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Abstract

Recent studies from social, biological, and engineering network systems have drawn at-

tention to the dynamics over signed networks, where each link is associated with a pos-

itive/negative sign indicating trustful/mistrustful, activator/inhibitor, or secure/malicious

interactions. We study asymptotic dynamical patterns that emerge among a set of nodes

that interact in a dynamically evolving signed random network. Node interactions take place

at random on a sequence of deterministic signed graphs. Each node receives positive or neg-

ative recommendations from its neighbors depending on the sign of the interaction arcs, and

updates its state accordingly. Recommendations along a positive arc follow the standard con-

sensus update. As in the work by Altafini, negative recommendations use an update where

the sign of the neighbor state is flipped. Nodes may weight positive and negative recommen-

dations differently, and random processes are introduced to model the time-varying attention

that nodes pay to these recommendations. Conditions for almost sure convergence and di-

vergence of the node states are established. We show that under this so-called state-flipping

model, all links contribute to a consensus of the absolute values of the nodes, even under

switching sign patterns and dynamically changing environment. A no-survivor property is

established, indicating that every node state diverges almost surely if the maximum network

state diverges.

Keywords. random graphs, signed networks, consensus dynamics

1 Introduction

1.1 Motivation

The need to model, analyze and engineer large complex networks appears in a wide spectrum

of scientific disciplines, ranging from social sciences and biology to physics and engineering
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[1, 2, 3]. In many cases, these networks are composed of relatively simple agents that interact

locally with their neighbors based on a very limited knowledge about the system state. Despite

the simple local interactions, the resulting networks can display a rich set of emergent behaviors,

including certain forms of intelligence and learning [4, 5].

Consensus problems, in which the aim is to compute a weighted average of the initial values

held by a collection of nodes, play a fundamental role in the study of node dynamics over

complex networks. Early work [1] focused on understanding how opinions evolve in a network

of agents, and showed that a simple deterministic opinion update based on the mutual trust

and the differences in belief between interacting agents could lead to global convergence of

the beliefs. Consensus dynamics has since then been widely adopted for describing opinion

dynamics in social networks, e.g., [5, 6, 7]. In engineering sciences, a huge amount of literature

has studied these algorithms for distributed averaging, formation forming and load balancing

between collaborative agents under fixed or time-varying interaction networks [8, 9, 10, 11, 12, 13,

14, 15]. Randomized consensus seeking has also been widely studied, motivated by the random

nature of interactions and updates in real complex networks [16, 17, 18, 19, 20, 21, 23, 24, 25].

Interactions in large-scale networks are not always collaborative since nodes take on different,

or even opposing, roles. A convenient framework for modeling different roles and relationships

between agents is to use signed graphs. Signed graphs were introduced in the classical work by

Heider in 1946 [28] to model the structure of social networks, where a positive link represents a

friendly relation between two agents, and a negative link an unfriendly one. In [29], a dynamic

model based on a signed graph with positive links between nodes (representing nations) belong-

ing to the same coalition and negative otherwise, was introduced to study the stability of world

politics. In biology, sign patterns have been used to describe activator–inhibitor interactions be-

tween pairs of chemicals [30], neural networks for vision and learning [31], and gene regulatory

networks [32]. In all these examples, the state updates that happen when two nodes interact

depend on the sign of the arc between the nodes in the underlying graph. The understanding of

the emergent dynamical behaviors in networks with agents having different roles is much more

limited than our knowledge about collaborative agents performing consensus algorithms.

It is intriguing to investigate what happens when two types of dynamics are coupled in a

single network. Naturally we ask: how should we model the dynamics of positive and negative

interactions? When do behaviors such as consensus, swarming and clustering emerge, and how

does the structure of the sign patterns influence these behaviors? In this paper, continuing the
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previous efforts in [36, 37], we answer these questions for a general model of opinion formation

in dynamic signed random networks.

1.2 Contributions

In this paper, we study a scheme of randomized node interaction over a signed network of

nodes, and show how the nodes’ states asymptotically evolve under these positive or negative

interactions. A sequence of deterministic signed graphs defines the dynamics of the network.

Random node interactions take place under independent, but not necessarily identically dis-

tributed, random sampling of the environment. Once interaction relations have been realized,

each node receives a positive recommendation consistent with the standard consensus algorithm

from its positive neighbors. Nodes receive negative recommendations from its negative neighbors.

In this paper we investigate a model where neighbors construct negative recommendations by

flipping the sign of their true state during the interaction. This definition of negative interaction

was introduced in [36]. After receiving these recommendations, each node puts a (deterministic)

weight to each recommendation, and then encodes these weighted recommendations in its state

update through stochastic attentions defined by two Bernoulli random variables.

Our model is general, and covers many of the existing node interaction models, e.g., consensus

over Erdős-Rényi graph [16], pairwise randomized gossiping [17], random link failure [19], etc.

We allow the sign of each link to be time-varying as well in a dynamically changing environment.

We establish conditions for almost sure convergence and divergence of the node states. We show

that under the state-flipping model, all links contribute to a consensus of the absolute values of

the nodes, even under switching sign patterns. We also show that strong structural balance [39]

is crucial for belief clustering, which is consistent with the results derived in [36]. In the almost

sure divergence analysis, we establish that the deterministic weights nodes put on negative

recommendations play a crucial role in driving the divergence of the network. A no-survivor

property is established indicating that every node state diverges almost surely given that the

maximum network state diverges. Our analysis does not rely on a spectrum analysis as that used

in [36], but instead we study the asymptotic behavior of the node states using a sample-path

analysis.
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1.3 Organization

In Section 2, we present the network dynamics and the node update rules. The state-flipping

model is defined for the negative recommendations. Section 3 presents our main results on the

state-flipping model and the detailed proofs are presented in Section 4. Finally some concluding

remarks are drawn in Section 5.

Notation

A simple directed graph (digraph) G = (V, E) consists of a finite set V of nodes and an arc

set E ⊆ V × V, where e = (i, j) ∈ E denotes an arc from node i ∈ V to j ∈ V with (i, i) /∈ E
for all i ∈ V. We say that node j is reachable from node i if there is a directed path from i

to j, with the additional convention that every node is reachable from itself. A node v from

which every node in V is reachable is called a center node (or a root). A digraph G is strongly

connected if every two nodes are mutually reachable; G has a spanning tree if it has a center

node; G is weakly connected if a connected undirected graph can be obtained by removing all the

directions of the arcs in E . A subgraph of G = (V, E), is a graph on the same node set V whose

arc set is a subset of E . The induced graph of Vi ⊆ V on G, denoted G|Vi , is the graph (Vi, Ei)
with Ei = (Vi × Vi) ∩ E . A weakly connected component of G is a maximal weakly connected

induced graph of G. If each arc (i, j) ∈ E is associated with a sign, either ’+’ or ’−’, G is called

a signed graph and the sign of (i, j) ∈ E is denoted as σij . The positive and negative subgraphs

containing the positive and negative arcs of G, are denoted as G+ = (V, E+) and G− = (V, E−),

respectively.

