ E+U∗ ,

lim
t→+∞

1

t

∑
e∈E+U∗

ρe(t) = λU∗ − CU∗ . (23)

Moreover, there exist ρ∗e ∈ [0,+∞), e ∈ E \ (E+U∗ ∪∂−U∗), such
that

lim
t→+∞

ρe(t) = ρ∗e , ∀e ∈ E \ (E+U∗ ∪ ∂−U∗) , (24)

for every initial density ρ◦ ∈ R.

Proposition 2 implies that, for infinite buffer capacities on
all the links, there exists a cut U∗, independent of initial
condition ρ◦, such that, asymptotically, all the links in E+U∗
get congested. This is to be contrasted with the finite buffer
capacity case, where the cut depends on the initial condition
ρ◦. In addition, by (24), the densities on the links which
do not get congested approach a unique limit point, and by
(23) the total density grows linearly in time. In particular,
the growth rate corresponds to the throughput loss in the
network. As such, a throughput loss equal to δ is obtained by
perturbing the network in such a way that the min-cut capacity
of the perturbed network is C̃G = λV\D − δ. Therefore, in
terms of resilience, Proposition 2 yields ν(δ) = CG − C̃G =
CG−λV\D+δ, which is the maximum possible. A comparison
is due with [18], which studies an acyclic queuing network
with set of queues Q employing max-weight algorithm. It
is shown that if q(t) ∈ RQ+ is the vector of queue lengths,
then q(t)/t → q̂ where q̂ ∈ RQ+ is the solution to an
optimization problem related to the parameters of the max-
weight algorithm.

V. PROOFS

In this section we provide an l1-contraction principle for
monotone dynamical systems under conservation laws and
prove that it applies to (6). We then characterize the behavior
of dynamical flow networks when the vector of densities
admits a limit point. Finally, we prove the main results.

A. l1-contraction principle for monotone conservation laws

We state and prove an l1-contraction principle for a class of
monotone dynamical systems under conservation laws, which
includes system (1) under monotone distributed routing policy.
As such, it will be instrumental in proving existence and
stability of equilibria for dynamical flow networks.

Lemma 1. For a non-empty closed hyper–rectangle Ω ⊆ Rn,
let g : Ω→ Rn be Lipschitz and such that

∂

∂xj
gi(x) ≥ 0 , ∀ i 6= j ∈ {1, . . . , n} (25)
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∑
1≤i≤n

∂

∂xj
gi(x) ≤ 0 , ∀ j ∈ {1, . . . , n} (26)

for almost every x ∈ Ω. Then∑
1≤i≤n

sgn (xi − yi) (gi(x)− gi(y)) ≤ 0, x, y ∈ Ω . (27)

Moreover, if
(i) there exists some j ∈ {1, . . . , n} such that the inequality

(26) is strict for almost all x ∈ Ω,
then inequality (27) is strict for all x, y ∈ Ω such that xj 6= yj .

If
(ii) for every proper subset K ⊆ {1, . . . , n}, there exist i ∈
K, and j ∈ {1, . . . , n} \ K such that inequality (25) is
strict for almost all x ∈ Ω,

then inequality (27) is strict for all x 6= y such that x 6< y
and y 6< x.

Finally, if (i) and (ii) hold true, then inequality (27) is strict
for all x, y ∈ Ω such that x 6= y.

Proof: First note that, according to Rademacher’s theo-
rem, e.g., see [19], Lipschitz continuity implies differentia-
bility almost everywhere. For A ⊆ {1, . . . , n}, put Ac :=
{1, . . . , n}\A, and gA(z) :=

∑
a∈A ga(z). Fix some x, y ∈ Ω,

and put I = {i : xi > yi}, J = {i : xi < yi}. Let ξ ∈ Ω
be such that ξi = xi for i ∈ I and ξi = yi for i ∈ Ic.
Consider the segments γI from y to ξ and γJ from x to ξ.
For A ⊆ {1, . . . , n}, and B ∈ {I,J }, define the path integral

ΓAB :=

∫
γB

∇gA(z) · dz .

