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Abstract

This work considers the robustness of uncertain consensus networks. The first set of results studies the stability
properties of consensus networks with negative edge weights. We show that if either the negative weight edges form
a cut in the graph, or any single negative edge weight has magnitude less than the inverse of the effective resistance
between the two incident nodes, then the resulting network is unstable. These results are then applied to analyze the
robustness properties of the consensus network with additive but bounded perturbations of the edge weights. It is
shown that the small-gain condition is related again to cuts in the graph and effective resistance. For the single edge
case, the small-gain condition is also shown to be exact. The results are then extended to consensus networks with
non-linear couplings.

I. INTRODUCTION

The consensus protocol has recently emerged as a canonical model for the study of networked dynamic systems. In
the linear setting, the consensus protocol, comprised of a collection of single integrator dynamic agents interacting
over an information exchange network (the graph), has been studied from both dynamic systems and graph theoretic
perspectives [1]. The most basic setting considered in consensus networks assumes an undirected connected graph
with non-negative weights on the edges of the graph. In such a setting, it is well known that the trajectories of all
agents in the network converge to a common value. The use of edge weights in these networks often arise from
the modeling of physical processes [2], or as a design parameter used to improve certain performance metrics [3],
[4].

Recently, there has been a growing interest in multi-agent networks containing negative edge weights. For example,
in the work [4] it was shown that negative edge weights can appear as an optimal solution for finding the fastest
converging linear iteration used in distributed averaging. Negative edge weights in problems related to the control
of multi-agent systems can also lead to steady-state configurations that are clustering [5], [6]. In [7], negative
weights are used to model antagonistic interactions in a social network and conditions are provided for when such
weights lead to bipartite consensus. The work of [8] provides bounds on the number of positive, negative, and zero
eigenvalues of the weighted Laplacian matrix with negative weights.

An important issue that has not received much attention in the controls community is the robustness of these
linear weighted consensus protocols. Indeed, even in the most basic setups, the trajectories generated by a weighted
consensus protocol can be very rich including steady-state trajectories that are synchronized, clustering, or unstable.
If the weights in a consensus network arise from its physical modeling, then one must consider the performance
of such systems when the weights are not known exactly. Similarly, if the weights are designed as an engineered
parameter, then it is important to consider the robustness of the system in the presence of malicious attacks on the
network, one of which could be the manipulation of the nominally designed edge weights.

The question of robustness in this context relates to the underlying graph. Recent works have analyzed robustness
of synchronization networks with random link failures [9], particular families of graphs in the context of the H2

performance [10], and uncertain tree structures [11]. In [12], uncertainties in the dynamics of each agent comprising
a networked system was studied in the context of the small-gain theorem. However, these works do not address the
fundamental combinatorial aspect that can arise in uncertain networked systems.

This then motivates the main contributions of this work. We aim to study the robustness properties of linear
weighted consensus protocols and provide graph-theoretic interpretations of the results. We consider consensus
networks where the nominal edge weights are subject to some bounded additive perturbations. At the heart of this
analysis is an algebraic and graph-theoretic characterization of the definiteness of the weighted graph Laplacian with
negative edge weights. We then apply these results to a linear consensus protocol in the context of the celebrated
small gain theorem. We show that in certain cases, the small gain theorem provides an exact robustness margin for
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the uncertain consensus network. Furthermore, this measure turns out to be related to the notion of the effective
resistance of a graph. These results are also extended to consider edge weights with nonlinear, but sector bounded,
perturbations.

The organization of this paper is as follows. In Section II, fundamental notions from graph theory are reviewed,
including the results on the weighted graph and edge Laplacian matrices [13]–[15]. Section III introduces the
uncertain consensus models. Section IV provides a general analysis on the stability of linear consensus protocols
with negative edge weights, and Section V leverages these results to make statements on the robust stability of
uncertain networks. Finally, concluding remarks are offered in Sections VII.

Preliminaries: The notations employed in this work are standard. The n-dimensional Euclidean vector space
is denoted Rn and ‖x‖ denotes the standard Euclidean norm for x ∈ Rn. For a real n×m matrix A, σ(A) denotes
its largest singular value and the spectral norm of the matrix A is ‖A‖ = σ(A). The image and null-space of a
matrix A are denoted IM[A] and N [A], respectively.The signature of a real symmetric matrix A, denoted as the
triple s(A) = (n+, n−, n0), is the number of positive, negative, and zero eigenvalues of the matrix. An important
result on the the signature of a matrix is Sylvester’s Law of Inertia, which states that all congruent symmetric
matrices have the same signature [16].1 The m-dimensional space of piecewise continuous vector-valued square
integrable functions is denoted as Lm2 [0,∞). For a linear dynamical system described by the state-space model
ẋ(t) = Ax(t)+Bu(t), y(t) = Cx(t)+Du(t), its transfer function is denoted as G(s) = C(sI−A)−1B+D. The L2-
induced gain of the system described by G(s) is determined by the H∞ system norm, ‖G(s)‖∞ = supω σ(G(jω))
[17].

II. FORESTS, CYCLES, AND THE EDGE LAPLACIAN

In this section we introduce the fundamental notions of spanning forests and cycles in graphs and present
their associated matrix representations [18]. We consider undirected weighted graphs described by the triple G =
(V, E ,W) consisting of the node set V , edge set E ⊆ V × V , and weight function that maps each edge to a scalar
value, W : E → R. We often collect the weights of all the edges in a diagonal matrix W ∈ R|E|×|E| such that
[W ]kk =W(k) = wk where ek = (i, j) ∈ E .

The maximal acyclic subgraph of G is referred to as a spanning forrest, denoted F = (V, EF). If F is connected,
it is called a spanning tree, and is denoted T = (V, ET ). Every graph G can always be expressed as the union of a
spanning tree (spanning forrest) and another subgraph containing the remaining edges, i.e., G = T ∪C (G = F ∪C).
The subgraph C necessarily “completes cycles” in G, and is defined as C = (V, EC) ⊂ G with EC = E \ET (similarly
defined with a forrest); we refer to this as the cycle subgraph.

