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and Dynamics Over Networks
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Abstract—Algorithms and dynamics over networks often in-
volve randomization and randomization can induce oscillating
dynamics that fail to converge in a deterministic sense. Under
assumptions of independence across time and linearity of the
updates, we show that the oscillations are ergodic if the expected
dynamics is stable. We apply this result to three problems of net-
work systems, namely, the estimation from relative measurements,
the PageRank computation, and the dynamics of opinions in social
networks. In these applications, the randomized dynamics is the
asynchronous counterpart of a deterministic (stable) synchronous
one. By ergodicity, the deterministic limit can be recovered via a
time-averaging operation, which can be performed locally by each
node of the network.

Index Terms—Randomized algorithms, networks, opinion
dynamics, PageRank problem.

I. INTRODUCTION

RANDOMIZATION has proven to be a useful ingredient
for effective algorithms in control and optimization, as re-

viewed in [1]. In network dynamics, randomization is specially
natural, either by the uncertain nature of the network at hand,
or by a design aimed at improving performance and robustness.

In this work, we focus on a class of randomized affine
dynamics that do not have equilibria but are stable on average.
This stability property ensures that the dynamics, although fea-
turing persistent random oscillations, has an ergodic behavior.
Our main contribution is precisely to prove two ergodicity
results that can be readily applied to several network-based dy-
namics, where randomization apparently prevents convergence.
As a consequence, the desired convergence property—holding
in expectation—can be recovered by each node through a
process of time-averaging. Remarkably, time-averages can be
computed locally by each node and, in some cases, even without
access to a common clock.
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In this paper, we consider dynamics where nodes interact in
randomly chosen pairs, following a gossip approach which has
been popularized in the field of control by [2] and has been
followed in several papers. Indeed, many network algorithms
can be randomized in such a way that the randomized dynamics
converge (almost surely) to the same limit of the synchronous
dynamics. Notable examples include consensus algorithms,
studied in many papers as [3]–[6], and other algorithms for
estimation and classification [7] and for optimal deployment
of robotic networks [8]. Nevertheless, examples of randomized
algorithms that do not converge also have recently appeared in
the literature. Such algorithms require some sort of additional
“smoothing” operation in order to converge: in our approach,
this goal is achieved by time-averaging.

The first instance we consider involves the problem of
distributed estimation from relative measurements, which has
applications from self-localization in robotic networks to syn-
chronization in networks of clocks and to phase estimation
in power grids. This problem was formulated in the context
of clock synchronization [9] and then studied in much detail
in [10]–[15], where both fundamental performance limitations
and distributed algorithms have been presented. More recently,
randomized algorithms have been proposed by several re-
searchers [16], [17]. Regarding this problem, our contribution
includes a randomized asynchronous algorithm, in which nodes
update in pairs in a gossip fashion. A related but different
randomized algorithm for least-squares estimation has been
recently proposed in [18].

The second example is PageRank computation, which has
attracted much attention in recent years for the importance of
its applications, for example, in the search engine of Google
[19]–[21], and for its similarities with the consensus problem
illustrated in [22]. Randomized algorithms for PageRank com-
putation have been studied in a series of papers, including [23]–
[26]. Other recent references on PageRank are listed in [27]–
[29]. Our contribution provides a general convergence result for
randomized algorithms, which we apply to a novel pair-wise
gossip algorithm in Section IV.

The third example comes from social sciences and specif-
ically from the mechanisms of opinion evolution. Indeed,
opinion dynamics models, where agents have some degree of
obstinacy and interactions are randomized, give rise to ergodic
oscillations. This observation has been made in [30] and here
we extend it to the opinion model [31]. We propose in Section V
a gossip mechanism of an opinion update, which allows us
to interpret the classical opinion dynamics—which makes
simplistic assumptions on the communication process among

2325-5870 © 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



RAVAZZI et al.: ERGODIC RANDOMIZED ALGORITHMS AND DYNAMICS OVER NETWORKS 79

individuals—as the “average” evolution of our randomized mod-
el. This observation answers an open question on modeling the
communication process that was raised in the original paper [31].

In the area of systems and control, time-averaging has been
widely employed in optimization problems (see, for example,
[32]). For distributed optimization algorithms, such as those in
[18] and [33], error bounds are established for the time-average,
which can be computed from locally available information
only. In the randomized distributed PageRank algorithm [23]
discussed before, time-average of local states has also been
used in a slightly different manner; this work has motivated us
to study from a more general viewpoint other multiagent-type
problems to which the technique can be applied.

Preliminary versions of some of our results have been re-
ported in the proceedings of conferences as [34] and [35]
regarding relative localization, and as [36], regarding opinion
dynamics. The current presentation incorporates and builds
upon the previous ones, includes the PageRank computation,
and most important, embeds them into a comprehensive frame-
work that is suitable for the study of other applications.

A. Paper Outline

In Section II, we study asynchronous dynamics over
networks obtained by the randomization of deterministic
synchronous dynamics. The main results—Theorem 1 and
Theorem 2—provide sufficient conditions for ergodicity and
are subsequently used for three applications coming from
different areas: relative localization (Section III), PageRank
computation (Section IV), and opinion dynamics (Section V).
Section VI contains the technical derivation of our main results.
Additional remarks and research outlooks are given in a concise
Section VII.