Then, (26) implies that

gI(x)− gI(y) = ΓII − ΓIJ ≤ −ΓI
c

I − ΓIJ (28)

gJ (x)− gJ (y) = ΓJI − ΓJJ ≥ ΓJI + ΓJ
c

J . (29)

Denoting si := sgn (xi − yi), the definition of I and J ,
and (28) and (29), yield∑

i

si (gi(x)− gi(y)) = gI(x)− gI(y)− gJ (x) + gJ (y)

≤ −ΓI
c

I − ΓIJ − ΓJI − ΓJ
c

J .

Observe that, by (25), A ∩ B = ∅ implies ΓAB ≥ 0 , so that
(27) follows immediately.

Notice that, if there exists some j ∈ {1, . . . , n} such that
inequality (26) is strict for almost every x ∈ Ω, and xj > yj
(xj < yj), then (28) (respectively, (29)) is a strict inequality,
hence so is (27), thus proving the second claim.

Now, assume that x 6= y, x 6< y and y 6< x. Then, it
follows from the definition of the sets I and J that the sets
Ic and J c are non-empty. We also have that Ic ∩ J c =
{i ∈ {1, . . . , n} | xi = yi}. Since x 6= y, this implies that
Ic∩J c 6= {1, . . . , n}. Therefore, at least one of Ic and J c is
a proper subset of {1, . . . , n}. If say Ic is a proper subset, then
the condition in (ii) in the statement of the lemma implies that
(25) is strict for some i ∈ I and j ∈ Ic. Therefore, ΓI

c

I > 0,
and the third claim follows.

Finally, the last claim is implied by the previous two: if x <
y or y < x, then trivially xj 6= yj for all j ∈ {1, . . . , n} and

the strict inequality in (27) follows from the claim associated
with condition (i); if x 6< y and y 6< x, the strict inequality in
(27) follows from the claim associated with condition (ii).

Lemma 1 implies the following l1-contraction principle for
dynamic networks with monotone distributed routing policies.

Lemma 2. Let G = (V, E , C) be a network satisfying
Assumption 1, f be a monotone distributed routing policy, and
ρ̂◦, ρ̃◦ ∈ R. Let ρ̂(t) and ρ̃(t) be the solutions to the system (1)
with initial conditions ρ̂(0) = ρ̂◦, and ρ̃(0) = ρ̃◦, respectively.
Define ϕ(t) := ||ρ̂(t)−ρ̃(t)||1 for 0 ≤ t < min{κ(ρ̂◦), κ(ρ̃◦)}.
Then ϕ̇(t) ≤ 0. Moreover, if the routing policy is strongly
monotone, then ϕ̇(t) = 0 if and only if ρ̂(t) = ρ̃(t).

Proof: It is easily verified that the properties of monotone
distributed routing policies (15) and (16) imply (25) and (26)
for the function ge(ρ) := f ine (ρ)−foute (ρ). Therefore, the first
claim in Lemma 1 gives

ϕ̇(t) =
∑
e

sgn (ρ̂e(t)− ρ̃e(t)) (ge(ρ̂(t))− ge(ρ̃(t))) ≤ 0

if the distributed routing policy is monotone.
We now show that conditions (i) and (ii) in Lemma 1

follow from the strong monotonicity property of the distributed
routing policies. To that effect, for any j ∈ E−D , we have that

∂

∂ρj

∑
e∈E

ge(ρ) =
∂

∂ρj

(∑
v∈O

λv −
∑
i∈E−D

fouti (ρi)

)

= − ∂

∂ρj
foutj (ρj) < 0

where the strict inequality follows from the strict version of
(15) characterizing strongly monotone routing policies. This
establishes condition (i) in Lemma 1. In order to connect
condition (ii) in Lemma 1, consider any proper subset K ( E .
It is easily seen that there exist i ∈ K and j ∈ Kc such that:
either (a) τj = σi or σj = σi; or (b) j ∈ E+i ∩ E . In case (a),

∂gi
∂ρj

(ρ) =
∂f ini
∂ρj

(ρ) =
∑
e∈E−i

∂fe→i
∂ρj

(ρe) > 0,

where the strict inequality follows from the strict version of
(15) that holds true for a strongly monotone routing policy.
In case (b), ∂

∂ρj
gi(ρ) = − ∂

∂ρj
fouti (ρi) > 0, where the strict

inequality follows from the strict version of (16) that holds
true for a strongly monotone routing policy. The last claim in
Lemma 2 follows now from the last claim in Lemma 1.

