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Network entropy and data rates required for
networked control

Christoph Kawan and Jean-Charles Delvenne

Abstract—We consider the problem of making a set of states
invariant for a network of controlled systems. We assume that the
subsystems, initially uncoupled, must be interconnected through
controllers to be designed with a constraint on the data rate
obtained by every subsystem from all the other subsystems. We
introduce the notion of subsystem invariance entropy, which is a
measure for the smallest data rate arriving at a fixed subsystem,
above which the overall system is able to achieve the control
goal. Moreover, we associate to a network of n subsystems a
closed convex set of Rn encompassing all possible combinations
of data rates within the network that guarantee the existence
of corresponding feedback strategies for making a given set
invariant. The extremal points of this convex set can be regarded
as Pareto-optimal data rates for the control problem, expressing
a trade-off between the data rates required by different systems.
We characterize these quantities for linear systems, and for
synchronization of chaos.

Index Terms—Networked control, zero-error capacity, controlled
invariance, invariance entropy, feedback transformation.

I. INTRODUCTION

A bottleneck of information, i.e., a channel transmitting in-
formation with finite data-rate capacity, inside a feedback
loop may make the pursuit of a control objective more
challenging or even impossible. Characterizing the required
data rate to achieve a particular control task under various
circumstances has been an active topic since the pioneering
work of Delchamps [1]. Many contributions initially focused
on the case of a single system, with a single controller, and
various communication constraints. Among the contributions
in that setting (see, e.g., [2], [3], [4], [5], [6], [7]), we
single out Nair et al. [8], characterizing the required data
rate to achieve set invariance and stabilization of discrete-
time deterministic systems through finite data-rate channels.
In this paper, the authors introduced the notion of topologi-
cal feedback entropy, an intrinsic quantity of the open-loop
system, which measures the smallest data rate above which
the corresponding control problem can be accomplished by
some appropriate feedback controller. In Colonius and Kawan
[9], another quantity named invariance entropy was introduced
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in the analogous continuous-time setting, as a measure for the
complexity of the control task to render a set of states invariant.
Though the definitions of topological feedback entropy and
invariance entropy are conceptually different, it turned out that
they are equivalent, after being adapted to the same (discrete-
time) setting, see Colonius et al. [10]. In several frameworks,
a key result is that achieving a control objective (such as
stabilization, or making a set invariant) for a linear system
of unstable eigenvalues λ1, . . . , λk (and possibly other stable
eigenvalues) requires a minimum data rate of

∑
i log |λi| bits

per unit of time.

Network control theory aims at the design of distributed
control strategies, where the overall system is composed of
several subsystems, each actuated by a specific controller.
For instance, one may impose a communication graph be-
tween subsystems and controllers, with the problem to design
controllers that achieve a certain control goal or minimize a
control cost while respecting these interconnection patterns.
Results in this direction for linear systems can be found, e.g.,
in the book [11] by Matveev and Savkin.

Along those lines, a desirable result would be, given a limited
data-rate capacity Rij from the output of subsystem i to the
input of subsystem j (for all pairs i, j), determine whether it
is possible to design suitable controllers for every subsystem
and communication strategies between the output of every
subsystem and every controller, that achieve a certain control
objective while respecting the data-rate constraints along each
communication line. As far as we know, this problem is
essentially open.

In this paper, we tackle a simpler problem, where a constraint
is put on the total data rate accessible to input of each
subsystem. This limit on the data rate can be seen as a
bottleneck of information at the entry of the subsystem. One
can assume for instance that only an imperfect, e.g., quantized,
measurement is accessible to the controller, which then decides
of the input to apply to the subsystem. Equivalently, one can
assume, as we do in this paper, that the bottleneck stands
between the controller (seen as a coder, in a coding-theoretic
view) having perfect knowledge of the overall state and the
actuator (decoder). The problem is therefore to design a set
of controllers achieving a certain control goal given these
data-rate constraints. Note that subsystems only communicate
through the controllers we design, i.e., do not bypass the
bottleneck of information through direct connections (see
Fig. 1). We assume that the goal is to make a certain subset
Q of the overall state space X1 × . . .×Xn (where Xi is the
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state space of subsystem i) invariant.

As an example, one may think of drones, or other kinds of
agents that must maintain a certain shape in space, e.g., so that
every distance ‖xi − xj‖ is in a prescribed interval di,j ± ε.
The positions are measured, e.g., with cameras by a central
entity, and a centrally-computed appropriate control signal is
sent to each drone through a finite rate wireless channel (which
stands here between control and actuation). Alternatively, the
central entity only sends quantized estimates of the overall
state to each drone, which then computes the most appropriate
course of action (the channel stands here between estimation
and controller).

In this paper, we characterize the set of possible data rates
that must be received at the entry of each subsystem, by a
suitable generalization of invariance entropy [9], called the
network entropy set. It is a subset of Rn, that depends on the
n individual subsystems and the set Q to be made invariant.
We show that a point (h1, . . . , hn) belongs to this set if and
only if there is a control strategy that achieves the control
objective, where the first subsystem receives a data rate h1,
the second subsystem a data rate h2, etc.

We find that in some situations there is a trade-off between
the rates to be allowed to the systems: one subsystem can
receive no information at all if the other receives twice more,
for instance. This is the case when chaotic systems are to
be practically synchronized, i.e., interconnected so that their
trajectories remain within distance ε from one another. In
other cases, such as controllable linear systems, there is no
such trade-off: the control goal is achievable if and only if a
sufficient rate is available to each of the subsystems, whose
minimum value only depends on this specific subsystem.

A simpler case is when only one of the subsystems obeys
a data-rate constraint, while the other subsystems have full
access to the state of every subsystem. We characterize the
minimum required data rate for this subsystem as the sub-
system invariance entropy. We recover invariance entropy in
case of a single system (n = 1). We also show that the
subsystem invariance entropy takes, under mild conditions, the
form

∑
i log |λi|, summed over unstable eigenvalues, for linear

subsystems.

It should be noted that the kind of channels we consider here
can be deterministic (lossless transmission of a finite alphabet
of symbols), nondeterministic (possible confusion between
two symbols), but not stochastic, as this would require a
different, probabilistic statement of the control goal. The data-
rate capacity is therefore defined as the zero-error capacity for
the channel. We assume here that the transmission through the
channel can occur without transmission or decoding delay. Of
course, the existence of such delays would make the bounds
we find in this paper conservative, instead of tight. In the
presence of delays, capacity of a channel should be replaced
by anytime capacity [4].