The incidence matrix of a graph (with arbitrary edge orientation), E(G) ∈ R|V|×|E|, is such that for edge
ek = (i, j) ∈ E , [E(G)]i,k = 1, [E(G)]j,k = −1, and [E(G)]`,k = 0 for ` 6= i, j. With an appropriate labeling of
the edges, we can always express the incidence matrix as E(G) =

[
E(T ) E(C)

]
(E(G) =

[
E(F) E(C)

]
).

An important property of the incidence matrix is that E(G)T1 = 0 for any graph G, where 1 is the vector of all
ones, and that rk[E(G)] = n− c for a graph with c connected components. For a more compact notation, we will
write E := E(G), ET = E(T ), EF = E(F), and EC = E(C).

The weighted graph Laplacian of G is defined as L(G) = EWET ∈ R|V|×|V|. It is well known that for a
weighted graph with only positive edge weights (i.e., W : E → R≥0), the signature of the Laplacian can be
expressed as s(L(G)) = (|V| − c, 0, c), where c is the number of connected components of G [18]. Another
symmetric matrix representation of a graph is the edge Laplacian [13]. For weighted graphs, we define the edge
Laplacian as Le(G) := W

1
2ETEW

1
2 ∈ R|E|×|E|.

We now review some basic results relating the weighted edge Laplacian matrix to the graph Laplacian.

Proposition II.1 The weighted Laplacian matrix L(G) = EWET is similar to the matrix[
Le(F)R(F,C)WRT(F,C) 0

0 0c

]
, (1)

where G has c connected components, F ⊆ G is a spanning forrest and R(F,C) =
[
I Le(F)−1ETFEC

]
=[

I T(F,C)

]
.

1A square matrix A is congruent to a square matrix B of the same dimension if there exists an invertible matrix S such that B = STAS.



Incidence Matrix E(G) =
[

E(F) E(C)
]

Graph Laplacian L(G) = EWET

Tucker Representation T(F,C) = Le(F)−1ET
FEC Edge Laplacian Le(G) = W

1
2 ETEW

1
2

Cut-set Matrix R(F,C) =
[

I T(F,C)
]

Essential Edge Laplacian Less(F) = Le(F)R(F,C)WRT
(F,C)

TABLE I
SUMMARY OF MATRIX REPRESENTATIONS FOR GRAPHS.

Proof: For a spanning forest, one has rk[EF ] = n− c and therefore Le(F) = ETFEF is invertible. Define the
transformation matrices

V =
[
EF NF

]
, V −1 =

[
Le(F)−1ETF

NT
F

]
,

where IM[NF ] = span[N [ETF ]]. It is straightforward to verify that the matrix in (1) equals V −1L(G)V .
The matrix Le(F)R(F,C)WRT(F,C) := Less(F) is referred to as the essential edge Laplacian [14] (for a connected

graph with spanning tree T , we write Less(T )). Note that the essential edge Laplacian is therefore a non-
singular matrix, and the edge Laplacian of a spanning forest (Le(F)) is always positive-definite. The matrix
Le(F)−1ETFEC := T(F,C) is sometimes referred to as the Tucker representation of a graph [19]. The rows of
the matrix R(F,C) form a basis for the cut space of a graph [18] and we refer to it as the cut-set matrix. For a more
in depth discussion on the matrices R(F,C) and T(F,C), please see [13], [14]. Note also that the matrix Le(F)−1ETF
is the left-inverse of EF ; we denote this matrix as ELF . For the readers convenience, we summarize the various
matrix representations of graphs in Table I.

Theorem II.2 ( [15]) Assume G has c connected components and s(L(G)) = (n+, n−, n0). Then s(Less(F)) =
(n+, n−, n0 − c). Furthermore, Less(F) has the same signature as the matrix R(F,C)WRT(F,C).

Proof: Using the similarity transformation matrix Le(F)
1
2 we have that Le(F)R(F,C)WRT(F,C) is similar to

Le(F)
1
2R(F,C)WRT(F,C)Le(F)

1
2 . This matrix is congruent to R(F,C)WRT(F,C) and thus by Sylvester’s Law of Inertia

has the same inertia as Le(F)R(F,C)WRT(F,C).
An immediate corollary of Theorem II.2 is that the if s(L(G)) = (n+, n−, n0) and G has c connected components,

then s(R(F,C)WRT(F,C)) = (n+, n−, n0 − c).
The matrix R(F,C)WRT(F,C) turns out to be closely related to many combinatorial properties of a graph. For

example, the rows of the matrix R(F,C) form a basis for the cut-space of the graph [18]. This matrix is also
intimately related to the notion of effective resistance of a graph, which will be discussed in Section IV. Theorem
II.2 thus shows that studying the definiteness of the weighted Laplacian can be reduced to studying the matrix
R(F,C)WRT(F,C) which contains in a more explicit way information on how both the location and magnitude of
negative weight edges influence it spectral properties. This theme will be periodically revisited throughout this
work.