B. Notation and Preliminaries

Throughout this paper, we use the following notation. Real
and non-negative integer numbers are denoted by R and Z+,
respectively. The symbol | · | denotes either the cardinality of a
set or the absolute value of a real number. The symbol ei is the
vector with the i-th entry equal to 1 and all of the other elements
equal to 0, and we write 1 for the vector with all entries equal
to 1. A vector x is stochastic if its entries are non-negative and∑

i xi = 1. A matrix A is row-stochastic (column-stochastic)
when its entries are non-negative and M1 = 1 (M�1 = 1).
A matrix is doubly stochastic when it is row and column-
stochastic. A matrix P is said to be Schur stable if the absolute
value of all its eigenvalues is smaller than 1. A directed graph is
a pair G = (V, E), where V is the set of nodes and E ⊆ V × V is
the set of edges. We say that G = (V, E) is an undirected graph
if (u, v) ∈ E implies that (v, u) is also an edge in E . To avoid
trivialities, we implicitly assume that graphs have at least three
nodes, that is, |V| > 2. A directed graph G is called strongly
connected if there is a path from each vertex in the graph to
every other vertex. To any matrix P ∈ R

V×V with non-negative
entries, we can associate a directed graph GP = (V, EP ) by
putting (i, j) ∈ EP if and only if Pij > 0. The matrix P is said
to be adapted to graph G if GP ⊆ G.

II. ERGODIC RANDOMIZED DYNAMICS

OVER NETWORKS

Consider the affine dynamics representing a time-invariant
discrete-time dynamical system over a network, described by a
directed graph G = (V, E) with n nodes, with state x(k) ∈ R

V ,
k ∈ Z+

x(k + 1) = Px(k) + u (1)

where the matrix P ∈ R
V×V is adapted to the graph G, and u ∈

R
V is a constant input. We have the following simple fact.
Proposition 1: If P is Schur stable, then the dynamics in (1)

converge to

x� = (I − P )−1u

for any initial conditions x(0) = x0.
In this paper, we are interested in suitable randomized ver-

sions of the dynamics in (1). More precisely, let {θ(k)}k∈Z+
be

a sequence of independent identically distributed (i.i.d.) random
variables taking values in a finite set Θ. Given a realization
θ(k), k ∈ Z+, we associate it with a matrix P (k) = P (θ(k)) ∈
R

V×V and an input vector u(k) = u(θ(k)) ∈ R
V , obtaining a

time-varying discrete-time dynamical system of the form

x(k + 1) = P (k)x(k) + u(k) (2)

with initial condition x(0) ∈ R
V . We observe that the state

{x(k)}k∈Z+
is a Markov process because, given the current

position of the chain, the conditional distribution of the future
values does not depend on past values.

It may happen that the dynamics (2) oscillates persistently
and fails to converge in a deterministic sense: this behavior
is apparent in the examples we show in the next section. In
view of this fact, we give simple conditions which guarantee
probabilistic convergence (formally defined subsequently) to
the vector x� given in Proposition 1. We say that the process
{x(k)}k∈Z+

is ergodic if there exists a vector-valued random
variable x∞ ∈ R

V such that almost surely

lim
k→∞

1

k

k−1∑
�=0

x(�) = E[x∞]. (3)

The time-average in (3) is called the Cesáro average or
Polyak average in some contexts [32]. The closely re-
lated definition of mean-square ergodicity instead requires

limk→∞ E[‖1/k
∑k−1

�=0 x(�)− E[x∞]‖22] = 0. In what follows,
we mostly focus on almost-sure ergodicity: indeed, it is often
possible to deduce mean-square convergence from almost sure
convergence. We now establish our first result for randomized
dynamics over networks.

Theorem 1 (Ergodicity of Affine Dynamics): Consider the
random process {x(k)}k∈Z+

defined in (2), where {P (k)}k∈Z+

and {u(k)}k∈Z+
are i.i.d. and have finite first moments. If there

exists α ∈ (0, 1] such that

E [P (k)] = (1− α)I + αP, E [u(k)] = αu (4)
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where P and u are given in Proposition 1, then
1) x(k) converges in distribution to a random variable x∞,

and the distribution of x∞ is the unique invariant distri-
bution for (2);

2) the process is ergodic;
3) the limit random variable satisfies E[x∞] = x�.
We postpone the proof of Theorem 1 to Section VI-A,

but we make the following insightful observation. Under the
assumptions of the theorem, P is Schur stable in Proposition 1
and so is E[P (k)]. Consequently

E [x(k + 1)] =E [P (k)]E [x(k)] + E [u(k)]

= ((1− α)I + αP )E [x(k)] + αu

and limk→∞ E[x(k)] = x�. The expected dynamics of the pro-
cess (2) can indeed be interpreted as a “lazy” (slowed down)
version of the synchronous dynamics (1) associated with the
matrix P .