Depending on the argument, | · | stands for the absolute value of a real number, the Euclidean

norm of a vector or the cardinality of a set. The σ-algebra generated by a random variable X is

denoted as σ(X).

2 Random Network Model and Node Updates

We consider a dynamic network where each node holds and updates its belief or state when

interacting with other nodes. In this section, we present a general model specifying the network

dynamics and the way nodes interact.
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2.1 Dynamic Signed Graphs

We consider a network with a set V = {1, . . . , n} of n nodes, with n ≥ 3. Time is slotted, and

at each slot t = 0, 1, . . ., each node can interact with its neighbors in a simple directed graph

Gt = (V, Et). The graph evolves over time in an arbitrary and deterministic manner. We assume

Gt is a signed graph, and we denote by σij(t) the sign of arc (i, j) ∈ Et. The sign of arc (i, j)

indicates whether i is a friend (σij(t) = +), or an enemy (σij(t) = −) of node j. The positive and

negative subgraphs containing the positive and negative arcs of Gt, are denoted by G+t = (V, E+t )

and G−t = (V, E−t ), respectively. We say that the sequence of graphs {Gt}t≥0 is sign consistent if

the sign of any arc (i, j) does not evolve over time, i.e., if for any s, t ≥ 0,

(i, j) ∈ Es ∩ Et =⇒ σij(s) = σij(t).

We also define G∗ = (V, E∗) with E∗ =
⋃∞
t=0 Et as the total graph of the network. If {Gt}t≥0 is

sign consistent, then the sign of each arc E∗ never changes and in that case, G∗ = (V, E∗) is a

well-defined signed graph.

Remark 1. Note that Gt is defined over directed graphs. The only requirement on G+t and G−t
is that they should be disjoint, so the signed graph model under consideration is quite general. In

particular, we allow that the two possible edge directions coexist between pair of nodes and that

the two directions can have different signs.

Next we introduce the notion of positive cluster in a signed digraph, which will play an

important role in the analysis of the belief dynamics (see Fig. 1).

Definition 1. Let G be a signed digraph with positive subgraph G+. A subset V∗ of the set of

nodes V is a positive cluster if V∗ constitutes a weakly connected component of G+. A positive

cluster partition of G is a partition of V into Tp ≥ 1 positive clusters Vi, i = 1, . . . , Tp, such that

V =
⋃Tp

i=1 Vi.

Note that negative arcs may exist between the nodes of a positive cluster. Therefore, a

positive-cluster partition of G can be seen as an extension of the classical notion of weak struc-

tural balance for which negative links are strictly forbidden inside each positive cluster [40].

From the above definition, it is clear that for any signed graph G, there is a unique positive

cluster partition V =
⋃Tp

i=1 Vi, where Tp is the number of maximal positive clusters covering the

entire set of nodes.
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Figure 1: A signed network and one of its three positive clusters encircled. The positive arcs are

solid, and the negative arcs are dashed. Note that negative arcs are allowed within each positive

cluster.

2.2 Random Interactions

Time is discrete and at time t, node i may only interact with its neighboring nodes in Gt. We

consider a general model for the random node interactions. At time t, some pairs of nodes are

randomly selected for interaction. We denote by Et ⊂ Et the random subset of arcs corresponding

to interacting node pairs at time t. More precisely, Et is sampled from the distribution µt

defined over the set Ωt of all subsets of arcs in Et. We assume that E0, E1, . . . form a sequence

of independent sets of arcs. Formally, we introduce the probability space (Θ,F ,P) obtained by

taking the product of the probability spaces (Ωt,St, µt), where St is the discrete σ-algebra on

Ωt: Θ =
∏
t≥0 Ωt, F is the product of σ-algebras St, t ≥ 0, and P is the product probability

measure of µt, t ≥ 0. We denote by Gt = (V, Et) the random subgraph of Gt corresponding to

the random set Et of arcs. The disjoint sets E+
t and E−t denote the positive and negative arc

sets of Et, respectively. Finally, we split the random set of nodes interacting with node i at

time t depending on the sign of the corresponding arc: for node i, the set of positive neighbors

is defined as N+
i (t) :=

{
j : (j, i) ∈ E+

t

}
, whereas similarly, the set of negative neighbors is

N−i (t) :=
{
j : (j, i) ∈ E−t

}
.

Remark 2. The above model is quite general. It includes as special cases the classical Erdős-

Rényi random graph [26], gossiping models where a single pair of nodes is chosen at random for

interaction [17, 7], or where all nodes interact with their neighbors at a given time [18, 19, 1, 5].

Independence is the only hard requirement in our random graph process, which is imposed in

most existing works on randomized consensus dynamics, e.g., [7, 18, 19, 17]. Non-independent

random graph models for randomized consensus were discussed in [23, 24, 41, 22].
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2.3 Node updates

Next we explain how nodes update their states. Each node i holds a state si(t) ∈ R at

t = 0, 1, . . . . To update its state at time t, node i considers recommendations received from

positive and negative neighbors:

(i) The positive recommendation node i receives at time t is

h+i (t) := −
∑

j∈N+
i (t)

(
si(t)− sj(t)

)
;

(ii) The negative recommendation node i receives at time t is

h−i (t) := −
∑

j∈N−i (t)

(
si(t) + sj(t)

)
.

In the above expressions, we use the convention that summing over empty sets yields a recom-

mendation equal to zero, e.g., when node i has no positive neighbors, then h+i (t) = 0.

Now let {Bt}t≥0 and {Dt}t≥0 be two sequences of independent Bernoulli random variables.

We further assume that {Bt}t≥0, {Dt}t≥0, and {Gt}t≥0 define independent processes. For any

t ≥ 0, define bt = E{Bt} and dt = E{Dt}. The processes {Bt}t≥0 and {Dt}t≥0 represent the

attention that node i pays to the positive and negative recommendations, respectively.

Node i updates its state as

si(t+ 1) = si(t) + αBth
+
i (t) + βDth

−
i (t), (1)

where α, β > 0 are two positive constants marking the weight each node put on the positive and

negative recommendations.

The role of h+i (t) in (1) is consistent with the classical DeGroot’s social learning model [1]

along trustful interactions. In view of the definition of h−i (t), in contrast to h+i (t), the model is

referred to as the state-flipping model.

Remark 3. The state-flipping model can be interpreted as a situation where the neighbors con-

nected by a negative link provide false values of their states to each node by flipping their true

sign [36]. Under this interpretation it is the head node along each negative arc that knows the

sign of that arc. However, the tail node does not see the sign of the arc associated with the recom-

mendations it receive. The weights and attentions of recommendations, represented by α/β and

Bt/Dt, respectively, are then descriptions of each node’s possible prior knowledge of the signs of

its neighbors.
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Remark 4. In standard consensus algorithms, nodes communicate relative states. In other

words, nodes hold no absolute state information. For the state-flipping model to make sense,

there must exist a global origin (state equal to 0) known by each node so that sign flipping is

possible in the negative interactions.

