
IEEE TRANSACTIONS ON CONTROL OF NETWORK SYSTEMS, VOL. 2, NO. 2, JUNE 2015 193

Specification and Synthesis of Reactive Protocols
for Aircraft Electric Power Distribution

Huan Xu, Ufuk Topcu, and Richard M. Murray, Fellow, IEEE

Abstract—The increasing complexity of electric power systems
leads to challenges in integration and verification. We consider the
problem of designing a control protocol for an aircraft electric
power system that meets a set of requirements describing the
correct behaviors of the system and reacts dynamically to changes
in internal system states. We formalize the requirements by trans-
lating them into a temporal logic specification language and apply
game-based, temporal logic formal methods to automatically syn-
thesize a controller protocol that satisfies these overall properties
and requirements. Through a case study, we perform a design
exploration to show the benefits and tradeoffs between centralized
and distributed control architectures.

Index Terms—Aerospace and electronic systems, control system
synthesis, control systems.

I. INTRODUCTION

THE MOVE from conventional to more-electric aircraft
architectures within the aerospace industry has been mo-

tivated by advancements in electronics technology that can
result in aircraft with improved reliability, optimized system-
level performance, and decreased life-cycle costs [1]. As more
subsystems become reliant on electric power, the ability of the
electric power system to function properly is critical in flight
operations. However, this increased reliance also increases the
complexity of the electric power system, requiring more com-
ponents, actuators, and more complex architecture. Presently,
standard methodologies for designing such systems are costly
both in terms of time and money. Previous work has focused on
the analysis of aircraft performance and power optimization by
using modeling libraries and simulations on proposed designs
[2], [3]. Analysis of all faults or errant behaviors in models,
however, is difficult due to the high complexity of systems and
subsystem interactions.

Manuscript received May 12, 2014; revised August 5, 2014; accepted
October 28, 2014. Date of publication February 6, 2015; date of current version
June 16, 2015. This work was supported in part by the Multiscale Systems
Center (MuSyC), in part by the Boeing Corporation, and in part by the AFOSR
AwardFA9550-12-1-0302. Recommended by Associate Editor S. Azuma.

H. Xu is with the Institute for Systems Research and Aerospace Engineering,
University of Maryland, College Park, MD 20740 USA (e-mail: mumu@
umd.edu).

U. Topcu is with the Department of Electrical and Systems Engineering,
University of Pennsylvania, Philadelphia, PA 19104 USA (e-mail: utopcu@
seas.upenn.edu).

R. M. Murray is with Control and Dynamical Systems, California Institute
of Technology, Pasadena, CA 91125 USA (e-mail: murray@cds.caltech.edu).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCNS.2015.2401174

Since the process of verifying the correctness of a sys-
tem with respect to specifications is expensive, this difficulty
has led to a greater emphasis on the use of formal methods
within a model-based systems engineering framework to aid
in safety and performance certification. The work described
in [4] provides a methodology for the overall design of an
electric power system, beginning from requirements to real-
time simulation. In this paper, we examine the control logic
portion of the methodology and “specify and synthesize” a
solution to the design problem instead of “design then verify.”
In other words, instead of piecing together legacy designs that
are then simulated and verified, we can synthesize control logic
that is provably correct with respect to system requirements.

Building on previous work [5], we apply formal synthesis
of control protocols that enable dynamic reconfiguration of
power in more-electric aircraft that react to uncontrolled moves
from an environment (or adversary) [6]. We begin by writing
English-based specifications in linear temporal logic (LTL),
and then use a combination of tools from computer science
formal method domains for the automatic synthesis of control
protocols. The use of LTL in designing controllers has been of
great interest, and [7] provides a survey of recent contributions.
The use of synthesis methods follows from their successful
integration in verification of hardware and software systems in
computer science, engineering, and robotics domains [8]–[12].
Applications of synthesis tools are limited to small problems
due to the state space explosion issue. To address this chal-
lenge, we utilize previous work on the compositional design
of correct-by-construction, distributed protocols for an elec-
tric power system [13], [14]. Distribution of the design and
implementation of the electric power system will reduce the
computational complexity and allow for the design of flexible
control architectures in terms of modularity, fault-tolerance, and
integrability [15].

The main contributions of this paper are twofold: 1) We
investigate how specifications typically imposed in the design
of controllers for electric power distribution can be translated
into temporal logic. This formalization allows automation of
synthesis of reactive control protocols that ensure the correct-
ness of the underlying specifications. We provide an end-to-end
demonstration of such a “specify and synthesize” design flow
on an example. 2) As a step toward addressing industrial-scale
problems, we examine the application of the compositional syn-
thesis approaches, which we developed in our prior work, for
the design of distributed control protocols. We show the utility
of this compositional method on a distributed control architec-
ture. The long-term potential for incorporating the “specify and
synthesize” will be 1) faster design times, as problems can be

2325-5870 © 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

194 IEEE TRANSACTIONS ON CONTROL OF NETWORK SYSTEMS, VOL. 2, NO. 2, JUNE 2015

Fig. 1. Single-line diagram of an electric power system adapted from a
Honeywell, Inc. patent [17]. Two high-voltage generators, two APU-mounted
generators, and two low-voltage generators serve as power sources for the
aircraft. Power can be routed from sources to buses through contactors, rectifier
units, and transformers. Buses are connected to subsystem loads. Batteries can
be used to provide emergency power.

found earlier in the design cycle, and 2) less costly systems, due
to the ability to save time and perform design space exploration
in software rather than in hardware.

The remainder of this paper is structured as follows: We de-
scribe a standard electric power system, including components,
connectivity, and typical design considerations in Section II.
Sections III and IV present a technical description of the linear
temporal logic and the specifications for an electric power
system. Section V details the synthesis procedure. A case study
is presented in Section VI with results for a centralized and
distributed control architecture.

II. ELECTRIC POWER DISTRIBUTION SYSTEM

A. System Components

A standard electric power system comprises generators, bat-
teries, rectifier units, and batteries that supply power to a set
of loads through buses. Fig. 1 is a single-line diagram of an
electric power system. The following text is a brief description
of components referenced throughout the book [16].

High- and low-voltage ac (HVAC, LVAC) buses and high and
low-voltage dc (HVDC, LVDC) buses deliver power to loads
and power conversion equipment. These buses can be classified
as essential (denoted by ESS) and nonessential. Essential buses
supply loads that should always remain powered, such as the
flight actuation subsystem, while nonessential buses have loads
that may be shed, such as cabin lighting, in the case of a failure.
Generators connected to the left and right engine (L1 GEN,
L2 GEN, R1 GEN, R2 GEN), as well as generators connected
to the left and right auxiliary power unit (L APU, R APU)
can operate at either high voltages, which can connect to the
high-voltage ac buses, or low voltages, which feed directly to

Fig. 2. Typical aerospace system design flow depicting requirements and
design streams.

the low-voltage buses. Contactors are high-power electronic
switches that connect the flow of power from sources to buses
and loads. Contactors provide the actuation for reconfiguration
of the topology of the electric power system, hence, changing
the paths through which power is delivered. Rectifier units
(RUs) convert three-phase ac power to dc power. Transformers
(ACT) convert ac power to dc power, and transformer rectifier
units (TRUs) both convert and lower voltages.