In our applications, we aim at approximating x� but we
do not necessarily have the opportunity to sample x(k) at
all times. The following refinement of Theorem 1—proved in
Section VI-B—allows for sampling over a (random) subse-
quence of times and is thus especially useful for our purposes.

Theorem 2 (Ergodicity of Affine Dynamics on Random Sub-
sequences): Consider the random process {x(k)}k∈Z+

defined
in (2), where {P (k)}k∈Z+

and {u(k)}k∈Z+
are i.i.d. and have

finite first moments. Let {ω(k)}k∈Z+
∈ {0, 1}Z+ be an i.i.d.

random sequence such that, for all k, ω(k) is independent of
P (�) for all � < k and ω(k) �= 0 with positive probability. If
there exists α ∈ (0, 1] such that

E [P (k)] = (1− α)I + αP, E [u(k)] = αu (5)

where P and u are given in Proposition 1, then almost surely

lim
k→∞

1∑k−1
i=0 ω(i)

k−1∑
�=0

ω(�)x(�) = x�.

In the following sections, we apply Theorems 1 and 2 to
specific randomized dynamics in sensor localization, PageRank
computation, and opinion dynamics. Even though these appli-
cations are quite diverse, we show that classical algorithms for
their solutions can be represented by the affine dynamics (1)
and their randomized versions by (2).

III. SENSOR LOCALIZATION IN WIRELESS NETWORKS

In sensor localization in wireless networks, we seek to
estimate the relative position of sensors using noisy relative
measurements. We formulate the problem using an oriented
graph1 G = (V, E). Each node i in V has to estimate its own
variable si, knowing only noisy measurements b(i,j) of some
difference with neighboring edges

b(i,j) = si − sj + η(i,j) if (i, j) ∈ E or (j, i) ∈ E

1An oriented graph G = (V, E) is a directed graph such that (i, j) ∈ E only
if i < j. G is said to be weakly connected if the graph G′ = (V, E ′), where
E ′ = {(h, k) ∈ V × V} : either (h, k) ∈ E or (k, h) ∈ E} has a path which
connects every pair of nodes.

where η(i,j) is additive noise. The graph topology is encoded in
the incidence matrix A ∈ {0,±1}E×V defined by

Aei =

⎧⎨⎩+1, if e = (i, j)
−1, if e = (j, i)
0, otherwise

for every e ∈ E . We can collect all of the measurements and
variables in vectors b ∈ R

E and s ∈ R
V , so that

b = As+ η

where η ∈ R
E . A least-squares approach can be used to deter-

mine the optimal estimate x�
loc = minz∈R|V| ‖Az − b‖22 of the

state s based on the measurements b. Given a weakly connected
oriented graph G with incidence matrix A, the least square
estimation of s is given by x�

loc = L†A�b, where L† denotes
the Moore–Penrose pseudoinverse of the Laplacian L := A�A.
Notice that the Laplacian L is not full rank; hence, we need
L†. The solution x�

loc can be easily computed by an iterative
gradient algorithm [34], which takes the following form. Given
a parameter τ > 0 and the initial condition x(0) = 0, we let

x(k + 1) = (I − τL)x(k) + τA�b (6)

where the matrix I − τL is doubly stochastic. After some
manipulations, (6) can be written in the form in (1) taking

P = (I − τL)Ω and u = τA�b (7)

with Ω = I − |V|−111�. The gradient descent algorithm in (6)
with x(0) = 0 converges to the optimal least-squares solution
x�
loc if τ < 2/|V| and G is weakly connected. The proof is a

straightforward application of Proposition 1 and can be found
in [34].

We now consider the randomized algorithm of [34] to solve
the sensor localization problem. For each node i ∈ V , the
algorithm involves a triple of states (xi, κi, x̃i), which de-
pend on a discrete time index k ∈ Z+. These three variables
play the following roles: xi(k) is the “raw” estimate of si
obtained by i at time k through communications with its
neighbors, κi(k) counts the number of updates performed by
i up to time k, and x̃i(k) is the “smoothed” estimate obtained
through time-averaging. The algorithm is defined by choos-
ing a scalar parameter γ ∈ (0, 1) and a sequence of random
variables {θ(k)}k∈Z+

taking values in E . The state variables
are initialized as (xi(0), κi(0), x̃i(0)) = (0, 0, 0) for all i, and
at each time k > 0, provided that θ(k) = (i, j), the states are
updated according to the following recursions, namely, the raw
estimates as:

xi(k + 1) = (1− γ)xi(k) + γxj(k) + γb(i,j)
xj(k + 1) = (1− γ)xj(k) + γxi(k)− γb(i,j)
x�(k + 1) =x�(k) if � �∈ {i, j} (8a)

the local times as

κi(k + 1) =κi(k) + 1

κj(k + 1) =κj(k) + 1

κ�(k + 1) =κ�(k) if � �∈ {i, j} (8b)
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and the time-averages as

x̃i(k + 1) =
1

κi(k + 1)
(κi(k)x̃i(k) + xi(k + 1))

x̃j(k + 1) =
1

κj(k + 1)
(κj(k)x̃j(k) + xj(k + 1))

x̃�(k + 1) = x̃�(k) if � �∈ {i, j}. (8c)