B. Properties of limit density vectors

For an initial density ρ◦ ∈ R, let us consider the following
subsets of E :
B := {lim ρe(t) = Be} , W := {lim sup ρe(t) < Be} ,
Zo := {lim foute (ρe(t)) = 0}, Zi :=

{
lim f ine (ρe(t)) = 0

}
,

C := {lim foute (ρe(t)) = Ce}, Z := Zi ∪ Zo,
(30)

where the limits are meant as t ↑ κ(ρ◦) and the curly brackets
are meant as defining the sets of those links e such that the
enclosed condition is satisfied.
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Observe that the definitions in (30) do not assume existence
of a limit density. However, if a limit ρ∗ = limt↑κ(ρ◦) ρ(t)
exists, then E = B ∪ W . Also, in general, existence of
the limit density ρ∗ does not necessarily imply existence of
the limit outflow limt↑κ(ρ◦) foute (ρe(t)) or the limit inflow
limt↑κ(ρ◦) f ine (ρe(t)) for every e ∈ E . Finally, observe that
C ∩Zo = ∅, and that B ∩C ∩Zi = ∅, since limt↑κ(ρ◦) ρ̇e(t) =
−Ce < 0 for all e ∈ C∩Zi, which is incompatible with e ∈ B.

The following lemma characterizes the behavior of ρ(t)
starting from some ρ(0) = ρ◦ ∈ R, as t approaches κ(ρ◦).

Lemma 3. Let G = (V, E , C) be a network satisfying
Assumption 1, and f be a monotone distributed routing policy.
Let ρ◦ ∈ R be such that the solution ρ(t) of the dynamical
flow network (1) with initial condition ρ(0) = ρ◦ admits a
limit ρ∗ = limt↑κ(ρ◦) ρ(t). Let B,W, C,Z ⊆ E be defined as
in (30). Then,

1) if e ∈ B, then e ∈ C, or e /∈ E−D and E+e ⊆ B;
2) if e ∈ B, then e ∈ Zi, or E+σe

⊆ B;
3) if e ∈ W \ E−D and E+e ⊆ B, then e ∈ Zo.

Proof: 1) First consider the case e ∈ E−D . Then, (13)
implies that, if e ∈ B, then e ∈ C. On the other hand, assume
that e /∈ E−D . Then, if e ∈ B and E+e * B, necessarily
{ρ∗e}e∈Ee ∈ R•e , so that property (13) implies that e ∈ C.
2) Let e be such that E+σe

6⊆ B. Then, property (14) implies
that limt↑κ(ρ◦) f ine (ρ(t)) = 0 .
3) If e ∈ W \E−D and E+e ⊆ B, then property (14) implies that
limt↑κ(ρ◦) foute (ρ(t)) = 0.

The following fundamental result states that either B = ∅,
or there exists a cut on the origin side of which the densities
hit the buffer capacities.

Lemma 4. Let G = (V, E , C) be a network satisfying
Assumption 1, and f be a monotone distributed routing policy
with vector of inflows λ. Let ρ◦ ∈ R be such that the
solution ρ(t) of the dynamical flow network (1) with initial
condition ρ(0) = ρ◦ admits a limit ρ∗ = limt↑κ(ρ◦) ρ(t). Let
B,W, C,Z ⊆ E be defined as in (30). Then, either E = W ,
or there exists a cut S with CS ≤ λS such that E+S ⊆ B,
∂+S ⊆ C, ∂−S ⊆ Z , and E \ (E+S ∪ ∂−S ) ⊆ W .