In this paper, we work with discrete-time systems described
by difference equations, a time interval [0, τ ] being understood
as the set of nonnegative integers less than or equal to τ .

However, the general definitions and results can easily be
adapted to continuous-time systems, described by differential
equations, where [0, τ ] now denotes a real interval.

The paper is organized as follows. In Section II, we recall from
[9] the concept of invariance entropy in the case of a single
system. Section III defines overall system and subsystem
invariance entropy, as well as main properties of the latter,
including the connection with the required data rate to achieve
the control objective. Subsystem invariance entropy for linear
systems is derived in Section IV. The network entropy set, its
definition, properties, including relationship with subsystem
invariance entropy, is the object of Section V. In Section VI,
the network entropy set for linear systems is characterized,
while the network entropy set for synchronization of chaotic
systems is treated in Section VII. We end with perspectives.

Fig. 1. A networked system is composed of n subsystems Σi, here
n = 2. A limited data-rate capacity channel takes place between a coder
Γi and a decoder ∆i. The coder/decoder pair may be understood, e.g., as a
quantizer/controller pair, or a controller/actuator pair (as we assume in this
paper), etc. The problem is to determine which zero-error data-rate capacities
allow the control objective (making a certain compact set Q invariant in the
overall state space) to be achieved, for some control and actuation strategies
Γi,∆i.

Notation: We write Z for the set of integers and Z+ for the set
of nonnegative integers. Logarithms are assumed to be taken
to the base 2.

II. CONTROL SYSTEMS AND INVARIANCE ENTROPY

In this paper, we consider discrete-time control systems given
by difference equations

xk+1 = f(xk, uk), k ≥ 0.

Here the right-hand side is a map f : X ×U → X , where X
is a topological space (the state space of the system) and U a
nonempty set (the control value set). We assume that for each
u ∈ U the map fu : X → X , x 7→ f(x, u), is continuous. The
admissible control sequences are the elements of U := UZ+ ,
and the dynamics of the system is described by the transition
map ϕ : Z+ ×X × U → X ,

ϕ(k, x, ω) =

{
x if k = 0,

fωk−1
◦ · · · ◦ fω0

(x) if k ≥ 1.

Note that for each k ∈ Z+ and ω ∈ U the map ϕk,ω : X → X ,
x 7→ ϕ(k, x, ω), is continuous.
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We call a compact set Q ⊂ X with nonempty interior
(strongly) controlled invariant provided that for every x ∈ Q
there exists u ∈ U such that fu(x) ∈ intQ. Given such a
set Q, we define the invariance entropy of Q as follows. For
τ > 0, a set S ⊂ U of control sequences is called (τ,Q)-
spanning if for every x ∈ Q there is ω ∈ S with

ϕ(k, x, ω) ∈ intQ for k = 1, . . . , τ.

We let rinv(τ,Q) denote the minimal cardinality of a (τ,Q)-
spanning set and define the invariance entropy of Q by

hinv(Q) := lim
τ→∞

1

τ
log rinv(τ,Q).

As shown in [10], the numbers rinv(τ,Q) are finite and the
limit exists because of subadditivity (and hence is equal to the
infimum over τ > 0). If we consider more than one system at
the same time, we sometimes write hinv(Q; Σ) to refer to a
specific system Σ.

In [10] it has been shown that the quantity hinv(Q) coincides
with the topological feedback entropy introduced by Nair et
al. [8]. Hence, it is a measure for the smallest data rate in
a channel between coder and controller, above which the
system is able to render the set Q invariant, a typical goal
in control theory. In a metric space setting, the definition
of topological feedback entropy can be modified in such a
way that it becomes an analogous measure for the problem
of local uniform exponential stabilization at an equilibrium
point. This is done by taking appropriate limits, letting the
size of the set Q and that of the control range tend to zero. In
Nair et al. [8] it is proved that the corresponding data rate or
entropy can be expressed in terms of the unstable eigenvalues
of the linearization about the equilibrium. Similar formulas
and estimates for the invariance entropy can be found in the
monograph [12].

III. SUBSYSTEM INVARIANCE ENTROPY

As a step towards characterizing the data rate required for each
of n interacting subsystems cooperating to achieve a common
control goal for the overall system, we study the particular
case where only the actuator of the i-th subsystem receives
a constrained data rate, while other subsystems obey no such
constraint and can take advantage of full knowledge about the
overall state. The minimum data rate required is shown to be
appropriately modeled by the subsystem invariance entropy,
introduced in this section.

A. Definition and elementary properties

Consider a discrete-time control system Σ which is the direct
product of n subsystems Σ1, . . . ,Σn. We write Xi for the state
space and Ui for the set of control values of Σi. The dynamics
is given by

x
(i)
k+1 = fi

(
x

(i)
k , u

(i)
k

)
, k ≥ 0.

We assume that Xi is a topological space, Ui a nonempty set,
and fi : Xi × Ui → Xi a map which is continuous in its first

component. We write ϕi : Z+×Xi×Ui → Xi for the associ-
ated transition map, where Ui := U

Z+

i . The state space of the
overall system Σ is the Cartesian product X = X1×· · ·×Xn

(endowed with the product topology) and the control value
set is U = U1 × · · · × Un. The corresponding transition map
is given by ϕ(k, x, ω) = (ϕ1(k, x1, ω1), . . . , ϕn(k, xn, ωn)),
ϕ : Z+ × X × U → X , U = U1 × · · · × Un. Moreover, we
denote by πi : X → Xi the canonical projection to the i-th
component. Note that this map is continuous and open. For
the projection to the i-th component of the space of control
sequences we write πUi : U → Ui.
A system of this type can be a model for the underlying
dynamics of a multi-agent system, in which the uncoupled
subsystems are supposed to satisfy a common goal. An exam-
ple would be a platoon of vehicles, where the vehicles should
follow a common leader with the same velocity and prescribed
distances. Another example are cooperating robots that are
supposed to distribute over some region to get measurements,
or to meet at a common place (see, e.g., [13]). The following
definition introduces a notion of entropy related to the control
aim of keeping the overall system in a prescribed subset of the
state space. In the vehicle example, this subset might be chosen
in such a way that the distance of two consecutive vehicles is
kept within a certain interval and also the velocities stay in a
certain interval.