Next, we assume the sequence {θ(k)}k∈Z+
to be i.i.d. and its

probability distribution to be uniform, i.e.,

P [θ(k) = (i, j)] =
1

|E| , ∀k ∈ Z+. (9)

Remark 1 (Local and Global Clocks): It should be noted
that the time index k counts the number of updates which have
occurred in the network, whereas for each i ∈ V , the variable
κi(k) is the number of updates involving i up to the current
time. Hence, κi is a local variable which is inherently known to
agent i, even if a common clock k is unavailable. Therefore, this
algorithm is totally asynchronous and fully distributed in the
sense that the updates, including the time-averaging process,
do not require the nodes to be aware of a common clock. This
feature is especially attractive if the algorithm is applied to
clock synchronization problems. These problems have recently
attracted much interest in systems and control: see, for instance,
[37]–[39].

The dynamics in (8a) oscillates persistently and fails to
converge in a deterministic sense, as shown in [35]. However,
the oscillations asymptotically concentrate around the solu-
tion of the least-squares problem, as is formally stated in the
following result, which shows that the sample dynamics is
well-represented by the average one. This indicates that x̃i(k)
is “the right variable” to approximate the optimal estimate
x�
loc because the process x(k) is ergodic. In the proof of the

proposition, we show that the dynamics in (8a) can be written
in terms of the more general process (2).

Proposition 2 (Ergodicity of Sensor Localization): The
dynamics in (8) with uniform selection (9) is such that
limk→∞ x̃(k) = x�

loc almost surely.
Proof: We rewrite the dynamics of (8a) as

x(k + 1) = Q(k)x(k) + u(k) (10)

and, provided θ(k) = (i, j), we define

Q(k) = I − γ(ei − ej)(ei − ej)
�

and u(k) = bθ(k)(ei − ej), where the vector ei is defined in
the preliminaries. We note that for all k the matrix Q(k) is
doubly stochastic and the sum of the elements in u(k) is zero: in
particular, given x(0) = 0, then 1�x(k) = 0 for each k ∈ Z+.
These observations further imply that the dynamics of x(k) is
equivalently described by the iteration

x(k + 1) = Q(k)Ωx(k) + u(k). (11)

Letting P (k) = Q(k)Ω, the dynamics of the algorithm is cast
in the form of (2). Next, using the uniform distribution (9), we
compute

E [P (k)] =

(
I − γ

L

|E|

)
Ω, E [u(k)] = γ

A�b

|E|

and observe that E[P (k)] satisfies the ergodicity condition in
Theorem 1 with P and u defined in (7), α = 1 and τ = γ/|E|.
If we define, for all i ∈ V and all k ∈ Z+

ωi(k) =

{
1, if θ(k) = (i, j) or θ(k) = (j, i)
0, otherwise

then κi(k + 1) = κi(k) + ωi(k) =
∑k

�=0 ωi(�) and

x̃i(k + 1) =
1∑k

�=0 ωi(�)

k∑
�=0

ωi(�)xi(�+ 1).

Since {ω(k)}k is an i.i.d. random sequence, by Theorem 2, we
conclude our argument. �

It is also true that x̃(k) converges to x�
loc in the mean-square

sense. A proof can be obtained with similar arguments as in
[34] and is not detailed here.

IV. PAGERANK COMPUTATION IN GOOGLE

In this section, we study a network consisting of web pages
[19]. This network can be represented by a graph G = (V, E),
where the set of vertices corresponds to the web pages, and
edges represent the links between the pages, that is, the edge
(i, j) ∈ E , if page i has an outgoing link to page j, or in other
words, page j has an incoming link from page i.

The goal of the PageRank algorithm is to provide a measure
of relevance of each webpage: the PageRank value of a page
is a real number in [0, 1], which is defined next. Let us denote
Ni = {h ∈ V : (i, h) ∈ E} and ni = |Ni|, for each node i ∈ V ,
and A ∈ R

V×V the matrix such that

Aij =

{
1
nj
, if j ∈ Ni

0, otherwise.

Let m ∈ (0, 1) and recall n = |V|, and define

M = (1−m)A+
m

n
11�. (12)

The PageRank of the graph G is the vector x�
pgr such that

Mx�
pgr = x�

pgr and
∑

i x
�
pgri

= 1.
Given the initial condition such that 1�x(0) = 1 (i.e., it is

a stochastic vector), the PageRank vector can be computed
through the recursion

x(k + 1) = Mx(k) = (1−m)Ax(k) +
m

n
1. (13)

In this case, we observe that the PageRank vector can be
represented in terms of the affine dynamics (1) by simply taking

P = (1−m)A and u =
m

n
1. (14)
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Using Proposition 1, it can be proved that for any initial
condition x(0) ∈ R

V such that 1�x(0) = 1, the sequence in
(13) converges to

x�
pgr = (I − (1−m)A)−1 m

n
1. (15)

