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Minimal Actuator Placement with Bounds on Control Effort
V. Tzoumas, M. A. Rahimian, G. J. Pappas, A. Jadbabaie⋆

Abstract—We address the problem of minimal actuator place-
ment in linear systems so that the volume of the set of states
reachable with one unit or less of input energy is lower bounded
by a desired value. First, following the recent work of Olshevsky,
we prove that this is NP-hard. Then, we provide an efficient
algorithm which, for a given range of problem parameters,
approximates up to a multiplicative factor of O(log n), n being
the network size, any optimal actuator set that meets the same
energy criteria; this is the best approximation factor one can
achieve in polynomial time, in the worst case. Moreover, the
algorithm uses a perturbed version of the involved control energy
metric, which we prove to be supermodular. Next, we focus on the
related problem of cardinality-constrained actuator placement
for minimum control effort, where the optimal actuator set i s
selected to maximize the volume of the set of states reachable
with one unit or less of input energy. While this is also an
NP-hard problem, we use our proposed algorithm to efficiently
approximate its solutions as well.

Index Terms—Multi-agent Networked Systems, Input Place-
ment, Leader Selection, Controllability Energy Metrics, Minimal
Network Controllability.

I. I NTRODUCTION

During the past decade, an increased interest in the analysis
of large-scale systems has led to a variety of studies that
range from the mapping of the human’s brain functional
connectivity to the understanding of the collective behavior
of animals, and the evolutionary mechanisms of complex
ecological systems [1]–[4]. At the same time, control sci-
entists develop methods for the regulation of such complex
systems, with the notable examples in [5], for the control
of biological systems; [6], for the regulation of brain and
neural networks; [7], for robust information spread over social
networks, and [8], for load management in smart grid.

On the other hand, the large size of these systems, as well
as the need for low cost control, has made the identification
of a small fraction of their states, to steer them around the
entire space, an important problem [9]–[12]. This is a task
of formidable complexity; indeed, it is shown in [9] that
finding a small number of actuators, so that a linear system is
controllable, is NP-hard. However, mere controllability is of
little value if the required input energy for the desired transfers
is exceedingly high, when, for example, the controllability
matrix is close to singularity [13]. Therefore, by choosing
input states to ensure controllability alone, one may not
achieve a cost-effective control for the system.
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In this paper, we address this important requirement by
providing efficient approximation algorithms to actuate a small
fraction of a system’s states so that a specified control energy
performance over the entire state space is guaranteed. In
particular, we first consider the selection of a minimal number
of actuated states so that a pre-specified lower bound on the
volume of the set of states reachable with one or less units
of input energy is satisfied. Finding such a subset of states
is a challenging task, since it involves the search for a small
number of actuators that induce controllability, which con-
stitutes a combinatorial problem that can be computationally
intensive. Indeed, identifying a small number of actuated states
for inducing controllability alone is NP-hard [9]. Therefore, we
extend this computationally hard problem by introducing an
energy performance requirement on the choice of the optimal
actuator set, and we solve it with an efficient approximation
algorithm.

Specifically, we first generalize the involved energy objec-
tive to an ǫ-close one, which remains well-defined even for
actuator sets that render the system uncontrollable. Then,we
make use of this metric and relax the implicit controllabil-
ity constraint from the original actuator placement problem.
Notwithstanding, we prove that for small values ofǫ all
solutions of this auxiliary program still render the system
controllable. This fact, along with the supermodularity ofthe
generalized objective with respect to the choice of the actuator
set, leads to an efficient algorithm which, for a given range
of problem parameters, approximates up to a multiplicative
factor of O(log n), wheren is the size of the system, any
optimal actuator set that meets the specified energy criterion.
Moreover, this is the best approximation factor one can achieve
in polynomial time, in the worst case. Hence, with this
algorithm we address the open problem of minimal actuator
placement subject to bounds on the control effort [9], [11],
[12], [14], [15].

Relevant results are also found in [12], where the authors
study the controllability of a system with respect to the
smallest eigenvalue of the controllability Gramian, and they
derive a lower bound on the number of actuators so that this
eigenvalue is lower bounded by a fixed value. Nonetheless,
they do not provide an algorithm to identify the actuators that
achieve this value.

Next, we consider the problem of cardinality-constrained
actuator placement for minimum control effort, where the
optimal actuator set is selected so that the volume of the setof
states that can be reached with one unit or less of input energy
is maximized. The most related works to this problem are
the [11] and [16], in which the authors assume a controllable
system and consider the problem of choosing a few extra
actuators in order to optimize some of the input energy metrics
proposed in [17]. Their main contribution is in observing
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that these energy metrics are supermodular with respect to
the choice of the extra actuated states. The assumption of a
controllable system is necessary since these metrics depend
on the inverse of the controllability Gramian, as they capture
the control energy for steering the system around the entire
state space. Nonetheless, it should be also clear that making a
system controllable by first placing some actuators to ensure
controllability alone, and then adding some extra ones to
optimize a desired energy metric, introduces a sub-optimality
that is carried over to the end result. In this paper, we follow
a parallel line of work to the minimal actuator placement
problem, and provide an efficient algorithm that selects allthe
actuated states to maximize the volume of the set of states that
can be reached with one unit or less of input energy without
any assumptions on the controllability of the involved system.

A similar actuator placement problem is studied in [12] for
stable systems. Nevertheless, its authors propose a heuristic
actuator placement procedure that does not constrain the
number of available actuators and does not optimize their
control energy objective. Our proposed algorithm selects a
cardinality-constrained actuator set that minimizes a control
energy metric, even for unstable systems.

The remainder of this paper is organized as follows. The
formulation and model for the actuator placement problems are
set forth in Section II, where the corresponding integer opti-
mization programs are stated. In Sections III and IV we discuss
our main results, including the intractability of these problems,
as well as the supermodularity of the involved control energy
metrics with respect to the choice of the actuator sets. Then, we
provide efficient approximation algorithms for their solution
that guarantee a specified control energy performance over
the entire state space. Section V concludes the paper.

II. PROBLEM FORMULATION

Notation: We denote the set of natural numbers
{1, 2, . . .} as N, the set of real numbers asR, and we let
[n] ≡ {1, 2, . . . , n} for all n ∈ N. Also, given a setX ,
we denote as|X | its cardinality. Matrices are represented by
capital letters and vectors by lower-case letters. For a matrix A,
AT is its transpose andAij is its element located at thei−th
row andj−th column. IfA is positive semi-definite or positive
definite, we writeA � 0 andA ≻ 0, respectively. Moreover,
for i ∈ [n], we letI(i) be ann×n matrix with a single non-zero
element:Iii = 1, while Ijk = 0, for j, k 6= i. Furthermore, we
denote asI the identity matrix, whose dimension is inferred
from the context. Additionally, forδ ∈ R

n, we let diag(δ)
denote ann× n diagonal matrix such that diag(δ)ii = δi for
all i ∈ [n]. Finally, we set{0, 1}n to be the set of vectors in
R

n whose elements are either zero or one.