III.1 Definition: Given a controlled invariant set Q of Σ,
i ∈ {1, . . . , n}, and τ > 0, a subset Si ⊂ Ui is called (τ,Q)(i)-
spanning if the set U1 × · · · × Ui−1 × Si × Ui+1 × · · · × Un
is (τ,Q)-spanning. The minimal cardinality of such a set is
denoted by r(i)

inv(τ,Q) and we define the i-th subsystem in-
variance entropy of Q by

h
(i)
inv(Q) := lim

τ→∞

1

τ
log r

(i)
inv(τ,Q).

In other words, for each τ , we seek among all (τ,Q)-spanning
sets S one whose projection to the i-th component, πUiS,
has smallest cardinality. The asymptotic growth rate of this
cardinality as τ →∞ is the i-th subsystem invariance entropy.

The following proposition shows that h(i)
inv(Q) is well-defined

and summarizes some of its elementary properties.

III.2 Proposition: LetQ be a controlled invariant set of Σ and
fix i ∈ {1, . . . , n}. Then the following statements hold:

(a) The numbers r(i)
inv(τ,Q) are finite and the sequence τ 7→

log r
(i)
inv(τ,Q) is subadditive. Therefore,

h
(i)
inv(Q) = inf

τ>0

1

τ
log r

(i)
inv(τ,Q) <∞. (1)

(b) If Q is a Cartesian product of compact sets Qj ⊂ Xj

with nonempty interiors, Q = Q1 × · · · ×Qn, then Qi is
a controlled invariant set of Σi and

h
(i)
inv(Q) = hinv(Qi). (2)

(c) In general, πi(Q) ⊂ Xi is a controlled invariant set of Σi
and

hinv(πi(Q); Σi) ≤ h(i)
inv(Q) ≤ hinv(Q; Σ). (3)
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Proof: To show (a), note that finiteness of r(i)
inv(τ,Q)

follows from the simple observation that a (τ,Q)-spanning
set S ⊂ U projects to a (τ,Q)(i)-spanning set (cf. the proof
of (c)), and S can be chosen to be finite, which follows
from continuity of the transition map with respect to x and
compactness of Q (see [8, Prop. 2.2]). To show subadditivity,
take a (τ1, Q)(i)-spanning set S1

i ⊂ Ui and a (τ2, Q)(i)-
spanning set S2

i ⊂ Ui for arbitrary τ1, τ2 > 0. Define a new
set Si ⊂ Ui by

Si :=
{
ω ? µ : ω ∈ S1

i , µ ∈ S2
i

}
,

where ω ? µ is defined as the concatenation

(ω ? µ)k =

{
ωk for 0 ≤ k ≤ τ1 − 1

µk−τ1 for τ1 ≤ k ≤ τ1 + τ2 − 1
,

(extended arbitrarily for k ≥ τ1 + τ2.) We claim that Si is a
(τ1 + τ2, Q)(i)-spanning set. Indeed, take x ∈ Q. Then there
exists ω ∈ U1 × · · · × Ui−1 × S1

i × Ui+1 × · · · × Un with
ϕ(k, x, ω) ∈ intQ for k = 1, . . . , τ1. Put y := ϕ(τ1, x, ω) ∈
Q. Then there is µ ∈ U1× · · ·×Ui−1×S2

i ×Ui+1× · · ·×Un
with ϕ(k, y, µ) ∈ intQ for k = 1, . . . , τ2, or equivalently,
ϕ(k + τ1, x, ω ? µ) ∈ intQ for k = 1, . . . , τ2. Since the i-
th component of ω ? µ is contained in Si, this proves the
claim. Choosing S1

i , S2
i minimal, it follows that r(i)

inv(τ1 +

τ2, Q) ≤ r
(i)
inv(τ1, Q) · r(i)

inv(τ2, Q), implying subadditivity of
log r

(i)
inv(τ,Q). The equality in (1) now follows from Fekete’s

subadditivity lemma (cf. [10, Lem. 2.1]).

To show (b), take xi ∈ Qi and let x ∈ Q with
πi(x) = xi. Since Q is controlled invariant, there exists
u = (u1, . . . , un) ∈ U1 × · · · × Un with f(x, u) ∈ intQ.
This implies

fi(xi, ui) = πi(f(x, u)) ∈ πi(intQ) ⊂ intπi(Q) = intQi,

since πi is an open map. Hence, Qi is controlled invariant with
respect to Σi. To show (2), assume that Si ⊂ Ui is (τ,Qi)-
spanning. We claim that Si is also (τ,Q)(i)-spanning. Indeed,
for every x = (x1, . . . , xn) ∈ Q = Q1×· · ·×Qn, we find ωj ∈
Uj (j 6= i) with ϕj(k, xj , ωj) ∈ intQj for k = 1, . . . , τ by
controlled invariance of Qj , and ωi ∈ Si with ϕ(k, xi, ωi) ∈
intQi for k = 1, . . . , τ . Putting ω := (ω1, . . . , ωn), we find

ϕ(k, x, ω) ∈ intQ1 × · · · × intQn = intQ for k = 1, . . . , τ,

proving the claim. On the other hand, if Si ⊂ Ui is (τ,Q)(i)-
spanning, then it is obviously also (τ,Qi)-spanning. Hence,
(τ,Qi)-spanning and (τ,Q)(i)-spanning sets are in one-to-one
correspondence, implying (2).

Finally, let us show (c). Since πi is continuous and open, πi(Q)
is compact and has nonempty interior. The proof of controlled
invariance is the same as in (b). With the same reasoning
as before, we see that a (τ,Q)(i)-spanning set Si ⊂ Ui is
also (τ, πi(Q))-spanning. This implies the first inequality in
(3). To see the second one, take a (τ,Q)-spanning set S ⊂
U = U1 × · · · × Un and put Si := πUi(S). We claim that Si
is (τ,Q)(i)-spanning. Indeed, take x ∈ Q. Then there exists
ω ∈ S with ϕ(k, x, ω) ∈ intQ for k = 1, . . . , τ . Since ω =
(ω1, . . . , ωn) ∈ S ⊂ U1×· · ·×Ui−1×πUi(S)×Ui+1×· · ·×Un,
this proves the claim and completes the proof of (c).