B. Current Design Practice

Fig. 2 depicts the design flow for a typical aerospace system.
In current practice, there are two concurrent work streams. In
the requirements workstream (left column in Fig. 2), a set of
English-based customer requirements is manually decomposed
into system-level and component-level specifications. In the
second workstream, steady-state analysis is first performed on
the system. Modeling tools are used to select relevant proper-
ties or set points. The methods typically rely on reuse where
possible and domain expertise to ensure the entire envelope is
covered. Once this is done, a dynamic system analysis is per-
formed on low-fidelity models to assess operational scenarios
and validate control performance. Finally, detailed models are
used to analyze at the component level. System and component
requirements are mapped or linked to the models (from the left
column to the right column). All three levels of abstraction
are constructed by different groups using design reviews to
ensure consistency. If an inconsistency is found, then the design
gets iterated until the problem is corrected. Dashed arrows
thus represent manual checks between groups to guarantee
consistency.

The disadvantage to current practice is that exchanges be-
tween these design layers are manual and text based, thus
requiring design reviews, multiple iterations, and verification
of results. Problems that are found late in the design process
are difficult to diagnose, and costly to change. An alternative
to designing a system and then verifying its correctness is to
“specify and synthesize.” Requirements are specified using a

XU et al.: SPECIFICATION AND SYNTHESIS OF REACTIVE PROTOCOLS 195

mathematical language, and then a control law is automatically
synthesized to be correct with respect to those requirements.
The potential benefits of such an approach are twofold. First,
synthesis is useful to automatically construct complex control
logic that is guaranteed to satisfy requirements. Second, the
use of formal specification languages to synthesize controllers
allows for easier and systematic ways to identify improper
designs, and allows designers to capture system requirements
(including temporal requirements) in an unambiguous manner.

One of the major barriers to implementing synthesis and
formal methods techniques has been the aversion to techniques
and tools that are new or have a high learning curve. Past
methods for design of systems have worked. Thus, the need for
a more model-based approach was seen as unnecessary or risky.
This mentality has been slowly changing as newer systems
have proven to be much more complex to design and difficult
to verify [18], [19], where delays in production have lasted
years and have cost millions of dollars. The second barrier
to synthesis is the issue of scalability. As systems increase in
size and complexity, synthesis tools become time and memory
intensive for industrial scale problems. Current synthesis tools
are difficult to apply to industrial-scale problems as the full
reactive synthesis problem is double exponential in size of
the state space and specifications. Distributed synthesis is one
way to alleviate this limitation as the size of the state space
is reduced by solving smaller problems. A second way is to
restrict the type of specifications used. Efficient algorithms and
corresponding tools could be developed specifically tailored
for this problem domain. Moreover, the electric power system
topology is suitable for relatively straightforward decomposi-
tion of specifications. As seen in Fig. 1, the topology is divided
into physical panels (as depicted by the dotted boxes). Synthe-
sizing controllers for individual panels, while simultaneously
leveraging the symmetry of the topology, could decrease the
overall computational time. The approach described in this
paper serves as a foundation on which to develop ways to
fully address industrial-scale problems, which is the subject of
ongoing work.

C. Design Considerations

The control protocol design problem considers how the
system shall reconfigure as a function of the changes in flight
conditions and faults in the components. Typically such re-
configuration takes place in multiple layers. Generation and
primary distribution involves the startup or shut down of high-
voltage (HV) generators or APUs in addition to the reconfigu-
ration of contactors in order to route power to HV and LV buses
and their respective loads.

The networked structure of the electric power system re-
quires a protocol to account for all possible interleavings of
faults or events throughout a flight. These combinations and
sequences of failures may be rare but can be catastrophic. This
structure likewise introduces and allows for redundancy in the
electric power system in hardware and software. In the remain-
der of this paper, we focus on the dynamic reconfiguration
of generation and primary distribution systems by designing a
control protocol for contactors. Based on the status of gener-

ators and buses, the protocol ensures the proper switching of
contactors to guarantee buses will remain powered.

III. FORMAL SPECIFICATION USING

LINEAR TEMPORAL LOGIC

Given a topology of an electric power system similar to that
in Fig. 1, the main design problem becomes determining all
correct configurations of contactors for all flight conditions
and faults that can occur in the system. For a configuration
to be “correct” means that it satisfies system requirements,
also referred to as specifications. We now discuss a formal
specification language that will be utilized for the synthesis of
control protocols later in this section.

In reactive systems (i.e., systems that react to a dynamic,
a priori unknown environment), correctness will depend not
only on inputs and outputs of a computation, but also on
execution of the system. Temporal logic is a branch of logic
that incorporates notions of temporal ordering to reason about
the correctness of propositions over a sequence of states, and is
well suited for problems in which the system must react to an
adversary or environment. First used as a specification language
by Pnueli [20] in the 1970s, it has been utilized to specify
properties in a number of applications, including embedded
systems, robotics, and controls [8]. In this paper, we consider
a version called linear temporal logic (LTL).

LTL’s main building block is the atomic proposition, which
is a statement on a valuation of variables that has a unique
truth value (True or False). Consider, for example, the health
status of generators g1 and g2, where {g1 = healthy}, and
{g2 = unhealthy} are atomic propositions. The truth values of
each proposition can be determined for a given configuration of
the electric power system. LTL combines logical connectives
such as negation (¬), disjunction (∨), conjunction (∧), and
material implication (→) alongside temporal operators such as
always (�), eventually (�), next (©), and until (U) to create
complex specifications for a system. These logical connectives
and temporal operators can be combined to specify a number of
complex requirements.

Safety formulas assert that a state or sequence of states will
not be reached. In particular, we use a subclass of safety for-
mulas referred to as invariants throughout this paper. Invariant
formula assert that a property will remain true throughout the
entire execution, and ensure that nothing bad will happen. A
safety specification for the electric power system could take the
form �(¬bus_i_unpowered) where i is the bus index.

Progress formulas guarantee that a property holds infinitely
often in an execution This property ensures that the system will
make progress. For example, always eventually ensure that Bus 1
is powered and can be written as � � bus_i_powered.