A. Actuator Placement Model

Consider a linear system ofn states,x1, x2, . . . , xn, whose
evolution is described by

ẋ(t) = Ax(t) +Bu(t), t > t0, (1)

wheret0 ∈ R is fixed, x ≡ {x1, x2, . . . , xn}, ẋ(t) ≡ dx/dt,
while u is the corresponding input vector. The matricesA and

B are of appropriate dimension. We equivalently refer to (1)
as a network ofn nodes,1, 2, . . . , n, which we associate with
the statesx1, x2, . . . , xn, respectively. Moreover, we denote
their collection asV ≡ [n].

Henceforth,A is given while B is adiagonal zero-one
matrix that we design so that (1) satisfies a specified control
energy criterion over the entire state space.

Assumption 1. B = diag(δ), whereδ ∈ {0, 1}n.

Specifically, if δi = 1, statexi may receive an input, while
if δi = 0, it receives none.

Definition 1 (Actuator Set, Actuator). Given aδ ∈ {0, 1}n,
let ∆ ≡ {i : i ∈ V and δi = 1}; then,∆ is called anactuator
setand eachi ∈ ∆ an actuator.

B. Controllability and Related Energy Metrics

We consider the notion of controllability and relate it to the
problems of this paper, i.e., the minimal actuator placement
for constrained control energy and the cardinality-constrained
actuator placement for minimum control effort.

System (1) is controllable — equivalently,(A,B) is con-
trollable — if for any finite t1 > t0 and any initial state
x0 ≡ x(t0) it can be steered to any other statex1 ≡ x(t1) by
some inputu(t) defined over[t0, t1]. Moreover, for general
matricesA andB, the controllability condition is equivalent
to the matrix

W ≡

∫ t1

t0

eA(t−t0)BBT eA
T (t−t0) dt, (2)

being positive definite for anyt1 > t0 [13]. Therefore, we
refer toW as thecontrollability matrix of (1).

The controllability of a linear system is of interest because
it is related to the solution of the following minimum-energy
transfer problem

minimize
u(·)

∫ t1

t0

u(t)Tu(t) dt

subject to

ẋ(t) = Ax(t) +Bu(t), t0 < t ≤ t1,

x(t0) = 0, x(t1) = x1,

(3)

whereA andB are any matrices of appropriate dimension.
In particular, if for the givenA andB (1) is controllable

the resulting minimum control energy is given by

xT
1 W

−1x1, (4)

whereτ = t1 − t0 [17]. Thereby, the states that belong to the
eigenspace of the smallest eigenvalues of (2) require higher
energies of control input [13]. Extending this observation
along all the directions of transfers in the state space, we infer
that the closerW is to singularity the larger the expected input
energy required for these transfers to be achieved [17]. For
example, consider the case whereW is singular, i.e., when
there exists at least one direction along which system (1)
cannot be steered [13]. Then, the corresponding minimum
control energy along this direction isinfinity.
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This motivates the consideration of control energy metrics
that quantify the steering energy along all the directions in
the state space, as thelog det(W−1) [17]. Indeed, this metric
is well-defined only for controllable systems —W must be
invertible — and is directly related to (4). In more detail,
√

det(W−1) is inversely proportional to the volume of the
set of states reachable with one or less units of input energy,
i.e., the volume of{x : xTW−1x ≤ 1}; as a result, when
log det(W−1) is minimized, the volume of{x : xTW−1x ≤
1} is maximized. In this paper, we aim to select a small
number of actuators for system (1) so thatlog det(W−1) either
meets a specified upper bound or is minimized.

Per Assumption 1, further properties for the controllability
matrix are due: For any actuator set∆, let W∆ ≡W ; then,

W∆ =

n
∑

i=1

δiWi, (5)

whereWi ≡
∫ t1
t0

eAtI(i)eA
T t dt for any i ∈ [n]. This follows

from (2) and the fact thatBBT = B =
∑n

i=1 δiI
(i) for

B = diag(δ). Finally, for any ∆1 ⊆ ∆2 ⊆ V , (5) and
W1,W2, . . . ,Wn � 0 imply W∆1

�W∆2
.

C. Actuator Placement Problems

We consider the selection of a small number of actuators
for system (1) so thatlog det(W−1) either satisfies an upper
bound or is minimized. The challenge is in doing so with
as few actuators as possible. This is an important improve-
ment over the existing literature where the goal of actuator
placement problems has either been to ensure controllability
alone [9] or the weaker property of structural controllabil-
ity [18], [19]. Other relevant results consider the task of leader-
selection [20], [21], where the leaders are the actuated states
and are chosen so to minimize a mean-square convergence
error of the remaining states.

Furthermore, the most relevant works to our study are the
[11] and [16] since its authors consider the minimization of
log det(W−1); nevertheless, their results rely on a pre-existing
actuator set that renders (1) controllable although this set is not
selected for the minimization of this energy metric. One of our
contributions is in achieving optimal actuator placement for
minimum control effort without assuming controllability be-
forehand. Also, the authors of [12] adopt a similar framework
for actuator placement but focus on deriving an upper bound
for the smallest eigenvalue ofW with respect to the number of
actuators and a lower bound for the required number actuators
so that this eigenvalue takes a specified value. In addition,they
consider the maximization of tr(W ); however, their techniques
cannot be applied when minimizing thelog det(W−1), while
the maximization of tr(W ) may not ensure controllability [12].

We next provide the exact statements of our actuator
placement problems, while their solution analysis followsin
Sections III and IV. We first consider the problem

minimize
∆⊆V

|∆|

subject to

log det(W−1
∆ ) ≤ E,

(I)

for some constantE. Its domain is {∆ : ∆ ⊆
V and(A,B(∆)) is controllable} since the controllability
matrix W(·) must be invertible. Moreover, it is NP-hard, as
we prove in Appendix A.