III.3 Remark: Notice that the obvious monotonicity proper-
ties of r(i)

inv(·) with respect to τ and to each Uj hold, i.e.,
τ 7→ r

(i)
inv(τ,Q) is increasing, and enlarging any of the control

value sets Uj can only lower the values of r(i)
inv(τ,Q) and

hence of h(i)
inv(Q).

B. The data-rate theorem

In this section, we prove that the i-th subsystem invariance
entropy h

(i)
inv(Q) measures the smallest possible information

rate, more precisely the zero-error capacity, at the entry of i-th
subsystem above which the overall system is able to render the
set Q invariant, while the other subsystems can be controlled
with full knowledge of the overall state.

Remember that we assume for convenience in this paper that
the bottleneck of information stands between the controller
(assumed to possess full knowledge of the overall state) and
the actuator. The controller generates a signal over the time
interval (0, τ ] = {1, . . . , τ} described by Γτ : X(0,τ ] →
B(0,τ ], where B is an alphabet used for transmission into
the channel. The channel transmits the signal as a possibly
nondeterministic (set-valued) map κτ : B(0,τ ] → B(0,τ ].
The actuator, reading the (possibly corrupted) signal from the
channel, acts on the system with an input signal given by the
map ∆τ : B(0,τ ] → U (0,τ ].

III.4 Remark: The maps Γ and ∆ could in principle be
chosen to be nondeterministic (set-valued), however it is easy
to see that for all nondeterministic maps Γ,∆ achieving a
control objective, deterministic maps can be chosen instead
that achieve the same control objective. Thus, there is no loss
of generality in assuming Γ,∆ to be deterministic as we do.

The zero-error capacity of such a channel is given by
lim(1/τ) log bτ , where bτ is the maximum cardinality of a
subset of B(0,τ ] whose elements are pairwise distinguishable
when sent through the channel. Two signals in B(0,τ ] are dis-
tinguishable if their images under κτ have empty intersection.
Therefore, the zero-error capacity is the maximum data rate
that can be reliably transmitted through the channel.

In this context, one can state the following data rate theorem.

III.5 Theorem: Let Q be a controlled invariant set of Σ and
fix i ∈ {1, . . . , n}. Then h

(i)
inv(Q) is the infimum zero-error

capacity required between the i-th controller and actuator of Σi
over all overall control strategies Γ,∆ that make Q invariant.

Proof: Over a time interval, any successful control strat-
egy Γ,∆ must be such that the image of ∆

(i)
τ is at least

of cardinality r
(i)
inv(τ,Q). As the control objective, making

Q invariant, must succeed whatever corruption occurs in the
channel, the same control strategy must be successful for any
deterministic version of the channel κ̃τ : B(0,τ ] → B(0,τ ],
i.e., a deterministic map created by choosing arbitrarily κ̃τ (s)
among the sets κτ (s) for every channel signal s ∈ B(0,τ ]. The
minimal cardinality of the image of κ̃τ (s) is precisely bτ , as
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can easily be seen. For one such minimal choice of κ̃τ (s), one
can modify Γ

(i)
τ to Γ̃

(i)
τ so that ∆τ ◦κ̃τ is injective on the image

of Γ̃τ . Indeed, if two channel signals s1, s2 ∈ B(0,τ ] lead to the
same final input signal ∆τ (κ̃τ (s1)) = ∆τ (κ̃τ (s2)), then the
controller Γ

(i)
τ may as well be replaced by Γ̃ = Γ

(i)
τ ◦ κ̃τ ◦ κ̃−1

τ ,
for some choice of an inverse κ̃−1

τ , so as to comprise only
s1 or s2 in its image, with the same final input signal being
delivered to the system. In summary, we derive a modified
control strategy (Γ̃τ ,∆τ ) able to make Q invariant through
channel κ̃τ until time τ at least, generating at most sτ different
input signals for Σi. Since this strategy is successful in making
Q invariant, the set of those input signals must be (τ,Q)(i)-
spanning, thus must be of cardinality at least r(i)

inv(τ,Q), and
therefore bτ ≥ r

(i)
inv(τ,Q). Passing to limit of large τ , we see

that the zero-error capacity of the channel is at least h(i)
inv(Q).

We need to prove that h(i)
inv(Q) can be reached as an infimum

of all allowed capacities, for some control strategies Γ,∆ and
some channels κ. For any ε > 0, consider a τ large enough so
that log r

(i)
inv(τ,Q)/τ < h

(i)
inv(Q) + ε. One chooses a (τ,Q)(i)-

spanning set Si. Then one can devise a block-coding strategy
for Γ,∆, that measures x0, then transmits through a no-delay
channel the index of an appropriate element of Si that will
maintain Q invariant until time τ . At time τ , a measurement
of Xτ is made by the controller, which then transmits the
index of an appropriate element of Si to the actuator, that will
maintain Q invariant until 2τ , etc.

C. Transformations

In this subsection, we describe a class of transformations
preserving the subsystem invariance entropy. We know that
invariance entropy is an invariant with respect to state trans-
formations (see, e.g., [9, Thm. 3.5]), but not with respect to
feedback transformations, which can be seen by looking at
the formula for the entropy of linear systems that involves
eigenvalues, not preserved by feedback transformations. The
following proposition shows that this is different for subsystem
invariance entropy. Here feedback transformations applied to
all subsystems Σj , j 6= i, leave h(i)

inv(Q) unchanged, whereas
for Σi only state transformations are allowed.

In general, a (topological) state transformation of a system
xk+1 = f(xk, uk) with state space X is given by a homeo-
morphism α : X → Y onto a space Y . Then the dynamics of
the transformed system on Y is described by

yk+1 = g(yk, uk), g(y, u) = α(f(α−1(y), u)).

Consequently, the f -trajectory with initial value x and control
sequence uk is transformed by α into the g-trajectory with
initial value α(x) and the same control sequence. Additionally,
we will allow a (bijective) transformation β : U → V of the
control value set, in which case the transformed system takes
the form

yk+1 = g(yk, vk), g(y, v) = α(f(α−1(y), β−1(v))).

We will also call these more general transformations α× β :
X × U → Y × V state transformations.

In contrast, a feedback transformation does not act on the state
and control variables separately, since here the transformation
of the control variable may also depend on the state. A
feedback transformation of the system xk+1 = f(xk, uk)
is given by a bijection Φ : X × U → Y × V of the
form Φ(x, u) = (γ(x), δ(x, u)), where γ : X → Y is
a homeomorphism. In this case, the new right-hand side
g : Y × V → Y is related to the old one by

γ(f(x, u)) = g(γ(x), δ(x, u)),

and the f -trajectory xk with initial value x0 and control
sequence uk is mapped by γ to the g-trajectory with initial
value γ(x0) and control sequence δ(xk, uk).

