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Minimal Actuator Placement with Bounds on Control Effort

V. Tzoumas, M. A. Rahimian, G. J. Pappas, A. Jadbabaie

Abstract—We address the problem of minimal actuator place- In this paper, we address this important requirement by
ment in linear systems so that the volume of the set of states providing efficient approximation algorithms to actuaterzad
reachable with one unit or less of input energy is lower boundd fraction of a system’s states so that a specified controlggner
by a desired value. First, following the recent work of Olshe&sky, - .
we prove that this is NP-hard. Then, we provide an efficient perfprmance c_>ver the_em're state _space 1S _g_uaranteed. In
algorithm which, for a given range of problem parameters, Particular, we first consider the selection of a minimal nemb
approximates up to a multiplicative factor of O(logn), n being of actuated states so that a pre-specified lower bound on the
the network size, any optimal actuator set that meets the saen yolume of the set of states reachable with one or less units
energy criteria; this is the best approximation factor one @n ot jnnyt energy is satisfied. Finding such a subset of states

achieve in polynomial time, in the worst case. Moreover, the . hall ina task. si it i | th h f smal
algorithm uses a perturbed version of the involved control eergy IS a challenging task, since it involves the search for a sma

metric, which we prove to be supermodular. Next, we focus orhie  umber of actuators that induce controllability, which €on
related problem of cardinality-constrained actuator placement stitutes a combinatorial problem that can be computatignal
for minimum control effort, where the optimal actuator set is intensive. Indeed, identifying a small number of actuatates
selected to maximize the volume of the set of states reachabl fo jnqycing controllability alone is NP-hard|[9]. Theregowe
with one unit or less of input energy. While this is also an . . . .
NP-hard problem, we use our proposed algorithm to efficieny extend this computatlona_lly hard problem b_y mtroducmg.an
approximate its solutions as well. energy performance requirement on the choice of the optimal
Index Terms—Multi-agent Networked Systems, Input Place- actugtor set, and we solve it with an efficient approximation
ment, Leader Selection, Controllability Energy Metrics, Minimal algorlth_m. . . . .
Network Controllability. Specifically, we first generalize the involved energy objec-
tive to ane-close one, which remains well-defined even for
actuator sets that render the system uncontrollable. Twen,
I. INTRODUCTION make use of this metric and relax the implicit controllabil-

: . . . ity constraint from the original actuator placement praomble
During the past decade, an increased interest in the agal 9 b b

) . btwithstanding, we prove that for small values ofall
of large-scale systems has led to a variety of studies tI}%l)tI

¢ th . f the h s brain functi utions of this auxiliary program still render the system
range from the mapping of the humans brain UNCUON, i o) japle. This fact, along with the supermodularitytioé

connectivity to the understanding of the collective bebavi eneralized objective with respect to the choice of theatotu

of animals, and the evolutionary mechanisms of compl t, leads to an efficient algorithm which, for a given range

ecological systems_[1H4]. At the same time, control SCB problem parameters, approximates up to a multiplicative

entists develop methods for the regulation of such Compltfa tor of O(logn), wheren is the size of the system, any
systclams,-wnh the no.table examples o [5.]’ for the _contr ptimal actuator set that meets the specified energy aniteri
of biological systems;([6], for the regulation of brain an oreover, this is the best approximation factor one caneahi
neural networks{ [7], for robust information spread ovegiab in polyno’mial time. in the worst case. Hence with this
neg/vorﬁs, ar;]d [?1]’ f(()jr l?]adl manageme;nthm smart grid. algorithm we address the open problem of minimal actuator
n the other hand, the large size of these sys?ems., as Wicement subject to bounds on the control effoft [O]) [11],
as the need for low cost control, has made the identificati 1“2] [14], [15]
of a small fraction of their states, to steer them around t eR’eIeva’nt reéults are also found [12], where the authors

entire space, an important problefm [9]5[12]. This is a taséfudy the controllability of a system with respect to the
of formidable complexity; indeed, it is shown ifn][9] thatS

- . mallest eigenvalue of the controllability Gramian, andyth
finding a small number of actuators, so that a linear SYSt®My&rive a lower bound on the number of actuators so that this
controllable, is NP-hard. However, mere controllabilisy of

; ) R . eigenvalue is lower bounded by a fixed value. Nonetheless,
little value if the required input energy for the desirechsters they do not provide an algorithm to identify the actuatostth
is exceedingly high, when, for example, the controllapilit

T . ! . -achieve this value.
matrix is close to singularityL [13]. Therefore, by choosing Next, we consider the problem of cardinality-constrained

|nphu_t states to f(;,\nsgre contrtlal;abngy alone, one may NBttuator placement for minimum control effort, where the
achieve a cost-eftective control for the system. optimal actuator set is selected so that the volume of thefset
, . _ states that can be reached with one unit or less of input gnerg
*All authors are with the Department of Electrical and Sysidemgineer- . imized. Th lated K hi bl
ing, University of Pennsylvania, Philadelphia, PA 191@28 USA (email: 1S maX|m|ze : e mO_St related works to this problem are
{vtzoumas, mohar, pappasg, jadbabai}@seas.upenn.edu). the [11] and[[16], in which the authors assume a controllable

This work was supported in part by ARO MURI WO1INF-12-1-0509  gystem and consider the problem of choosing a few extra
part TerraSwarm, one of six centers of STARnet, a SemicdndiResearch

Corporation program sponsored by MARCO and DARPA, and irt pgr actuators in order to optimize-some Of the_ inp.Ut energy mtri
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that these energy metrics are supermodular with respectBoare of appropriate dimension. We equivalently referfo (1)
the choice of the extra actuated states. The assumption aisaa network o, nodes,1,2, ..., n, which we associate with
controllable system is necessary since these metrics dep#re statesr,zo,...,x,, respectively. Moreover, we denote
on the inverse of the controllability Gramian, as they cegtutheir collection as) = [n].

the control energy for steering the system around the entireHenceforth, A is given while B is adiagonal zero-one
state space. Nonetheless, it should be also clear that ghakinmatrix that we design so thdfl(1) satisfies a specified control
system controllable by first placing some actuators to enswnergy criterion over the entire state space.