Response formulas state that at some point in the execution
following a state where a property is true, there exists a point
where a second property is true. Response properties describe
how systems need to react to changes in operating conditions.
For example, if a generator fails, then at some point a corre-
sponding contactor should open: �((gen_j_not_healthy) →
�(contactor_k_open)) where j, k represent indices for gener-
ators and contactors, respectively.

196 IEEE TRANSACTIONS ON CONTROL OF NETWORK SYSTEMS, VOL. 2, NO. 2, JUNE 2015

LTL is naturally used for specifying properties with temporal
ordering. For specifications involving hard-timing constraints,
LTL can be used for synchronous systems where all processes
(i.e., components) proceed in a lock-step manner. The next
operator has a “time” measure so that, for a given property ϕ,
©ϕ signifies at the next time instant, ϕ is true. To specify a
property occurring at some point in the future, multiple next

operators can be used, such that ©kϕ
Δ
= ©© . . .© ϕ asserts

that property ϕ holds after k time instants. Alternatively, the
“timed” specifications in the electric power system uses a clock
variable to define an equivalent property. A more detailed
discussion of LTL and other temporal logics can be found in
[21] and [22].

IV. FORMAL SPECIFICATIONS FOR AIRCRAFT

ELECTRIC POWER SYSTEMS

The following list details the temporal logic specifications for
synthesizing control protocols for electric power systems.

Environment Assumption: Let G and R represent the set
of all generators and rectifier units in a given topology. Let
Boolean variables g and r denote the health status of generator
G ∈ G and rectifier R ∈ R, respectively. The lowercase symbol
represents the health status of the component denoted by the
corresponding uppercase symbol. We use a similar convention
between upper and lowercase symbols in the remainder of this
paper. In order for the system to be nontrivial, we assume that
at least one generator and one rectifier unit must always be
healthy, that is, have a status of 1, at any given time. This
environment assumption is written as

�
{∨

G∈G
(g = 1) ∧

∨
R∈R

(r = 1)

}
. (1)

Contactor Delays: To capture the physical delay in contactor
actuation times, we introduce the Boolean variable c̃, denoting
controller intent (command) for contactor status c. The delay
between intent and contactor status is handled by additional
clock variables xclose

C (closing time) and xopen
C (opening time)

for each contactor C, where each “tick” of the clock represents
δ time. If the intent is to open and a contactor status is closed,
then the contactor opens within time bound [Tomin

, Tomax
].

Similarly, if the intent is to close and a contactor status is
open, the contactor closes within time bound [Tcmin

, Tcmax
].

If the contactor status does not match the intent, at the next
step clock, xC increments by δ. The controlled variable is the
contactor intent, while the status is modeled as an environment
variable. The following specifications are thus included in the
environment assumption.

If the status and intent match, then in the next step, the clock
resets to zero, which is written as

�{(©c = c̃) → (©xC = 0)}. (2)

If the intent is the same as the contactor status, then contactor
status remains the same in the next step, i.e.,

�{(c̃ = c) → (©c = c)}. (3)

Fig. 3. Single-line diagram with two generators, two buses, and three contac-
tors. Paralleling of ac sources can occur if the statuses of all three contactors
C1, C2, and C3 are all closed.

The assumption to capture the delay in closing time between a
contactor intent and status is given by

�
{
(c̃ = 1 ∧ c = 0 ∧ (xclose

C < Tcmin
)) →

(©c = 0 ∧©xclose
C = xclose

C + δ)
}
, (4)

�
{
(c̃ = 1 ∧ c = 0 ∧ (xclose

C ≥ Tcmin
)) →

(©c = 1 ∨©xclose
C = xclose

C + δ)
}
. (5)

Specifications to capture the delay in opening between a con-
tactor intent and status are given by

� {(c̃ = 0 ∧ c = 1 ∧ (xopen
C < Tomin

)) →
(©c = 1 ∧©xopen

C = xopen
C + δ)} , (6)

� {(c̃ = 0 ∧ c = 1 ∧ (xopen
C ≥ Tomin

)) →
(©c = 0 ∨©xopen

C = xopen
C + δ)} . (7)

The clock values for xclose
C and xopen

C are known a priori
for each contactor. Finally, we guarantee that clocks xclose

C

and xopen
C never exceed the opening and closing time bounds,

written as

�(xclose
C ≤Tcmax

), (8)

�(xopen
C ≤Tomax

). (9)

Unhealthy Sources: We require any contactor adjoining
a generator or rectifier unit to open when that component
becomes unhealthy. Let C represent the set of all contactors
in the electric power system. Sets N (Gi) ⊆ C and N (Ri) ⊆ C
represent the contractors directly connected to, or neighboring,
generator Gi and rectifier Ri, respectively. In Fig. 3, for exam-
ple, sets N (G1) and N (G2) consist of contactors C1 and C2,
respectively. For a contactor C, let c be its status (for example,
0 represents an open contactor and 1 is a closed contactor).
If a generator’s status is unhealthy, then contactors connecting
to it should be commanded open, that is, the contactor intent
variable should take the value of 0. This can be written as

∧
G∈G

�

⎧⎨
⎩(g = 0) →

∧
C∈N (G)

(c̃ = 0)

⎫⎬
⎭ . (10)

Similar specifications hold for disconnecting rectifier units.

XU et al.: SPECIFICATION AND SYNTHESIS OF REACTIVE PROTOCOLS 197

No Paralleling of AC Sources: A mismatch in ac generator
frequencies and voltages can lead to a loss of availability and
even damage to the distribution system. To avoid difficulties
of generator synchronization, we disallow any paralleling of
ac sources, that is, no bus should be powered by multiple ac
generators at the same time. In the example shown in Fig. 3,
paralleling could occur if the status of contactors C1, C2, and
C3 were all closed at the same time. A specification would then
be to never allow all contactors along a path to close at the same
time if that path could connect two ac sources.

Let XGi,Gj
represent the set of components along a path be-

tween generators Gi, Gj ∈ G and i �= j. We disallow configu-
rations where all contactors C ∈ XGi,Gj

create a live path (i.e.,
all contractors are closed along a path). These specifications are
written as

�
∧

Gi,Gj∈G

⎧⎨
⎩¬

∧
C∈XGi,Gj

(c = 1)

⎫⎬
⎭ . (11)

Power Status of Buses: An ac bus is powered if there exists
a live path that connects the bus to a healthy generator. A dc bus
is powered if there exists a live path between the dc bus and a
healthy rectifier unit, which itself is connected to a powered ac
bus. Let XG,B denote the set of all components (contactors,
buses, and rectifier units) along a path between bus B and
generator G, excluding B and G. Bus B is powered if there
exists a live path between B and G, written as

�

⎧⎨
⎩

∨
G∈G

⎛
⎝(g = 1) ∧

∧
X∈XG,B

(x = 1)

⎞
⎠ → (b = 1)

⎫⎬
⎭ . (12)

If no live path exists, then B will be unpowered, written as

�

⎧⎨
⎩¬

∨
G∈G

⎛
⎝(g = 1) ∧

∧
X∈XG,B

(x=1)

⎞
⎠ → (b = 0)

⎫⎬
⎭. (13)

Essential Buses: Let Bs be the set of all safety-critical buses
that must remain powered. Denote the allowable length of time
a bus can remain unpowered as T . Typical values for T fall in
the 50 ms range [16]. Time in this formulation is implemented
through an additional clock θB associated with bus B, where
each increment represents δ time. For each safety-critical bus
in B ∈ Bs, these specifications can be written as follows.