III. CONSENSUS AND THE EDGE AGREEMENT

In this work we consider the linear weighted consensus protocol [1] in the presence of exogenous finite-energy
disturbances. The consensus dynamics over the graph G = (V, E ,W) can thus be expressed as

Σ(G) :

{
ẋ(t) = −L(G)x(t) + v(t)
z(t) = E(Go)Tx(t)

. (2)

Here, v(t) =
[

v1(t) · · · vn(t)
]T ∈ Ln2 [0,∞) is a finite-energy exogenous disturbance entering each agent in

the system. The performance of the system is measured in terms of the energy of the vector z(t) ∈ R|Eo| capturing
the relative states over a set of edges determined by the unweighted graph Go = (V, Eo).2

With this model we can consider how finite energy disturbances affect the asymptotic deviation a subset of the
states to an agreement value. This can formally be analyzed by considering the L2-induced gain of the system,
i.e., its H∞ performance, ‖Σ(G)‖∞ [13]. It is a well-established result that if the graph G is connected and all
the weights are positive, then (2) reaches consensus, i.e., limt→∞ z(t) = 0, for any output graph Go. Therefore,

2Note that Go need not have any dependence on G.



z(t) ∈ L|Eo|2 [0,∞) and ‖Σ(G)‖∞ is finite. However, this is not the case if L(G) has multiple eigenvalues at the
origin (and certainly if any eigenvalue of L(G) is positive). Indeed, if G is disconnected and E(Go) = G,3 then z(t)
is not a finite-energy signal. On the other hand, for the same example and choosing Go ⊆ G it can be verified that
z(t) ∈ L|Eo|2 [0,∞) (since each component of the graph will reach consensus).

Nevertheless, we would like to examine some notion of performance of (2) for any choice of output graph Go.
In this direction, we can define a coordinate transformation for (2), x̃(t) = S−1x(t), with

S =
[

(ELF )T NF
]
, S−1 =

[
ETF
NT
F

]
,

where IM[NF ] = span{N [ETF ]}. Thus, the state vector x̃(t) can be partitioned into two components as x̃(t) =[
xF(t)T xTa (t)

]T
, where xF(t) = ETF x(t) are the relative states over the edges forming the spanning forrest

of G, and xa(t) = NT
F x(t) correspond to modes in the direction of the all-ones vector across each component of

G. Applying this transformation to (2) leads to the following system,[
ẋF(t)
ẋa(t)

]
=

[
−Less(F) 0

0 0

] [
xF(t)
xa(t)

]
+ S−1v(t)

z(t) = E(Go)T
[

(ELF )T NF
] [ xF(t)

xa(t)

]
. (3)

In the new coordinate system, it is now straightforward to show that limt→∞ z(t) = E(Go)TNFxa(0) and
furthermore that E(Go)T (ELF )TxF(t) ∈ L|EF |2 [0,∞). We can now consider the following truncated system,

ΣF(G) :

{
ẋF(t) = −Less(F)xF(t) + ETF v(t)
zF(t) = E(Go)T (ELF )TxF(t)

. (4)

We term the system ΣF(G) the edge agreement protocol over the spanning forest F ⊆ G. The above transformation
holds also when G is connected and F = T is a spanning tree. It is verifiable that the system ΣF(G) is minimal.
When F = T is a spanning tree, then ΣF(G) is a minimal realization of Σ(G) [14].

A. The Uncertain Edge Agreement Protocol

We now introduce a notion of uncertainty into the edge agreement protocols. First we examine an uncertainty
model where it is assumed that the exact weights of a subset of edges are an uncertain but bounded perturbation
about some nominal value. In this direction, let E∆ ⊆ E denote the set of uncertain edges. The nominal edge weight
for an edge k ∈ E∆ is determined by the weight function W; i.e., the nominal weight of edge k is W(k) = wk.
The uncertainty of the weight on edge k is modeled as an additive perturbation to the nominal edge weight as
wk + δk with |δk| ≤ δ for some finite positive scalar δ. Thus, we can define the uncertainty set as

∆ = {∆ : ∆ = diag{δ1, . . . , δ|E∆|}, ‖∆‖ ≤ δ}.
In this way, we can consider the uncertain edge agreement protocol as

ΣF(G,∆) :

{
ẋF(t) = −Le(F)R(F,C)

(
W + P∆PT

)
RT(F,C)xF(t) + ETF v(t)

z(t) = E(Go)T (ELF )TxF(t)
.

for ∆ ∈∆. In this form we see that the uncertainty is a structured additive uncertainty. The matrix P ∈ R|E|×|E∆|
is a {0, 1}-matrix used to select the uncertain edges with [P ]ij = 1 if ei ∈ E ∩ E∆, and [P ]ij = 0 otherwise (i.e.,
E(G)P = E(G∆) with G∆ = (V, E∆)). This setup is visualized by the two-port block diagram in Figure 1.

We also consider the consensus protocol with non-linear couplings. By introducing appropriate assumptions on
the non-linear couplings we are able to cast the problem as an uncertain agreement protocol in the form of Figure
1. In this direction, the non-linear consensus protocol has the form

ẋ(t) = −L(G)x(t)− E(G∆)Φ
(
E(G∆)Tx(t)

)
+ v(t)

z(t) = E(Go)Tx(t).

3The notation G denotes the complement of the graph G.
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z(t)w(t) ⌃(G)

Fig. 1. The consensus network with uncertainties.

As before, we assume E∆ ⊆ E . The non-linear vector function Φ : R|E∆| → R|E∆| is assumed to be decoupled, that
is Φ(y) =

[
φ1(y1) · · · φ|E∆|(y|E∆|)

]T
. Furthermore, we assume that the nonlinear functions φi(·) belong to

the sector [αi, βi]; that is αiu2
i ≤ uiφi(yi) ≤ βiu2

i for all ui ∈ R and αi < βi both real numbers.
The corresponding non-linear edge agreement protocol can thus be expressed as

ΣF(G,Φ) :

{
ẋF(t) = −Less(F)xF(t)− Le(F)R(F,C)P

(
Φ(PTRT(F,C)xF(t))

)
+ ETF v(t)

z(t) = E(Go)T (ELF )TxF(t)
.

For both models ΣF(G,∆) and ΣF(G,Φ) we will be concerned with determining bounds on the uncertainty that
guarantee the robust stability of the uncertain agreement protocols. The main analytic tool will be the application of
the small gain theorem. To proceed with this analysis we first examine stability properties of the linear consensus
protocol with arbitrary negative edge weights. These results will then be applied to derive the more general robust
stability statements of the uncertain models.