controllability alone, and then adding some extra ones to . . n
optimize a desired energy metric, introduces a sub—opilliynalAssumpt'On 1. B = diag(), wheres € {0, 1}".

that is carried over to the end result. In this paper, we ¥ollo  Specifically, if§; = 1, statex; may receive an input, while
a parallel line of work to the minimal actuator placement 5, = 0, it receives none.

problem, and provide an efficient algorithm that selectsted| _ )

actuated states to maximize the volume of the set of staaes tRefinition 1 (Actuator Set, Actuator)Given aé < {0,1}",
can be reached with one unit or less of input energy withol@ & = {i 7 €V andé; = 1}; then, A is called anactuator
any assumptions on the controllability of the involved epst Setand eachi € A an actuator

A similar actuator placement problem is studiedlin/[12] for
stable systems. Nevertheless, its authors propose a tin_aur' . Controllability and Related Energy Metrics
actuator placement procedure that does not constrain the
number of available actuators and does not optimize theirWe consider the notion of controllability and relate it t@th
control energy objective. Our proposed algorithm selectspgoblems of this paper, i.e., the minimal actuator placemen
cardinality-constrained actuator set that minimizes atrodbn for constrained control energy and the cardinality-caised
energy metric, even for unstable systems. actuator placement for minimum control effort.

The remainder of this paper is organized as follows. The System[(LL) is controllable — equivalentlyA, B) is con-
formulation and model for the actuator placement probleras drollable — if for any finitet; > ¢, and any initial state
set forth in SectiofiJl, where the corresponding integei-optro = x(to) it can be steered to any other state= x(t,) by
mization programs are stated. In Sectibns Il IV we discusome inputu(t) defined overfto,?,]. Moreover, for general
our main results, including the intractability of theselgleons, matricesA and B, the controllability condition is equivalent
as well as the supermodularity of the involved control eperdo the matrix
metrics with respect to the choice of the actuator sets. ;en B mto) b T AT (t—t0)
provide efficient approximation algorithms for their sdtut W= / eV BB e °dt, (2)
that guarantee a specified control energy performance over fo

the entire state space. Sectfoh V concludes the paper. being positive definite for any; > ¢, [13]. Therefore, we
refer toW as thecontrollability matrix of ().

Il. PROBLEM FORMULATION The controllability of a linear system is of interest beaaus
it is related to the solution of the following minimum-engrg

Notation: We denote the set of natural number§ransfer problem

{1,2,...} asN, the set of real numbers &, and we let

[n] = {1,2,...,n} for all n € N. Also, given a setX, o t1 .

we denote asX| its cardinality. Matrices are represented by m|g|((r)1|ze / u(t)" u(t) dt

capital letters and vectors by lower-case letters. For aixnat . fo

AT is its transpose and;; is its element located at the-th subject to ®)
row andj—th column. If A is positive semi-definite or positive i(t) = Az(t) + Bu(t),to <t < 11,
definite, we writeA > 0 and A > 0, respectively. Moreover, x(to) = 0,z(t1) = 21,

fori € [n], we letI() be annxn matrix with a single non-zero
element;; = 1, while I, = 0, for j, k # 4. Furthermore, we
denote ad the identity matrix, whose dimension is im‘erredth
from the context. Additionally, fow € R"™, we let diadd)
denote am x n diagonal matrix such that di&g);; = J; for xfw—lxl, (4)
all i € [n]. Finally, we set{0,1}" to be the set of vectors in
R™ whose elements are either zero or one.

where A and B are any matrices of appropriate dimension.
In particular, if for the givenA and B () is controllable
e resulting minimum control energy is given by

wherer = t; —to [17]. Thereby, the states that belong to the
eigenspace of the smallest eigenvalues[df (2) require highe
energies of control input [13]. Extending this observation

A. Actuator Placement Model along all the directions of transfers in the state space nfex i

Consider a linear system af states,zy, z3, ..., 2,, Whose that the closebV is to singularity the larger the expected input
evolution is described by energy required for these transfers to be achieved [17]. For
#(t) = Ax(t) + Bu(t),t > to, 1) example, consider the case whéié is singular, i.e., when

there exists at least one direction along which system (1)
wherety € R is fixed, x = {x1,x2,...,z,}, ©(t) = dx/dt, cannot be steered [13]. Then, the corresponding minimum
while u is the corresponding input vector. The matriceand control energy along this direction isfinity.



This motivates the consideration of control energy metridsr some constantE. Its domain is {A : A C
that quantify the steering energy along all the directiams I and (A, B(A)) is controllablé since the controllability
the state space, as theg det(W 1) [17]. Indeed, this metric matrix W, must be invertible. Moreover, it is NP-hard, as
is well-defined only for controllable systems 44 must be we prove in Appendik’A.
invertible — and is directly related td](4). In more detail, Additionally, Problem[{l) is feasible for certain values Bf
\/det(W-1) is inversely proportional to the volume of theln particular, for anyA such that(A, B(A)) is controllable,
set of states reachable with one or less units of input enerQy< Wh, i.e., logdet(Wv_l) < logdet(W, ") since for any
i.e., the volume of{z : z"W 1z < 1}; as a result, when A (@) impliesWa < Wy, [22]; thus, 1) is feasible for
log det(W 1) is minimized, the volume ofz : zTW 1z < _

1} is maximized. In this paper, we aim to select a small E > logdet(Wy, ). )
number of actuators for systefd (1) so thatdet(W ') either  Moreover, [l) is a generalized version of the minimal
meets a specified upper bound or is minimized. controllability problem of [[9] so that its solution not only

Per Assumptiof]1, further properties for the controllapili ensures controllability but also satisfies a guaranteerimse
matrix are due: For any actuator st let Wa = W then,  of a control energy metric; indeed, f& — oo we recover

n the problem of|[[9].
Wa = Z5iWi’ (5) We next consider the problem
i=1
o minimize log det(Wx*
where; = [ e4t1(DeA™t 4t for anyi € [n]. This follows ACY gdet(Wa')
from @) and the fact thaBB” = B = Y1 | 6,1 for subject to (In
B = diag($). Finally, for any A; € Ay C V, (B and |A| <7,

e =0 = . . .
Wi, Way s Wa = 0/imply Wa, < Wa, where the goal is to find at mostactuated states so that the

volume of the set of states that can be reached with one unit
C. Actuator Placement Problems or less of input energy is maximized. Its domain(is : A C