• If the status of bus B is unpowered, in the next step, the
clock variable θB will increment by one unit

� {(b = 0) → (©θB = θB + δ)} . (14)

• If the status of bus B is powered, in the next step, the clock
variable θB is reset to 0

� {(b = 1) → (©θB = 0)} . (15)

• The clock variable θB will never be greater than the
maximum-allowable unpowered time T . This is imple-
mented by

� {θB ≤ T} . (16)

Remark 1: Specifications for dc components are the same
as ac specifications except for two simplifications: 1) The
nonparalleling of ac sources specification may be ignored and
2) no dc bus may ever be unpowered (i.e., unpowered time
T = 0). In addition, rectifier units are unidirectional and, thus,
power cannot flow from dc buses to ac buses. For simplicity
of the synthesis problem, contactors and buses are assumed to
behave ideally (i.e., they cannot fail). In addition, we assume
that sensors (not depicted in the topology) are able to perfectly
measure all variables.

V. SYNTHESIS OF REACTIVE CONTROL PROTOCOLS

The correctness of the system is not merely a function of the
states of the controlled variables. It needs to be interpreted in
conjunction with the statuses of the externalities that interact
with the system that cannot be controlled. Furthermore, it is
necessary to incorporate information on potential environment
conditions under which the system is expected to operate. If
the environment variables are not properly constrained, then
the resulting control protocol may be overly conservative, and
it may not be possible to construct a protocol that ensures
the satisfaction of the system requirements. If all generators
simultaneously stay unhealthy for a long enough time, then it
is not possible to satisfy the condition that the essential buses
shall not be unpowered longer than some prespecified period.
Consequently, the overall goal is to design a protocol that
determines how controlled variables shall move at each point
of the execution as a function of the behaviors of the controlled
and environment variables so far in the execution as long as the
environment assumptions are satisfied.

A. Reactive Synthesis

Equipped with LTL as a specification language, we now
formally state the reactive synthesis problem. Let the system
S be comprised of E and P , which are sets of environment
and controlled variables, respectively. Let state s = (e, p) ∈
dom(E)× dom(P) be a valuation of the system. Consider an
LTL specification ϕ of assume-guarantee form

ϕ = ϕe → ϕs (17)

where ϕe is the conjunction of LTL specifications that char-
acterize the assumptions on the environment and ϕs is the
conjunction of LTL specifications that characterize the sys-
tem requirements. The synthesis problem is then concerned
with constructing a strategy, that is, a partial function f :
(s0s1 . . . st−1, et) �→ pt that chooses the move of the controlled
variables based on the state sequence so far and the behavior of
the environment so that the system satisfies ϕs as long as the
environment satisfies ϕe. The synthesis problem can be viewed
as a two-player game between the environment and controlled
plant: the environment attempts to falsify the specification in
(17) and the controlled plant tries to satisfy it.

For general LTL, the synthesis problem has a doubly ex-
ponential complexity in the size of the specification [8]. For
a subset of LTL called generalized reactivity (1) (GR(1)),

198 IEEE TRANSACTIONS ON CONTROL OF NETWORK SYSTEMS, VOL. 2, NO. 2, JUNE 2015

Piterman et al., have shown that synthesis can be solved in
polynomial time (polynomial in the number of valuations of
the variables in E and P) [6]. GR(1) specifications restrict ϕe

and ϕs to take the following form, for α ∈ {e, s}

ϕα := ϕα
init ∧

∧
i∈Iα

1

�ϕα
1,i ∧

∧
i∈Iα

2

� � ϕα
2,i

where ϕα
init is a propositional formula characterizing the initial

conditions; ϕα
1,i are transition relations characterizing safe,

allowable moves and propositional formulas characterizing
invariants; and ϕα

2,i are propositional formulas characterizing
states that should be attained infinitely often. Many interesting
temporal logic specifications can be expressed or easily trans-
formed into GR(1) specifications. See [6] and [23] for a more
precise treatment of GR(1) synthesis, and [5], [6], [23], and
[24] for case studies in hardware synthesis, motion planning
for autonomous vehicles, and vehicle-management systems.

Given a GR(1) specification, the digital design synthesis tool
implemented in JTLV (a framework for developing temporal
verification algorithm) [25] generates finite automaton that
represents a switching strategy for the system. The temporal
logic planning (TuLiP) toolbox, a collection of python-based
code for automatic synthesis of correct-by-construction embed-
ded control software provides an interface to JTLV [26]. For
examples discussed in this paper, we use TuLiP.

B. Distributed Synthesis

The control protocols discussed in Section V-A are central-
ized in that the controller has access to measurements of all
controlled and environment variables, and is able to determine
the evolution of all controlled variables in order to satisfy a set
of specifications. We now detail a few reasons for migrating to
distributed control architectures.

Hardware challenges: A centralized controller onboard an
aircraft requires wiring from a central processing unit to all
components. Local controllers allow for shorter wires and
increased efficiency due to this reduction in weight. Increased
resilience to failure: By distributing the implementation of the
controller, the electric power system can be more robust to
failures, that is, if one portion of the electric power system mal-
functions, the other sections are unaffected and can still be fully
operational. Reduction of computational complexity: With an
increased number of electric components, the combination of
configurations the controller must account for quickly becomes
intractable for current verification and synthesis tools as well as
testing. A distributed controller design correctly decomposes
the design task into smaller subproblems each of which may be
easier to cope with.

Advantages from the distribution of the control design come
with increased importance of reasoning about the interfaces
between the controlled subsystems. There is relatively exten-
sive literature on compositional reasoning [27]–[29]. Here,
we follow the exposition in recent work from [13]. Fig. 4
illustrates the decomposition of global specifications into local
specifications. For ease of presentation, consider the case where
system SY S is decomposed into two subsystems SY S1 and

Fig. 4. Schematic for the decomposition of global specifications into dis-
tributed controllers for two subsystems. The overall environment assumptions
ϕe and system guarantees ϕs are distributed into the two subsystems SYS1 and
SYS2. Each subsystem has its own local environment assumptions and system
guarantees. In addition, SYS1 has an extra set of local guarantees φ1 that
interact with SYS2 as environment assumptions φ′

1, while SYS2 guarantees
contained in φ2 act as environment assumptions φ′

2 for SYS1.