Proof: Existence of the limit density ρ∗ implies that E =
B ∪ W . Assume that E 6= W , and hence B 6= ∅. Let S :=
{v ∈ V \D : E+v ⊆ B}. To start with, we prove that S 6= ∅. To
see this, consider a link e ∈ B. If also e ∈ E−D , then statement
1 of Lemma 3 implies that e ∈ C, and hence e /∈ Zi. This
combined with statement 2 of Lemma 3 implies that E+σe

⊆ B,
and hence σe ∈ S 6= ∅. On the other hand, if e ∈ B\E−D , then
statement 1 of Lemma 3 implies that E+e ⊆ B or e ∈ C. In the
former case, τe ∈ S 6= ∅. In the latter case, e ∈ C ∩B implies
again e /∈ Zi, so that, statement 2 of Lemma 3 yields E+σe

⊆ B,
hence σe ∈ S 6= ∅. Hence, S 6= ∅ and, since S ∩ D = ∅ by
construction, S is a cut. Also, by construction, E+S ⊆ B.

We prove now that ∂+S ⊆ C. In fact, if e ∈ ∂+S , then E+e 6⊆ B
for otherwise one would have τe ∈ S so that e /∈ ∂+S . Hence
e ∈ ∂+S implies {ρ∗e}e∈Ee ∈ R•e , which combined with (13)
implies e ∈ C.

On the other hand, for every e ∈ ∂−S , one has E+σe
* B (since

σe /∈ S) and E+e ⊆ B (since τe ∈ S). Therefore, statement 2

of Lemma 3 implies that ∂−S ∩ B ⊆ Zi, while statement 3 of
Lemma 3 implies that ∂−S ∩W ⊆ Zo.

To show that E \ (E+S ∪ ∂−S ) ⊆ W , it is sufficient to prove
that, for every e ∈ B with σe /∈ S, necessarily τe ∈ S, so that
e ∈ ∂−S . Indeed, it follows from statement 2 of Lemma 3 that
e ∈ B and σe /∈ S (i.e., E+σe

* B) imply that e ∈ Zi, so that
e /∈ C and statement 1 of Lemma 3 implies that τe ∈ S.

Finally, it follows from E+S ⊆ B and E \ (E+S ∪ ∂−S ) ⊆ W
that B = E+S ∪ ∂−S ∩ B. Then, using ∂+S ⊆ C, ∂−S ∩ B ⊆ Zi,
and ∂−S ∩W ⊆ Zo, one gets that∑

e∈B
ρ̇e(t) = λS +

∑
e∈∂−S ∩W

foute (t) +
∑

e∈∂−S ∩B

f ine (t)−
∑
e∈∂+
S

foute (t)

t↑κ(ρ◦)−→ λS − CS ,
Since ρe(t) < Be for t ∈ [0, κ(ρ◦)) and limt↑κ(ρ◦) ρe(t) =

Be for all e ∈ B, the above implies that λS − CS ≥ 0.

C. Proof of Theorem 1

The results in the previous subsection assume existence
of a limit density, which, in principle, is not guaranteed
for every initial condition ρ(0) = ρ◦ ∈ R. However, for
monotone distributed routing policies, existence of a limit
density is ensured for the initial condition ρ(0) = 0. Indeed,
for every ρ◦ ∈ R and 0 ≤ t < κ(ρ◦), let φt(ρ◦) = ρ(t)
be the solution of (1) with initial condition ρ(0) = ρ◦. Then,
for monotone distributed routing policies, (18) implies that
φt+s(0) = φt(φs(0)) ≥ φt(0) , for 0 ≤ t < κ(ρ◦) and
0 ≤ s < κ(ρ◦) − t, i.e., φt(0) is component-wise non-
decreasing and hence convergent to some limit, to be denoted,
with slight abuse of notation, by ρ∗ := limt→κ(0) φt(0) .