Further detail on this convergence result can be found in [40].
We now describe a new example of an “edge-based” random-

ized gossip algorithm. Its motivation comes from the interest in
reducing the coordination effort required by the network at each
iteration: if only one edge is activated at each time, this effort
is minimal. Each node i ∈ V holds a couple of states (xi, xi).
For every time step k, an edge θ(k) is sampled from a uniform
distribution over E (note that sampling is independent at each
time k). Then, the states are updated as follows:

xi(k + 1) = (1− r)

(
1− 1

ni

)
xi(k) +

r

n
(16a)

xj(k + 1) = (1− r)

(
xj(k) +

1

ni
xi(k)

)
+

r

n
(16b)

xh(k + 1) = (1− r)xh(k) +
r

n
if h �= i, j (16c)

and

x�(k + 1) =
kx�(k) + x�(k + 1)

k + 1
∀ � ∈ V (17)

where r ∈ (0, 1) is a design parameter to be determined. The
update in (16) can also be formally rewritten in vector-wise
form as (2) with

P (k) = (1− r)A(k), u(k) =
r

n
1.

Here, A(k) and P (k) are random matrices which are deter-
mined by the choice of θ(k) = (i, j)

A(k) = I +
1

ni

(
eje

�
i − eie

�
i

)
.

Then, A(k) is uniformly distributed over the set of matrices
{I + (1/ni)(eje

�
i − eie

�
i ) : (i, j) ∈ E}.

Remark 2 (Local and Global Clocks): We note that, contrary
to (8), the dynamics described by (16) and (17) do require the
nodes to access the global time variable k. The reason for this
synchrony requirement comes from the need to preserve the
stochasticity of the vector x(k). We believe this is a reasonable
assumption, because these algorithms need to be implemented
on webpages or domain servers which are typically endowed
with clocks.

In the next result, we state convergence of this algorithm.
Proposition 3 (Ergodic PageRank Convergence): Let us con-

sider the dynamics (16) and (17) with

r =
m

m− |E|m+ |E|

where x(0) is a stochastic vector. Then, the sequence {x(k)}Z+

is such that limk→∞ x(k) = x�
pgr almost surely.

Proof: For each k ∈ Z+, we have

E [A(k)] =
1

|E|
∑

(i,j)∈E

(
I +

1

ni

(
eje

�
i − eie

�
i

))

= I +
1

|E|
∑

(i,j)∈E

1

ni
eje

�
i − 1

|E|
∑

(i,j)∈E

1

ni
eie

�
i

= I +
1

|E|
∑

(i,j)∈E

1

ni
eje

�
i − 1

|E|
∑
i∈V

∑
j∈Ni

1

ni
eie

�
i

= I +
1

|E|
∑

(i,j)∈E
Ajieje

�
i − 1

|E|
∑
i∈V

ni

ni
eie

�
i

=

(
1− 1

|E|

)
I +

1

|E|A.

It should be noted that setting α = (m−m|E|+ |E|)−1 and P
and u as in (14)

E [P (k)] = (1− r)E [A(k)] = (1− α)I + αP

and E[u(k)] = α(m/n)1 = αu. From Theorem 1, we conclude
the almost sure convergence. �

The almost sure convergence can also be proved by tech-
niques from stochastic approximation. Such techniques have al-
ready been effectively applied to other algorithms for PageRank
computation [26].

Since x(k) are stochastic vectors, they are uniformly
bounded and by the Dominated Convergence Theorem, we
conclude the convergence in the mean-square sense. Mean-
square ergodicity of randomized PageRank was already proved
in [40] under assumptions which are equivalent to those in
Theorem 1.

V. OPINION DYNAMICS IN SOCIAL NETWORKS

In this application, we study a classical model introduced in
[31] to describe the effect of social influence and prejudices in
the evolution of opinions in a population in the presence of the
so-called stubborn agents. We briefly review and cast this model
into the general framework of affine dynamics (1).

We consider a finite population V of interacting agents,
whose social network of potential interactions is encoded by
a undirected graph G = (V, E), endowed with a self-loop (i, i)
at every node. At time k ∈ Z+, each agent i ∈ V holds a belief
or opinion about an underlying state of the world. We denote
the vector of beliefs as x(k) ∈ R

V . An edge (i, j) ∈ E means
that agent j may directly influence the opinion of agent i.
Let W ∈ R

V×V be a non-negative matrix which defines the
strength of the interactions (Wij = 0 if (i, j) �∈ E) and Λ is a
diagonal matrix describing how sensitive each agent is to the
opinions of the others based on interpersonal influences. We
assume that W is row-stochastic, that is, W1 = 1 and we set
Λ = I − diag(W ), where diag(W ) collects the self-weights
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given by the agents. The dynamics of opinions x(k) proposed
in [31] is

x(k + 1) = ΛWx(k) + (I − Λ)v (18)

where x(0) = v and v ∈ R
V . The vector v, which corresponds

to the individuals’ preconceived opinions, also appears as an
input at every time step. This model falls under the class of
affine dynamics (1) by simply taking

P = ΛW and u = (I − Λ)v. (19)

The limit behavior of (18) is described in [36]. In particular, if
we assume that in the graph associated with W for any node
� ∈ V there exists a path from � to a node i such that Wii > 0.
Then, the opinions converge to

x�
opd = (I − ΛW )−1(I − Λ)v. (20)

We remark that the assumption on the existence of the path
implies that each agent is influenced by at least one stubborn
agent and is automatically satisfied if the graph is strongly
connected. In practice, it is reasonable to think that most agents
in a social network will have some (positive) level of obstinacy
Wii > 0.