SY S2. For i = 1, 2, let Ei and Pi be the environment variables
and controlled variables for SY Si such that P1 ∪ P2 = P and
P1 ∩ P2 = ∅. Let ϕe1 and ϕe2 be LTL formulas containing
variables in E1 and E2, respectively. Similarly, let ϕs1 and ϕs2

be LTL formulas in terms of E1 ∪ P1 and E2 ∪ P2, respec-
tively. The following conditions are assumed to be true for a
decomposition:

1) any execution (i.e., sequence of actions) from the envi-
ronment that satisfies ϕe also satisfies (ϕe1 ∧ ϕe2);

2) any execution of the system that satisfies (ϕs1 ∧ ϕs2) also
satisfies ϕs;

3) there exist two control protocols that realize the local
specifications (ϕe1 → ϕs1) and (ϕe2 → ϕs2).

Then, by a result in [13], implementing these control proto-
cols leads to a system where the global specification is met.

It is possible that even if the centralized problem is realizable,
the local distributed synthesis may be unrealizable. Subsystems
may need to interact with each other through shared variables
(either information or physical values) in order to become real-
izable. As seen in Fig. 4, subsystem SYS1 provides additional
guarantees φ1 to subsystem SYS2, evaluated as an environment
assumption and denoted as φ′

1. The same interaction applies
to the interface between SYS2, which sends its own local
guarantees φ2 to SYS1. Additional interface refinements may
be added to local specifications in order to ensure realizability
of local controllers. Thus, if the following local specifications
(and interface refinements) hold:

φ′
2 ∧ ϕe1 →ϕs1 ∧ φ1, (18)

φ′
1 ∧ ϕe2 →ϕs2 ∧ φ2 (19)

then the global specification ϕe → ϕs is realizable.
While the initial decomposition of specifications is per-

formed in an ad-hoc manner, more systematic methods can be
used to refine specifications in order to synthesize controllers
for each individual subsystem. Recent work from [30] uses
a counter-strategy guided refinements method. The algorithm
synthesizes a set of candidate assumptions from a counter-
strategy that, if added to the original decomposition, would
restrict the environment’s behaviors from acting according to
the counter strategy. More specifically, given a specification

XU et al.: SPECIFICATION AND SYNTHESIS OF REACTIVE PROTOCOLS 199

Fig. 5. Simplified single-line diagram. Four generators connect to four ac
buses. Two rectifier units convert power from ac to dc, and connect to two dc
buses.

ϕ = ϕe → ϕs that is unrealizable, the problem is to find a
refinement ψ =

∧
i ψi consisting of environment assumptions

ψi to which ϕe ∧ ψ → ϕs is realizable.

VI. CASE STUDY

We examine a simplified single-line diagram as shown in
Fig. 5. For all allowable failures, the synthesis problem is to
design a control logic that will reconfigure contactors so that
power will be delivered to buses.

A. Variables

Environment Variables: The health statuses for generators
G1, G2, G3, G4, and rectifier units R1 and R2 can each take
values of healthy (1) or unhealthy (0). Again, we distinguish
component variables and status variables by upper and lower
cases, for example, the first generator is represented by G1,
while its health status is denoted by g1. To implement delays
between a contactor intent and status, we define contactor
statuses c1, c2, c3, and c4 with values of open (0) and closed (1).
For simplicity, all other contactors are considered to have no
delays (i.e., at each time step, the physical state of the contactor
will always match the intent of the contactor).

Controlled Variables: Contactor intent c̃1, c̃2, c̃3, and c̃4 for
contractors connecting generators to buses can each take values
of intend to open (0) or intend to closed (1). All other contactors
are directly controlled and can either be 0, denoting an open
contactor, or 1, signifying a closed contactor.

Dependent Variables: The statuses of buses B1, B2, B3,
B4, B5, and B6 can be either powered (1) or unpowered (0)
depending on the status of neighboring contactors, rectifier
units, and generators.

B. Specifications

Given the topology in Fig. 5, the specifications described in
Section IV reduce to the following specifications used in the
synthesis problem for the simplified single-line diagram.

Environment Assumption: From (1), the assumption that at
least one generator and rectifier unit is always healthy becomes

�{(g1 = 1) ∨ (g2 = 1) ∨ (g3 = 1)∨ (g4 = 1)}, (20)

�{(r1 = 1)∨ (r2 = 1)}. (21)

Because of delays between contactor intents and statuses, we
prevent generators and rectifier statuses from rapidly switching
between healthy and unhealthy. Without such a restriction, the
intent of the contactor could constantly change before the status
would have time to react, thus rendering the synthesis problem
unrealizable. A simple assumption is that once a generator
becomes unhealthy, it will remain unhealthy. This is equivalent
to assuming that even if the generator were to become healthy
again, the contactor would not allow the generator to provide
power to the rest of the system, which is true in practice as
well, because in this case study, the contactors connected to
rectifier units have no delay, and there is no need to similarly
restrict their environment behavior. Therefore, the additional
specification is

�
4∧

i=1

{(gi = 0) → (©gi = 0)} . (22)

Contactor Delays: We set each clock tick such that δ = 1,
and consider the delay times to open and close all contactors
to be the same, with minimum and maximum delay times to
be 0 and 2. Thus, Tcmin

= Tomin
= 0 and Tcmax

= Tomax
= 2,

and (2)–(9) are used to specify contactor Ci delays, with
i ∈ [1, 4].

Unhealthy Sources: In Fig. 5, the set of neighboring contac-
tors to generators are N (G1) = C1, N (G2) = C2, N (G3) =
C3, and N (G4) = C3. Neighboring contractors to rectifier
units are N (R1) = C8 and N (R2) = C9. If, for example,
the status of rectifier R1 becomes unhealthy, its neighboring
contactor status intent should be set to open (0). This is
written as

� {(r1 = 0) → (c̃8 = 0)} . (23)

Similar specifications hold for all neighboring contractors to
generators and rectifier units.

No Paralleling of AC Sources: For the single-line diagram
in Fig. 5, there are six ac generator pairs {G1, G2}, {G1, G3},
{G1, G4}, {G2, G3}, {G2, G4}, and {G3, G4}. For example, a
live path for the pair {G1, G3} exists if contactors C1, C5, C6,
and C3 are all closed. To avoid instances of paralleling ac
sources, the specification to disallow the live path would be

�¬{c1 = 1 ∧ c5 = 1 ∧ c6 = 1 ∧ c3 = 1}. (24)

Similar specifications to avoid nonparalleling are implemented
for all ac generator pairs.