For simplicity we will assume that n = 2 in the following,
which we can do without loss of generality, since for a fixed
i ∈ {1, . . . , n} we can combine the subsystems Σj , j 6= i, to
one larger subsystem.

III.6 Proposition: Consider two networked systems given by

x
(1)
k+1 = f1

(
x

(1)
k , u

(1)
k

)
, (u

(1)
k ) ∈ U1

x
(2)
k+1 = f2

(
x

(2)
k , u

(2)
k

)
, (u

(2)
k ) ∈ U2

(4)

and

y
(1)
k+1 = g1

(
y

(1)
k , v

(1)
k

)
, (v

(1)
k ) ∈ V1

y
(2)
k+1 = g2

(
y

(2)
k , v

(2)
k

)
, (v

(2)
k ) ∈ V2.

(5)

The corresponding transition maps are denoted by ϕi(k, xi, ωi)
and ψi(k, yi, µi) (i = 1, 2), resp., the state spaces by X =
X1 × X2 and Y = Y1 × Y2, and the control value sets by
U = U1 × U2 and V = V1 × V2. We assume that there exists a
state transformation Φ1 : X1 × U1 → Y1 × V1, Φ1(x1, u1) =
(α(x1), β(u1)), and a feedback transformation Φ2 : X2×U2 →
Y2×V2, Φ2(x2, u2) = (γ(x2), δ(x2, u2)). Then, if Q ⊂ X is a
controlled invariant set for system (4), the set P := (α×γ)(Q)
is controlled invariant for system (5) and

h
(1)
inv(Q) = h

(1)
inv(P ). (6)

Proof: First note that P is a compact set with nonempty
interior, since α× γ is a homeomorphism. Let y = (y1, y2) ∈
P and put x = (x1, x2) := (α × γ)−1(y) ∈ Q. Since Q
is controlled invariant, there exists u = (u1, u2) ∈ U1 × U2

with (f1(x1, u1), f2(x2, u2)) ∈ intQ. Put v1 := β(u1) and
v2 := δ(x2, u2). Then

(g1(y1, v1) , g2(y2, v2))

= (g1(α(x1), β(u1)), g2(γ(x2), δ(x2, u2)))

= (α(f1(x1, u1)), γ(f2(x2, u2)))

∈ (α× γ)(intQ) = intP.

This proves controlled invariance of P .

Now let S1 ⊂ U1 be a (τ,Q)(1)-spanning set and put
S̃1 := {β◦ω1}ω1∈S1 . We claim that S̃1 is a (τ, P )(1)-spanning
set. Indeed, take y = (y1, y2) ∈ P and let (x1, x2) :=
(α× γ)−1(y1, y2). Then there exists (ω1, ω2) ∈ S1 ×U2 with
(ϕ1(k, x1, ω1), ϕ2(k, x2, ω2)) ∈ intQ for k = 1, . . . , τ . Let
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µ1 := β ◦ ω1 ∈ S̃1 and µ2(k) :≡ δ(ϕ2(k, x2, ω2), ω2(k)),
µ2 ∈ V2. Then (ψ1(k, y1, µ1), ψ2(k, y2, µ2)) =
(α(ϕ1(k, x1, ω1)), γ(ϕ2(k, x2, ω2))) ∈ (α × γ)(intQ) =
intP for k = 1, . . . , τ , proving the claim. Since
#S̃1 = #S1, this implies h

(1)
inv(P ) ≤ h

(1)
inv(Q). Using

that the transformations are invertible, we can interchange the
roles of the two networks and obtain the assertion.

III.7 Remark: It is not hard to formulate a non-invertible
version of the above proposition, in which the transformations
are only assumed to be onto and open. In this case, the equality
(6) becomes the inequality h(1)

inv(P ) ≤ h(1)
inv(Q).

IV. SUBSYSTEM INVARIANCE ENTROPY FOR LINEAR
SYSTEMS

We can use Proposition III.6 to compute the subsystem in-
variance entropy for linear systems under some controllability
assumption and a slightly stronger form of controlled invari-
ance.

IV.1 Theorem: Assume that each of the subsystems Σi is
linear, x(i)

k+1 = Aix
(i)
k + Biu

(i)
k (Xi = Rdi , Ui ⊂ Rmi ). Fix

i ∈ {1, . . . , n} and assume that for each j 6= i the pair (Aj , Bj)
is controllable. Furthermore, assume that there exists a compact
set K ⊂ intQ such that every x ∈ Q can be steered into intK
in one step of time. Then

h
(i)
inv(Q) =

∑
λ∈σ(Ai)

max {0, nλ log |λ|} , (7)

where nλ denotes the multiplicity of the eigenvalue λ. In
particular, if all subsystems are controllable, then

n∑
i=1

h
(i)
inv(Q) = hinv(Q). (8)

Proof: By Proposition III.2(c), we have h
(i)
inv(Q) ≥

hinv(πi(Q); Σi). Note that πi(Q) has nonempty interior and
hence positive Lebesgue measure. Then it follows from a
volume growth argument that

hinv(πi(Q); Σi) ≥
∑

λ∈σ(Ai)

max {0, nλ log |λ|} ,

implying the lower estimate in (7). The idea of the argument
is as follows. The projection of Σi to the unstable subspace of
Ai is a linear system Σui whose trajectories are the projections
of those of Σi. If πi(Q)u is the projection of πi(Q), the
invariance entropy of πi(Q)u is not greater than that of
πi(Q). Any (τ, πi(Q)u)-spanning set naturally is in one-to-
one correspondence with a cover of πi(Q)u whose elements
are transformed by the transition map in such a way that
their images at time τ are still contained in πi(Q)u. Then
the volume expansion of the transition map of Σui in the x-
component, which is determined by the unstable determinant
of Ai, provides a lower bound on the number of elements in
this cover, leading to the desired estimate (cf. [9, Thm. 5.1]
or [12, Thm. 3.1] for more details).