Additionally, Problem (I) is feasible for certain values ofE.
In particular, for any∆ such that(A,B(∆)) is controllable,
0 ≺ W∆, i.e., log det(W−1

V ) ≤ log det(W−1
∆ ) since for any

∆ (5) impliesW∆ �WV [22]; thus, (I) is feasible for

E ≥ log det(W−1
V ). (6)

Moreover, (I) is a generalized version of the minimal
controllability problem of [9] so that its solution not only
ensures controllability but also satisfies a guarantee in terms
of a control energy metric; indeed, forE → ∞ we recover
the problem of [9].

We next consider the problem

minimize
∆⊆V

log det(W−1
∆ )

subject to

|∆| ≤ r,

(II)

where the goal is to find at mostr actuated states so that the
volume of the set of states that can be reached with one unit
or less of input energy is maximized. Its domain is{∆ : ∆ ⊆
V , |∆| ≤ r and (A,B(∆)) is controllable}. Moreover, due to
the NP-hardness of Problem (I), Problem (II) is also NP-hard
(cf. Appendix A).

Because (I) and (II) are NP-hard, we need to identify
efficient approximation algorithms for their general solution;
this is the subject of Sections III and IV. In particular, in
Section III we consider Problem (I) and provide for it a
best approximation algorithm, for a given range of problem
parameters. To this end, we first define an auxiliary program,
which ignores the controllability constraint of (I), and, nev-
ertheless, admits an efficient approximation algorithm whose
solutions not only satisfy an energy bound that isǫ-close to
the original one but also render system (1) controllable. Then,
in Section IV we turn our attention to (II), and following a
parallel line of thought as for (I), we efficiently solve this
problem as well.

Since the approximation algorithm for the aforementioned
auxiliary program for (I) is based on results for supermodular
functions, we present below a brief overview of the relevant
concepts. The reader may consult [23] for a survey on these
results.

D. Supermodular Functions

We give the definition of a supermodular function, as well
as, a relevant result that will be used in Section III to construct
an approximation algorithm for Problem (I). The material of
this section is drawn from [24].

Let V be a finite set and denote as2V its power set.

Definition 2 (Submodularity and supermodularity). A function
h : 2V 7→ R is submodularif for any sets∆ and ∆′, with
∆ ⊆ ∆′ ⊆ V , and anya /∈ ∆′,

h(∆ ∪ {a})− h(∆) ≥ h(∆′ ∪ {a})− h(∆′).
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A functionh : 2V 7→ R is supermodularif (−h) is submodular.

An alternative definition of a submodular function is based
on the notion of non-increasing set functions.

Definition 3 (Non-increasing and non-decreasing Set Func-
tion). A functionh : 2V 7→ R is a non-increasing set function
if for any ∆ ⊆ ∆′ ⊆ V , h(∆) ≥ h(∆′). Moreover,h is a
non-decreasing set functionif (−h) is a non-increasing set
function.

Therefore, a functionh : 2V 7→ R is submodular if, for any
a ∈ V , the functionha : 2V\{a} 7→ R, defined asha(∆) ≡
h(∆ ∪ {a}) − h(∆), is a non-increasing set function. This
property is also called thediminishing returns property.

Next, we present a fact from the supermodular functions
minimization literature, that we use in Section III so as to
construct an approximation algorithm for Problem (I). In
particular, consider the following optimization program,which
is of similar structure to (I), whereh : 2V 7→ R is a non-
decreasing, supermodular set function:

minimize
∆⊆V

|∆|

subject to

h(∆) ≤ E.

(O)

The following greedy algorithm has been proposed for its
approximate solution, for which, the subsequent fact is true.

Algorithm 1 Approximation Algorithm for the Problem (O).

Input: h, E.
Output: Approximate solution to Problem (O).
∆← ∅
while h(∆) > E do

ai ← a′ ∈ argmaxa∈V\∆{h(∆)− h(∆ ∪ {a})}
∆← ∆ ∪ {ai}

end while

Fact 1. Denote as∆⋆ a solution to Problem(O) and as
∆0,∆1, . . . the sequence of sets picked by Algorithm 1.
Moreover, letl be the smallest index such thath(∆l) ≤ E.
Then,

l

|∆⋆|
≤ 1 + log

h(V)− h(∅)

h(V)− h(∆l−1)
.

In Section III, we provide an efficient approximation algo-
rithm for (I), by applying Fact 1 to an appropriately perturbed
version of this problem, so that it involves a non-decreasing
supermodular function, as in (O). This also leads to our
second main contribution, presented in Section IV: An efficient
approximation algorithm for Problem (II), which selects all
the actuators to maximize the volume of the set of states that
can be reached with one unit or less of input energy, without
assuming controllability beforehand. This is in contrast to
the related works [11] and [16]: there, the authors consider
a similar problem for choosing a few actuators to optimize
log det(W−1

(·) ); however, their results rely on the assumption
of a pre-existing actuator set that renders (1) controllable,
although this set is not selected towards the minimization

of log det(W−1
(·) ). Nevertheless, this assumption is necessary,

since they then prove that thelog det(W−1
(·) ) is a supermodular

function in the choice of the extra actuators. On the other hand,
our algorithms select all the actuators towards the involved
energy objective, since they rely on aǫ-perturbed version
of log det(W−1

(·) ), that we prove to be supermodular without
assuming controllability beforehand.

Overall, our results supplement the existing literature by
considering Problems (I) and (II) when the system is not
initially controllable and by providing efficient approximation
algorithms for their solution, along with worst-case perfor-
mance guarantees.

III. M INIMAL ACTUATOR SETS WITH CONSTRAINED

CONTROL EFFORT

We present an efficient approximation algorithm for Prob-
lem (I). To this end, we first generalize the involved energy
metric to anǫ-close one that remains well-defined even when
the controllability matrix is not invertible. Next, we relax (I)
by introducing a new program that makes use of this metric
and circumvents the restrictive controllability constraint of (I).
Moreover, we prove that for certain values ofǫ all solutions
of this auxiliary problem render the system controllable.
This fact, along with the supermodularity property of the
generalized metric that we establish, leads to our proposed
approximation algorithm. The discussion of its efficiency ends
the analysis of (I).

A. An ǫ-close Auxiliary Problem

Consider the following approximation to (I)

minimize
∆⊆V

|∆|

subject to

log det(W̃∆ + ǫI)−1 ≤ Ẽ,

(I′)

where W̃∆ is equivalent toW∆/(2λmax(WV)), λmax(WV )
is the maximum eigenvalue ofWV , Ẽ is equal to E +
n log(2λmax(WV)), andǫ is positive.