Power Status of Buses: Consider ac bus B1 in Fig. 5. Bus
B1 will be powered if a live path exists between itself and

200 IEEE TRANSACTIONS ON CONTROL OF NETWORK SYSTEMS, VOL. 2, NO. 2, JUNE 2015

Fig. 6. Single simulation trace for a centralized controller for the electric power system single-line diagram case study. Each subfigure represents a single time
step. Shaded generators and rectifier units are healthy, shaded contactors are closed, and shaded buses are powered. (a) t = 0. (b) t = 1. (c) t = 2. (d) t = 3.
(e) t = 4. (f) t = 5.

a generator. This requirement is captured by the following
equation:

�{(c1 = 1 ∧ g1 = 1) → b1 = 1}, (25)

�{(c5 = 1 ∧ b2 = 1 ∧ c2 = 1 ∧ g2 = 1) → (b1 = 1)}, (26)

�{(c5 = 1 ∧ b2 = 1 ∧ c6 = 1 ∧ b3 = 1 ∧ c3 = 1

∧ g3 = 1) → (b1 = 1)}, (27)

�{(c5 = 1 ∧ b2 = 1 ∧ c6 = 1 ∧ b3 = 1 ∧ c7 = 1

∧ b4 = 1 ∧ c4 = 1 ∧ g4 = 1) → (b1 = 1)}. (28)

If none of the four conditions to the left side of the implication
are true, then the status of bus B1 is unpowered. Similar
specifications hold for ac buses B2, B3, and B4.

DC bus B5 will be powered if it is connected to a healthy
rectifier unit and a live path exists between itself and a powered
ac bus. This requirement is captured by the following equation:

�{(r1 = 1 ∧ c8 = 1 ∧ b1 = 1) → (b5 = 1)}, (29)

�{(c10 = 1 ∧ b6 = 1 ∧ r2 = 1 ∧ c9 = 1 ∧ b4 = 1)

→ (b5 = 1)}. (30)

If neither of the above two conditions are true, then the status
of B5 is unpowered. Similar specifications hold for B6.

Essential Buses: In this problem, we consider buses B1

and B4 to be connected to safety-critical loads, and can be
unpowered for no longer than three time steps. Each increment
of the clock variable θB1

and θB4
represents one time step

δ = 1. A safety specification for B1 is of the following form:
• If bus status b1 is unpowered, then at the next time step,

clock θB1
increments by one, such that

�{(b1 = 0) → (©θB1
= θB1

+ 1)}. (31)

• If bus status b1 is powered, then at the next time step, reset
clock θB1

to zero. This is written as

�{(b1 = 1) → (©θB1
= 0)}. (32)

• To ensure that the status of B1 is never unpowered for
more than three steps, (16) becomes

�{θB1
≤ 3}. (33)

The requirement that all dc buses must always remain pow-
ered can be implemented by setting T = 0 or, more compactly,
written as

�{b5 = 1 ∧ b6 = 1}. (34)

C. Results

Consider a system model with environment variables E
that includes generators G1 −G4 and rectifier units R1, R2,
and control variables P consisting of contactors C1 − C10

and buses B1 −B6. Given environment assumption ϕe from
(2)–(9), (20)–(22), and ϕs as the conjunction of all specifica-
tions from (23)–(33), the synthesis problem is finding a control
protocol such that (17) holds. The output of the synthesis
procedure is a discrete planner represented as a finite-state
automation where states are valuations of environment and
control variables.

1) Centralized Controller Design: We now present the re-
sults for the centralized case of the electric power system design
problem with variables and specifications discussed in the pre-
vious section. Fig. 6 shows the simplified single-line diagram
used in the problem formulation over a sequence of time. Each
subfigure represents a single step of the simulation, starting at
step 0 and ending with step 5. For clarity of exposition, the

XU et al.: SPECIFICATION AND SYNTHESIS OF REACTIVE PROTOCOLS 201

Fig. 7. Distributed controller decomposition. Components enclosed within
the dashed rectangles are controlled by their own respective controllers. The
dashed arrow represents information flow, in the form of a health status variable,
directed from SYS1 to SYS2. The solid arrow represents the physical transfer
of power from SYS2 to SYS1.

results presented only implement a contactor delay for C1, and
all other contactors have instant actuation.

At each step, depicted in Fig. 6(a)-(f), the statuses of envi-
ronment variables can switch between healthy and unhealthy,
subject to the assumption that at least one generator and one
rectifier always remains healthy. Furthermore, because of the
contactor delay implemented for C1, once the status for gener-
ator G1 becomes unhealthy, that status will remain unhealthy.
A healthy generator or rectifier unit is denoted by a shaded
component. In addition, a shaded bus is powered, and a shaded
contactor is closed.

Fig. 6(a) shows the initial configuration at time t = 0. All
four generator statuses are healthy, as are both rectifier units.
Contactor statuses c1, c4, c8, and c9 are closed, and bus statuses
b1, b4, b5, and b6 are powered. At time t = 1 [Fig. 6(b)], the
status for generator G2 and rectifier R1 becomes unhealthy.
As a result, contactor status c8 switches to open, c10 closes,
and bus B5 is powered through B6. At time t = 2, generator
status g1 becomes unhealthy. Because of the contactor delay
time for C1, status c1 does not open until t = 4. For safety-
critical buses B1 and B4, their statuses are never unpowered
for more than three time steps throughout the entire simulation
sequence. This specification is not imposed on the middle two
buses, however, and, thus, b3 can remain unpowered for five
steps without violating any system requirements. Bus status
b1 remains unpowered for three time steps, and then becomes
powered again at time t = 5.

The synthesis process produces a control protocol in the form
of a finite state automation. The resulting automaton for the
electric power system centralized controller takes 258 s to solve
on a 2.9-GHz Intel Core Duo processor with 8-GB memory, and
has 2049 states.

2) Distributed Control Architecture: The physical decom-
position of the electric power system for a distributed control
architecture is shown in Fig. 7. Let SYS1 represent subsystem
on the left, and SYS2 represent the subsystem on the right.

For the decomposition in Fig. 7, SYS2 can control the supply
of power via contactors C6 and C10. SYS1 can only receive

power when SYS2 provides it. We decompose the global en-
vironment assumption, where at least one power source must
remain healthy at each step, such that

ϕe2 = �((g3 = 1 ∨ g4 = 1) ∧ r2 = 1);ϕe1 = �(true).

The specification for ϕe1 states that there are no restrictions
on the behavior of ϕe1 . The assumption placed on ϕe2 ensures
that for any allowable sequence of environment actions, the
controller for SYS2 is able to supply power to SYS1 at any
step. Health status information for G1 and G2 is sent to SYS2
via a health status variable h1. The variable is set to 0 if neither
source is healthy, and 1 if either g1 or g2 is healthy. In addition,
the status of rectifier R1 from SYS1 is also sent to SYS2 as an
information variable.