We now introduce a more realistic model of the communica-
tion process among the agents. Each agent i ∈ V possesses an
initial belief xi(0) = vi ∈ R, as in the model (18). At each time
k ∈ Z+, a link is randomly sampled from a uniform distribution
over E . If the edge (i, j) is selected at time k, agent i meets
agent j and updates its belief to a convex combination of its
previous belief, the belief of j, and its initial belief. Namely

xi(k + 1) =hi ((1− Γij)xi(k) + Γijxj(k)) + (1− hi)vi

x�(k + 1) =x�(k) ∀� ∈ V \ {i} (21)

where the weighting coefficients hi and Γij are defined as

hi =

{
1− (1− λi)/di, if di �= 1
0, otherwise

(22)

Γij =

⎧⎪⎪⎨⎪⎪⎩
di(1−hi)+hi−(1−λiWii)

hi
, if i = j, di �= 1

λiWij

hi
, if i �= j, di �= 1

1, if i = j, di = 1
0, if i �= j, di = 1

(23)

where the matrices W and Λ are those in (18), λ is the main
diagonal of Λ, and di = |{h : (i, h) ∈ E}| is the degree of
node i. Recall that di ≥ 1 by the presence of self-loops. It is
immediate to observe that 1) hi ∈ [0, 1] for all i ∈ V; 2) Γ is
adapted to the graph G; 3) Γ is row-stochastic; and 4) at all
times, the opinions of the agents are convex combinations of
their initial prejudices.

We now study the convergence properties of the gossip
opinion dynamics and we show that the opinions converge to
the same value x�

opd given in (20). In the proof of the result, we
show that the dynamics (21) can be written in terms of the more
general process (2).

Proposition 4 (Ergodic Opinion Dynamics): Assume that in
the graph associated with W for any node � ∈ V there exists a
path from � to a node i such that Wii > 0. Then, the dynamics
(21) is ergodic, and the time-averaged opinions defined in (3)
converge to x�

opd.
Proof: Provided that the edge θ(k) = (i, j) is chosen at

time k, the dynamics (21) can be rewritten in vector form as

x(k + 1) =
(
I − eie

�
i (I −H)

) (
I + Γij

(
eie

�
j − eie

�
i

))
x(k)

+ eie
�
i (I −H)v.

If we define the matrices

P ij =
(
I − eie

�
i (I −H)

) (
I + Γij

(
eie

�
j − eie

�
i

))
uij = eie

�
i (I −H)v

then the dynamics is x(k + 1) = P ijx(k) + uij . Note that the
expressions in (22) and (23) imply

D(I −H) = I − Λ

D(I −H) +H(I − Γ) = I − ΛW

where H=diag{h1, h2, . . . , hn} and D=diag{d1, d2, . . . , dn}.
Consequently, one can compute the generic entries of
the expected matrix E[P (k)] = (1/|E|)

∑
(�,m)∈E P

�m as
E[P (k)]ij = (1/|E|)hiΓij = (1/|E|)λiWij if i �= j, and

E [P (k)]ii =1− 1

|E| (di(1− hi) + hi(1− Γii))

=

(
1− 1

|E|

)
+

1

|E|λiWii.

From these formulas, we conclude that E[P (k)] =
(1− (1/|E|))I + (1/|E|)ΛW and E[u(k)] = (1/|E|)(I − Λ)v.
Then, using (19), the claim follows by Theorem 1. �

Since the opinions are uniformly bounded, by the Dominated
Convergence Theorem, we also conclude the convergence in
the mean-square sense. Mean-square ergodicity is also proved
in [36] under assumptions which are equivalent to those in
Theorem 1. The ergodicity of the opinion dynamics is illus-
trated by the simulations in [36]. Furthermore, we observe
that also Theorem 2 applies to this dynamics, so that time
averages can be performed asynchronously by the nodes via a
mechanism like (8).

VI. PROOFS OF THE ERGODICITY RESULTS

A. Proof of Theorem 1

The proof is based on techniques for iterated random func-
tions, which we recall from [41]. These techniques require,
in order to studying the random process (2), to consider the
associated backward process ←−x(k), which we define below.
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For any time instant k, consider the random matrices P (k)
and u(k) and define the matrix product

−→
P (�,m) := P (m)P (m− 1) · · ·P (�+ 1)P (�) (24)

with � ∈ {0, . . . ,m}. Then, the iterated affine system in (11)
can be rewritten as

x(k + 1) =
−→
P (0, k)x(0) +

∑
0≤�≤k

−→
P (�+ 1, k)u(�).