We consider the selection of a small number of actuato¥s |2 <7 and(A, B(A)) is controllablg. Moreover, due to
for system[[1l) so thalbg det(W ) either satisfies an u|operthe NP—hard_ness of Problef (1), Problem (I1) is also NP-hard
bound or is minimized. The challenge is in doing so witkCf- Appendix(A). o
as few actuators as possible. This is an important improve-Because [{l) andL{ll) are NP-hard, we need to identify
ment over the existing literature where the goal of actuatgfficient approximation algorithms for their general swnt
placement problems has either been to ensure controfjabiff’is i the subject of Sectioris]ill arid]IV. In particular, in
alone [9] or the weaker property of structural controllabiiSection[Ill we consider Problenil(I) and provide for it a
ity [18], [19]. Other relevant results consider the taskezfder- PeSt approximation algorithm, for a given range of problem
selection [[20], [[21], where the leaders are the actuatedsstaP@rameters. To this end, we first define an auxiliary program,
and are chosen so to minimize a mean-square convergeWBich ignores the controllability constraint df (1), andews
error of the remaining states. ertheless, admits an efficient approximation algorithm seho

Furthermore, the most relevant works to our study are t§8!Utions not only satisfy an energy bound that-slose to
[L1] and [16] since its authors consider the minimization ¢f'€ Original one but also render systeh (1) controllablerh
log det (W ~1); nevertheless, their results rely on a pre-existin§ Section[ IV we turn our attention t¢ {Il), and following a
actuator set that rendefg (1) controllable although thiwseot Parallel line of thought as for(l(l), we efficiently solve this

selected for the minimization of this energy metric. Onef o Problem as well. _ .
contributions is in achieving optimal actuator placement f Since the approximation algorithm for the aforementioned

minimum control effort without assuming controllabilieb 2uXiliary program for[{l) is based on results for supermadul
forehand. Also, the authors 6F[12] adopt a similar framawofunctions, we present below a brief overview of the relevant
for actuator placement but focus on deriving an upper bouR@NCePts. The reader may consultl[23] for a survey on these
for the smallest eigenvalue &F with respect to the number of '€SUItS:

actuators and a lower bound for the required number acwiator

so that this eigenvalue takes a specified value. In addifi@y, D. Supermodular Functions

consider the maximization of(); however, their techniques  \y,e give the definition of a supermodular function, as well

i N 1 !

cannot be applied when minimizing theg det(W "), Wh'!e as, a relevant result that will be used in Secfich Il to cort

the maximization of /") may not ensure controllability [12]. ,, approximation algorithm for Problerd (I). The material of
We next provide the exact statements of our actuatyis section is drawn from [24].

placement problems, while their solution analysis follows

- i ; Let V be a finite set and denote a¥ its power set.
SectiondTll andTV. We first consider the problem

Definition 2 (Submodularity and supermodularityy function
h : 2¥V — R is submodularf for any setsA and A’, with
subject to () ACA'CV, andanya ¢ A,

logdet(WL') < E, R(AU{a}) — h(A) > h(A" U {a}) — h(A).

minimize |A|
ACY



A functionh : 2V + R is supermodulaif (—h) is submodular. of log det(W(f)l). Nevertheless, this assumption is necessary,

. -1 .
An alternative definition of a submodular function is basedf"“€ the_y then prove that theg det(W(~) ) is & supermodular
on the notion of non-increasing set functions. function in the choice of the extra actuators. On the othadha

our algorithms select all the actuators towards the inwblve
Definition 3 (Non-increasing and non-decreasing Set Funenergy objective, since they rely on eperturbed version
tion). A functionh : 2¥ — R is a non-increasing set function of log det(W(fl), that we prove to be supermodular without
if for any A € A" C V, h(A) > h(A'). Moreover,h is @ assuming controllability beforehand.
non-decreasing set functiah (%) is a non-increasing set  QOverall, our results supplement the existing literature by
function. considering Problemd](l) and(ll) when the system is not

Therefore, a functior : 2V — R is submodular if, for any initially controllable and by providing efficient approxation
weV the f’unctionh .94} s R defined ash ’(A) _~ algorithms for their solution, along with worst-case perfo

h(A U {a}) — R(A), is a non-increasing set function. Thighance guarantees.
property is also called thdiminishing returns property

Next, we present a fact from the supermodular functions !!l. M INIMAL ACTUATOR SETS WITH CONSTRAINED
minimization literature, that we use in Sectibnl Il so as to CONTROL EFFORT

construct an approximation algorithm for Problefh (I). In We present an efficient approximation algorithm for Prob-
particular, consider the following optimization programhich lem (). To this end, we first generalize the involved energy
is of similar structure to[ll), wheré : 2¥ +— R is a non- metric to ane-close one that remains well-defined even when
decreasing, supermodular set function: the controllability matrix is not invertible. Next, we reddl)
by introducing a new program that makes use of this metric
and circumvents the restrictive controllability constitaof (I).
subject to (©0) Moreover, we prove that for certain values ©o#ll solutions
of this auxiliary problem render the system controllable.
h(A) < E. This fact, along with the supermodularity property of the
The following greedy algorithm has been proposed for igeneralized metric that we establish, leads to our proposed
approximate solution, for which, the subsequent fact is.tru approximation algorithm. The discussion of its efficienogle
the analysis off{l).

minimize |A|
ACY

Algorithm 1 Approximation Algorithm for the Probleni(q).