In contrast to (I), the domain of this problem consists
of all subsets ofV since W̃(·) + ǫI is always invert-
ible. The ǫ-closeness is evident since for any∆ such that
(A,B(∆)) is controllablelog det(W̃∆ + ǫI)−1 ≤ Ẽ becomes
log det(W−1

∆ ) ≤ E as ǫ → 0. Due to the definition ofW̃∆,
for all ∆ ⊆ V , all eigenvalues ofW̃∆ are at most1/2 [22,
Theorem 8.4.9]; this property will be useful in the proof of
one of our main results, in particular, Proposition 1.

In the following paragraphs, we identify an approximation
algorithm for solving Problem (I′), and correspondingly, the
ǫ-close, NP-hard Problem (I).

B. Approximation Algorithm for Problem(I′)

We first prove that all solutions of (I′) for 0 < ǫ ≤
min{1/2, e−Ẽ} render the system controllable, notwithstand-
ing that no controllability constraint is imposed by this pro-
gram on the choice of the actuator sets. Moreover, we show
that the involvedǫ-close energy metric is supermodular with
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respect to the choice of actuator sets and then we present
our approximation algorithm, followed by a discussion of its
efficiency which ends this subsection.

Proposition 1. Consider a constantω > 0, ǫ such that
0 < ǫ < min{1/2, e−ω}, and any∆ ⊆ V : If log det(W̃∆ +
ǫI)−1 ≤ ω, then(A,B(∆)) is controllable.

Proof: Assume that(A,B(∆)) is not controllable and
let k be the corresponding number of non-zero eigenvalues of
W∆ which we denote asλ1, λ2, . . . , λk; therefore,k ≤ n− 1.
Then,

log det(W̃∆ + ǫI)−1 =

k
∑

i=1

log
1

λi

2λmax(WV) + ǫ

+ (n− k) log
1

ǫ
> log

1

ǫ
> ω,

since λi

2λmax(WV) + ǫ < 1 (because λi

2λmax(WV) ≤ 1/2 and
ǫ < 1/2), and ǫ < e−ω. Therefore, we have a contradiction.

Note that ω is chosen independently of the parameters
of system (1). Therefore, the absence of the controllability
constraint in Problem (I′) for 0 < ǫ ≤ min{1/2, e−Ẽ} is
fictitious; nonetheless, it obviates the necessity of considering
only actuator sets that render the system controllable.

The next proposition is also essential and suggests an
efficient approximation algorithm for solving (I′).

Proposition 2 (Supermodularity). The functionlog det(W̃∆+
ǫI)−1 : ∆ ⊆ V 7→ R is supermodular and non-increasing set
with respect to the choice of∆.

Proof: To prove that thelog det(W̃∆ + ǫI)−1 is non-
increasing, recall from (5) that for any∆1 ⊆ ∆2 ⊆
[n], W̃∆1

� W̃∆2
. Therefore, from [22, Theorem 8.4.9],

log det(W̃∆2
+ǫI)−1 � log det(W̃∆1

+ǫI)−1, and as a result,
log det(W̃∆ + ǫI)−1 is non-increasing.

Next, to prove thatlog det(W̃∆ + ǫI)−1 is a supermodular
set function, recall from Section II-D that it suffices to prove
thatlog det(W̃∆+ǫI) is a submodular one. In particular, recall
that a functionh : 2[n] 7→ R is submodular if and only if, for
any a ∈ [n], the functionha : 2[n]\{a} 7→ R, whereha(∆) ≡
h(∆∪{a})−h(∆), is a non-increasing set function. Therefore,
to prove thath(∆) = log det(W̃∆+ǫI) is submodular, we may
prove that theha(∆) is a non-increasing set function. To this
end, we follow the proof of Theorem 6 in [11]: first, observe
that

ha(∆) = log det(W̃∆∪{a} + ǫI)− log det(W̃∆ + ǫI)

= log det(W̃∆ + W̃a + ǫI)− log det(W̃∆ + ǫI).

Now, for any∆1 ⊆ ∆2 ⊆ [n] and z ∈ [0, 1], defineΩ(z) ≡
ǫI+W̃∆1

+z(W̃∆2
−W̃∆1

) andh̄(z) ≡ log det(Ω(z)+W̃a)−
log det (Ω(z)) ; it is h̄(0) = ha(∆1) and h̄(1) = ha(∆2).
Moreover, sinced log det(Ω(z)))/dz = tr

(

Ω(z)−1dΩ(z)/dz
)

(cf. equation (43) in [25]),

dh̄(z)

dz
= tr[((Ω(z) + W̃a)

−1 − Ω(z)−1)O21],

where O21 ≡ W̃∆2
− W̃∆1

. From [22, Proposition 8.5.5],

(Ω(z)+W̃a)
−1 � Ω(z)−1, becauseΩ(z) ≻ 0 for all z ∈ [0, 1],

since ǫI ≻ 0, W̃∆1
� 0, and W̃∆2

� W̃∆1
. Thereby, from

[22, Corollary 8.3.6], all eigenvalues of((Ω(z) + W̃a)
−1 −

Ω(z)−1)O21 are non-positive. As a result,dh̄(z)/dz ≤ 0, and

ha(∆2) = h̄(1) = h̄(0) +

∫ 1

0

dh̄(z)

dz
dz ≤ h̄(0) = ha(∆1).

Therefore,ha(∆) is a non-increasing set function, and the
proof is complete.

Therefore, the hardness of theǫ-close Problem (I) is in
agreement with that of the class of minimum set-covering
problems subject to submodular constraints. Inspired by this
literature [23], [24], [26], we have the following efficient
approximation algorithm for Problem (I′), and as we show
by the end of this section, for Problem (I) as well.

Algorithm 2 Approximation Algorithm for the Problem (I′).

Input: Bound Ẽ, parameterǫ ≤ min{1/2, e−Ẽ}, matrices
W1,W2, . . . , Wn.

Output: Actuator set∆.
∆← ∅
while log det(W̃∆ + ǫI)−1 > Ẽ do

ai← a′ ∈ argmaxa∈V\∆{log det(W̃∆ + ǫI)−1 −
log det(W̃∆∪{a} + ǫI)−1}

∆← ∆ ∪ {ai}
end while

Regarding the quality of Algorithm 2 the following is true.

Theorem 1 (A Submodular Set Coverage Optimization).
Denote as∆⋆ a solution to Problem(I′) and as∆ the selected
set by Algorithm 2. Then,

(A,B(∆)) is controllable, (7)

log det(W̃∆ + ǫI)−1 ≤ Ẽ, (8)

|∆|

|∆⋆|
≤ 1 + log

n log(ǫ−1)− log det(W̃V + ǫI)−1

Ẽ − log det(W̃V + ǫI)−1
≡ F,

(9)

F = O(log n+ log log(ǫ−1) + log
1

Ẽ − log det(W̃−1
V )

).