The specifications for this distributed system lead to a syn-
thesis problem that is unrealizable. Using the counter-strategy
guided refinement method discussed in Section V-B, we find
that the original decomposition was insufficient for SYS1 to
guarantee power to its buses since there were no restrictions
on generators G1 and G2. Furthermore, while generators G3

and G4 are able to generate power at all steps, the controller
for SYS2 must also be able to guarantee that power can be
delivered to SYS1. One candidate solution is to impose that at
least one of the generator statuses will be healthy, �g1 = 1 ∨
g2 = 1. Focusing on interface refinements, however, a better
candidate solution is to impose an environment restriction on
contactors C6 and C10 to guarantee that power from buses B3

and B6 can be supplied to SYS1 if health status h1 is unhealthy.
We introduce φ2 as a guarantee for controller SYS2, and

denote φ′
2 as an assumption for controller SYS1. Since one sub-

system controls the flow of power, a single-sided refinement is
sufficient for the design problem to be realizable, and we can set
φ1 = true. The refinement specifications are of the following
form: bus status b3 is never unpowered for a prespecified period
of time T . In other words, B3 becomes an essential bus, and we
introduce a variable θB3

that is used as a counter such that

�{(b3 = 0) → (©θB3
= θB3

+ 1)}∧
�{(b3 = 1) → (©θB3

= 0)} ∧ �{θB3
≤ T}.

Moreover, because of the requirement that dc buses must al-
ways be powered, then maximum unpowered time T = 0 in
order to guarantee that power can always be provided to SYS1.

If health status h1 = 0, that is, g1 and g2 are unhealthy, then,
whenever b3 is powered, c̃6 will be set to close

�{((h1 = 0) ∧ (b3 = 1)) → (c̃6 = 1)}.

Similarly, if health status r1 = 0, then c̃10 will be set to close.
Counter-strategy guided methods are not fully automated to
decompose specifications. It does, however, provide a more
systematic way to “debug” and refine interfaces. Methods to
fully automate decomposition are currently a work in progress.

3) Scalability: For T = 0, that is, when essential buses must
always be powered, the resulting distributed controllers for each
subsystem take 5 s to synthesize and result in automata of
approximately 120 states each. For the full topology depicted
in Fig. 5, the computation time increases to 10 s. Adding an

202 IEEE TRANSACTIONS ON CONTROL OF NETWORK SYSTEMS, VOL. 2, NO. 2, JUNE 2015

additional row of components (i.e., generator, rectifier, ac bus,
ac contactor, dc bus, and dc contactor) to the topology increases
the computation time to 1000 s. Even for the simple example
shown in the case study, decreasing the number of components
in the synthesis problem decreases the computation time by an
order of magnitude. Given existing synthesis tools, distributed
synthesis techniques, such as these demonstrated, are one way
to address industrial-scale problems.

VII. CONCLUSION AND FUTURE WORK

The use of a specification language to capture requirements
and a synthesis procedure to construct control protocols par-
tially automates the design process, allowing for faster design
times and more efficient ways to identify errors. This paper
demonstrates how text-based specifications can be captured
using linear temporal logic with timing constraints in a rep-
resentative case study. Given a topology for an electric power
system and a set of system requirements, we automatically
synthesize a control protocol for an electric power system on an
aircraft. The controller reacts to changes in the environment and
is guaranteed, by construction, to satisfy the desired properties
even in the presence of generator failures.

The computational complexity of synthesis makes solving
industrial-scale problems difficult for current tools. We thus
examined the use of distributed control protocols, which take
less computational time to synthesize due to fewer components
within each subsystems and, thus, smaller state spaces. They
are, however, more conservative than a centralized controller in
terms of length of time when nonessential buses are powered.

From the basis of this, there are a number of directions
for practical and theoretical future work that apply to electric
power systems as well as other application areas that span other
networked control systems. While counter-strategy guided re-
finements partially automate decomposition of specifications,
future work will focus on fully automating the decomposition
of overall system specifications into subsystem specifications.
Timing specifications, (e.g., safety and contactor open/closing
times) in the electric power system problem are addressed with
the use of clocks by way of an additional counter variable. This
discretization of time further adds to the difficulties arising from
the state space explosion. We are currently examining the use
of timed verification and synthesis tools, such as UPPAAL and
UPPAAL-TIGA [31]. One open issue not addressed is the level
of abstraction needed for modeling, design, and specifications
of an electric power system. Control of the power quality from
generators is considered at a continuous level of abstraction.
Load management and load shedding are considered at a dis-
crete low-level of abstraction. Both of these problems, although
at different levels of abstraction, should be interfaced with the
primary distribution problem discussed in this paper.

ACKNOWLEDGMENT

The authors would like to thank N. Ozay from the University
of Michigan, and R. Poisson and Eelco Scholte from United
Technologies Aerospace Systems for their insight and helpful
discussions.

REFERENCES

[1] J. Rosero, J. Ortega, E. Aldabas, and L. Romeral, “Moving towards a
more electric aircraft,” IEEE Aerosp. Electron. Syst. Mag., vol. 22, no. 3,
pp. 3–9, Mar. 2007.

[2] J. Zumberge et al., “Integrated aircraft electrical power system modeling
and simulation analysis,” SAE Tech. Paper, pp. 01–1804, 2010.

[3] T. Wu, S. Bozhko, G. Asher, and D. Thomas, “Fast functional modelling
of the aircraft power system including line fault scenarios,” in Proc. 5th
IET Int. Conf. Power Electron., Mach. Drives, 2010, pp. 1–7.

[4] P. Nuzzo et al., “A contract-based methodology for aircraft electric power
system design,” IEEE Access, vol. 2, pp. 1–25.

[5] T. Wongpiromsarn, U. Topcu, and R. Murray, “Formal synthesis of
embedded control software: Application to vehicle management sys-
tems,” in Proc. AIAA Infotech Aerospace Conf., St. Louis, MO, USA,
2011.

[6] N. Piterman, A. Pnueli, and Y. Sa’ar, “Synthesis of reactive (1) designs,”
in Verification, Model Checking, Abstract Interpretation. New York,
USA: Springer, 2006, pp. 364–380.

[7] C. Belta et al., “Symbolic planning and control of robot motion [grand
challenges of roboticspey1a],” IEEE Robot. Autom. Mag., vol. 14, no. 1,
pp. 61–70, Mar. 2007.

[8] A. Pnueli, “Applications of temporal logic to the specification and veri-
fication of reactive systems: A survey of current trends,” Current Trends
Concurrency, pp. 510–584, 1986.

[9] A. Galton, Temporal Logics and their Applications. London, U.K.:
Academic Press, 1987.