For the upper estimate, we use the Brunovsky normal form
(cf. [14, Sec. 5.2]) for controllable linear systems, together
with Proposition III.6. Indeed, we may assume that each of the
subsystems Σj , j 6= i, is given in Brunovsky normal form and
thus has zero eigenvalues. (Here the feedback transformation
is linear and has the form (γ(x), δ(x, u)) = (Tx, V u−V Fx)
with T, V invertible.) It is easy to see that the strong con-
trolled invariance assumption imposed on Q is preserved by
the transformations described in Proposition III.6. Using that
h

(i)
inv(Q) ≤ hinv(Q; Σ) (Proposition III.2(c)), it thus suffices to

show that

hinv(Q; Σ) ≤
∑

λ∈σ(A1⊕A1⊕···⊕An)

max {0, nλ log |λ|} . (9)

Using compactness of Q and openness of intK, one sees that
finitely many, say k, control values are sufficient to steer from
every x ∈ Q into intK. Moreover, the set K is controlled
invariant and has positive distance ε > 0 to the boundary of
Q. Letting rinv(ε, τ,K) denote the minimal cardinality of a
set S ⊂ U such that for every x ∈ K there is ω ∈ S with
dist(ϕ(k, x, ω),K) < ε for k = 1, . . . , τ , we obtain

hinv(Q) ≤ lim sup
τ→∞

1

τ
log (k · rinv(ε, τ,K)) .

Obviously, the constant k can be omitted. Therefore, by [12,
Thm. 3.1], the right-hand side is bounded from above by the
right-hand side of (9), concluding the proof of (7). Since in the
case n = 1 the subsystem invariance entropy coincides with
the usual invariance entropy, formula (8) immediately follows
from (7).

IV.2 Remark:

• The preceding proposition shows that in the given setting
the i-th subsystem invariance entropy is independent of
the specific geometry of the set Q and also of the
eigenvalues of the other subsystems j 6= i. For nonlinear
systems, we expect the situation to be more complicated
in general.

• Note that the preceding result in the case n = 1 yields
a formula for the invariance entropy of a linear system
which in this particular form has not been formulated
before. An analogous formula has only been proved
for another version of invariance entropy which allows
trajectories to leave the set Q and remain in an ε-
neighborhood (then the limit for ε↘ 0 is taken).

V. THE NETWORK ENTROPY SET

In this section, we introduce an object encompassing all
possible combinations of data rates for controllers within the
given networked system, which allow to make the set Q
invariant.

Consider again the networked system Σ of Section III with
subsystems Σi, i = 1, . . . , n. For every time τ > 0, define the
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Fig. 2. Top: Lower and upper bounds on network entropy set for two systems.
Middle: Network entropy set of a linear system satisfying the conditions of
Proposition VI.1. Bottom: Network entropy set of synchronization of two
chaotic systems.

set

Hτ (Q) :=
{1

τ
(log #S1, . . . , log #Sn) :

S1 × · · · × Sn finite (τ,Q)-spanning
}
,

the elements of which we call finite-time entropy vectors.

V.1 Lemma: The following assertions hold:

(a) Hτ (Q) ⊂ Hsτ (Q) for all τ > 0, s ∈ Z+.
(b) If ξ, η ∈ Hτ (Q), then (1/2)(ξ + η) ∈ H2τ (Q).

Proof: To show (a), let ξ ∈ Hτ (Q) with corresponding
(τ,Q)-spanning set S1 × · · · × Sn. For every i ∈ {1, . . . , n},
we consider all possible concatenations of s elements of Si,
and we denote the set of these control sequences by S̃i. Then
#S̃i = (#Si)s and S̃1 × · · · × S̃n is an (sτ,Q)-spanning set.
This implies

1

sτ

(
log #S̃1, . . . , log #S̃n

)
= ξ ∈ Hsτ (Q).

To show (b), consider (τ,Q)-spanning sets S(1)
1 ×· · ·×S

(1)
n and

S(2)
1 × · · ·×S(2)

n whose associated finite-time entropy vectors
are ξ and η. Let Si be the set of all concatenations of elements

of S(1)
i and S(2)

i . Then S1×· · ·×Sn is (2τ,Q)-spanning and
#Si = #S(1)

i ·#S
(2)
i . This implies

1

2τ
(log #S1, . . . , log #Sn)

=
1

2

[1

τ

(
log #S(1)

1 , . . . , log #S(1)
n

)
+

1

τ

(
log #S(2)

1 , . . . , log #S(2)
n

)]
=

1

2
(ξ + η),

concluding the proof.

We further introduce the set of all limit points of sequences
ξk ∈ Hτk(Q), where τk →∞.

V.2 Definition: The network entropy set of Σ is defined as

H(Q) :=
⋂
τ>0

cl
⋃
t≥τ

Ht(Q).

Obviously, H(Q) is contained in the closed positive orthant
of Rn.

V.3 Proposition: The following assertions hold:

(a) The network entropy set satisfies

H(Q) = cl
⋃
τ>0

Hτ (Q).

In particular, H(Q) is nonempty and closed.
(b) Assume that each of the control value sets Ui contains at

least two elements. If ξ ∈ H(Q) and η ≥ ξ component-
wise, then η ∈ H(Q). In particular, H(Q) is unbounded.

(c) The set H(Q) is convex.
(d) For any (h1, . . . , hn) ∈ H(Q), it holds that

hinv(Q) ≤
n∑
i=1

hi.

(e) The setH(Q) contains (hinv(Q), . . . , hinv(Q)), provided
that #Ui ≥ 2 for all i.

Proof: To show (a), note that Lemma V.1(a) implies
Hτ (Q) ⊂ H(Q) for all τ > 0 and hence cl

⋃
τ>0Hτ (Q) ⊂

H(Q), since H(Q) is closed as the intersection of closed sets.
On the other hand, by the definition of H(Q) it clearly holds
that H(Q) ⊂ cl

⋃
τ>0Hτ (Q).

To show (b), let ξk → ξ, where ξk ∈ Hτk(Q), τk → ∞.
Let S(k)

1 × · · · × S(k)
n be a (τk, Q)-spanning set with corre-

sponding finite-time entropy vector ξk. By adding additional
control sequences from Ui to S(k)

i (which is possible by
our assumption that #Ui ≥ 2 and hence #Ui = ∞), we
can construct (τk, Q)-spanning sets S̃(k)

1 × · · · × S̃(k)
n with

(1/τk)(log #S̃(k)
1 , . . . , log #S̃(k)

n ) → η. For instance, this
holds if #S̃(k)

i = max{#S(k)
i , b2τkηic}.