Let s(t) =
(
s1(t) . . . sn(t)

)T
be the random vector representing the network state at time t.

The main objective of this paper is to analyze the behavior of the stochastic process {s(t)}t≥0.
In the following, we denote by P the probability measure capturing all random components

driving the evolution of the network state.

3 Main Results

In this section, we present our main results. We begin by stating two natural assumptions on

the way nodes are selected for updates, and on the graph dynamics. In the first assumption, we

impose that at time t, any arc is selected with positive probability. The second assumption states

that the unions of the graphs Gt over time-windows of fixed duration are strongly connected.

A1. There is a constant p∗ ∈ (0, 1) such that for all t ≥ 0 and i, j ∈ V, P
(
(i, j) ∈ Et

)
≥ p∗ if

(i, j) ∈ Et.

A2. There is an integer K ≥ 1 such that the union graph G
(
[t, t+K − 1]

)
=
(
V,⋃τ∈[t,t+K−1] Eτ

)
is strongly connected for all t ≥ 0.

The following theorem provides conditions under which the system dynamics converges al-

most surely. Surprisingly, these conditions are mild: we just require that the sum of the updating

parameters α and β is small enough, and that node updates occur with constant probabilities,

i.e., E{Bt} and E{Dt} do not evolve over time. In particular, the state of each node converges

almost surely even if the signs of the arcs change over time.

Theorem 1. Assume that A1 and A2 hold, and that α, β > 0 are such that α+ β < 1/(n− 1).

Further assume that for any t ≥ 0, bt = b and dt = d for some b, d ∈ (0, 1). Then under the

state-flipping model, we have, for all i ∈ V and all initial state s(0), P
(

limt→∞ si(t) exists
)

= 1.

In the above theorem, we say that limt→∞ si(t) exists if si(t) converges to a finite limit as t

tends to infinity.

Remark 5. Theorem 1 shows an interesting property of the state-flipping model: negative up-

dates, together with the positive updates, contributes to the convergence of the node states when-
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ever it holds that α + β < 1/(n− 1). The condition α + β ≤ 1/(n− 1) guarantees that the

absolute values of the node states are non-expansive for all signed graphs, compared to the state

non-expansiveness of standard consensus algorithms [11].

Characterizing the limiting states is in general challenging. There are however scenarios

where this can be done, which require the notion of structural balance [39].

Definition 2. Let G = (V, E) be a signed digraph. G is strongly balanced if we can divide V
into two disjoint nonempty subsets V1 and V2 where negative arcs exist only between these two

subsets.

To predict the limiting system behavior, we make the following assumption.

A3. {Gt}t≥0 is sign consistent.

Recall that G∗ denotes the total graph. The following theorem holds.

Theorem 2. Assume that A1, A2 and A3 hold, and that α, β > 0 are such that α + β <

1/(n− 1). Suppose G∗ contains at least one negative arc and that every negative arc in G∗
appears infinitely often in {Gt}t≥0. Further assume that for any t ≥ 0, bt = b and dt = d for

some b, d ∈ (0, 1). Then under the state-flipping model, we have, for any initial state s(0):

(i) If G∗ is strongly balanced, then there is a random variable y∗, with y∗ ≤ ‖s(0)‖1 almost

surely, such that P
(

limt→∞ si(t) = y∗, ∀i ∈ V1; limt→∞ si(t) = −y∗, ∀i ∈ V2
)

= 1;

(ii) If G∗ is not strongly balanced, then P
(

limt→∞ si(t) = 0,∀i ∈ V
)

= 1.

Theorem 2 states that strong structural balance is crucial to ensure convergence to nontriv-

ial clustering states, which is consistent with the result of [36] derived for fixed graphs under

continuous-time node updates. To establish the result, we do not rely on a spectral analysis as in

[36], but rather study the asymptotic behavior for each sample path. From the above theorem,

we know that under the strong structural balance condition, the states of nodes in the same

positive cluster converge to the same limit, and that the limits of two nodes in different positive

clusters are exactly opposite. Using similar arguments as in [36], the value of y∗ can be described

as the limit of a random consensus process with the help of a gauge transformation.

Next we are interested in determining whether the states could diverge depending on the

values of the updating parameters α and β. We show that by increasing β, i.e., the strength

of the negative recommendations, one may observe such divergence. To this aim, we make the

following assumptions.
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A4. There is an integer K ≥ 1 such that the union graph G+
(
[t, t+K]

)
=
(
V,⋃τ∈[t,t+K−1] E+τ

)
is strongly connected for all t ≥ 0.

A5. There is an integer K ≥ 1 such that the union graph G−
(
[t, t+K]

)
=
(
V,⋃τ∈[t,t+K−1] E−τ

)
is strongly connected for all t ≥ 0.

A6. The events {(i, j) ∈ Et}, i, j ∈ V, t = 0, 1, . . . are independent and there is a constant

p∗ ∈ (0, 1) such that for all t ≥ 0 and i, j ∈ V, P
(
(i, j) ∈ Et

)
≤ p∗ whenever (i, j) ∈ Et.

Proposition 1. Assume that A1, A4, A5 and A6 hold, and that for any t ≥ 0, bt = b and

dt = d for some b, d ∈ (0, 1). Fix α ∈ [0, (4n)−1]. Then under the state-flipping model, there is

β? > 0 such that whenever β > β?, we have P
(

limt→∞maxi∈V |si(t)| = ∞
)

= 1 for almost all

initial states s(0).

Proposition 1 shows that under appropriate conditions, maxi∈V |si(t)| diverges almost surely

if the negative updating parameter β is sufficiently large. We can in fact derive an explicit value

for β?.

Remark 6. The main difficulties of establishing Proposition 1 lie in the fact that we need on one

hand to establish an absolute bound for the way maxi∈V |si(t)| decreases (which is obtained by a

constructive proof), and on the other hand to establish a probabilistic lower bound for the possible

increase of maxi∈V |si(t)| (which is obtained combining A4–A6 and by constructing and analyzing

sample paths). These constructive derivations are rather conservative since we consider general

random graph processes, but they nevertheless establish a positive drift for {maxi∈V |si(t)|} with

an explicit β? so that almost sure divergence is guaranteed.

Remark 7. We also remark from Proposition 1 that a large deterministic weight on nega-

tive recommendations leads to the divergence of the node states. It can also been seen from

the forthcoming Lemma 1 that if these weights on the recommendations are sufficiently small,

maxi∈V |si(t)| always converges no matter how the random attentions {Bt} and {Dt} are selected.

Actually, one may even prove that when maxi∈V |si(t)| grows large when t→∞, the state of

any node diverges. This result is referred to as the no-survivor property, and is formally stated

in the following result.