[10] G. J. Holzmann, “The model checker spin,” IEEE Trans. Softw. Eng.,
vol. 23, no. 5, pp. 279–295, May 1997.

[11] M. Kloetzer and C. Belta, “A fully automated framework for control of
linear systems from temporal logic specifications,” IEEE Trans. Autom.
Control, vol. 53, no. 1, pp. 287–297, Feb. 2008.

[12] H. Kress-Gazit, G. E. Fainekos, and G. J. Pappas, “Temporal-logic-based
reactive mission and motion planning,” IEEE Trans. Robot., vol. 25, no. 6,
pp. 1370–1381, Dec. 2009.

[13] N. Ozay, U. Topcu, and R. M. Murray, “Distributed power allocation for
vehicle management systems,” in Proc. IEEE Conf. Dec. Control Eur.
Control Conf., 2011, pp. 4841–4848.

[14] N. Ozay, U. Topcu, R. M. Murray, and T. Wongpiromsarn, “Distributed
synthesis of control protocols for smart camera networks,” in Proc.
IEEE/ACM Int. Conf. Cyber-Phys. Syst., 2011, pp. 45–54, IEEE.

[15] T. Laengle, T. C. Lueth, and U. Rembold, “A distributed control architec-
ture for autonomous robot systems,” Ser. Mach. Perception Artif. Intell.,
vol. 21, pp. 384–402, 1995.

[16] I. Moir and A. Seabridge, Aircraft Systems: Mechanical, Electrical,
Avionics Subsystems Integration. West Sussex, U.K.: AIAA Education
Series, 2001.

[17] R. G. Michalko, “Electrical starting, generation, conversion and distribu-
tion system architecture for a more electric vehicle,” U.S., Patent 7 439
634, 10, 2008.

[18] A. Shalal-Esa, “Pentagon says F-35 fighter delayed, costs rise 4.3
percent,” Chicago Tribune, Mar. 2012. [Online]. Available: http://
articles.chicagotribune.com/2012-03-29/news/sns-rt-us-lockheed-
fighterbre82t03r-20120329_1_f-35-costs-rise-pentagon-report

[19] S. Creedy, “Dreamliner’s slow flight,” The Australian, Oct. 2013. [Online].
Available: http://www.theaustralian.com.au/news/features/dreamliners-
slow-flight/story-e6frg6z6-1226733805717

[20] A. Pnueli, “The temporal logic of programs,” in Proc. IEEE 18th Annu.
Symp. Foundations Comput. Sci., 1977, pp. 46–57.

[21] Z. Manna and A. Pnueli, The Temporal Logic of Reactive and Concurrent
Systems: Specifications, vol. 1. New York, USA: Springer, 1992.

[22] C. Baier and J. Katoen, Principles of Model Checking. Cambridge, MA,
USA: MIT Press, 2008.

[23] R. Bloem, B. Jobstmann, N. Piterman, A. Pnueli, and Y. Saar, “Synthesis
of reactive (1) designs,” J. Comput. Syst. Sci., vol. 78, no. 3, pp. 911–938,
2012.

[24] T. Wongpiromsarn, U. Topcu, and R. M. Murray, “Receding horizon
temporal logic planning,” IEEE Trans. Autom. Control, vol. 57, no. 11,
pp. 2817–2830, Nov. 2012.

[25] A. Pnueli, Y. Sa’ar, and L. Zuck, “Jtlv: A framework for developing ver-
ification algorithms,” in Computer Aided Verification. New York, USA:
Springer, 2010, pp. 171–174.

[26] T. Wongpiromsarn, U. Topcu, N. Ozay, H. Xu, and R. M. Murray, “Tulip:
A software toolbox for receding horizon temporal logic planning,” in
Proc. 14th Int. Conf. Hybrid Syst.: Comput. Control, 2011, pp. 313–314.

[27] M. Mukund, “From global specifications to distributed implementations,”
Synthesis Control Discrete Event Syst., pp. 19–34, 2002.

[28] E. Filiot, N. Jin, and J.-F. Raskin, “Antichains and compositional al-
gorithms for ltl synthesis,” Formal Meth. Syst. Design, vol. 39, no. 3,
pp. 261–296, 2011.

XU et al.: SPECIFICATION AND SYNTHESIS OF REACTIVE PROTOCOLS 203

[29] P. Madhusudan and P. Thiagarajan, “Distributed controller synthesis for
local specifications,” Automata Languages Program., pp. 396–407, 2001.

[30] R. Alur, S. Moarref, and U. Topcu, “Counter-strategy guided refinement
of gr (1) temporal logic specifications,” in Proc. IEEE Formal Meth.
Comput.-Aided Design, 2013, pp. 26–33.

[31] G. Behrmann et al., “Uppaal-tiga: Time for playing games!,” in Computer
Aided Verification. New York, USA: Springer, 2007, pp. 121–125.

Huan Xu received the B.S. degree in mechanical
engineering and material science from Harvard Uni-
versity, Cambridge, MA, USA, in 2007, and the M.S.
and Ph.D. degrees in mechanical engineering from
the California Institute of Technology, Pasadena,
CA, USA, in 2008 and 2013, respectively.

Currently, she is an Assistant Professor at the Uni-
versity of Maryland, College Park, MD, USA, with a
joint appointment in Aerospace Engineering and the
Institute for Systems Research. Current projects in-
clude developing real-time flight simulation software

for unmanned aircraft vehicles (UAVs) and the design and implementation of
a UAV for the Student Unmanned Aircraft Systems Competition. Her research
interests are in control, analysis, and design of unmanned autonomous systems.

Ufuk Topcu received the Ph.D. degree in mechan-
ical engineering from the University of California,
Berkeley, CA, USA.

Currently, he is a Research Assistant Professor in
the Department of Electrical and Systems Engineer-
ing at the University of Pennsylvania, Philadelphia,
PA, USA. and was a Postdoctoral Scholar at the
California Institute of Technology, Pasadena, CA,
USA, until 2012. His research is on the analysis,
design, and verification of autonomous, networked
systems.

Richard M. Murray (F’04) received the B.S. degree
in electrical engineering from California Institute of
Technology (Caltech), Pasadena, CA, USA, in 1985
and the M.S. and Ph.D. degrees in electrical engi-
neering and computer sciences from the University
of California, Berkeley, CA, USA, in 1988 and 1991,
respectively.

Currently, he is the Thomas E. and Doris Everhart
Professor of Control and Dynamical Systems and
Bioengineering at Caltech. His research is in the
application of feedback and control to networked

systems, with applications in biology and autonomy. Current projects include
the analysis and design biomolecular feedback circuits; specification, design
and synthesis of networked control systems; and novel architectures for control
using slow computing.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues false
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