IV. ON THE STABILITY OF WEIGHTED CONSENSUS

Before examining the robust stability of the uncertain consensus networks presented in Section III-A, we first
study the general stability properties of the linear consensus protocol Σ(G) with negative weights. This section aims
to reveal how both the magnitude and placement of negative weight edges in a weighted graph can influence the
stability properties of Σ(G). In this section we assume there are no exogenous disturbances entering the protocol
(i.e., v(t) = 0).

The results of Section II revealed that the signature of the weighted Laplacian is related to the signature of an
associated matrix, R(F,C)WRT(F,C). We now exploit the structure of this matrix to show how negative edge weights
affect the stability of the weighted consensus. We first examine the effect of negative edge weights for a class of
graphs known as signed graphs. Then we proceed to provide a general stability characterization that turns out to
be related to the notion of the effective resistance of a graph. Moreover, as Σ(G) is a linear system, its stability can
be determined by examining the eigenvalues of the weighted Laplacian L(G). In particular, the stability of Σ(G)
is guaranteed as long as the weighted Laplacian is a positive semi-definite matrix. Therefore, the results to follow
are presented in terms of the definiteness of L(G).

A. Signed Graphs and the Stability of Σ(G)

A useful approach for the analysis of graphs with both positive and negative edge weights is the notion of signed
graphs [20]. A signed graph is a weighted graph G with a partition of the edge set into edges with positive
weights, denoted E+, and edges with negative weights, denoted E−. We can now define two subgraphs, one
containing only positive weight edges, and one containing only negative weight edges; G+ = (V, E+,W+) and
G− = (V, E−,W−). The weight maps W+ and W− are simply the original weight map W restricted to either E+



or E− with corresponding diagonal weight matrices W+ and W−. The corresponding incidence matrices can also
be written as [13]

E+ := E(G+) = EF+
R(F+,C+) = EF+

[
I T(F+,C+)

]
E− := E(G−) = EF−R(F−,C−) = EF−

[
I T(F−,C−)

]
.

A signed graph is balanced if and only if the vertex set can be partitioned into 2 sets V1 and V2, such that all
edges in E− connect nodes in V1 to nodes in V2 (i.e., G− is bipartite), and all edges in E+ connects nodes in Vi
only to nodes in Vi for i = 1, 2 [21].

Observe that the weighted graph Laplacian can now be expressed in terms of the positive and negative weight
subgraphs,

L(G) = E+W+E
T
+ − E−|W−|ET−. (5)

This decomposition leads to the following statement on the definiteness of the weighted Laplacian.

Theorem IV.1 The weighted Laplacian is positive semi-definite if and only if[
|W−|−1 ET−
E− E+W+E

T
+

]
≥ 0. (6)

Proof: This result follows from the Schur complement applied to (5).
The linear matrix inequality (LMI) in (6) already indicates that the magnitude of the negative edge weights plays

an important role in the definiteness of the Laplacian. We now proceed to examine this LMI in more detail to reveal
how also their location in the graph is important.

Corollary IV.2 The weighted Laplacian is positive semi-definite if and only if |W−|−1 ET−(ELF+
)T ET−NF+

ELF+
E− R(F+,C+)W+R

T
(F+,C+) 0

NT
F+
E− 0 0

 ≥ 0. (7)

Proof: Let IM[NF+
] = span{N [ETF+

]}. Consider the congruent transformation matrix

Q =

[
I 0

0
[

(ELF+
)T NF+

] ]
.

Then the matrix in (6) has the same signature (by the congruent transformation using S) as the matrix in (7).
From Theorem IV.1 it now follows that the weighted Laplacian is positive semi-definite if and only if (7) is positive
semi-definite.

We can make some more observations about the above result. It directly follows that if G+ is connected, then
L(G) ≥ 0 if and only if [

|W−|−1 ET−(ELF+
)T

ELF+
E− R(F+,C+)W+R

T
(F+,C+)

]
≥ 0. (8)

We are now prepared to make a statement connecting the location of the negative edge weights to the definiteness
of the weighted Laplacian. First, we comment on the structural meaning of the matrix ET−NF+

in (7). The quantity
ET−NF+

characterizes any cuts of the original graph G using only the negative weighted edges. To show this, assume
G+ has c connected components and let NF+

=
[

n1 · · · nc
]
. Then ni is a {0, 1}-vector with [ni]j = 1 if

and only if node j ∈ V is in component i. Then it is clear that ET−ni will be a {0,±1}-vector with [ET−ni]k = ±1
if and only if k = (u, v) ∈ E− such that u and v are not in the same components of G+.

Theorem IV.3 Assume that G is connected and E+, E− 6= ∅. If G+ is not connected, then the weighted Laplacian
matrix is indefinite for any (non-zero) choice of negative edge weights.



Proof: Consider the following sub-matrix of (7) obtained by deleting the center block row and column,[ |W−|−1 ET−NF+

NT
F+
E− 0

]
∈ R(m+c)×(m+c),

where m = |E−| and c is the number of connected components of G+. We assume that G+ is not connected, and
thus NF+

contains c columns. Partition the matrix as NF+
=
[

n1 · · · nc
]

and recall that [ET−ni]k = ±1 if
and only if k = (u, v) ∈ E− such that u and v are not in the same components of G+. Denote by CUTi ⊆ E− as
the set of negative weight edges used to form a cut with the ith component of G+, and let CUT = ∪iCUTi. Then
an expression for the quadratic form of the matrix of interest is

xT
[ |W−|−1 ET−NF+

NT
F+
E− 0

]
x =

∑
i∈E−

|W−(i)|−1x2
i +

∑
k∈CUT1

±2xkxm+1 + · · ·+
∑

k∈CUTc

±2xkxm+c.

From the quadratic form, it is now clear that the elements of the vector xi for i = m + 1, . . . ,m + c can be
arbitrarily chosen to make the inequality negative. Therefore, there exists at least one negative eigenvalue and the
matrix in (7) is indefinite. From Corollary IV.2 we can conclude that the weighted graph Laplacian is indefinite
independent of the value of the negative weights.