Input: h, E. A. Ane-close Auxiliary Problem
OLKPUti(Z)ADPFOXimate solution to Probleni). Consider the following approximation tfl (I)
% . . .
while h(A) > E do minimize A\
a; < a' € argmax,ey\a{h(A) — h(AU{a})} subject to )
A+~ AU {az} 5 . ~
end while log det(Wa + eI)~! < E,

where W, is equivalent toWa /(2Amax (W), Amax (W)
is the maximum eigenvalue of¥y,, E is equal to E +
izlog(2/\max(Wy)), ande is positive.
"In contrast to [{l), the domain of this problem consists
of all subsets ofV since W(.) + el is always invert-
l h(V) — h(0) ible. The e-closeness is evident since for ady such that
1A% < 1+log WOV) — WD) (A, B(A)) is controllablelog det(Wa +¢I)~! < E becomes
_ _ N o logdet(Wx') < E ase — 0. Due to the definition ofi/a,
_ In SectionTIl, we prowde an efficient appr(_JX|mat|on algosor all A C V, all eigenvalues of¥/x are at mostl /2 [22,
rithm for (I), by applying Fadtll to an appropriately pertetb theorem 8.4.9]; this property will be useful in the proof of
version of this prob!em, SO t_hat it |n\{olves a non-decre@sin o of our main results, in particular, Propositidn 1.
supermodular function, as ind). This also leads to our |, e following paragraphs, we identify an approximation
second main contribution, presented in Sedtion IV: An effici algorithm for solving Problen(f), and correspondingly, the
approximation algorithm for Probleni[ll), which selectd ale-close, NP-hard Problerfl (I).
the actuators to maximize the volume of the set of states that
can be reached with one unit or less of input energy, without o )
assuming controllability beforehand. This is in contrast 8- APProximation Algorithm for Problerl’)
the related works [11] and [16]: there, the authors considerWe first prove that all solutions of i for 0 < e <
a similar problem for choosing a few actuators to optimizexin{1/2,e~*} render the system controllable, notwithstand-
log det(W(f)l); however, their results rely on the assumptioing that no controllability constraint is imposed by thiopr
of a pre-existing actuator set that renddrs (1) contradlablgram on the choice of the actuator sets. Moreover, we show
although this set is not selected towards the minimizatidghat the involvede-close energy metric is supermodular with

Fact 1. Denote asA* a solution to Problem(@) and as
Ap,A1,... the sequence of sets picked by Algorithin
Moreover, letl be the smallest index such thatA;) < E.
Then,



respect to the choice of actuator sets and then we presgdtz)+W,) ! =< Q(z)~', becausél(z) ~ O forall z € [0,1],
our approximation algorithm, followed by a discussion af itsinceel = 0, Wa, = 0, and Wa, = Wa,. Therqby, from
efficiency which ends this subsection. [22, Corollary 8.3.6], all eigenvalues ¢fQ(z) + W,) ™! —

—1 _ .
Proposition 1. Consider a constantv > 0, e such that £2(2)7")021 are non-positive. As a resulth(z)/dz < 0, and

0 < e < min{1/2,e~“}, and anyA C V: If logdet(Wa + T L dh(z) s
el)™1 <w, then(4, B(A)) is controllable. ha(A2) = h(1) = h(0) +/0 dz dz < h(0) = ha(As).
Proof: Assume that(A4, B(A)) is not controllable and Therefore,h,(A) is a non-increasing set function, and the
let £ be the corresponding number of non-zero eigenvaluesmbof is complete. ]
_‘?;A which we denote asy, Az, ..., Ax; thereforek < n —1. Therefore, the hardness of theclose Problem[{l) is in
en, agreement with that of the class of minimum set-covering
. . k 1 problems subject to submodular constraints. Inspired g/ th
logdet(Wa +€I)™" = Zlog&,7+E literature [23], [24], [26], we have the following efficient
=1 2Amax (Wy) approximation algorithm for Problend’J) and as we show
+(n—k) logl > 1ogl > w, by the end of this section, for Problei (1) as well.
€ €
since gx—24— + ¢ < 1 (becauseg—2p— < 1/2 and

e < 1/2), ande < e~. Therefore, we have a contradictionAlgorithm 2 Approximation Algorithm for the Problent L

) ) Input: Bound E, parametere < min{1/2, ~EY matrices
Note thatw is chosen independently of the parametersp W Wp € < min{l/2,e77}
of system [(l). Therefore, the absence of the con[rollabilibutpdt. A(.:ﬂ.Jé\tornsetA
constraint in Problem[f) for 0 < ¢ < min{1/2,e" ¥} is A<—'(Z) '
fictitious; nonetheless, it obviates the necessity of aeraig while log det(Wa + 1)~ > E do
only actulor sets thl fecer o system conolatle, " i oy sllogdt(Fs 4 i) -
Nog det(Waugay + €)1}

efficient approximation algorithm for solving’}! A« AU{a}

Proposition 2 (Supermodularity) The functiorlog det(Wa + end while
el)™1 : A C Vs R is supermodular and non-increasing set
with respect to the choice dk.

Proof: To prove that thelogdet(VVA +eI)~! is non- Regarding the quality of Algorithiin] 2 the following is true.

. . C C . . .
increasing, recall from[{5) that for amh, € A C Theorem 1 (A Submodular Set Coverage Optimization)

[n], Wa, = Wa,. Therefore, from[[22, Theorem 8.4.9], )
= 2 ~ S Denote asA* a solution to Problenfl’) and asA the selected
1< 1
log det(Wa, +e€l) logdet(Wa, +€eI)~", and as a result, set by AlgorithniR. Then,

log det(Wa + €I)~" is non-increasing.