Let B, W , C, Zi, and Zo be defined as in (30) for ρ◦ = 0.
First, consider the case maxU (λU − CU ) < 0. Then, Lemma
4 implies that E = W , as otherwise there would exist a
cut S such that CS ≤ λS . Then, ρ∗ is an equilibrium.
For an arbitrary initial condition ρ◦ ∈ R, it cannot be that
κ(ρ◦) < ∞, as then the limit limt↑κ(ρ◦) φt(ρ◦) /∈ R would
exist, and Lemma 4 would imply that λS ≥ CS for some cut
S. Therefore, κ(ρ◦) = ∞, for all ρ◦ ∈ R. By Lemma 2, we
also have ||φt(ρ◦) − ρ∗||1 ≤ ||ρ◦ − ρ∗||1, for all t ≥ 0, so
that in particular φt(ρ◦) remains bounded. If the distributed
routing policy is strongly monotone, then Lemma 2 allows one
to use LaSalle’s theorem showing that limt→∞ φt(ρ◦) = ρ∗

for any initial condition ρ◦ ∈ R.
Conversely, if ρ∗ ∈ R, then, for every cut U , mass balance

on E+U implies that

0 = λU −
∑

e∈∂+
U
foute (ρ∗) +

∑
e∈∂−U

foute (ρ∗) ≥ λU −CU .

This proves that, if λU > CU for some cut U , then necessarily
ρ∗ /∈ R. The same holds if maxU {λU − CU} = 0 and
the routing policy is strongly monotone, for in that case∑
e∈∂+
U
foute (ρ∗) < CU if ρ∗ ∈ R. Therefore, W 6= E , so that

Lemma 4 implies (19) for ρ◦ = 0. For arbitrary initial density
ρ◦ ∈ R, consider the following two cases: κ(ρ◦) < +∞ and
κ(ρ◦) = +∞. In the former, limt↑κ(ρ◦) ρ(t) exists, hence (19)
is implied by Lemma 4. In the latter, κ(0) ≥ κ(ρ◦) = ∞,
hence (19) for ρ◦ = 0 also implies (19) for arbitrary ρ◦ ∈ R.
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D. Proof of Proposition 1

Observe that, for every cut U ,∑
e∈E+U

ρ̇e = λU +
∑

e∈∂−U
foute −

∑
e∈∂+
U
foute ≥ λU −CU ,

so that
∑
e∈E+U

ρe ≥
∑
e∈E+U

ρ◦e+t(λU−CU ), from which (20)
follows. On the other hand, (21) is an immediate consequence
of claim ii) of Theorem 1 and the definition of κ(ρ◦).

E. Proof of Proposition 2

Let U∗ be defined as in (22), and S be a cut whose existence
is guaranteed by Lemma 4 for ρ◦ = 0. The proof consists of
three steps: 1) Lemma 5 characterizes U∗ defined in (22) as the
maximal cut such that λU∗ − CU∗ = maxU {λU − CU} ≥ 0.
2) Lemma 6 shows that S = U∗, where S is the cut built in
Lemma 4 for ρ◦ = 0. 3) The proof is completed for ρ◦ = 0
and extended to the case of generic initial condition.

Lemma 5. For a network G = (V, E , C) satisfying Assumption
1, let U∗ and M be as in (22). Then, U∗ ∈M.

Proof: We will prove that U1∪U2 ∈M for U1,U2 ∈M.
For A,H ⊆ V , let CAH :=

∑
e:σe∈A,τe∈H Ce. It is easy to see

that

λA∪H − CA∪H = λA + λH\A − CA + CAH\A − C
H\A
V\(A∪H) .

(31)
For U1,U2 ∈M, put I := U1∩U2, J := U1∪U2, K := U2\U1.
Observe that λJ −CJ ≤ λU1 −CU1 since U1 ∈M. We now
prove that λJ − CJ ≥ λU1 − CU1 . Assume by contradiction
that λJ − CJ < λU1 − CU1 = λU2 − CU2 . Then, (31) with
A = U1 and H = U2 gives

λU1 + λK − CU1 + CU1K − CKV\J < λU1 − CU1
which yields

λK + CU1K − CKV\J < 0 . (32)

Similarly, applying (31) with A = K and H = I, noting that
K ∩ I = ∅, and using CK = CKV\J + CKU1 yields

λU2 −CU2 = λK + λI −CKV\J −CKU1 +CKI −CIV\U2 . (33)

Combining (33) and (32), some algebraic steps lead to

λU2 − CU2 < λI − CU1K − CKU1 + CKI − CIV\U2
= λI − CI − CU1\U2K − CKU1\U2 < λI − CI .