Now let us show (c). Take ξ, η ∈ H(Q) and let ξk → ξ,
ηk → η with ξk ∈ Hτk(Q), ηk ∈ Hρk(Q), where τk, ρk →∞.
From Lemma V.1(a) it follows that ξk, ηk ∈ Hρkτk(Q) for all
k ≥ 1. Lemma V.1(b) implies (1/2)(ξk + ηk) ∈ H2ρkτk(Q)
and thus

1

2
(ξ + η) = lim

k→∞

1

2
(ξk + ηk) ∈ H(Q).
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By an iterative argument and closedness of Q, it follows that
the whole line segment [ξ, η] is in H(Q), showing convexity
of H(Q).

To show (d), take h ∈ Hτ (Q) for some τ > 0. Then there
exists a finite (τ,Q)-spanning set of the form S1 × · · · × Sn
such that hi = (1/τ) log #Si. It follows that

hinv(Q) = inf
t>0

1

t
log rinv(t, Q) ≤ 1

τ
log #(S1 × · · · × Sn)

=
1

τ
log

n∏
i=1

#Si =

n∑
i=1

hi.

Since H(Q) = cl
⋃
τ∈NHτ (Q), the assertion follows.

Finally, to show (e), consider a finite (τ,Q)-spanning set S ⊂
U1 × · · · × Un. Since S ⊂ S1 × · · · × Sn with Si = πUiS, the
set S1 × · · · × Sn is also (τ,Q)-spanning and

H(Q) 3 1

τ
(log #S1, . . . , log #Sn)

≤ 1

τ
(log #S, . . . , log #S),

which by (b) implies (1/τ)(log #S, . . . , log #S) ∈ H(Q) and
consequently (hinv(Q), . . . , hinv(Q)) ∈ H(Q) (provided that
#Ui ≥ 2).

The interpretation of the network entropy set is to be found
in a data-rate theorem similar to Theorem III.5.

V.4 Theorem: Let Q be a controlled invariant set of Σ and fix
i ∈ {1, . . . , n}. Then a point (h1, . . . , hn) is in the interior of
the network entropy set, intH(Q), if and only if there are a
control strategy Γ,∆ and channels with zero-error capacities
(h1, . . . , hn) that make Q invariant.

The proof, being entirely similar to Theorem III.5 (repeating
the arguments to all channels simultaneously), is omitted.

The next proposition relates the network entropy set to the
subsystem entropies h(i)

inv(Q).

V.5 Proposition: The following statements hold:

(a) For every i ∈ {1, . . . , n},

h
(i)
inv(Q) = inf Pi(H(Q)),

where Pi : Rn → R is the projection to the i-th
component.

(b) If Q = Q1 × · · · ×Qn, then

H(Q) =

n∏
i=1

[hinv(Qi),∞).

Proof: For the proof of (a), fix i and let s :=
inf Pi(H(Q)). Then there exists a sequence ξk ∈ H(Q)
with Pi(ξk) → s. We can approximate the vectors ξk by
elements of

⋃
τ>0Hτ (Q). Hence, we find sequences τk →∞

and ηk ∈ Hτk(Q) with Pi(ηk) → s. For each ηk we
have a corresponding (τk, Q)-spanning set S(k)

1 × · · · × S(k)
n .

Then S(k)
i is (τ,Q)(i)-spanning and (1/τk) log #S(k)

i → s,
implying

h
(i)
inv(Q) = lim

τ→∞

1

τ
log r

(i)
inv(τ,Q)

≤ lim
k→∞

1

τk
log #S(k)

i = inf Pi(H(Q)).

To show the other inequality, choose for given ε > 0 a τ > 0

with (1/τ) log r
(i)
inv(τ,Q) − h(i)

inv(Q) ≤ ε. Let Si ⊂ Ui be a
(τ,Q)(i)-spanning set of minimal cardinality r

(i)
inv(τ,Q). We

claim that there exist finite sets Sj ⊂ Uj (j 6= i) such that
S1 × · · · × Sn is (τ,Q)-spanning. Indeed, for every x ∈ Q
there exists ω = ωx ∈ U1×· · ·×Ui−1×Si×Ui+1×· · ·×Un
with ϕ(k, x, ωx) ∈ intQ for k = 1, . . . , τ . By continuity of ϕ
with respect to x, there exists an open neighborhood Ux ⊂ X
of x with ϕ(k, y, ωx) ∈ intQ for k = 1, . . . , τ and all y ∈ Ux.
By compactness, Q can be covered by finitely many of such
neighborhoods, say Ux1 , . . . , Uxm . The corresponding control
sequences ωx1 , . . . , ωxm ∈ U1×· · ·×Ui−1×Si×Ui+1×· · ·×Un
form a finite (τ,Q)-spanning set S, implying the claim (let
Sj := πUj (S)). Because Hτ (Q) ⊂ H(Q), this implies

h
(i)
inv(Q) + ε ≥ 1

τ
log r

(i)
inv(τ,Q)

= Pi

(
1

τ
(log #S1, . . . , log #Sn)

)
≥ inf Pi(H(Q)).

Since this holds for every ε, the proof is complete.

To prove (b), note that a product set S1 × · · · × Sn ⊂ U is
a finite (τ,Q)-spanning set if and only if each Si is a finite
(τ,Qi)-spanning set. Hence, there exists an element of Hτ (Q)
that is minimal componentwise, implying that Hτ (Q) and thus
H(Q) is a Cartesian product. Together with statement (a) the
assertion follows.

Connecting these results, we obtain the following estimate:
n∏
i=1

[hinv(Q),∞) ⊂ H(Q)

⊂
n∏
i=1

[h
(i)
inv(Q),∞) ∩

{
(h1, . . . , hn) :

n∑
i=1

hi ≥ hinv(Q)

}
.

See Fig. 2 for a graphical representation.

VI. THE NETWORK ENTROPY SET FOR LINEAR SYSTEMS

For linear systems, the network entropy set is easy to charac-
terize, under some reasonable assumptions.