Theorem 3. Assume that A1, A2 and A6 hold, and that for any t ≥ 0, bt ≡ b and dt ≡ d for

some b, d ∈ (0, 1). Fix the initial state s(0). Then under the state-flipping model, we have

P
(

lim sup
t→∞

|si(t)| =∞, i ∈ V
∣∣∣ lim sup

t→∞
max
i∈V
|si(t)| =∞

)
= 1.
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Remark 8. A similar kind of no-survivor property was first established in [38] under the model

of repulsive negative dynamics for pairwise node interactions. Theorem 3 establishes the same

property for the considered state-flipping model, but for general random graph process. From the

proof of Theorem 3, it is clear that it is the arc-independence (assumption A6, see [41]), rather

than synchronous or asynchronous node interactions, that directly results in the no-survivor

divergence property for dynamics over signed random networks.

In all above results, it can be seen from their proofs that extensions to time-varying {bt}≥0
and {dt}≥0 are straightforward under mild assumptions. The resulting expressions are however

more involved. We omit those discussions here to shorten the presentation.

4 Proofs

In this section, we present the detailed proofs of the results stated in the previous section.

We first establish some technical lemmas, and then the proofs of each result.

4.1 Supporting Lemmas

For any t ≥ 0, we define M(t) = maxi∈V |si(t)| and Yi(t) = αBt|N+
i (t)|+ βDt|N−i (t)|, which

will be used throughout the whole paper.

Lemma 1. Suppose α+ β ≤ 1/(n− 1). Then M(t+ 1) ≤M(t).

Proof. Observe that |N+
i (t)|+ |N−i (t)| ≤ n−1. Hence Yi(t) ∈ [0, 1] as long as α+β ≤ 1/(n− 1).

Now for any i ∈ V,

|si(t+ 1)| =
∣∣∣si(t)− αBt ∑

j∈N+
i (t)

(
si(t)− sj(t)

)
− βDt

∑
j∈N−i (t)

(
si(t) + sj(t)

)∣∣∣
=
∣∣∣(1− Yi(t))si(t) + αBt

∑
j∈N+

i (t)

sj(t)

− βDt

∑
j∈N−i (t)

sj(t)
∣∣∣

≤
(∣∣1− Yi(t)∣∣+ Yi(t)

)
max
j∈V
|sj(t)|

= max
j∈V
|sj(t)|,

11
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which completes the proof. �

Remark 9. Lemma 1 establishes the non-expansiveness property of the considered model. It’s

clear from its proof that the condition α+ β ≤ 1/(n− 1) in Lemma 1 can be relaxed to α+ β ≤
1/Deg(Gt), where Deg(Gt) denotes the maximum degree of the graph Gt. Here for convenience

we use the current statement since Deg(Gt) ≤ n− 1 for all t.

Lemma 2. Assume that α + β ≤ 1/(n− 1). Let i ∈ V and assume that |si(t)| ≤ ζ0M(t) for

some 0 < ζ0 < 1. Then

|si(t+ k)| ≤
(
1− (1− ζ0)γk∗

)
M(t), k = 0, 1, . . .

where γ∗ = 1− (α+ β)(n− 1).

Proof. We have:

|si(t+ 1)| ≤
(

1− Yi(t)
)
|si(t)|+ Yi(t)M(t)

≤
(

1− Yi(t)
)
ζ0M(t) + Yi(t)M(t)

≤
(

1− (α+ β)(n− 1)
)
ζ0M(t) + (α+ β)(n− 1)M(t)

=
(
1− (1− ζ0)γ∗

)
M(t).

The lemma is then obtained by applying a simple induction argument. �

Lemma 3. Assume that α + β ≤ 1/(n− 1). Let i ∈ V and assume that |si(t)| ≤ ζ0M(t) for

some 0 < ζ0 < 1. Let (i, j) ∈ Et. Then conditioned on Bt = 1 if (i, j) ∈ E+t , Dt = 1 if (i, j) ∈ E−t ,

we have

|sj(t+ 1)| ≤
(
1− (1− ζ0) min{α, β}

)
M(t).

12
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Proof. Suppose (i, j) ∈ E+t with Bt = 1. Then we have

|sj(t+ 1)| =
∣∣∣sj(t)− αBt ∑

k∈N+
j (t)

(
sj(t)− sk(t)

)
− βDt

∑
k∈N−j (t)

(
sj(t) + sk(t)

)∣∣∣
=
∣∣∣αsi(t) +

(
1− Yj(t)

)
sj(t)

+ αBt
∑

k∈N+
j (t)\{i}

sk(t)− βDt

∑
k∈N−j (t)

sk(t)
∣∣∣

≤ α|si(t)|+
(

1− Yj(t) + Yj(t)− α
)
M(t)

≤ min{α, β}|si(t)|+
(
1−min{α, β}

)
M(t), (2)

where in the last inequality we have used the fact that |si(t)| ≤ M(t). It is straightforward

to see that (2) continues to hold with Dt = 1 if (i, j) ∈ E−t . Plugging in the assumption that

|si(t)| ≤ ζ0M(t) into (2), one gets the desired inequality. This proves the lemma. �

Note that if the conditions in Lemmas 2 and 3 are replaced by |si(t)| < ζ0M(t), then we have

the same conclusions but with strict inequalities. Moreover, in view of Lemma 1, the following

limit is well defined: M∗ = limt→∞M(t).

Lemma 4. Assume that A1 and A2 hold, α, β > 0, and α + β < 1/(n− 1). Further assume

that for any t ≥ 0, bt ≡ b and dt ≡ d for some b, d ∈ (0, 1). Then for any initial state s(0), we

have P
(

limt→∞ |si(t)| = M∗,∀i ∈ V
)

= 1.

Proof. We prove this lemma using sample path arguments by contradiction. Let us assume that:

H1. There exist i0 ∈ V and δ, q∗ ∈ (0, 1) such that P
(

lim inft→∞ |si0(t)| < δM∗
)
≥ q∗.

Let ε > 0. Define

T (ε) := inf
k≥0

{
M(t) ≤ (1 + ε)M∗, ∀t ≥ k

}
and

T ∗ := inf
t≥T (ε)

{
si0(t) < δM∗

}
.

Note that T (ε) is a stopping time, and the monotonicity of M(t) guarantees that T is bounded

almost surely [27]. Moreover, T ∗ is also a stopping time, and it is bounded with probability at

least q∗ in view of H1. Next, we use Lemmas 2 and 3 to get a contradiction. Plugging in the

fact that M(T ∗) ≤ M∗(1 + ε) and invoking Lemma 2, conditioned on {T ∗ < ∞}, we have that

13
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for all k = 0, 1, . . . :

∣∣si0(T ∗ + k)
∣∣ < (1− (1− δ)γk∗

)
M∗(1 + ε). (3)

Now consider the time interval [T ∗, T ∗+K− 1]. The independence of {Bt}t≥0, {Dt}t≥0, and

{Gt}t≥0 guarantees that (GT ∗ , BT ∗ , DT ∗), (GT ∗+1, BT ∗+1, DT ∗+1), . . . are independent random

variables, and they are independent of FT ∗−1 (cf., Theorem 4.1.3 in [27]). From their definitions

we also know that (BT ∗ , DT ∗), (BT ∗+1, DT ∗+1), . . . are i.i.d. with the same distribution as

(B0, D0), and Assumption A2 guarantees that G
(
[T ∗, T ∗ +K − 1]

)
=
(
V,⋃τ∈[T ∗,T ∗+K−1] Eτ

)
is

strongly connected. Therefore, there exists a node i1 6= i0 and τ1 ≤ K such that (i0, i1) ∈ ET ∗+τ1
(note that i1 and τ1 are random variables, but they are independent with FT ∗−1 since T ∗ is a

stopping time). Hence we can apply Lemma 3 and conclude that

∣∣si1(T ∗ + τ1)
∣∣ < (1− (1− δ)γτ1∗ min{α, β}

)
M∗(1 + ε)

with a probability at least p∗min{b, d}. Taking ζ0 = 1−(1−δ)γτ1∗ min{α, β} for the ζ0 introduced

in Lemma 2, we have

1− (1− ζ0)γk∗ = 1− (1− δ)γτ1+k∗ min{α, β}.