Hence, λI − CI > λU2 − CU2 , which contradicts U2 ∈ M.
This proves that λJ − CJ = λU2 − CU2 = λU1 − CU1 .

Lemma 6. Let G = (V, E , C) be a network satisfying Assump-
tion 1 and λ a vector of inflows such that maxU {λU − CU} ≥
0. Let f be a strongly monotone distributed routing policy. Let
U∗ be defined as in (22) and B,W, C,Zo ⊆ E be defined as
in (30) for ρ◦ = 0. If κ(0) = +∞, then E+U∗ ⊆ B, ∂+U∗ ⊆ C,
∂−U∗ ⊆ Zo, and E \ (E+U∗ ∪ ∂−U∗) ⊆ W .

Proof: Let ρ(t) be the solution of (1) with initial condition
ρ(0) = 0 and S := {v ∈ V \ D : E+v ⊆ B}. Observe that,
as argued in Sect. V-C, ρ̇e = f ine (ρ)− foute (ρe) ≥ 0 for all e,
so that in particular Zi ⊆ Zo. On the other hand, Barbalat’s
lemma implies that ρ̇e → 0 for e ∈ W , so that W ∩Zo ⊆ Zi.

Then, it follows from Lemma 4 that ∂+S ⊆ C, ∂−S ⊆ Zo ∩ Zi,
and E \ (E+S ∪ ∂−S ) ⊆ W .

It remains to show that S = U∗. We start by proving that
S ⊆ U∗. Define H := S \ U∗, I := ∂−H ∩ E+S , and J :=
∂+H ∩ ∂+S . Then,

0 ≤
∑
e∈E+H

ρ̇e(t)

≤ λH +
∑
e∈∂−S

foute (t) +
∑
i∈I

fouti (t)−
∑
j∈J

foutj (t) .

Passing to the limit of large t, ∂−S ⊆ Zo and ∂+S ⊆ C imply

0 ≤ λH +
∑
i∈I

Ci −
∑
j∈J

Cj .

Let now Û := S∪U∗ ⊇ U∗ and notice that K := ∂+H\∂−U∗ ⊆
J and I ⊆ ∂−H ∩ ∂+U∗ =: L. Then,

CÛ = CU∗ + cK − cL ≤ CU∗ + cJ − cI ≤ CU∗ + λH ,

where cX :=
∑
x∈X Cc for X = I,J ,K,L. This implies that

λÛ − CÛ = λU∗ + λH − CÛ ≥ λU∗ − CU∗ ,
so that Û ∈ M, and then Û = U∗. Therefore, S ⊆ U∗.
We now prove that U∗ ⊆ S. Assume by contradiction that
A := U∗ \ S 6= ∅. Let

Υ := λA+
∑

e∈∂−A∩∂
+
S

Ce +lim inf
t

∑
k∈∂−A\∂

+
S

foutk (t)−
∑

j∈∂+
A\∂

−
S

foutj (t).

Then, the inclusions ∂−S ⊆ Zo ∩ Zi and ∂+S ⊆ C imply

lim inf
t

∑
e∈E+A\∂

−
S

ρ̇e(t) = lim inf
t

∑
e∈E+A\∂

−
S

(
f ine (t)− foute (t)

)
= lim inf

t

∑
e∈E+A

(
f ine (t)− foute (t)

)
= Υ.