The corresponding backward process is defined by

←−x(k + 1) =
←−
P (0, k)x(0) +

∑
0≤�≤k

←−
P (0, �− 1)u(�)

where

←−
P (�,m) := P (�)P (�+ 1) · · ·P (m− 1)P (m) (25)

with � ∈ {0, . . . ,m}. Crucially, the backward process ←−x(k)
has, at every time k ∈ Z+ the same probability distribution
as x(k). The main tool to study the backward process is the
following result. Let ‖ · ‖ denote any norm.

Lemma 1 (Theorem 2.1 in [41]): Let us consider the Markov
process {x(k)}k∈Z+

defined by

x(k + 1) = P (k)x(k) + u(k) k ∈ Z+

where P (k) ∈ R
V×V and u(k) ∈ R

V are i.i.d. random variables.
Let us assume that

E [log ‖P (k)‖] < ∞ E [log ‖u(k)‖] < ∞. (26)

The corresponding backward random process ←−x(k) converges
almost surely to a finite limit x∞ if and only if

inf
k>0

1

k
E [log ‖P (1) · · ·P (k)‖] < 0. (27)

If (27) holds, then the distribution of x∞ is the unique invariant
distribution for the Markov process x(k).

This result provides conditions for the backward process
to converge to a limit. Although the forward process has a
different behavior compared to the backward process, the for-
ward and backward processes have the same distribution. This
fact allows us to determine, by studying the backward process
←−x(k), whether the sequence of random variables {x(k)}k∈Z+

converges in distribution to the invariant distribution of the
Markov process in (2). This analysis is performed in the fol-
lowing result.

Lemma 2: Consider the random process x(k) defined in
(2), where P (k) and u(k) are i.i.d. and have finite first mo-
ments E[P (k)] and E[u(k)]. If there exists α ∈ (0, 1] such
that E[P (k)] = (1− α)I + αP , where P is Schur stable, then,
←−x(k) converges almost surely to a finite limit x∞, and the
distribution of x∞ is the unique invariant distribution for x(k).

Proof: In order to apply Lemma 1, let us compute

inf
k>0

1

k
E

[
log

∥∥∥←−P (0, k − 1)
∥∥∥
1

]
≤ inf

k>0

1

k
logE

[∥∥∥←−P (0, k − 1)
∥∥∥
1

]
= inf

k>0

1

k
logE

[
max
j∈V

∑
i∈V

(←−
P (0, k − 1)

)
ij

]

≤ inf
k>0

1

k
logE

⎡⎣∑
j∈V

∑
i∈V

(←−
P (0, k − 1)

)
ij

⎤⎦
≤ inf

k>0

1

k
log

∑
j∈V

∑
i∈V

E

[←−
P (0, k − 1)ij

]
≤ inf

k>0

1

k
log

(
n
∥∥∥E [←−

P (0, k − 1)
]∥∥∥

∞

)
= inf

k>0

1

k
log

(
n

∥∥∥∥∥
k−1∏
h=0

E [P (h)]

∥∥∥∥∥
∞

)
.

Let q be the number of distinct eigenvalues of E[P (k)],
denoted as {λ�}q�=1, and consider the Jordan canonical de-
composition E[P (k)] = UJU−1. Then, ‖

∏k−1
h=0 E[P (h)]‖∞ ≤

‖U‖∞‖Jk‖∞‖U−1‖∞. Denoting by s�, the size of the largest
Jordan block corresponding to λ�, we observe that

‖Jk‖∞ = max
i∈V

∑
j∈V

(Jk)ij = max
�=1,...,q

s�−1∑
m=0

λk−m
�

(
k

m

)

and deduce

‖Jk‖∞ ≤ max
�=1,...,q

|λ�|k
s�−1∑
m=0

|λ�|−m

(
k

m

)

≤ max
�=1,...,q

|λ�|kkn
s�−1∑
m=0

|λ�|−m ≤ χρkkn

where χ is a constant independent of k, and ρ is the spectral ra-
dius of E[P (k)]=(1−α)I+αP , which is known to be smaller
than 1 because P is Schur stable. We conclude that there exists
a constant C=‖U‖∞‖U−1‖∞χ, independent of k, such that
E[log ‖←−P (0, k−1)‖1]≤ log(nCρkkn) and consequently

inf
k>0

1

k
E

[
log

∥∥∥←−P (0, k − 1)
∥∥∥
1

]
≤ lim

k→∞

log(Cnknρk)

k
= log ρ < 0. (28)

The claim then follows from Lemma 1. �
As a consequence, we deduce that also the (forward) random

process x(k) converges in distribution to a limit x∞, and the
distribution of x∞ is the unique invariant distribution for x(k).
We are now ready to verify the ergodicity of x(k) under
the assumptions of Theorem 1. Let z(0) be a random vector
independent from x(0) with the same distribution as x∞. Let
{z(k)}k∈Z+

be the sequence such that

z(k) =
−→
P (0, k − 1)z(0) +

∑
0≤�≤k−1

−→
P (�+ 1, k − 1)u(�)
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where
−→
P (�+ 1, k − 1) is defined as in (24). Since the process

z(k) is stationary and the invariant measure is unique, we can
apply Birkhoff’s Ergodic Theorem (see, for instance, [42, Ch.
6] or [43, Ch. 5] for a tutorial introduction) and conclude
that with probability one limk→∞(1/k)

∑k−1
�=0 z(�) = E[x∞].