(10)

Finally, the computational complexity of Algorithm 2 isO(n5).

Proof: We first prove (8), (9) and (10), and then, (7). We
end the proof by clarifying the computational complexity of
Algorithm 2.

First, let ∆0,∆1, . . . be the sequence of sets selected by
Algorithm 2 andl the smallest index such thatlog det(W̃∆l

+
ǫI)−1 ≤ E. Therefore,∆l is the set that Algorithm 2 returns,
and this proves (8).

Moreover, from [24], since for any∆ ⊆ V , h(∆) ≡
− log det(W̃∆ + ǫI)−1 + n log(ǫ−1) is a non-negative, non-
decreasing, and submodular function (cf. Proposition 2), it is
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guaranteed for Algorithm 2 that (cf. Fact 1)

l

|∆⋆|
≤ 1 + log

h(V)− h(∅)

h(V)− h(∆l−1)

= 1+

log
n log(ǫ−1)− log det(W̃V + ǫI)−1

log det(W̃∆l−1
+ ǫI)−1 − log det(W̃V + ǫI)−1

.

Now, l is the first time thatlog det(W̃∆l
+ ǫI)−1 ≤ Ẽ, and a

result log det(W̃∆l−1
+ ǫI)−1 > Ẽ. This implies (9).

Moreover, observe that0 < log det(W̃V + ǫI)−1 <
log det(W̃−1

V ) so that from (9) we getF ≤ 1 +
log[n log(ǫ−1)/(Ẽ − log det(W̃−1

V ))], which in turn im-
plies (10).

On the other hand, since0 < ǫ ≤ min{1/2, e−Ẽ} and
log det(W̃∆l

+ ǫI)−1 ≤ Ẽ, Proposition 1 is in effect, i.e., (7)
holds true.

Finally, with respect to the computational complexity of
Algorithm 2, note that thewhile loop is repeated for at
most n times. Moreover, the complexity to compute the
determinant ann× n matrix, using Gauss-Jordan elimination
decomposition, isO(n3). Additionally, at mostn matrices
must be inverted so that the “argmaxa∈V\∆{log det(W̃∆ +

ǫI)−1 − log det(W̃∆∪{a} + ǫI)−1}” can be computed. Fur-
thermore,O(n) time is required to find a maximum element
betweenn available. Therefore, the computational complexity
of Algorithm 2 isO(n5).

Therefore, Algorithm 2 returns a set of actuators that meets
the corresponding control energy bound of Problem (I′) while
it renders system (1) controllable. Moreover, the cardinality of
this set is up to a multiplicative factor ofF from the minimum
cardinality actuator sets that meet the same control energy
bound.

The dependence ofF on n, ǫ andE was expected from a
design perspective: Increasing the network sizen or improving
the accuracy by decreasingǫ, as well as demanding a better
energy guarantee by decreasingE should all push the cardi-
nality of the selected actuator set upwards. Also,log log(ǫ−1)
is the design cost for circumventing the difficult to satisfy
controllability constraint of (I) [9], i.e., for assuming no pre-
existing actuators that renders (1) controllable and choosing all
the actuators towards the satisfaction of an energy performance
criterion.

From a computational perspective, the computation of the
determinant is the only intensive procedure of Algorithm 2,
requiringO(n3) time, if we use the Gauss-Jordan elimination
decomposition. On the other hand, to apply this algorithm on
large-scale systems, we can speed up this procedure using
the Coppersmith-Winograd algorithm [27], which requires
O(n2.376) time. Alternatively, we can use numerical methods,
which efficiently compute an approximate the determinant ofa
matrix even if its size is of several thousands [28]. Moreover,
we can speed up Algorithm 2 using a method proposed in
[29], which avoids the computation oflog det(W̃∆ + ǫI)−1−
log det(W̃∆∪{a} + ǫI)−1 for unnecessary choices ofa, to-
wards the computation of theargmaxa∈V\∆{log det(W̃∆ +

ǫI)−1− log det(W̃∆∪{a}+ǫI)−1}, by taking advantage of the
supermodularity oflog det(W̃(·) + ǫI)−1.

Finally, for large values of n, the computation of
W1,W2, . . . , Wn is demanding as well. On the other hand, in
the case of stable systems, as many physical, e.g., biological,
networks are, the corresponding controllability Gramianscan
be used instead, which for a stable system can be calculated
from the Lyapunov equationsAGi + GiA

T = −I(i), for
i = 1, 2, . . . , n, respectively, and are given in closed-form by

Gi =

∫ ∞

t0

eA(t−t0)I(i)eA
T (t−t0) dt. (11)

Using these Gramians for the evaluation ofW in (4) corre-
sponds to the minimum state transfer energy with no time
constraints. The advantage of this approach is that (11) can
be solved efficiently using numerical methods, even when the
system’s sizen has a value of several thousands [30].

In Section III-C we finalize our treatment of Problem (I) by
employing Algorithm 2 to approximate its solutions.

C. Approximation Algorithm for Problem(I)

We present an efficient approximation algorithm for Prob-
lem (I) that is based on Algorithm 2. Let∆ be the actuator
set returned by Algorithm 2, so that(A,B(∆)) is controllable
and log det(W̃∆ + ǫI)−1 ≤ Ẽ. For anyc > 0, there exists
sufficiently smallǫ(c) such that:

log det(W̃∆ + ǫ(c)I)−1 ≥ log det(W̃−1
∆ )− cẼ. (12)

Moreover,log det(W̃∆ + ǫ(c)I)−1 ≤ Ẽ, and therefore we get
from (12) thatlog det(W̃−1

∆ ) ≤ (1 + c)Ẽ, or

log det(W−1
∆ ) ≤ E + cẼ. (13)

Hence, we refer toc asapproximation error.
On the other hand,ǫ(c) is not known a priori. Hence, we

need to search for a sufficiently smallǫ so that (13) holds
true. One way to achieve this sinceǫ is lower and upper
bounded by0 andmin{1/2, e−Ẽ}, respectively, is to perform
a search using bisection. We implement this procedure in
Algorithm 3, where we denote as[Algorithm 2](Ẽ, ǫ) the set
that Algorithm 2 returns for giveñE andǫ.