Theorem IV.3 shows that if any of the negative weight edges forms a cut in the graph, then the Laplacian matrix
must have negative eigenvalues. A particular class of graphs satisfying the conditions of Theorem IV.3 are the
balanced signed graphs.

Corollary IV.4 If a signed graph G is balanced then L(G) is indefinite for any choice of negative edge weights.

B. Effective Resistance and the Stability of Σ(G)

The main result of Section IV-A provides an analytical justification of what may be considered an intuitive result.
That is, if the negative weight edges form a cut in the graph, then the weighted Laplacian will be indefinite; i.e.,
Σ(G) will be unstable. In this section, we reveal a more general condition on the negative edge weights that can lead
to an indefinite weighted Laplacian. This condition turns out to be related to the notion of the effective resistance
of a graph. Results from this section were recently reported in [15], and thus the reader is referred to that work for
related proofs.

It is well known that the weighted Laplacian of a graph can be interpreted as a resistor network [22]. Each
edge in the network can be thought of as a resistor with resistance equal to the inverse of the edge weight,
rk =W(k)−1 = w−1

k for k ∈ E .4 The resistance between any two pairs of nodes can be determined using standard
methods from electrical network theory [22]. It may also be computed using the Moore-Penrose pseudo-inverse of
the graph Laplacian, denoted L(G)†.

Definition IV.5 ( [22]) The effective resistance between nodes u, v ∈ V in a weighted graph G = (V, E ,W) is

Ruv(G) = (eu − ev)
TL†(G)(eu − ev)

= [L†(G)]uu − 2[L†(G)]uv + [L†(G)]vv,

where eu is the indicator vector for node u, that is eu = 1 in the u position and 0 elsewhere.

Our first result shows how the effective resistance between two nodes is related to the matrix R(T ,C)WRT(T ,C)

and the essential edge Laplacian.

Proposition IV.6 ( [15]) Let G be a connected graph and assume s(L(G)) = (n+, n−, 1). Then

L†(G) = (ELT )T
(
R(T ,C)WRT(T ,C)

)−1
ELT = (ELT )TLess(T )−1ETT . (9)

Proof: From Theorem II.2 we conclude the essential edge Laplacian is invertible and it follows that

Less(T )−1 =
(
R(T ,C)WRT(T ,C)

)−1
Le(T )−1,

4Thus, the edge weight wk can be interpreted as an admittance.



and

L†(G) = V

[ (
R(T ,C)WRT(T ,C)

)−1
Le(T )−1 0

0 0

]
V −1,

where S is the transformation matrix defined in Proposition II.1, and (9) follows directly.
From Proposition IV.6, it is clear that the effective resistance between nodes u, v ∈ V can be expressed as

Ruv(G)=(eu−ev)
T (ELT )T

(
R(T ,C)WRT(T ,C)

)−1
ELT (eu−ev). (10)

We now present a result showing that this equivalent characterization of the effective resistance is useful for
understanding the definiteness of the weighted Laplacian.

Theorem IV.7 ( [15]) Assume that G+ is connected and |E−| = 1 with E− = {e− = (u, v)}. Let Ruv(G+) denote
the effective resistance between nodes u, v ∈ V over the graph G+. Then L(G) is positive semi-definite if and only
if |W(e−)| ≤ R−1

uv (G+).

Proof: From (5) we have

L(G) = ET+R(T+,C+)W+R
T
(T+,C+)E

T
T+
− E−|W(e−)|ET−.

By the Schur complement, L(G) ≥ 0 if and only if[ |W(e−)|−1 ET−
E− ET+R(T+,C+)W+R

T
(T+,C+)E

T
T+

]
≥ 0.

Applying a congruent transformation to the above matrix using

F =

[
I 0

0
[

(ELT+)T 1

] ]
leads to the following LMI condition,[

|W(e−)|−1 ET (ELT+)T

ELT+E− R(T+,C+)W+R
T
(T+,C+)

]
≥ 0.

Applying again the Schur complement, we obtain the equivalent condition that the matrix

|W(e−)|−1 − ET−(ELT+)T (R(T+,C+)W+R
T
(T+,C+))

−1ELT+E

must also be positive semi-definite. Observe now that

ET−(ELT+)T (R(T+,C+)W+R
T
(T+,C+))

−1ELT+E− = Ruv(G+).

This then leads to the desired conclusion that |W(e−)| ≤ R−1
uv (G+).

The above result has a very intuitive physical interpretation. The entire network G+ can be considered as a single
lumped resistor between nodes u and v with resistance Ruv(G+). The negative-weight edge can thus be thought of
as adding another resistor in parallel between the nodes, as in Figure 2. The equivalent resistance between u and
v is well-known to be

Ruv(G) =
Ruv(G+)r−
Ruv(G+) + r−

.

If r− is a negative resistor, then choosing r− = −Ruv(G+) corresponds to an equivalent resistance that is infinite,
i.e., an open circuit. The open circuit can be thought of as a cut between the terminals u and v. This interpretation
is inline also with the results of Theorem IV.3. Indeed, in this case the graph G+ is not connected and the effective
resistance between any two nodes connected by a negative edge weight over G+ is infinite, i.e., R−1

uv (G+) = 0.
The result in Theorem IV.7 can be generalized to multiple negative weight edges with some additional assumptions

on how those edges are distributed in the graph. In this direction, for each edge k = (u, v) ∈ E−, define the set
Pk ⊆ E+ to be the set of all edges in G+ that belong to a path connecting nodes u to v, Let G+(Pk) ⊆ G+ be the



Ruv(G+)

u v

r�

Fig. 2. Resistive network interpretation with one negative weight edge.

subgraph induced by the edges in Pk.5 Note that if Pk ∩Pk′ = ∅ for edges with distinct nodes (i.e., k = (u, v) and
k′ = (u′, v′) ∈ E−), then there exists no cycle in G+ containing the nodes u, v, u′, v′. An important class of graphs
that can admit such a partition are the cactus graphs [23]. Using this characterization, the following statement on
effective resistance with multiple negative weight edges follows.