Next, to prove thatog det(Wa + €l)~! is a supermodular (A4, B(A)) is controllable (7
set function, recall fr_om Sectidn 11D that it suﬁu_:es to peo log det(Wa + eI) ™! < E, ®)
thatlog det(Wa +€I) is a submodular one. In particular, recall . - .
that a function’ : 21} — R is submodular if and only if, for ~ |Al _ +log nlog(e™") —logdet(Wy + el) r

any a € [n], the functionh,, : 2"\Ma} s R, whereh,(A) = |A*| E — logdet(Wy + eI)~1
h(AU{a})—h(A), is a non-increasing set function. Therefore, 9)
to prove thati(A) = log det(Wa+¢l) is submodular, we may _ 1 1
prove that theh,(A) is a non-increasing set function. To this F = O(logn + loglog(e™") + log E —logdet(Wy; )™
end, we follow the proof of Theorem 6 in_[11]: first, observe (10)
that
~ ~ Finally, the computational complexity of Algoritfitn 205n°).
ha(A) = logdet(Wau(ay + €I) — logdet(Wa + €I)
= log det(Wa + W, + eI) — log det(Wa + €I). Proof: We first prove[(B),[(P) and_(10), and thefl (7). We

end the proof by clarifying the computational complexity of
Now, for anyA; C Ay C [n] andz € [0,1], defineQ(z) =  Algorithm 2.
el +Wa, +2(Wa,—Wa,) andh(z) = logdet(2(z) +W,) —
logdet (Q(2)); it is h(0) = ha(A1) and h(1) = ha(As).
Moreover, sincellog det(€2(2)))/dz = tr (Q(2) ~'dQ(z)/dz)

First, let Ag, Ay,... be the sequence of sets selected by
Algorithm[2 and! the smallest index such thhatg det(Wa, +
' . el)~! < E. Therefore A, is the set that Algorithrl2 returns,
(cf. equat_lon (43) in[[25]), and this proves{8).
M :tr[((Q(z)+Wa)_1 —Q(2) " 041], Moreover, from [24], since for anyA C V, h(A) =
dz ) ) —logdet(Wa + eI)~! + nlog(e™!) is a non-negative, non-
where O3; = Wa, — Wa,. From [22, Proposition 8.5.5], decreasing, and submodular function (cf. Propositiont2 i



guaranteed for Algorith]2 that (cf. Fddt 1) Finally, for large values ofn, the computation of

I h(V) — h(0) Wy, Ws, ..., W, is demanding as well. On the other hand, in
<1l+log ——F——"— the case of stable systems, as many physical, e.g., bialogic
A (V) — h(A1) . 9 .
networks are, the corresponding controllability Gramiaas
=1+ ~ be used instead, which for a stable system can be calculated
nlog(e~') — log det(Wy + el)~! from the Lyapunov equations\G; + G;AT = —I1, for
logdet(Wa, , + eI)~! — logdet(Wy + el)~1 i=1,2,...,n, respectively, and are given in closed-form by
Now,  is the first time thatog det(Wa, +€I)~! < E, and a G, = / oAlt—t0) (i) (AT (t—t0) . (11)
resultlog det(Wa,_, +€eI)~! > E. This implies [9). to

Moreover, observe thad < logdet(Wy + el)~! < Using these Gramians for the evaluation1df in (@) corre-
log det(Wy, 1) so that from [®) we getFF < 1 + sponds to the minimum state transfer energy with no time
log[nlog(e ) /(E — logdet(WV‘l))], which in turn im- constraints. The advantage of this approach is that (11) can
plies (10). . be solved efficiently using numerical methods, even when the
On the other hand, sincé < ¢ < min{1/2,e ¥} and system’s sizex has a value of several thousands] [30].
log det(Wa, +€eI)~! < E, Propositior 1 is in effect, i.e[X7) In Sectior(1lI-G we finalize our treatment of Probleih (1) by
holds true. employing Algorithn2 to approximate its solutions.
Finally, with respect to the computational complexity of
Algorithm [2, note that thevhile loop is repeated for at
most n times. Moreover, the complexity to compute thé. Approximation Algorithm for Probler)

determinant am x n matrix, using Gauss-Jordan elimination \ye present an efficient approximation algorithm for Prob-
decomposition, isO(n*). Additionally, at mostn matrices |em () that is based on Algorithiil 2. Lek be the actuator
must be inverted so that theu’s max,cy\a{logdet(Wa +  set returned by Algorithial2, so thatl, B(A)) is controllable
el)~' — logdet(Waugay + €I)~'}" can be computed. Fur- andlogdet(Wa + eI)~' < E. For anyc > 0, there exists
thermore,O(n) time is required to find a maximum elementuyfficiently smalle(c) such that:

betweem: available. Therefore, the computational complexity - o - .

of Algorithm[2 is O(n?). - log det(Wa +€(c)I)™" > logdet(W, ") — cE. (12)

Therefore, Algorithni R returns a set of actuators that mMeqlfyreover log det (Wa + e(¢))~! < E, and therefore we get
the corresponding control energy bound of Problefnvhile ¢ @),thatlog det(Wh) < (1 i C)’E or
it renders systeni{1) controllable. Moreover, the cardtiypaf A= ’

this set is up to a multiplicative factor @f from the minimum log det(WA_l) < E+cE. (13)
cardinality actuator sets that meet the same control ene
bound.

The dependence df' on n,ec and E was expected from a
design perspective: Increasing the network siz& improving
the accuracy by decreasing as well as demanding a bette
energy guarantee by decreasifigshould all push the cardi-
nality of the selected actuator set upwards. Alsg,log(e~!)
is the design cost for circumventing the difficult to satis
controllability constraint of[{)[[®], i.e., for assumingprpre-
existing actuators that rendefs (1) controllable and cingc|

the actuators towards the satisfaction of an energy petnoa . X ) S
criterion. lower value. This process continues until the condition is

From a computational perspective, the computation of tiftisfied for the first time, given thay is sufficiently small
determinant is the only intensive procedure of Algorithm 2O the specified:, from which point and on thiwhile loop
requiringO(n?) time, if we use the Gauss-Jordan eliminatioff®"Verges up to the accuracy level to_the Iargeft value
decomposition. On the other hand, to apply this algorithm & € such thatlogdet(W, ") — logdet(Wa + €I)™" < cE;
large-scale systems, we can speed up this procedure usiRgcifically, ¢ — ¢ < ao/2, due to the mechanics of the

the Coppersmith-Winograd algorithm 27], which requireQiseCtion method. On the other h.an.daij‘ is not sufficiently
O(n2376) time. Alternatively, we can use numerical method§ma"' the value of: decreases within the lastf statement

which efficiently compute an approximate the determinart 0fo’f the algorithm, the variable flag remains zero and the outer

matrix even if its size is of several thousands) [28]. Morgpve®OP iS executed again, until the convergence within theinn
we can speed up Algorithfil 2 using a method proposed ywhile is feasible. Then, the £ statement that follows the
[29], which avoids the computation dfg det(WWa + eI)~! — inner while loop ensures that is set belowe, so that