In the worst case, when we first enter the innerwhile loop,
the if condition is not satisfied, and as a resultǫ is set to a
lower value. This process continues until theif condition is
satisfied for the first time, given thata0 is sufficiently small
for the specifiedc, from which point and on thiswhile loop
converges up to the accuracy levela0 to the largest valuēǫ
of ǫ such thatlog det(W̃−1

∆ ) − log det(W̃∆ + ǫI)−1 ≤ cẼ;
specifically, |ǫ − ǭ| ≤ a0/2, due to the mechanics of the
bisection method. On the other hand, ifa0 is not sufficiently
small, the value ofa decreases within the lastif statement
of the algorithm, the variable flag remains zero and the outer
loop is executed again, until the convergence within the inner
while is feasible. Then, theif statement that follows the
inner while loop ensures thatǫ is set below ǭ, so that
log det(W̃−1

∆ ) − log det(W̃∆ + ǫI)−1 ≤ cẼ. Finally, the last
if statement sets the flag to1 and the algorithm terminates.
The efficiency of this algorithm for Problem (I) is summarized
below.
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Algorithm 3 Approximation Algorithm for the Problem (I).

Input: Bound E, approximation errorc, bisection’s initial
accuracy levela0, matricesW1,W2, . . . ,Wn.

Output: Actuator set∆.
a ← a0, flag ← 0, l ← 0, u ← min{1/2, e−Ẽ}, ǫ ←
(l + u)/2
while flag 6= 1 do

while u− l > a do
∆← [Algorithm 2](Ẽ, ǫ)

if log det(W̃−1
∆ )− log det(W̃∆ + ǫI)−1 > cẼ then

u← ǫ
else
l ← ǫ

end if
ǫ← (l + u)/2
end while
if log det(W̃−1

∆ )− log det(W̃∆ + ǫI)−1 > cẼ then
u← ǫ, ǫ← (l + u)/2

end if
∆← [Algorithm 2](Ẽ, ǫ)

if log det(W̃−1
∆ )− log det(W̃∆ + ǫI)−1 ≤ cẼ then

flag← 1
else
a← a/2

end if
end while

Theorem 2 (Approximation Efficiency and Computational
Complexity of Algorithm 3 for Problem (I)). Denote as∆⋆

a solution to Problem(I) and as ∆ the selected set by
Algorithm 3. Then,

(A,B(∆)) is controllable,

log det(W−1
∆ ) ≤ E + cẼ, (14)

|∆|

|∆⋆|
≤ F, (15)

F = O(log n+max{log log(n/(cẼ)), log Ẽ}+

log
1

Ẽ − log det(W̃−1
V )

). (16)

Finally, let a be the bisection’s accuracy level that Algorithm
3 terminates with. Then, ifa = a0, the computational
complexity of Algorithm 3 isO(n5 log2(1/a0), else it is
O(n5 log2(1/a) log2(a0/a)).

Proof: We only prove statements (14), (15) and (16),
while the first follows from Theorem 1. We end the proof
by clarifying the computational complexity of Algorithm 3.

First, when Algorithm 3 exits thewhile loop, and after
the following if statement,log det(W̃−1

∆ ) − log det(W̃∆ +
ǫI)−1 ≤ cẼ, and sincelog det(W̃∆ + ǫI)−1 ≤ Ẽ, this
implies (14).

To show (15), consider any solution∆⋆ to Problem (I)
and any solution∆• to Problem (I′). Then, |∆⋆| ≥ |∆•|;
to see this, note that for any∆⋆, log det(W̃∆⋆ + ǫI)−1 <
log det(W̃−1

∆⋆ ) ≤ Ẽ since ǫ > 0, i.e., ∆⋆ is a candidate
solution to Problem (I′) because it satisfies all of its con-

straints. Therefore,|∆⋆| ≥ |∆•|, and as a result|∆|/|∆⋆| ≤
|∆|/|∆•| ≤ F per (9).

Next, note that (14) holds true when, e.g.,ǫ is equal to
cẼ/(2n). Therefore, since alsoǫ ≤ e−Ẽ , log log ǫ−1 =
O(max{log log(n/(cẼ)), log Ẽ}) and this proves (16).

Finally, with respect to the computational complexity of
Algorithm 3, note that the innerwhile loop is repeated
for at most log2(1/(2a)) times (sinceǫ ≤ 1/2), in the
worst case. Moreover, the time complexity of the procedures
within this loop is of orderO(n5), due to Algorithm 2.
Finally, if a = a0, the outerwhile loop runs for one time,
and otherwise, forlog2(a0/a) times. Therefore, the compu-
tational complexity of Algorithm 3 isO(n5 log2(1/a0)), or
O(n5 log2(1/a) log2(a0/a)), respectively.

From a computational perspective, we can speed up Algo-
rithm 3 using the methods we discussed in the end of Section
III-B. Moreover, for a wide class of systems, e.g., when
a = O(nnc1

), where c1 is a positive constant, independent
of n, this algorithm runs in polynomial time, due to the
logarithmic dependence ona.

From an approximation efficiency perspective we have that
F = O(log(n)), wheneverE = O(nc1), λmax(WV) =
O(nnc2

) and1/(Ẽ − log det(W̃−1
V )) = O(nc3), wherec1, c2

and c3 are positive constants and independent ofn. In other
words, the cardinality of the actuator set that Algorithm 3
returns is up to a multiplicative factor ofO(log n) from the
minimum cardinality actuator sets that meet the same energy
bound. Indeed, this is the best achievable bound in polynomial
time for the set covering problem in the worst case [31],
while (I) is a generalization of it [9]. Thus, Algorithm 3 is
a best-approximation of (I) for this class of systems.

IV. M INIMUM ENERGY CONTROL BY A

CARDINALITY -CONSTRAINED ACTUATOR SET

We present an approximation algorithm for Problem (II)
following a parallel line of thought as in Section III: First,
we circumvent the restrictive controllability constraintof (II)
using theǫ-close generalized energy metric defined in Sec-
tion III. Then, we propose an efficient approximation algorithm
for its solution that makes use of Algorithm 3; this algorithm
returns an actuator set that always renders (1) controllable
while it guarantees a value for (II) that is provably close toits
optimal one. We end the analysis of (II) by explicating further
the efficiency of this procedure.

A. An ǫ-close Auxiliary Problem

For ǫ > 0 consider the following approximation to (II)

minimize
∆⊆V

log det(W̃∆ + ǫI)−1

subject to

|∆| ≤ r.

(II ′)

In contrast to (II), the domain of this problem consists of all
subsets ofV sinceW̃(·) + ǫI is always invertible. Moreover,
its objective isǫ-close to that of Problem (II).