Therefore, applying Lemma 2 (note that we can replace M(t) with M∗(1 + ε) in Lemma 2) we

have that for all k = K,K + 1, . . . ,

∣∣si1(T ∗ + k)
∣∣ < (1− (1− δ)γk∗ min{α, β}

)
M∗(1 + ε).

We can repeat the same argument over time intervals [T ∗ +K,T ∗ + 2K − 1], . . . , [T ∗ + (n−
2)K,T ∗ + (n− 1)K − 1]. Assuming that the node set Ik := {i0, . . . , ik−1} is selected, it follows

from the strong connectivity assumption A2 that there exists an arc from Ik to V\Ik in the union

graph of the corresponding interval. In this way we add the tail node of such arc into Ik and

obtain Ik+1 for k = 1, . . . , n−1. We can thus recursively find i2, . . . , in−1 with V = {i0, . . . , in−1}
and bound the absolute values of their states. Finally, we get:

P
(
M(T ∗ + (n− 1)K) <

[
1− γ(n−1)K∗ (min{α, β})n−1

× (1− δ)
]
M∗(1 + ε)

∣∣T ∗ <∞) ≥ (p∗min{b, d}
)n−1

. (4)

14
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Now select ε sufficiently small so that θ :=
(
1− (1− δ)γ(n−1)K∗ (min{α, β})n−2

)
(1 + ε) < 1. Using

the monotonicity of M(t) established in Lemma 1, we deduce from (4):

P
(
M∗ < θM∗

∣∣T ∗ <∞) ≥ (p∗min{b∗, d∗}
)n−1

,

which is impossible and hence, H1 is not true. We have proved that:

P
(

lim inf
t→∞

|si(t)| = M∗, ∀i ∈ V
)

= 1.

The claim then follows easily from Lemma 1. �

Remark 10. It is easy to see from the proof that Lemma 4 continues to hold if we relax the

requirement of bt, dt to 0 < b ≤ bt ≤ 1 and 0 < d ≤ dt ≤ 1 for some b, d ∈ (0, 1). Lemma 4

indicates that with sufficient connectivity on the graphs defining the dynamical environment

(Assumption A2), the absolute values of the nodes states, will eventually converge to a consensus

with probability one under quite general conditions on how the random interactions take place in

the environment. Noting that A2 is imposed on the overall underlying graph, this concludes that

both the positive and negative links contribute to the node states’ consensus in absolute value.

Lemma 5. Let α < (4n)−1 and β > 16nn−1. Then M(t+1) ≥ (2n)−1M(t) defines a sure event.

Proof. Let us first assume that Dt = 0. Let i ∈ V such that |si(t)| = M(t). Then with α < (4n)−1,

we have

M(t+ 1) ≥ |si(t+ 1)|

≥
∣∣1− αBt|N+

i (t)|
∣∣ · |si(t)| − αBt|N+

i (t)| ·M(t)

≥
∣∣1− 2αBt|N+

i (t)|
∣∣ ·M(t)

≥ 1

n
M(t).

Now assume that Dt = 1. We first prove the following claim.

Claim. Suppose there exits i1 ∈ V such that |si1(t)| ∈
[
(1 − Z2)M(t), (1 − Z1)M(t)

]
with

0 ≤ Z1 < Z2 < nZ2 < 1/4 and βZ2 ≥ 2. Then H1
⋃H2 is a sure event, where

H1 =
{
M(t+ 1) ≥M(t)/4

}
and

H2 =
{
∃i2 : |si2(t)| ∈

[
(1− nZ2)M(t), (1− Z2)M(t)

]}
.

To prove this claim, we distinguish three cases:

15
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(i) Let si1(t) ∈
[
(1 − Z2)M(t), (1 − Z1)M(t)

]
and assume that there exists j∗ ∈ V such that

j∗ ∈ N−i1 (t) and sj∗(t) ∈
[
−(1−nZ2)M(t),M(t)

]
. Then si1(t)+sj∗(t) ≥ (n−1)Z2M(t) ≥ 0

and si1(t)+sj(t) ≥ −Z2M(t) for all j ∈ V\{i1, j∗}. Thus, taking out the term si1(t)+sj∗(t)

in h−i1(t) from (1), some simple algebra leads to

M(t+ 1) ≥ |si1(t+ 1)|

≥ β
∣∣si1(t) + sj∗(t)

∣∣−M(t)− 2α(n− 1)M(t)

− β(n− 2)Z2M(t)

≥
∣∣βZ2 − 1− (n− 1)(2n)−1

∣∣ ·M(t)

≥ 1

2
M(t), (5)

where in the last inequality we have used the assumption that βZ2 ≥ 2.

(ii) Let si1(t) ∈
[
(1−Z2)M(t), (1−Z1)M(t)

]
and assume that sj(t) ∈ [−M(t),−(1−Z1)(M(t))]

for all j ∈ N−i1 (t), and, more generally, si1(t) + sj(t) ≤ 0 for all j ∈ N−i1 (t), which implies

that h−i1(t) ≥ 0. Observing that si1(t) ≥ 0, we obtain

M(t+ 1) ≥ |si1(t+ 1)|

≥ |si1(t)| − 2α(n− 1)M(t)

≥
∣∣1− Z2 − (n− 1)(2n)−1

∣∣ ·M(t)

≥ 1

4
M(t). (6)

(iii) Let m1, . . . ,m` ∈ V and w1, . . . , w satisfy

sm%(t) ∈
[
(1− Z2)M(t), (1− Z1)M(t)

]
, % = 1, . . . , `,

and

sw%(t) ∈
[
− (1− Z1)M(t),−(1− Z2)M(t)

]
, % = 1, . . . , ,

respectively. Without loss of generality we assume the existence of such m% and w% since

otherwise the desired conclusions immediately falls to Case (i) and (ii).