On the other hand, we can compute

P
(
‖x(k)− z(k)‖1 ≥ εk

)
≤

E

[∥∥∥−→P (0, k − 1) (z(0)− x(0))
∥∥∥
1

]
εk

≤
E

[∥∥∥−→P (0, k − 1)
∥∥∥
1

]
E [‖z(0)− x(0)‖1]

εk

≤ Cnknρk

εk
E [‖z(0)− x(0)‖1] (29)

where we have used (28). If we choose ε ∈ (ρ, 1), then the
Borel–Cantelli Lemma [44, Theor. 1.4.2] implies that with
probability one ‖x(k)− z(k)‖1 < εk for all but finitely many
values of k. Therefore, almost surely (1/k)

∑k−1
�=0 ‖x(�)−

z(�)‖1 converges to zero as k goes to infinity, and
limk→∞(1/k)

∑k−1
�=0 x(�) = E[x∞]. To complete the proof, we

only need to observe that E[x∞] = limk→∞ E[x(k)], which is
equal to x� as argued after the statement of Theorem 1.

B. Proof of Theorem 2

The argument is similar to [18, Theor. 4.1]. Let us define for
all i and k in Z+

ξki =

{
ω(i)∑k−1

�=0
ω(�)

, if i ≤ k

0, if i > k.

Since limk→∞
∑k−1

�=0 ω(�) = ∞ almost surely, {ξki}k,i∈Z+

forms a Toeplitz array with probability one. Since by (29)
limk→∞ ‖x(k)− z(k)‖1 = 0, we can apply the Silverman–
Toeplitz Theorem [45] to conclude that almost surely

lim
k→∞

∞∑
i=0

ξki ‖x(i)− z(i)‖1

= lim
k→∞

1∑k−1
�=0 ω(�)

k−1∑
i=0

ω(i) ‖x(i)− z(i)‖1 = 0.

This equality implies that almost surely

lim
k→∞

1∑k−1
�=0 ω(�)

k−1∑
i=0

ω(i)x(i)

= lim
k→∞

1∑k−1
�=0 ω(�)

k−1∑
i=0

ω(i) (x(i)− z(i))

+ lim
k→∞

k∑k−1
�=0 ω(�)

1

k

k−1∑
i=0

ω(i)z(i)

=
1

E [ω(0)]
lim
k→∞

1

k

k−1∑
i=0

ω(i)z(i)

where the last equality comes from the law of large numbers.
Again, by Birkhoff’s Ergodic Theorem,{(ω(k)�, z(k)�)�}k∈Z+

is a stationary and ergodic process and we finally conclude

lim
k→∞

1∑k−1
�=0 ω(�)

k−1∑
i=0

ω(i)x(i) =
1

E [ω(0)]
E [ω(0)z(0)] = x�

thanks to the independence between ω(0) and z(0).

VII. CONCLUDING REMARKS

In this paper, we have proposed time-averaging as a tool for
smoothing oscillations in randomized network systems. Other
authors have proposed different solutions, which essentially
damp the system inputs in the long run: this goal is achieved
through “under-relaxations,” that is, by using gains that de-
crease along time. The analysis of the resulting dynamics is
often based on tools from stochastic approximation [46] or
semi-martingale theory [47, Ch. 2]. Similar to our asyn-
chronous sampling, also the choice of decreasing gains can be
performed asynchronously and without coordination, albeit at
the price of a more complex analysis [46, Ch. 7], [48].

Our method of time-averaging, together with its analysis
based on ergodicity, has three advantages: 1) it is simple to ap-
ply as it requires minimal assumptions; 2) it allows for a unified
treatment of different algorithms; and 3) it gives a qualitative
insight into the stochastic processes of interest. However, the
use of time-averaging is not itself free from drawbacks. Indeed,
convergence of time-averages is not exponential, as for the orig-
inal synchronous dynamics, but polynomial: more precisely, for
large times k the distance from the limit value is proportional
to 1/k. This fact can be observed by inspecting the proof
of Theorem 1 or by performing a mean-square convergence
analysis, as in [23] and [34]. This drawback, which is shared by
the over-relaxation approaches, stimulates research toward ex-
ponentially fast algorithms. It is likely that effective algorithms
can be constructed by endowing the nodes with some memory
capabilities: an example is provided in [17] for the localization
problem. More generally, their design can be based on the so-
called asynchronous iteration method from numerical analysis
[49, Sec. 6.2]: for instance, the application of this method to
PageRank computation is discussed in [23, Sec. VII].

For our examples, we have chosen three problems from the
literature and three specific algorithms for their solution. This
selection does not cover the spectrum of possible applications.
For instance, in the proposed gossip updates, nodes are sampled
according to uniform distributions, but the approach may, in
principle, be extended to other distributions if required by the
specific application. Also regarding the choice of problems, we
expect that our results can be applied to a much wider range of
problems in network systems.
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