Yot (TR P v " log det(Wx') — logdet(Wa + eI)~! < cE. Finally, the last
log det(Waugqy + €I)~! for unnecessary choices af to- °8 et(Wy ) — logdet(Wa +el)™! < cE. inally, the las
wards the computation of therg max A{logdet(WA L if statement sets the flag foand the algorithm terminates.
e)~! —log det(WAU{a} +eD)~11, by taai}}rl\g advantage of the The efficiency of this algorithm for Problefd (1) is summadze

supermodularity ofog det(W/.) + ¢I)~". below.

rI.g(x-.(nce, we refer t@ asapproximation error

On the other hands(c) is not known a priori. Hence, we
need to search for a sufficiently smallso that [[(IB) holds
frue. One way to achieve this sineeis lower and upper
bounded by) andmin{1/2, e}, respectively, is to perform
a search using bisection. We implement this procedure in
Algorithm[3, where we denote dalgorithm2](E, ¢) the set
1L){hat Algorithm[2 returns for giver® ande.

In the worst case, when we first enter the inrgt 1e loop,
the i £ condition is not satisfied, and as a resuls set to a



Algorithm 3 Approximation Algorithm for the Problenil(l). straints. ThereforelA*| > |A®|, and as a resultA|/|A*| <
Input: Bound E, approximation errore, bisection’s initial |A|/[A®] < F per [9).

accuracy levehg, matricesWy, W, ..., W,,. ‘Next, note that[(T4) holds true when, e.g.js equal to
Output: Actuator setA. i cE/(2n). Therefore, since alse < e F, logloge™' =
a « ag, flag < 0,1 < 0, u « min{1/2,e ¥}, ¢ « O(max{loglog(n/(cE)),log E}) and this proved (16).
(I4u)/2 Finally, with respect to the computational complexity of
while flag # 1 do Algorithm [3, note that the innewhile loop is repeated
while v — [ > a do for at mostlog,(1/(2a)) times (sincee < 1/2), in the
A «+ [Algorithm 2] (E, ) worst case. Moreover, the time complexity of the procedures
if logdet(Wx') —logdet(Wa + €eI)~! > cE then within this loop is of orderO(n®), due to Algorithm[2.
U € Finally, if a = ag, the outerwhile loop runs for one time,
else and otherwise, fotog,(ag/a) times. Therefore, the compu-
¢ tational complexity of Algorithn{I3 isO(n° log,(1/ao)), or
end if O(n® logy(1/a)log,(ao/a)), respectively. []
e« (I+wu)/2 From a computational perspective, we can speed up Algo-
end while rithm[3 using the methods we discussed in the end of Section
if logdet(Wx') — logdet(Wa + €eI)~! > ¢E then [-B] Moreover, for a wide class of systems, e.g., when
€ e+ (I+u)/2 a = O(n™"), wherec; is a positive constant, independent
end if of n, this algorithm runs in polynomial time, due to the
A « [Algorithm 2] (E, ¢) logarithmic dependence an
if log det(W;l) —log det(WA +el)7t < ¢E then From an approximation efficiency perspective we have that
flag+ 1 F = O(log(n)), wheneverE = O(n®), Amax(Wy) =
else O(n™?) and1/(E —logdet(Wy, 1)) = O(n®?), wherecy, ¢
a<a/2 and c3 are positive constants and independent.oin other
end if words, the cardinality of the actuator set that Algorithin 3
end while returns is up to a multiplicative factor @(logn) from the

minimum cardinality actuator sets that meet the same energy
bound. Indeed, this is the best achievable bound in polyalbmi

Theorem 2 (Approximation Efficiency and Computationallimé for the set covering problem in the worst casel [31],
Complexity of Algorithm3 for ProblemX1)) Denote asA* while (@) is a _gengrahzatmn of |t_ [9]. Thus, Algorithi 3 is
a solution to Problem() and as A the selected set by best-approximation ofl(l) for this class of systems.

Algorithm[3. Then, IV. MINIMUM ENERGY CONTROL BY A

(A, B(A)) is controllable CARDINALITY -CONSTRAINED ACTUATOR SET

log det(Wx') < E + cE, (14) We present an approximation algorithm for Probldm (Il)

IA| following a parallel line of thought as in Sectignllll: First
<F (15) we circumvent the restrictive controllability constrawft (II)

A - N using thee-close generalized energy metric defined in Sec-
F' = O(log n + max{loglog(n/(cE)),log E}+ tion[l] Then, we propose an efficient approximation altfom
log — 1 _ ). (16) for its solution that makes use of Algorithmh 3; this algomith
E —log det(Wv_l) returns an actuator set that always rendéis (1) contrellabl
Finally, let « be the bisection’s accuracy level that AlgorithnWh'_Ie it guarantees a value f(!l) tat IS proval?ly (_:Iosetsho
terminates with. Then, it = ao, the computational optimal one. We end the analysis Bf (Il) by explicating ferth

complexity of Algorithn{I3 isO(n® logy(1/ao), else it is e efficiency of this procedure.

O(n” logy(1/a)logz(ao/a)). A. Ane-close Auxiliary Problem

_ Proof: We only prove statement§_{14). {15) arid1(16). For ¢ > 0 consider the following approximation t&(l)
while the first follows from Theorerhl1. We end the proof S - o
by clarifying the computational complexity of Algorithii 3. minimize log det(Wa + €I)

First, when Algorithm(B exits therhile loop, and after subjéct to (")
the following if statementjogdet(Wx') — logdet(Wa +
el)™! < cFE, and sincelogdet(Wa + eI)~! < E, this [N
implies [13). In contrast to[(ll), the domain of this problem consists df al