Now without loss of generality suppose sm1(t) = min%=1,...,` sm%(t). From Case (i) and

(ii), the desired claim can possibly be violated only when there exists w%∗ ∈ N−m1
(t) with

sw%∗ (t) + sm1(t) > 0 for some %∗ ∈ {1, . . . , } (otherwise we can bound |sm1(t + 1)| from

Case (ii)). While due to the choice of m1 it holds that

sw%∗ (t) + sm%(t) > 0, % = 1, . . . , `.
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We can therefore denote yi(t) = −si(t), i ∈ V and obtain that yw%∗ (t) ∈
[
(1−Z2)M(t), (1−

Z1)M(t)
]

and yw%∗ (t) + ym%(t) < 0, % = 1, . . . , `. We can thus establish bound for

|yw%∗ (t)| = |sw%∗ (t)|, again applying Case (ii).

From the above three cases, we deduce that if H2 does not hold, then H1 must be true. This

proves the claim.

Finally, we complete the proof of the lemma using the claim we just established. Take ε =

8−1n−n−1 and β = 16nn+1. We proceeds in steps.

S1) Let m1 ∈ V with |sm1(t)| = M(t). Applying the claim with Z1 = 0 and Z2 = ε, we

deduce that either the lemma holds or there is another node m2 ∈ V such that |sm2(t)| ∈[
(1− nε)M(t), (1− ε)M(t)

]
.

S2) If in the first step, we could not conclude that the lemma holds, we can apply the claim

to m2 and then obtain that either the lemma holds, or there is a node m3 such that |sm3(t)| ∈[
(1− n2ε)M(t), (1− nε)M(t)

]
.

The argument can be repeated for m3, . . . applying the claim adapting the value of ε and β.

Since there are a total of n nodes, the above repeated procedure necessarily ends, so the lemma

holds. �

Remark 11. The purpose of Lemma 5 is to establish an absolute lower bound regarding the

possible decreasing of M(t). This lower bound is absolute in the sense that it does not depend on

the random graph processes, and require the constructive conditions α < (4n)−1 and β > 16nn+1

to hold. These conditions are certainly rather conservative for a particular node interaction

process, e.g., the pairwise gossiping model [17], or the i.i.d. link failure model [19].

4.2 Proof of Theorem 1

From Lemma 4, we know that for any i ∈ V, one of the following events happens al-

most surely:
{

limt→∞ si(t) = M∗};
{

limt→∞ si(t) = −M∗};
{

lim inft→∞ si(t) = −M∗ and

lim supt→∞ si(t) = M∗}. Therefore, we just need to rule out the last case. We actually prove

that: P
(
M∗ > 0, lim inft→∞ si(t) = −M∗, lim supt→∞ si(t) = M∗, limt→∞ |si(t)| = M∗

)
= 0.

The following claim holds.

Claim. Suppose α+ β ≤ 1/(n− 1). Then si(t+ k) ≤ γk∗si(t) + (1− γk∗ )M(t) for all k ≥ 0, where

γ∗ = 1− (α+ β)(n− 1) was introduced in Lemma 2.

17
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First we note that

si(t+ 1) =
(
1− Yi(t)

)
si(t) + αBt

∑
j∈N+

i (t)

sj(t)

− βDt

∑
j∈N−i (t)

sj(t)

≤
(
1− Yi(t)

)
si(t) + Yi(t)M(t)

≤ γ∗si(t) + (1− γ∗)M(t),

where the last inequality holds from the facts that 1− Yi(t) ≥ 1− (α+ β)(n− 1) = γ∗ and that

si(t) ≤M(t). A simple recursive analysis leads to the claim immediately.

Now take ε > 0 and define T1(ε) := inf
{
k : M(k) ≤M∗(1+ε)

}
. Note that T1(ε) is a stopping

time due to the monotonicity of M(t) established in Lemma 1. In light of the above claim we

get

si(t+ k) ≤ γk∗si(t) + (1− γk∗ )M∗(1 + ε) (7)

for all k = 0, 1, . . . and t ≥ T1.

Let M∗ > 0. Assume that lim inft→∞ si(t) = −M∗. Then for the given ε, we can find an

infinite sequence T1(ε) < t1 < t2 < . . . such that si(tm) ≤ −M∗(1−ε). Now, if lim supt→∞ si(t) =

M∗, for any tm, we can find t̄m > tm with si(t̄m) ≥ M∗(1 − ε). Then based on (7), there must

be t̂m ∈ [tm, t̄m] such that (see Fig. 2)

− γ∗M∗(1− ε) + (1− γ∗)M∗(1 + ε) ≤ si(t̂m)

≤ −γ2∗M∗(1− ε) + (1− γ2∗)M∗(1 + ε). (8)

We then deduce that for all m = 1, 2, . . . ,∣∣si(t̂m)
∣∣ ≤ max

{∣∣− γ∗M∗(1− ε) + (1− γ∗)M∗(1 + ε)
∣∣,∣∣− γ2∗M∗(1− ε) + (1− γ2∗)M∗(1 + ε)

∣∣}
= M∗max

{∣∣1− 2γ∗ + ε
∣∣, ∣∣1− 2γ2∗ + ε

∣∣}
≤M∗

(
ε+ max

{∣∣1− 2γ∗
∣∣, ∣∣1− 2γ2∗

∣∣})
≤M∗

(
1 + max

{∣∣1− 2γ∗
∣∣, ∣∣1− 2γ2∗

∣∣})/2 (9)

if we choose ε sufficiently small so that

ε <
(

1−max
{∣∣1− 2γ∗

∣∣, ∣∣1− 2γ2∗
∣∣})/2.
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Figure 2: An illustration of the existence of t̂m in the proof of Theorem 1. Here C1 := −γ∗M∗(1−
ε) + (1 − γ∗)M∗(1 + ε), C2 := −γ2∗M∗(1 − ε) + (1 − γ2∗)M∗(1 + ε). By (7), si starting from the

interval [−M∗,−M∗(1− ε)] entering [M∗(1− ε),∞) must go through the interval [C1, C2].

Now we see that (9) contradicts limt→∞ |si(t)| = M∗ since

0 <
(

1 + max
{∣∣1− 2γ∗

∣∣, ∣∣1− 2γ2∗
∣∣})/2 < 1

when 0 < γ∗ < 1. We have completed the proof of Theorem 1.

4.3 Proof of Theorem 2

In view of Theorem 1, with probability one we can divide the node set V into the following

two subsets of nodes

V∗1 :=
{
i ∈ V : lim

t→∞
si(t) = −M∗

}
and

V∗2 :=
{
i ∈ V : lim

t→∞
si(t) = M∗

}
.

Apparently at least one of the sets is non-empty. Without loss of generality, we assume V∗1 6= ∅
and P(M∗ > 0) > 0 for the rest of the proof. With Assumption A3, each arc (i, j) ∈ E∗ is

associated with a unique sign. We therefore denote the sign of (i, j) ∈ E∗ as σ∗ij . To establish the

desired conclusion we first show the following claim holds.

Claim. If (i, j) ∈ E∗ with i, j ∈ V∗1 , then σ∗ij = +.