In the following paragraphs, we identify an efficient ap-
proximation algorithm for solving Problem (II′), and corre-
spondingly, theǫ-close, NP-hard Problem (II). We note that
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the hardness of the latter is in accordance with that of the
general class of supermodular function minimization prob-
lems, as per Proposition 2 the objectivelog det(W̃∆ + ǫI)−1

is supermodular. The approximation algorithms used in that
literature however [23], [24], [26], fail to provide an efficient
solution algorithm for (II′) — for completeness, we discuss
this direction in the Appendix B. In the next subsection we
propose an efficient approximation algorithm for (II) that
makes use of Algorithm 3.

B. Approximation Algorithm for Problem(II)

We provide an efficient approximation algorithm for Prob-
lem (II) that is based on Algorithm 3. In particular, since (II)
finds an actuator set that minimizeslog det(W−1

(·) ), and any so-

lution to (I) satisfieslog det(W−1
(·) ) ≤ E, one may repeatedly

execute Algorithm 3 for decreasing values ofE as long as the
returned actuators are at mostr andE satisfies the feasibility
constraintE ≥ log det(W−1

V ) (cf. Section II-C). Therefore,
for solving (II) we propose a bisection-type execution of
Algorithm 3 with respect toE.

To this end, we also need an upper bound for the value
of (II): Let ∆C be a small actuator set that renders system (1)
controllable; it is efficiently found using Algorithm 3 for
large E or the procedure proposed in [9]. Then, for any
r ≥ |∆C |, log det(W̃

−1
∆C

) upper bounds the value of (II) since
log det(W̃−1

(·) ) is monotone.
Thus, having a lower and upper bound for the value

of (II), we implement Algorithm 4 for approximating the
solutions of (II); we consider only the non-trivial case where
r < n and denote the set that Algorithm 3 returns as
[Algorithm 3](Ẽ, c, a0) for given Ẽ, c anda0.

Algorithm 4 Approximation algorithm for Problem (II).

Input: Set ∆C , maximum number of actuatorsr such that
r ≥ |∆C |, approximation errorc for Algorithm 3, bisection’s
accuracy levela0 for Algorithm 3, bisection’s accuracy level
a′0 for current algorithm, matricesW1,W2, . . . ,Wn.

Output: Actuator set∆.
∆← ∅, l← log det(W̃−1

V ), u← tr(W−1
∆C

), Ẽ ← (l+u)/2,

ǫ← min{1/2, e−Ẽ}
while u− l > a′0 do
∆← [Algorithm 3](Ẽ, c, a0)

if |∆| > r then
l ← Ẽ, Ẽ ← (l + u)/2

else
u← Ẽ, Ẽ ← (l + u)/2

end if
ǫ← 1/Ẽ
end while
if |∆| > r then
l ← Ẽ, Ẽ ← (l + u)/2

end if
∆← [Algorithm 3](Ẽ, c, a0)

In the worst case, when we first enter thewhile loop, the
if condition is not satisfied, and as a resultẼ is set to a greater

value. This process continues until theif condition is satisfied
for the first time from which point and on the algorithm
converges up to the accuracy levela0 to the smallest value
Ẽ of Ẽ such that|∆| ≤ r; specifically,|Ẽ − Ẽ| ≤ a′0/2 due
to the mechanics of the bisection method, whereẼ ≡ min{Ẽ :
|[Algorithm 3](Ẽ, c, a0)| ≤ r}. HerebyẼ is the least bound
Ẽ for which Algorithm 3 returns an actuator set of cardinality
at most r for the specifiedc and a0 — Ẽ may be larger
than the value of (II) due to worst-case approximability of the
involved problems (cf. Theorem 2). Then, Algorithm 4 exits
the while loop and the lastif statement ensures that̃E is
set belowẼ so that|∆| ≤ r. Moreover, per Theorem 2 this set
renders (1) controllable and guarantees thatlog det(W̃−1

∆ ) ≤
E + cẼ. Finally, with respect to the computational complex-
ity of Algorithm 4, note that thewhile loop is repeated
for at mostlog2

[

(log det(W̃−1
∆C

)− log det(W̃−1
V ))/a′0

]

times.
Moreover, the time complexity of the procedures within this
loop are, in the worst case, of the same order as that of
Algorithm 3 when it is executed for̃E equal toẼ. Regard-
ing Theorem 2, denote this time complexity asC(Ẽ, c, a0).
Therefore, the computational complexity of Algorithm 3 is
O
(

C(Ẽ, c, a0) log2

[

(log det(W̃−1
∆C

)− log det(W̃−1
V ))/a′

])

.
We summarize the above in the next corollary, which also

ends the analysis of Problem (II).

Corollary 1 (Approximation Efficiency and Computational
Complexity of Algorithm 4 for Problem (II)). Denote as∆
the selected set by Algorithm 4. Then,

(A,B(∆)) is controllable,

log det(W−1
∆ ) ≤ E + cẼ,

|Ẽ − Ẽ| ≤ a′/2,

whereẼ = min{Ẽ : |[Algorithm 3](Ẽ, c, a)| ≤ r} is the least
bound Ẽ that Algorithm 3 satisfies with an actuator set of
cardinality at mostr for the specifiedc and a. Finally, the
computational complexity of Algorithm 4 is

O

(

C(Ẽ, c, a0) log2

(

log det(W̃−1
∆C

)− log det(W̃−1
V )

a′

))

,

where C(Ẽ, c, a0) denotes the computational complexity of
Algorithm 3, with respect to Theorem 2, when it is executed
for Ẽ equal toẼ.

From a computational perspective, we can speed up Algo-
rithm 4 using the methods we discussed in the end of Section
III-B. Moreover, for a wide class of systems, e.g., when
a = O(nnc1

), where c1 is a positive constant, independent
of n, and similarly fora′ and log det(W̃−1

∆C
), this algorithm

runs in polynomial time, due to the logarithmic dependence
on a, a′ and log det(W̃−1

∆C
), respectively.

V. CONCLUDING REMARKS

We addressed two actuator placement problems in linear
systems: First, the problem of minimal actuator placement so
that the volume of the set of states reachable with one or less
units of input energy is lower bounded by a desired value, and
then the problem of cardinality-constrained actuator placement
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for minimum control effort, where the optimal actuator set is
selected so that the volume of the set of states that can be
reached with one unit or less of input energy is maximized.
Both problems were shown to be NP-hard, while for the
first one we provided a best approximation algorithm for a
given range of the problem parameters. Next, we proposed
an efficient approximation algorithm for the solution of the
second problem as well. Our future work is focused on
exploring the effect that the underlying network topology of
the involved system has on these actuator placement problems,
as well as investigating distributed implementations of their
corresponding algorithms.