To show [I5), consider any solutioA* to Problem [[I) subsets ofy sinceW ., + €I is always invertible. Moreover,
and any solutionA® to Problem [(f). Then, |A*| > |A®|; its objective ise-close to that of Probleni{ll).
to see this, note that for angs*, logdet(Wa~ + eI)~! < In the following paragraphs, we identify an efficient ap-
1ogdet(WA’}) < E sincee > 0, i.e., A* is a candidate proximation algorithm for solving Probleni {J| and corre-
solution to Problem[{) because it satisfies all of its con-spondingly, thee-close, NP-hard Probleni{1l). We note that



the hardness of the latter is in accordance with that of thalue. This process continues until the condition is satisfied
general class of supermodular function minimization prolfer the first time from which point and on the algorithm
lems, as per Propositidd 2 the objectivg det(1Wa + eI)~!  converges up to the accuracy level to the smallest value
is supermodular. The approximation algorithms used in that of £ such thatA| < r; specifically,|E — E| < a},/2 due
literature however [23]/124]/]26], fail to provide an efént to the mechanics of the bisection method, whEre: min{E :
solution algorithm for [() — for completeness, we discuss/[Algorithm Bl (E, ¢, ao)| < r}. Hereby E is the least bound
this direction in the AppendikIB. In the next subsection wé& for which Algorithm[3 returns an actuator set of cardinality
propose an efficient approximation algorithm fér] (Il) thaat mostr for the specifiedc and ap — E may be larger
makes use of Algorithrn] 3. than the value of {JI) due to worst-case approximability o t
involved problems (cf. Theorefd 2). Then, Algorithith 4 exits
the while loop and the last £ statement ensures that is
_ = o _ set belowE so that/A| < r. Moreover, per Theorefd 2 this set
We prowd_e an efficient approximation alg(_)rlthm f(_)r PVObrender§[Il) controllable and guarantees thaidet(W5*) <
lem (Il) that is based on Algorithiial 3. In particular, sin€® (I £ + £. Finally, with respect to the computational complex-
finds an actuator set that minimizieg det(W '), and any so- ity of Algorithm @, note that thewhile loop is repeated
lution to (I) satisfieslog det(W3') < £, one may repeatedly for at mostlog, |(log det(Wx!) —logdet(Wy, ")) /ap| times.
execute Algorithni 3 for decreasing valuesiofas long as the \;oreqver, the time complexity of the procedures within this
returneq actuators are atfrllosandE sa_ltlsfles the feasibility loop are, in the worst case, of the same order as that of
constraintE > logdet(Wy, ") (cf. Section[1-C). Therefore, ajqorithm @ when it is executed fof equal to E. Regard-

for solving [Tl) we propose a bisection-type execution of,q Theoreni®, denote this time complexity G$E, ¢, ao).
Algorithm[3 with respect tae. Therefore, the computational complexity of AlgoritHth 3 is

To this end, we also need an upper bound for the val = 1 51 p
} C(E,c,ap)log, |(logdet(W, ) — logdet(W; a )
of (): Let A be a small actuator set that renders systém (1) e(summ(grizth‘L(e abové inAirze next co(rolfélryz)(/vh|ch also

controllable; it is efficiently found using Algorithrh] 3 for )

large £ or the procedureyproposed ing[9].gThen, for an)?nds the analysis of Probleil(1l).

r > |Acl, log det(WA*cl) upper bounds the value df](ll) sinceCorollary 1 (Approximation Efficiency and Computational

log det(W(f)l) is monotone. Complexity of Algorithm[4 for Problem[{ll)) Denote asA
Thus, having a lower and upper bound for the valiée selected set by Algorithimh 4. Then,

of (), we implement Algorithm[# for approximating the .

solutions of [(T); we consider only the non-trivial case wde (4, B(A)) is controllabNIe

r < n and denote the set that Algorithid 3 returns as logdet(Wx') < E + cE,

[AlgorithmB](E, ¢, ao) for given E, ¢ and ao. E—E|<d/2

B. Approximation Algorithm for Probler)

Algorithm 4 Approximation algorithm for Probleni{ll). where £ = min{ £ : [[Algorithm[3] (), ¢, a)| < r} is the least
- bound E that Algorithm[3 satisfies with an actuator set of
Input: Set A¢, maximum number of actuators such that

S for Aloorith bi .7~ cardinality at mostr for the specified: and . Finally, the
r 2 |Ac|, approximation erroe orAgor_lt m[3, bisection’s computational complexity of Algorithid 4 is
accuracy levelq for Algorithm[3, bisection’s accuracy level

ay, for current algorithm, matrice®’y, Wy, ..., W,. . log det(ng) — log det(Wy; 1)
Out%ut: Actuator setA. O | C(E, ¢, a0) log, < < o = )) ;
A<—@,l(—logdet(ng),uetr(Wgcl),E’<—(l+u)/2, 3
€ min{l/z,e*E} wherg C(E,c, a_o) denotes the computational c_omplexity of
while . — I > a}, do Algorithm[3, with respect to Theorelh 2, when it is executed
A « [AlgorithmBJ(E, ¢, ao) for E' equal to £.
if [A] > r then From a computational perspective, we can speed up Algo-
I E, B« (I+u)/2 rithm[4 using the methods we discussed in the end of Section
else M=B] Moreover, for a wide class of systems, e.g., when
u B, B (I+u)/2 a = O(n™"), wherec; is a positive constant, independent
end if of n, and similarly fora’ andlogdet(W!), this algorithm
€ 1/E runs in polynomial time, due to the logarithmic dependence
end while ona, o’ andlogdet(Wx '), respectively.
if |A] > r then ¢
ld<—f E, E« (I+u)/2 V. CONCLUDING REMARKS
end i

We addressed two actuator placement problems in linear
systems: First, the problem of minimal actuator placement s
that the volume of the set of states reachable with one or less

In the worst case, when we first enter thieile loop, the units of input energy is lower bounded by a desired value, and
i f condition is not satisfied, and as a redtllis set to a greater then the problem of cardinality-constrained actuator griaent

A « [AlgorithmBJ(E, ¢, ao)




for minimum control effort, where the optimal actuator set i collectionC), and|C;|/(2(m + 1)) in the (i, n)-th place;
selected so that the volume of the set of states that can be every other entry of the-th row is zero.

reached with one unit or less of input energy is maximized. « Finally, the last row oft’ =t is [0,0,...,0,1].