Observe that strict monotonicity implies that

lim sup
t

foutj (t) < Cj , lim inf
t

foutk (t) > 0 , (34)

for all j ∈ E+A \ ∂−S and k ∈ ∂−A . If ∂−A \ ∂+S = ∂+A \ ∂−S = ∅,
then Assumption 1 implies that λA > 0 or ∂−A ∩ ∂+S 6= ∅,
therefore Υ = λA +

∑
e∈∂−A∩∂

+
S
Ce > 0.

On the other hand if ∂−A \ ∂+S 6= ∅ or ∂+A \ ∂−S 6= ∅, then
(34) and S ⊆ U∗ imply

Υ > λA +
∑

e∈∂−A∩∂
+
S

Ce −
∑

e∈∂+
A\∂

−
S

Ce = λU∗ − λS − CU∗ + CS ≥ 0 ,

the last inequality holding since U∗ ∈M by Lemma 5. In both
cases, lim inft

∑
e∈E+A\∂

−
S
ρ̇e(t) = Υ > 0, which contradicts

E+A \ ∂−S ⊆ W . Then, necessarily A = ∅, so that U∗ ⊆ S.

We can now conclude the proof of Proposition 2. Infinite
buffers and limited growth rate imply κ(ρ◦) = ∞ for every
ρ◦ ∈ R. For ρ◦ = 0, Lemmas 4 and 6 imply (23) and (24). For
arbitrary ρ◦ ∈ R, the extension of (23) follows from Lemma
2, hence we only need to prove (24). Towards this goal, first
note that ρ◦ ≥ 0 implies, by monotonicity, that

lim inf
t→∞

ρe(t) ≥ ρ∗e , ∀e ∈ Ê . (35)
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Consider a new network Ĝ = (V̂, Ê , Ĉ) with V̂ := V \ S
and Ĉe = Ce for e ∈ Ê , and with inflows λ̂v̂ := λv̂ +∑
e∈E−v̂ ∩∂

+
S
Ce for v̂ ∈ V̂ , and buffer capacities B̂e = Be for

e ∈ Ê . Let f̂ be a distributed routing function for Ĝ such that
f̂e→j(ρ̂e) = fe→j(ρe) where ρe ∈ R•e is such that ρj = ρ̂j
for all j ∈ Ee ∩ Ê , and ρj = Bj for all j ∈ Ee ∩ ∂−S . This
defines a dynamics on the reduced network Ĝ.

Observe now that clearly Ĝ satisfies Assumption 1. In ad-
dition, S = U∗ implies λ̂Û < CÛ for every cut Û in Ĝ, where
λ̂Û =

∑
v̂∈Û λ̂v̂ . Then, applying part i) of Theorem 1 to the

dynamical flow network associated to Ĝ and {f̂e}e∈Ê shows
existence of a globally attractive equilibrium, ρ̂∗ = limt ρ̂(t).
Notice that the solution to this system coincides with the
solution of the original one once we fix to be equal to
Be = +∞ the density ρe for every e ∈ E+S ∪∂−U∗ . In particular,
asymptotically, the limits must be the same, i.e., ρ̂∗ = ρ∗Ê .

Finally, the new network is a monotone controlled system
[17], once we interpret the densities on E+S ∪ ∂−S as inputs.
Since ρe(t) < Be = +∞ for all e ∈ E+S ∪ ∂−S and t ≥ 0, one
gets that

lim sup
t→∞

ρe(t) ≤ lim
t→∞

ρ̂e(t) = ρ∗e , ∀e ∈ Ê . (36)

Combining (35) and (36) gives (24) for arbitrary ρ◦ ∈ R.

VI. CONCLUSION

We study dynamical flow networks under distributed mono-
tone routing policies. An l1-contraction argument for mono-
tone systems is instrumental to prove throughput optimality
of the proposed policies both when the min-cut capacity
constraints are satisfied and in overload. These tools can be
fruitfully employed for analysis of transportation networks [8].

Future research includes and is not limited to design of
application-oriented control policies and optimization with
respect to secondary objectives, such as steady-state delay,
without compromising throughput optimality. We also plan
to extend our framework to the multi-commodity case under
partial state feedback, modeling urban traffic networks where
observations are the aggregates of flows of all commodities.
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