The above claim indicates that the arcs among nodes in V∗1 are necessarily positive. We

now prove this claim using a similar sample-path analysis as the proof of Theorem 1 by a

contradiction argument. Suppose there exist i†, j† ∈ V∗1 such that (i†, j†) ∈ E∗ with σ∗
i†j†

= −.

By our assumption the arc (i†, j†) appears infinitely often in {Gt}t≥0. This means that there

exists an infinite subsequence {tm}∞m=0 such that (i†, j†) ∈ Etm for all m ≥ 0. We assume with

out loss of generality that (i†, j†) ∈ Et for all t ≥ 0 since the following analysis can indeed be

carried out along the subsequence {tm}∞m=0.
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Based on the definition of V∗1 and V∗2 , for any ε > 0, we can define

T †1 (ε) := inf
{
k : si(k) ∈

[
−M∗(1 + ε),−M∗(1− ε)

]
, i ∈ V∗1 ;

si(k) ∈
[
M∗(1− ε),M∗(1 + ε)

]
, i ∈ V∗2

}
.

Since (i†, j†) ∈ Et for all t ≥ 0 with σ∗
i†j†

= −, we conclude that

sj†(T
†
1 + 1) =

(
1− Yj†(T †1 )

)
sj†(T

†
1 )− βD

T †1
si†(T

†
1 )

+ αB
T †1

∑
k∈N+

j†
(T †1 )

sk(T
†
1 )

− βD
T †1

∑
k∈N−

j†
(t)\{i†}

sk(T
†
1 )

≥ −
(
1− Yj†(T †1 )

)
M∗(1 + ε) + βM∗(1− ε)

− Yj†(T †1 )M∗(1 + ε)

= −
[
1− β + ε(1 + β)

]
M∗

≥ −1− β
2

M∗

> −(1− ε)M∗ (10)

if D
T †1

= 1 and ε is chosen to satisfy ε < (1− β)/(2(1 + β)).

We can recursively define

T †m+1(ε)

:= inf
{
k ≥ T †m : si(k) ∈

[
−M∗(1 + ε),−M∗(1− ε)

]
,

i ∈ V∗1 ; si(k) ∈
[
M∗(1− ε),M∗(1 + ε)

]
, i ∈ V∗2

}
.

Repeating the above analysis we have

sj†(T
†
m + 1) > −(1− ε)M∗ (11)

for each m ≥ 1 conditioned on that D
T †m

= 1. Note that
{
D
T †m

}∞
1

defines a sequence of inde-

pendent random variables since {T †m} are a sequence of stopping times. We can therefore invoke

the second Borel-Cantelli Lemma (e.g., Theorem 2.3.6 in [27]) to conclude that (11) holds for

infinitely many m. In other words, we have established that

lim inf
t→∞

sj†(T
†
m + 1) > −(1− ε)M∗
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for any ε < (1− β)/(2(1 + β)). This contradicts the fact that j† ∈ V∗1 . We have now proved the

given claim.

Having established the above claim, the rest of the argument becomes straightforward. Next,

the following analysis will be carried out for the two cases in the theorem statement.

(i). The total graph G∗ is strongly balanced with nonempty V1 and V2, and hence V∗1 is for

example included in V1, which in turns implies that V∗2 6= ∅. Again there are only positive arcs

among nodes of V∗2 . We simply deduce that {V1,V2} = {V∗1 ,V∗2}. Thus the required y∗ is exactly

M∗.

(ii). We take a contradiction argument. Since P(M∗ > 0) > 0, we have V∗1 ∩ V∗2 = ∅. Again arcs

between nodes in the same set from V∗i , i = 1, 2 are necessarily positive. However there is at

least one negative link in G∗ by assumption, which can only be an arc between V∗1 and V∗2 . Thus

both V∗1 and V∗2 are nonempty, which implies that G∗ must be strongly balanced.

The proof is complete.

4.4 Proof of Proposition 1

Let β > 16nn+1 so the conditions of Lemma 5 hold. Let us fix t ≥ 0 and assume that

|si0(t)| = M(t) for some i0 ∈ V. By symmetry, we can also assume without loss of generality

that si0(t) = M(t). Let i∗ ∈ V \ {i0}. Under Assumptions A4 and A6, we prove the following

claim.

Claim. There is an integer N0 ≥ 1 and q0 > 0 such that

P
(
si0(t+N0K) = M(t), si∗(t+N0K) ≥M(t)/2

)
≥ q0.

In view of the connectivity assumption A4 and the arc independence assumption A6, the

event {
si0(t+N0K) = M(t), si∗(t+N0K − 1) ≥M(t)/2

}
given si0(t) = M(t) can be easily constructed by selecting a proper sequence of positive arcs for

time slots t, t+1, . . . , t+N0K−1, and by imposing that Bτ = 1, Dτ = 0, τ = t, t+1, . . . , t+N0K−
1. This analysis follows standard arguments to analyze basic consensus algorithms (e.g., [37]), and

we omit the details. The given claim therefore holds by computing the probability of the selection

of the above sequence of arcs and the event {Bτ = 1, Dτ = 0, τ = t, t + 1, . . . , t + N0K − 1}.
Note that N0 and q0 depend on α, b∗, d∗, p∗, p∗, n but do not depend on β.
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In addition, in view of Assumption A5, we can select a node i∗ 6= i0 satisfying (i∗, i0) ∈⋃
τ∈[t+N0K,t+(N0+1)K−1] E−τ . Consider the following sequence of events

{si0(t+N0K) = M(t), si∗(t+N0K) ≥M(t)/2};

{∃τ ∈ [t+N0K, t+ (N0 + 1)K − 1] s.t. (i∗, i0) ∈ E−τ };

{Dτ = 1};

{Bm = Dm = 0,m 6= τ ∈ [t+N0K, t+ (N0 + 1)K − 1]}. (12)

If they all happen then

|si0(t+ (N0 + 1)K)|

=
∣∣∣si0(t+N0K)− β

(
si0(t+N0K) + si∗(t+N0K)

)
− β

∑
j∈N−i0 (τ)\{i∗}

(
si0(t+N0K) + sj(τ)

)

α
∑

j∈N+
i0
(τ)

(
si0(t+N0K) + sj(τ)

)∣∣∣
≥
(3

2
β − 1− n− 2

n

)
M(t), (13)

where the last inequality is obtained from the facts that si0(t+N0K) = M(t), β
(
si0(t+N0K)+

si∗(t+N0K)
)
≥ 3

2βM(t), β
∑

j∈N−i0 (τ)\{i∗}

(
si0(t+N0K) + sj(τ)

)
≥ 0, and

∣∣∣α ∑
j∈N+

i0
(τ)

(
si0(t+N0K) + sj(τ)

)∣∣∣ ≤ (n− 2)

2n
× 2M(t) (14)

in light of |N+
i0

(τ)| ≤ n− 2 and α ≤ (4n)−1.