VI.1 Proposition: For a network of controllable linear sys-
tems satisfying the strong invariance condition of Theorem
IV.1, and a compact set Q of nonempty interior, the network
entropy set is

H(Q) =

n∏
i=1

 ∑
λ∈σ(Ai)

max {0, nλ log |λ|} ,∞

 .
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Proof: We may assume that 0 ∈ intQ. Let C = C1 ×
· · · × Cn be a Cartesian product of compact and controlled
invariant sets Ci ⊂ Rdi with nonempty interiors, such that
0 ∈ intC ⊂ C ⊂ intQ. By controllability, every state
x ∈ Q can be controlled to the origin in a finite time τx
using a control sequence uk(x). By compactness of Q, we may
assume that τx ≤ τ∗ for all x ∈ Q and a constant τ∗. Then we
may assume τx = τ∗ for all x, because the control sequences
uk(x) can be extended by zeros. By continuity of the transition
map in the state variable, a whole neighborhood Nx of x can
be steered into intC with the same control sequence uk(x)
without leaving Q. Hence, there exists a finite set of the form
R = R1 × · · · × Rn ⊂ U such that for every x ∈ Q there
is (v1, . . . , vn) ∈ R with ϕ(k, x, v) ∈ Q for k = 0, 1, . . . , τ∗

and ϕ(τ∗, x, v) ∈ C. Take an element ξ ∈ H(C). Then there
exists a sequence ξk = (1/τk)(log #Sk1 , . . . , log #Skn), where
τk → ∞ and Sk1 × · · · × Skn is (τk, C)-spanning such that
ξk → ξ. The set (Sk1 ?R1)× · · ·× (Skn ?Rn) is (τk + τ∗, Q)-
spanning and

1

τk + τ∗
(
log #Sk1 + log #R1, . . . , log #Skn + log #Rn

)
converges to ξ, implying ξ ∈ H(Q). Hence, H(C) ⊂ H(Q),
and therefore Proposition V.5(b) yields

n∏
i=1

[hinv(Ci),∞) ⊂ H(Q) ⊂
n∏
i=1

[h
(i)
inv(Q),∞).

Now hinv(Ci) = h
(i)
inv(Q) =

∑
λ∈σ(Ai)

max{0, nλ log |λ|} by
Theorem IV.1, concluding the proof.

VII. THE NETWORK ENTROPY SET FOR
SYNCHRONIZATION OF CHAOS

We now present an example of a control problem where the
network entropy set is not rectangular, i.e., a Cartesian product
of intervals, but exhibits a trade-off between the data rates
required by both subsystems.

Consider the angle-multiplying system

Σ : xk+1 = (αxk + uk) mod 1

on the unit circle S1 = R/Z with an integer |α| ≥ 2 and
uk ∈ U := [−1, 1]. The natural dynamics of this system, i.e.,
when uk ≡ 0, is a well-known example of a chaotic system.

We consider two copies of Σ with states x(1) and x(2),
which we seek to interconnect in order to reach ‘practical
synchronization’, i.e., we want to make the set

Q :=
{

(x(1), x(2)) ∈ S1 × S1 : d(x(1), x(2)) ≤ δ
}

invariant for a small δ > 0, where d(·, ·) is the canonical
distance on R/Z, given by d(x+Z, y+Z) = minj∈Z |x−y+j|.

VII.1 Theorem: The entropy set for practical synchronization
is given by

H(Q) =
{

(h1, h2) ∈ R2 : h1, h2 ≥ 0, h1 + h2 ≥ log |α|
}
.

Proof: For clarity, in the following we write x̄ for
elements of S1 and x for their representatives in R, i.e.,
x̄ = x+Z. Choosing δ small enough, we find that the interval
I := [−δ, δ] ⊂ R is controlled invariant for the linear system

Σl : xk+1 = αxk + uk, uk ∈ U, xk ∈ R.

Indeed, this holds for every δ ≤ 1/(2|1 − α|), because for
a given x ∈ [−δ, δ] and small ε > 0 the control input ux :=
(1−α)x±ε satisfies |ux| < 1/2+ε ∈ U and αx+ux = x±ε.
Moreover, if ϕl(k, x, ω) and ϕ(k, x̄, ω) denote the transition
maps of Σl and Σ, resp., then

ϕ(k, x̄, ω) ≡ ϕ(k, x, ω) + Z.

We claim that every (τ, I)-spanning set S for Σl yields a
(τ,Q)-spanning set of the same cardinality for the product
system on S1 × S1, given by

S ′ := {(ω, 0) : ω ∈ S} .

Indeed, if (x̄(1), x̄(2)) ∈ Q, we may assume that the representa-
tives x(1), x(2) ∈ R are chosen such that x(1)−x(2) ∈ [−δ, δ].
Then there exists ω ∈ S such that ϕl(k, x(1) − x(2), ω) ∈
(−δ, δ) for k = 1, . . . , τ . Hence,

ϕ
(
k, x̄(1), ω

)
− ϕ

(
k, x̄(2), 0

)
mod 1

= ϕl
(
k, x(1), ω

)
− ϕl

(
k, x(2), 0

)
mod 1

= ϕl
(
k, x(1) − x(2), ω

)
mod 1,

implying, for k = 1, . . . , τ ,

d
(
ϕ
(
k, x̄(1), ω

)
, ϕ
(
k, x̄(2), 0

))
= min

j∈Z

∣∣∣ϕl (k, x(1) − x(2), ω
)

+ j
∣∣∣ < δ,

which proves the claim. Consequently, hinv(Q) = log |α| (us-
ing Theorem IV.1 with n = 1). By what we have just shown,
(τ,Q)-spanning sets of the form S×{0} exist, which immedi-
ately implies h(2)

inv(Q) = 0. Using that S grows asymptotically
like 2hinv(I;Σl) = 2log |α|, we obtain (log |α|, 0) ∈ H(Q). By
symmetry, h(1)

inv(Q) = 0 and (0, log |α|) ∈ H(Q). Together
with Proposition V.3(b,c,d), this proves the theorem.

The theorem is illustrated on bottom of Fig. 2. Therefore, we
observe a trade-off in the data rates required by each of the
two subsystems: one may receive less, or even no information
from the state of the overall system, provided that the other
subsystem receives more.

VIII. PERSPECTIVES

We see the current framework as both interesting in itself, at
the theoretical and applicative level, and a stepping stone to a
more ambitious framework including prescribed rates between
any pair of systems, both in a deterministic and in a stochastic
framework. Such extensions are by no means trivial, as for
instance a general stochastic version for the invariance entropy
(or any similarly general tool) for even a single system is not
known to this date. A better understanding of the (necessarily
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nonlinear) situations where a trade-off between the different
data rates is allowed to the different subsystems, as we showed
for synchronization of chaos, is also desirable.
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