Theorem IV.8 ( [15]) Assume that G+ is connected and |E−| > 1. Let Rk(G+) denote the effective resistance
between nodes u, v ∈ V over the graph G+ with k = (u, v) ∈ E−, and let R = diag{R1(G+), . . . ,R|E−|(G+)}.
Furthermore, assume that Pi ∩ Pj = ∅ for all i, j ∈ E−, where Pi is the set of all edges belonging to a path
connecting the nodes incident to edge i ∈ E·. Then the weighted Laplacian is positive semi-definite if and only if
|W−| ≤ R−1.

Proof: As in the proof of Theorem IV.7, we consider the LMI

|W−|−1 − ET−(ELT+)T (R(T+,C+)W+R
T
(T+,C+))

−1ELT+E− ≥ 0 (11)

Due to the location of the negative weight edges assumed in the graph, it can be verified that the matrix
ET−(ELT+)T (R(T+,C+)W+R

T
(T+,C+))

−1ELT+E− is in fact a diagonal matrix with Rk(G+) for k = 1, . . . , |E−| on
the diagonal, denoted as R. To see this, observe that ELT+E− is a {0,±1} matrix that describes which edges in the
spanning tree T+ can create a cycle with each edge in E− (this is related to the matrix T(T ,C) used in Proposition
II.1 since T+ = T and therefore E− ⊆ Ec). Observe also that an edge k ∈ E− can only be incident to nodes in the
subgraph G+(Pk). Therefore, the matrix ELT+E− has a partitioned structure (after a suitable relabeling of the edges)
such that the kth column of ELT+E− will contain non-zero elements corresponding to edges in T+ ∩ G+(Pk). The
LMI condition can now be expressed as |W−|−1 ≥ R which implies that |W−| ≤ R−1 concluding the proof.

Theorem IV.8 also has the same physical interpretation as Theorem IV.7. Indeed, the resistance between two
nodes contained in a sub-graph G+(Pk) is not determined by any other edges in the network. Both Theorems IV.7
and IV.8 provide a clear characterization of how negative weight edges can impact the definiteness of the weighted
Laplacian, and how that is related to the effective resistance in the graph. In fact, from (8) we also can observe an
additional fact relating the total effective resistance between all nodes incident to edges in E− and the definiteness
of the graph, independent of the actual location of these edges in the network.

Corollary IV.9 ( [15]) Assume that G+ is connected. If L(G) ≥ 0, then
∑
k∈E− |W(k)|−1 ≥ R

E−
tot, where

R
E−
tot=trace

[
ET−(ELT+)T (R(T+,C+)W+R

T
(T+,C+))

−1ELT+E−
]
.

Proof: This follows directly from the trace of (11).

5Thus, G+(Pk) = (V(Pk),Pk) where V(Pk) ⊆ V are the nodes incident to edges in Pk .



Corollary IV.9 indicates that a weighted Laplacian with negative weights can still be positive semi-definite, and
in that case the total magnitude of the negative weight edges is closely related to the total effective resistance in the
network (defined over the nodes incident to E−). The notion of total effective resistance has also appeared in works
characterizing the H2 performance of certain multi-agent networks [24]–[26]. While Corollary IV.9 only provides
a sufficient condition for the definiteness of the weighted Laplacian, it nevertheless reinforces its connection to the
notion of effective resistance.

V. ON THE ROBUST STABILITY OF THE UNCERTAIN CONSENSUS PROTOCOL

The results of the previous section provide the correct foundation to now consider the robust stability of the
uncertain consensus models presented in Section III-A. A natural approach for analyzing the robust stability is
via the celebrated small gain theorem. While the small gain theorem often provides very conservative results, we
demonstrate in this section that for certain classes of uncertainties the small gain result is in fact an exact condition.

A. Robust Stability of ΣF(G,∆)

We now proceed with an analysis of the system ΣF(G,∆) in (5). Based on the system interconnection shown in
Figure 1, the map from the exogenous inputs v(t) to the controlled output z(t) in the presence of the structured
uncertainty ∆ ∈∆ can be characterized by the upper fractional transformation [17],

S(ΣF(G),∆) = M22 +M21∆ (I −M11∆)
−1
M12, (12)

where

M11(s) = PTRT(F,C)(sI + Less(F))−1Le(F)R(F,C)P

M12(s) = PTRT(F,C)(sI + Less(F))−1E(F)T

M21(s) = E(Go)T (ELF )T (sI + Less(F))−1Le(F)R(F,C)P

M22(s) = E(Go)T (ELF )T (sI + Less(F))−1E(F)T .

This representation can lead directly to a small-gain interpretation for the allowable edge-weight uncertainties
that guarantees the system is robustly stable. In particular, a sufficient condition for determining whether (I−M11∆)
has a stable proper inverse is to ensure that ‖M11(s)∆‖∞ < 1.

We now cite a result from [13] that gives insight on the H∞ norm of the transfer function matrix M11(s).

Proposition V.1 ( [13])
‖M11(s)‖∞ = σ(M11(0)).

This results shows that the H∞ performance of the system M11(s) can be obtained by computing the largest
singular value of the real matrix M11(0), leading to the result on the robust stability of ΣF(G,∆).

Theorem V.2 Let ∆ = {∆ ∈ R|E∆|×|E∆|, ‖∆‖ ≤ δ, ∆ diagonal} and assume ΣF(G) is nominally stable. Then
the uncertain edge agreement protocol is robustly stable for any ∆ ∈∆ if ‖∆‖ < (σ(M11(0)))−1.