It then follows that

P
(
|si0(t+ (N0 + 1)K)| ≥

(3

2
β − 1− n− 2

n

)
M(t)

)
≥ P

(
si0(t+N0K) = M(t), si∗(t+N0K) ≥M(t)/2

)
× P

(
∃τ ∈ [t+N0K, t+ (N0 + 1)K − 1] s.t. (i∗, i0) ∈ E−τ

)
× P(Dτ = 1)

× P
(
Bm = Dm = 0,m 6= τ ∈ [t+N0K, t+ (N0 + 1)K − 1]

)
≥ ϑ0,
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where ϑ0 = q0p∗d
(
(1− d)(1− b)

)K−1
. This implies

P
(
M(t+ (N0 + 1)K) ≥ (3β − 4)M(t)/2

)
≥ ϑ0. (15)

Now assume that M(0) > 0 so that U(m) = log(M(m(N0 + 1)K)) for m ≥ 0 is well defined.

Note that from Lemma 5 and (15), we have:

E{U(m+ 1)− U(m)} ≥ −N0K log(2n) + ϑ0 log
(
(3β − 4)/2

)
.

For β large enough, the r.h.s. in the above inequality is strictly positive. We can then easily

conclude, using classical arguments in random walks that the process U(m) has a strictly positive

drift, from which it can be deduced that P
(

lim infm→∞M
(
mN0K

)
= ∞

)
= 1 (for β large

enough). Using Lemma 5, one can easily conclude the desired theorem.

4.5 Proof of Theorem 3

The argument is based on the intuition that when one of the node states diverges, there

is always a realization of edges with non-zero probability that “pulls” another node toward

divergence since these pulling actions happen infinitely often due to the Borel-Cantelli Lemma.

Then suitable connectivity of the interaction graphs recursively leads to the desired no-survivor

property.

Assume that for some q∗ > 0 we have P(lim supt→∞maxi∈V |si(t)| = ∞) ≥ q∗. There must

be a node i0 satisfying P(lim supt→∞ |si0(t)| = ∞) ≥ q∗/n. Let C0 > 0, and define T ?1 :=

inft
{
|si0(t)| ≥ C0

}
. T ?1 is a stopping time. Let K > 0 be an integer. We can further recursively

define T ?2 , . . . , T
?
m, . . . by

T ?m+1 := inf
t≥T ?

m+K

{
|si0(t)| ≥ C0

}
.

Based on Theorem 4.1.3 in [27], each T ?m is a stopping time for all m ≥ 0 and (GT ?
1
, BT ?

1
, DT ?

1
),

. . . , (GT ?
1 +K−1, BT ?

1 +K−1, DT ?
1 +K−1); (GT ?

2
, BT ?

2
, DT ?

2
), . . . , (GT ?

2 +K−1, BT ?
2 +K−1, DT ?

2 +K−1); . . .

are independent random variables that are also independent of FT ?
1−1. In addition, we have

P(T ?m < ∞,m = 1, 2, . . . ) ≥ q∗/n. Under Assumption A2, G
(
[T ?1 , T

?
1 +K − 1]

)
being strongly

connected is a sure event. As a result, there exists another node i1 ∈ V\i0 and τ0 ∈ [T ?1 , T
?
1 +K−1]

such that (i0, i1) ∈ Eτ0 . Assume the event si0(τ0) = si0(T ?1 ) (whose probability can be lower

bounded by Bt = Dt = 0, t ∈ [T ?1 , τ0− 1] and is then used to derive the χ0 below.) We treat two

cases: σi0i1 = − and σi0i1 = +.

(i) σi0i1 = −.
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– If β = 1, then |βsi0(τ0) + (1− β)si1(τ0)| = |βsi0(τ0)| = |si0(T ?1 )| ≥ C0;

– If β 6= 1 and |si1(τ0)| < βC0/(2|1− β|), then |βsi0(τ0) + (1− β)si1(τ0)| ≥ βC0 − (1−
β)|si1(τ0)| ≥ βC0/2.

(ii) σi0i1 = +.

– If α = 1, then |αsi0(τ0) + (1− α)si1(τ0)| = C0.

– If α 6= 1 and |si1(τ0)| < αC0/(2|1− α|), then |αsi0(τ0) + (1− α)si1(τ0)| ≥ αC0/2.

Now si1(τ0 + 1) = −βsi0(τ0) + (1−β)si1(τ0) when i0 is the unique node in N−i1 (τ0) and Dτ0 = 1.

Also observe that si1(τ0 + 1) = αsi0(τ0) + (1− α)si1(τ0) when i0 is the unique node in N+
i1

(τ0)

and Bτ0 = 1. Stationarity ensures that (BT ?
1
, DT ?

1
), . . . , (BT ?

1 +K−1, DT ?
1 +K−1) have the same

distribution as (B0, D0). We can therefore simply bound the probabilities of the above events

and establish

P
(
∃i1 ∈ V \ {i0} : |si1(T ?1 +K)| ≥ φC0

)
≥ χ0,

where χ0 =
(
(1−b)(1−d)

)2K−1
min{b, d}p∗(1−p∗)n−2 and φ = min

{
[α/(2|1− α|)], α/2, [β/(2|1− β|)], β/2, 1

}
(we use [·] to indicate that the corresponding term is taken into account in the min only if it is

well defined). Repeating the analysis on T ?2 , . . . we obtain

P
(
∃im ∈ V \ {i0} : |sim(T ?m +K)| ≥ φC0

)
≥ χ0.

Since we have a finite number of nodes, independence allows us to invoke the second Borel-

Cantelli Lemma (cf. Theorem 2.3.6 in [27]) and conclude that

P
(
∃ i1 ∈ V \ {i0} :

lim sup
t→∞

|si1(t)| ≥ φC0

∣∣T ?m <∞,m = 1, . . .
)

= 1. (16)

Note that C0 can be chosen arbitrarily, and hence (16) implies that there exists i1 ∈ V \{i0}
such that

P
(

lim sup
t→∞

|si1(t)| =∞
∣∣ lim sup

t→∞
max
i∈V
|si(t)| =∞

)
= 1. (17)

We can apply the same argument recursively, to show that (17) holds for any node i1 in the

network.
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5 Conclusions

Inspired by examples from social, biological and engineering networks, the emerging behav-

iors of node states evolving over signed random networks in a dynamical environment were

studied. Each node received positive and negative recommendations from its neighbors deter-

mined by the sign of the arcs. The positive recommendations were consistent with the standard

consensus dynamics, while the negative recommendations flip the sign of node states in the

local interactions as introduced by Altafini in [36]. After receiving recommendations, each node

puts a deterministic weight and a random attention on each of the recommendations and then

updates its state. Various conditions were derived regarding the almost sure convergence and

divergence of this model. These results have significantly extended the analysis of the results of

[36] to more general models and detailed results. The corresponding relative-state flipping model

[37, 38] under this general random graph model will be investigated in our future work. Some

other interesting future directions include the co-evolution of the signs of the interaction links

along with the node states, as well as the optimal placement of negative links with the aim of

breaking the effect of positive updates as much as possible.
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