APPENDIX

A. Computational Complexity of Problems(I) and (II)

We prove that Problem I is NP-hard, providing an instance
that reduces to the NP-hard controllability problem introduced
in [9]. In particular, it is shown in [9] that deciding if (1) is
controllable by a zero-one diagonal matrixB with r+1 non-
zero entries reduces to ther-hitting set problem, as we define
it below, which is NP-hard [32].

Definition 4 (r-hitting set problem). Given a finite setM and
a collectionC of non-empty subsets ofM, find anM′ ⊆M
of cardinality at mostr that has a non-empty intersection with
each set inC.

Without loss of generality, we assume that every element of
M appears in at least one set inC and all sets inC are non-
empty. Moreover in Definition 4, we let|C| = p andM =
{1, 2, . . . ,m}, and defineC ∈ R

p×m such thatCij = 1 if the
i-th set contains the elementj and zero otherwise.

Theorem 3 (Computational Complexity of Problem (I)).
Problem(I) is NP-hard.

Proof: We show that Problem (I) forA as described below
and withE = n(2n)2n

2+12n+2 − n is equivalent to the NP-
hard controllability problem introduced in [9]. Therefore, since
E can be described in polynomial time, aslog(E) = O(n3),
we conclude that Problem (I) is NP-hard.

In particular, as in [9], letn = m+p+1 andA = V −1DV ,
whereD ≡ diag(1, 2, . . . , n) and1

V =





2Im×m 0m×p em×1

C (m+ 1)Ip×p 0p×1

01×m 01×p 1



 . (17)

It is shown in [9] that deciding ifA is controllable by a zero-
one diagonal matrixB with r+1 non-zero entries is NP-hard.

Now, observe that all the entries ofV are integers either
zero or at mostm + 1. Moreover, with respect to the entries
of V −1, it is shown in [9] that:

• For i = 1, 2, . . . ,m: It has a1/2 in the(i, i)-th place and
a −1/2 in the (i, n)-th place, and zeros elsewhere.

• For i = m + 1,m + 2, . . . ,m + p: It has a1/(m + 1)
in the (i, i)-th place, a−1/(2(m + 1)) in the (i, j)-th
place wherej ∈ Ci (Ci is the corresponding set of the

1V is invertible since it is strictly diagonally dominant.

collectionC), and|Ci|/(2(m+1)) in the (i, n)-th place;
every other entry of thei-th row is zero.

• Finally, the last row ofV −1 is [0, 0, . . . , 0, 1].

Therefore,2(m+1)V −1 has all its entries as integers that are
either zero or at mostn2, in absolute value.

Consider the controllability matrix associated with this
system, given a zero-one diagonalB that makes it controllable,
and denote it asWB. Then,

WB =

∫ t1

t0

eA(t−t0)BBT eA
T (t−t0) dt

= V −1

∫ t1

t0

eD(t−t0)V BV T eD
T (t−t0) dtV −T .

Let t1 − t0 = ln(n). Then,(2n)!
∫ t1−t0
0

eDtV BV T eD
T t dt

evaluates to a matrix that has entries of the formc0 + c1n+
c2n

2 + . . . + cnn
n, where c0, c1, . . . , cn are non-negative

integers and all less than(2n)! ≤ (2n)2n. Thereby,

W ′
B ≡ 4(m+ 1)2(2n)!V −1

∫ t1−t0

0

eDtV BV T eD
T t dtV −T ,

has entries of the formc′0 + c′1n+ c′2n
2 + . . .+ c′nn

n, where
c′0, c

′
1, . . . , c

′
n are integers and all less than(2n)2(n+3) in

absolute value due to the pre and post multiplications by
2(m+ 1)V −1 and2(m+ 1)V −T , respectively.

We are interested on upper boundinglog det(W−1
B ): since

for x > 0, log(x) ≤ x − 1, log det(W−1
B ) ≤ tr(W−1

B ) −
n. In addition, tr(W−1

B ) = 4(m + 1)2(2n)!tr(W ′
B

−1
) ≤

(2n)2(n+1)tr(W ′
B

−1
). Therefore, we upper boundtr(W ′

B
−1

):
Using Crammer’s rule to computeW ′

B
−1, due to the form

of the entries ofW ′
B , all of its elements, including the

diagonal ones, if they approach infinity, they approach it
with at mostn!nn(2n)2n(n+3) < (2n)2n(n+5) speed, and as
a result tr(W ′

B
−1

) ≤ n(2n)2n(n+5). Hence, tr(W−1
B ) ≤

n(2n)2n(n+5)+2(n+1) = n(2n)2n
2+12n+2, for any B that

makes (1) controllable. Thus, if we setE = n(2n)2n
2+12n+2−

n (which implieslog(E) = O(n3) so thatE can be described
polynomially), Problem (I) is equivalent to the controllability
problem of [9], which is NP-hard.

An immediate consequence of Theorem 3 is the following
one.

Corollary 2 (Computational Complexity of Problem (II)).
Problem(II) is NP-hard.

B. The Greedy Algorithm used in the Supermodular Minimiza-
tion Literature is Inefficient for solving Problem(II ′)

Consider Algorithm 5 which is in accordance with the
supermodular minimization literature [23], [24], [26].
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Algorithm 5 Greedy algorithm for Problem (II′).

Input: Maximum number of actuatorsr, approximation pa-
rameterǫ, number of steps that the algorithm will runl,
matricesW1,W2, . . . ,Wn.

Output: Actuator set∆l

∆0 ← ∅ , i← 0
while i < l do
ai ← argmaxa∈V\∆{log det(W∆i

+ ǫI)−1 −
log det(W∆i∪{a} + ǫI)−1}
∆i+1 ← ∆i ∪ {ai}, i← i+ 1

end while

The following is true for its performance.

Fact 2. Let v⋆ denote the value of Problem(II ′). Then,
Algorithm 5 guarantees that for any positive integerl,

log det(W∆l
+ ǫI)−1 ≤ (1− e−l/r)v⋆ + n log(ǫ−1)e−l/r.

Proof: It follows from Theorem 9.3, Ch. III.3.9. of [26],
since− log det(W∆l

+ ǫI)−1 + n log(ǫ−1) is a non-negative,
non-decreasing, and submodular function with respect to the
choice of∆ (cf. Proposition 2).

Algorithm 5 suffers from an error term that is proportional
to n log(ǫ−1). Moreover, it is possible that Algorithm 5 returns
an actuator set that does not render (1) controllable. Therefore,
Algorithm 5 is inefficient for solving Problem (II′).
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