Theorem V.2 is in fact a direct statement of the small-gain theorem and can be considered conservative. One
might wonder if the results of Theorem IV.3 might lead to a less conservative result. That is, if E∆ forms a cut set
of G, is it possible that maxe∈E∆W(e) < σ(M11(0))−1. The following result shows that this can not be the case.

Proposition V.3 (
max
e∈E∆

W(e)

)−1

≤ max
e∈E∆

Re(G) ≤ σ(M11(0)) ≤ RE∆tot,

where
RE∆tot = trace

[
PTET (ELT )T (R(T ,C)WRT(T ,C))

−1ELT EP
]
.

Proof: Let E∆ = EP denote the incidence matrix with columns corresponding to the edges in E∆. Observe
that R(F,C)P = ELT E∆. Therefore, the diagonal entries of M11(0) correspond to the effective resistance between



nodes incident to the edges in E∆ (from (10)), establishing a lower bound on σ(M11(0)). By a similar argument,
it follows that trace[M11(0)] = RE∆tot leading to the upper bound.

To establish the lower bound, let S, S′ ⊂ V be the set of nodes incident to edges in E∆ (with S the nodes that
are the head of each edge, and S′ the tail). For each edge e ∈ E∆, let re = W(e)−1 = we denote its resistance.
Consider now the edges e1 = (u, v), e2 = (u′, v′) ∈ E∆, and assume r1 ≥ r2 (equivalently, w1 ≤ w2). Similarly,
let R̃uv = Ruv(G \ e1) denote the effective resistance between u and v after edge e1 is removed. It now follows
that

Ruv(G) =
r1R̃uv
r1 + R̃uv

≥ r2(r1 + R̃uv − r1)

r1 + R̃uv
≥ r2,

Since the above inequality holds for any pair of edges in E∆, and in particular when r2 = (maxe∈E∆W(e))−1,
the lower bound is verified.

By introducing additional assumptions into the system ΣF(G,∆), the small gain result of Theorem V.2 can be
tightened and endowed with more meaningful physical interpretations.

Theorem V.4 Consider the uncertain edge agreement protocol ΣF(G,∆) with E∆ = E and the nominal edge
weights are all positive and equal, i.e., W = αI with α > 0. Then ‖M11(s)‖∞ = α−1 and ΣF(G,∆) is robustly
stable for all diagonal ∆ satisfying ‖∆‖∞ = σ(∆) < α.

Proof: With E∆ = E it follows that P = I . Therefore, M11(0) = 1
αR

T
(F,C)(R(F,C)R

T
(F,C))

−1R(F,C) is a projection
matrix scaled by α−1, that is ‖M11(s)‖∞ = σ(M11(0)) = α−1. The bound on the uncertainty ∆ then follows
immediately from the small-gain theorem.

While still a conservative result, Theorem V.4 provides has a more intuitive interpretation. It states that all edge
weights must remain positive even in the presence of uncertainty. This result can also be understood in the context
of Theorem IV.3 since one can imagine the uncertainty attacking a set of edges that forms a cut in the graph. Thus,
if the uncertainty is such that the edges in the cut have negative weight (i.e., wk + δk < 0) then the resulting edge
agreement protocol will be unstable.

The small gain result can in fact lead to an exact condition for the robust stability of ΣF(G,∆). The next result
considers the uncertain edge agreement problem when the uncertainty is present in only a single edge in the graph.

Theorem V.5 Consider the uncertain edge agreement protocol ΣF(G,∆) with E∆ = {{u, v}} (i.e., |E∆| = 1) and
assume Σ(G) is nominally stable. Then ‖M11(s)‖∞ = Ruv(G) and Σ(G,∆) is robustly stable for all δ satisfying
‖∆‖∞ < R−1

uv (G).

Proof: This statement directly follows Theorem IV.7, Proposition V.1, and the effective resistance between two
nodes in a graph (9).

Theorem V.5 provides an exact condition for the robust stability of ΣF(G,∆) when a single edge has uncertainty.
That is, there is no conservatism in this result, which is a direct consequence of Theorem IV.7. This result also
demonstrates that the effective resistance between nodes in the network can serve the role of a gain margin for the
system.

Consider now a scenario where an attacker is able to perturb the weight of any single edge in the graph. From
Theorem V.5, each edge can tolerate a perturbation determined by the effective resistance between the two incident
nodes. Thus, an attacker might consider choosing the edge with the ‘smallest’ margin. This leads to a less restrictive
uncertainty class than in Theorem V.5, however, the result will consequently be more conservative.

Corollary V.6 Let ∆ = {δPiPTi , i = 1, . . . , |E|, |δ| ≤ δ} be the set of allowable perturbations on the edge
weights, where Pi ∈ R|E| satisfies [Pi]j = 1 when j = i and 0 otherwise, and assume that ΣF(G) is nominally
stable. Then Σ(G,∆) is robustly stable if for any ∆ ∈∆ one has ‖∆‖∞ < minuvR−1

uv (G).

Corollary V.6 demonstrates the earlier discussion. If only a single edge can be “attacked,” then the robustness
margin of the entire network will be determined by the edge connecting the nodes with the largest effective resistance
between them. It should be noted that this value will depend on both the nominal values of the edge weights along
with the location of the edges in the graph.



Using the result of Theorem IV.8 also leads to a less conservative corollary for Theorem V.2.

Corollary V.7 Let E∆ denote the set of uncertain edges and define the uncertainty set as ∆ = {∆ ∈ R|E∆|×|E∆|, ‖∆‖ ≤
δ, ∆ diagonal}. For each edge k = (u, v) ∈ E∆, define Pk ⊆ E as the set of all edges in G that belong to a path
connecting nodes u to v and assume that Pi ∩ Pj = ∅ for all i, j ∈ E∆ with R = diag{R1(G), . . . ,R|E∆|(G)}.
Assume that ΣF(G) is nominally stable. Then Σ(G,∆) is robustly stable for all ∆ ∈∆ if ‖∆‖ < mine∈E∆ Re(G)−1.