Both problems were shown to be NP-hard, while for the

first one we provided a best approximation algorithm for @herefore2(m + 1)V ! has all its entries as integers that are

given range of the problem parameters. Next, we proposgiher zero or at most?2, in absolute value.

an efficient approximation algorithm for the solution of the Consid h liabili . iated with thi
second problem as well. Our future work is focused on onsider the controliability matrix associated with this

exploring the effect that the underlying network topolody oSystem, given a zero-one diagoiiathat makes it controllable,

the involved system has on these actuator placement prebleﬁpd denote it aVs. Then,
as well as investigating distributed implementations airth " A(t—to) p BT AT (t—t0)
corresponding algorithms. W :/to e’ BB e o dt

ty
APPENDIX = V’l/ ePl=to)y gy TeD" (t—to) gy =T
to
A. Computational Complexity of Probler$ and () - .
_ - D T D
We prove that Problerd | is NP-hard, providing an instance Lett, —to = l"(”_)- Then, (2n)! fo_l PV BV el tdt
that reduces to the NP-hard controllability problem introed evaéuates toa ma};[rlx that has entries of the fogm- cin +
in [9]. In particular, it is shown in[[9] that deciding ifX1pi 2" + --- + cun™, where €0, 1o Cn are non-negative
controllable by a zero-one diagonal matfikwith r + 1 non- integers and all less thaf2n)! < (2n)*". Thereby,

zero entries reduces to thehitting set problem, as we define , ) [T, T DTy T

it below, which is NP-hard[32]. Wp =4(m+1)°2n)lV /0 e VBV e® "dtV T,
Definition 4 (r-hitting set problem) Given a finite sef\ and pas entries of the formy), + ¢yn + cyn® + ... + ¢,n", where

a collectionC of non-empty subsets g#, find an M’ C M 0+ are integers and all less thafn)2("+3 in

of cardinality at most- that has a non-empty intersection withapsolute value due to the pre and post multiplications by
each set irC. 2(m + 1)V~ and2(m + 1)V 7, respectively.

Without loss of generality, we assume that every element ofwe are interested on upper boundiing det(W51): since
M appears in at least one setdnand all sets irC are non- for z > 0, log(z) < z — 1, logdet(Wg5') < tr(Wg') —
empty. Moreover in Definitiofil4, we léC| = p and M =, n addition, tr(W5') = 4(m + 1)2(2n)ltr(W}, 1) <
{1,2, .. .,m},_and defineC € RP*™ such thatC_ij =1if the (2n)2(n+1)tr(wé*1)_ Therefore, we upper bouﬁd(wéfl);
i-th set contains the elementand zero otherwise. Using Crammer’s rule to computﬁfg’l, due to the form

_ . ; ) ; . ;
Theorem 3 (Computational Complexity of Problen] (1)) of the entries of Wy, all of its elements, including the
Problem(l) is NP-hard. diagonal ones, if they approach infinity, they approach it

_ with at mostn!n™(2n)?"("+3) < (2n)27("+5) speed, and as
Proof: We show that Probleril(l) fad as described below 5 (esult tr(WjB_l) < n(2n)2nts), Hence,tr(ng) <

and with E = n(2n)2"" +12n+2 _ s equivalent to the NP- n(2n)2EDF2H) =y (9)20° 412042 for any B that
hard controllability problem introduced inl[9]. Therefosince makesI(L) controllable. Thus, if we sBt—= n(2n)2n2+12n+2_

E can be described in polynomial time, &g(E) = O(n%), , which implieslog(E) = O(n®) so thatF can be described
we concl_ude that Eroblerﬁ] (1) is NP-hard. polynomially), Problem[{l) is equivalent to the controlity
In particular, as in[[9], let = m+p+1andA = V=DV,  prohlem of [9], which is NP-hard. m
whereD = diag(1,2,...,n) andl -
An immediate consequence of TheorEm 3 is the following

21 <m Omxp €mx1 one.
V = O (m + 1)Ip><p Op><1 . (17)
01xm O1xp 1 Corollary 2 (Computational Complexity of Probleni(11))

It is shown in [9] that deciding if4 is controllable by a zero- Problem(l) is NP-hard.
one diagonal matribXB with »+ 1 non-zero entries is NP-hard.
Now, observe that all the entries &f are integers either
zero or at mosin + 1. Moreover, with respect to the entries
of V1, it is shown in [9] that:
e Fori=1,2,...,m: Ithas al/2 in the (i, i)-th place and
a—1/2in the (i,n)-th place, and zeros elsewhere. B. The Greedy Algorithm used in the Supermodular Minimiza-
e« FOori=m+1,m+2,...,m+p: It has al/(m + 1) tion Literature is Inefficient for solving Probleil’)
in the (¢,7)-th place, a—1/(2(m + 1)) in the (i, j)-th
place wherej € C; (C; is the corresponding set of the
Consider Algorithm[b which is in accordance with the
1y is invertible since it is strictly diagonally dominant. supermodular minimization literature_[23], 241, [26].
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Algorithm 5 Greedy algorithm for Probleni_()L

Input: Maximum number of actuators, approximation pa-
rametere, number of steps that the algorithm will run
matricesWWy, Wo, ..., W,.

Output: Actuator setA;

Ay +— 1] , 140
while 7 < [ do
ai <+ argmaxcy,a{logdet(Wa, + )7t —
log det(Wa,uga) +€I)~'}
AiJrl <« AZU{CLZ},Z(—’L—Fl
end while

The following is true for its performance.

Fact 2. Let v* denote the value of Problerfi’). Then,
Algorithm[3 guarantees that for any positive integer

log det(Wa, + €)™t < (1 —e V" Ww* + nlog(e e /.

Proof: It follows from Theorem 9.3, Ch. 111.3.9. of [26],
since—logdet(Wa, + €I)~! 4+ nlog(e~') is a non-negative,

(23]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

non-decreasing, and submodular function with respectéo tf2]

choice of A (cf. Propositior{ R).

Algorithm[3 suffers from an error term that is proportiona[I23]
tonlog(e~!). Moreover, it is possible that Algorithi 5 returng2s

an actuator set that does not rendér (1) controllable. Tovere
Algorithm [ is inefficient for solving Problent_()\.
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