B. Robust Stability of ΣF(G,Φ)

We now examine the robust stability of the consensus system with nonlinear couplings ΣF(G,Φ) given in (5).
First, we recall results on the multivariable circle criterion [27].

Let K1,K2 ∈ R|E∆|×|E∆| be real diagonal matrices with K2 − K1 > 0. Define Φ to be the set of all sector-
bounded time-varying nonlinearities as described in Section III-A with K1 = diag{α1, . . . , α|E∆|} and K2 =
diag{β1, . . . , β|E∆|}. In the following, we denote by G(s) the transfer-function of a linear system with state-space
matrices (A,B,C,D).

Lemma V.8 ( [27]) The following statements are equivalent:
(i) The state matrix A is asymptotically stable and G(s) is strictly positive real;

(ii) D +DT > 0 and there exists X,Y > 0 such that

0 = ATX +XA+ (BTX − C)T (D +DT )−1(BTX − C) + Y.

Theorem V.9 ( [27]) If (I + K2G(s))(I + K1G(s))−1 is strictly positive real, then for all Φ ∈ Φ the negative
feedback interconnection of G(s) and Φ is asymptotically stable.

We are now prepared to make a general statement on the robust stability of ΣF(G,Φ).

Theorem V.10 Consider the nonlinear edge agreement protocol ΣF(G,Φ) with E∆ ⊆ E and assume Σ(G) is
nominally stable. Then ΣF(G,Φ) is asymptotically stable for any Φ ∈ Φ if

‖K1‖ = max
i
|αi| <

1

‖M11(s)‖∞
,

and 2W + P
(
K − (1−

√
2)I
) (
K − (1 +

√
2)I
)
PT > 0, where K = K2 −K1.

Proof: From Lemma V.8 it follows that a necessary condition for (I + K2M11(s))(I + K1M11(s))−1 to be
strictly positive real is for (I + K1M11(s))−1 to have a stable and proper inverse. Since K1 may have negative
entries, we arrive at the small-gain result on the largest singular value K1 to guarantee the inverse exists. Next, it
can be shown that a minimal state-space realization of the transfer function (I + K2M11(s))(I + K1M11(s))−1

can be expressed by the state-space matrices

Ã=−Less(F)− Le(F)R(F,C)PK1P
TRT(F,C)

B̃ =Le(F)R(F,C)P, C̃ = (K2 −K1)PTRT(F,C), D̃ = I.

Using Theorem V.9, it can be verified that choosing X = Le(F)−1 and Y = R(F,C)QR
T
(F,C) with

Q = 2W − PPT − P (K2 −K1)2P + 2P (K2 −K1)PT

satisfies the equality stated in condition (ii). Thus, Y > 0 if and only if Q > 0 concluding the proof.
As expected, the agreement protocol with sector non-linearities on the edges will inherit certain robustness

measures found in the case where there are additive perturbations. We can understand the above result better when
considering the case where |E∆| = 1; that is the nonlinearity is present on only a single edge.

Corollary V.11 Consider the nonlinear edge agreement protocol ΣF(G,Φ) with E∆ = {{u, v}} (i.e., |E∆| = 1)
and assume Σ(G) is nominally stable. Then ΣF(G,Φ) is asymptotically stable for all Φ ∈ Φ satisfying

|α| < R−1
uv (G) and ((β − α)2 − 2(β − α)− 1) > −2wuv.



The result of Corollary V.11 can also be interpreted in terms of passivity indices quantifying the shortage or
excess of passivity in the system. Indeed, Corollary V.11 can be used to conclude that the effective resistance
between a pair of nodes with non-linear couplings represents an excess of passivity for the system.

VI. SIMULATION EXAMPLE

We now briefly report on a numerical simulation illustrating the main results of this work. Figure 3(a) shows a
random geometric graph with 75 nodes. The edge weights are taken to be the inverse of the Euclidean distance
between neighboring nodes. With E∆ = E , Corollary V.6 states that the robustness margin corresponds to the inverse
of the largest effective resistance between nodes in E∆, which in this example corresponds to the edge connecting
the two black nodes in Figure 3(a); the effective resistance between these nodes is computed to be 0.429. Figure
3(b) shows the resulting trajectories when the uncertainty on that edge exactly equals the inverse of the effective
resistance, leading to a clustering phenomena. This was examined in more detail in [15].

Using the same graph, Figures 3(c) shows two non-linear coupling functions used across the uncertain edge
highlighted earlier (y = ax+ sinx). Choosing the nonlinearity satisfying the sector condition from Corollary V.11
(a < −2.035) leads to stable trajectories (Figure 3(d)). On the other hand, choosing a = −3 (red line in Figure
3(c)) leads to unstable dynamics.

VII. CONCLUDING REMARKS

This work examined the robust stability of weighted consensus protocols with bounded additive uncertainties
on the edge weights. The main results demonstrate that the robustness margins of such systems are determined
by both the combinatorial properties of the uncertain edges (i.e., where in the network they are located), and the
nominal magnitude of the edge weights. These margins were related to the notion of the effective resistance in a
network, and the robust stability results were cast in this framework. We believe that this framework provides a new
graph-theoretic interpretation for classical notions from robust control theory when applied to networked systems.
The ability for this framework to also handle non-linear extensions suggest a greater utility and our future works
aim to apply these results to certain real-world applications.
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[14] D. Zelazo, S. Schuler, and F. Allgöwer, “Cycles and Performance in Consensus Networks,” Systems & Control Letters, vol. 62, no. 1, pp.

85–96, 2013.



(a) Random geometric graph.

0 1 2 3 4 5 6
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

(b) Clustering results from an edge weight perturbation.
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(c) Nonlinear coupling functions.
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(d) Nonlinearity satisfying Corollary V.11.

Fig. 3. A network with an uncertain edge weight.
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