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Abstract—When a distributed algorithm must be executed by
strategic agents with misaligned interests, a social leader needs to
introduce an appropriate tax/subsidy mechanism to incentivize
agents to faithfully implement the intended algorithm so that
a correct outcome is obtained. We discuss the incentive issues
of implementing economically efficient distributed algorithms
using the framework of indirect mechanism design theory. In
particular, we show that indirect Groves mechanisms are not only
sufficient but also necessary to achieve incentive compatibility.
This result can be viewed as a generalization of the Green-
Laffont theorem to indirect mechanisms. Then we introduce the
notion of asymptotic incentive compatibility as an appropriate
solution concept to faithfully implement distributed and iterative
optimization algorithms. We consider two special types of opti-
mization algorithms: dual decomposition algorithms for resource
allocation and average consensus algorithms.

I. INTRODUCTION

In this paper, we consider a society comprised of a single
leader and N followers. The leader makes a social decision
z ∈ Z ,1 which incurs cost vi(z; θi) to the i-th follower. For
every i = 1, 2, · · · , N , assume that cost function vi(z; θi)
has a known parametric model while parameters θi ∈ Θi are
private. (For instance, vi(z; θi) can be a 10-th order polynomial
of a scalar variable z whose coefficients θi ∈ R10 are private.)
The leader desires to make a social decision z∗ that minimizes
the sum of the followers’ individual costs;

z∗ ∈ arg min
z∈Z

N∑
i=1

vi(z; θi). (1)

A social decision satisfying (1) is said to be (economically)
efficient. Efficient decision-making requires distributed algo-
rithms involving leader-follower communication, since the
leader has no access to the private parameters. A challenge
here is that such decision mechanisms must be designed so that
self-interested followers are given no incentive to manipulate
the algorithm in an effort to minimize their individual costs.
Note that this requirement is different from the fault resilience
requirement considered in, for instance, the Byzantine generals
problem [2]. We are interested in decision mechanisms in
which the followers could manipulate the result, but they
choose not to do so.

An early version of this article was presented at the 52nd IEEE Conference
on Decision and Control [1].

1For ease of presentation, we assume Z ⊂ Rnz .

Roughly speaking, the task of the leader is to design a
game that produces an efficient decision z∗ as a consequence
of game-theoretic equilibrium strategies of the followers.
Designing such games systematically in various multi-agent
decision making situations (e.g., auctions, elections, resource
allocations), frequently using a carefully designed tax/subsidy
rule, is a subject of interest in the Economics literature
under the umbrella of mechanism design theory. Developments
since the 1970s in mechanism design theory have resulted
in a rich and established discipline; basic information about
mechanism design theory can be found in, e.g., [3]–[8]. One
of the best-known positive results is the Groves mechanism,
which provides clear guidelines to design tax/subsidy rules
incentivizing the followers to be collaborative in the process
of computing efficient decisions.

Recently, the theory of mechanism design has been ap-
plied to various engineering and computer scientific prob-
lems. These applications have raised new challenges to the
traditional mechanism design theory, in term of computational
difficulties (e.g., combinatorial auctions [9] [10], job schedul-
ing [11]) and communication difficulties (e.g., inter-domain
routing [12]). For instance, the standard Groves mechanism be-
comes computationally intractable if the optimization problem
(1) is NP-hard. In such cases, the goal of mechanism design
must be set alternatively to incentivize strategic followers
to act faithfully in a (computationally feasible) algorithm
that only approximates an optimal solution. It turns out
that this task is not straightforward, since mechanisms that
naively approximate the Groves mechanism are in general
not “approximately incentive compatible” at all [13] [14].
This implies that a fundamental departure from the Groves
mechanism is inevitable when the underlying optimization
problem is computationally hard. The interplay between in-
centives, computation, and communication now forms the
field of algorithmic mechanism design (AMD) [14] [15]. It
should be noted that several recent papers discuss similar ideas
regarding game designs for distributed optimization/control
without referring to the AMD theory explicitly [16]–[18].
However, their intrinsic connections to the mechanism design
theory should be clarified to facilitate the further developments
beyond their current problem-specific nature.

The simplest approach that the leader can take to obtain
a solution in (1) is to incentivize followers to report their
private parameters θi truthfully, so that the leader can solve
the optimization problem using the central computer. This
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particular type of decision making procedure, called direct
revelation mechanism, has been the main focus in the mecha-
nism design literature. In many cases, this concentrated interest
can be justified by the revelation principle [4], which proves
the existence of an incentive compatible direct mechanism
for every incentive compatible indirect mechanism, and thus
guarantees no loss of generality with focusing only on direct
mechanisms. However, as recognized in the AMD literature,
there are many situations in which the revelation principle
should not be naively relied on:

i) In a direct revelation mechanism, the leader is solely re-
sponsible for solving a possibly large-scale optimization
problem. Even if there exist more practical distributed
algorithms, direct mechanisms do not allow distributed
implementations of algorithms by the followers;

ii) Reporting θi is not a trivial action: It may be difficult for
the followers to identify their own cost function;

iii) Reporting θi means a complete loss of privacy;
iv) Direct and secure communication links between the leader

and the followers are not always available2;
v) In homogeneous environments (e.g., internet), it might be

difficult to establish a leader3.

To resolve these issues, it is invaluable to develop a general
guideline to design distributed algorithms that induce truthful
actions by the followers. This requirement is far more general
than the one in the direct mechanism regime, where only
truthful reports are considered. The possibility of such general-
ization is foreseen by several encouraging results. In [22], it is
shown that a natural generalization of the Groves mechanism
to the indirect mechanisms (referred to as indirect Groves
mechanisms in this paper) implements a socially optimal set
of strategies in ex-post Nash equilibria. The idea is employed
in [23], where several concrete distributed algorithms are
shown to be faithfully implementable by strategic agents.
Coordination of strategic agents in a dynamic decision making
process is considered in [24].

The approach of [22] is particularly attractive since, unlike
many results in AMD that are problem-specific, the result there
is applicable to a wide range of distributed computation and
communication protocols. In this paper, we pursue the same
direction of research and make several additional observations
that are essential especially when deploying these results in
distributed numerical optimization and control problems. We
present the following technical contributions in this paper.

1) Necessity of indirect Groves mechanisms: We prove
in Theorem 2 that incentive compatible indirect mechanisms
must be in the class of indirect Groves mechanisms whenever
the space Θi for some i is rich enough to parametrize all
quadratic cost functions. This is an extension of the Green-
Laffont Theorem [25] to the indirect mechanism setting.

2This issue is raised in [19]. See also Remark 3.
3Since we will always assume that a leader exists in this paper, the

item v) is beyond our scope. However, we note that there are a few
successful mechanism design examples under such environments, including
multi-cast cost sharing [20] and interdomain routing [12]. Some important
results in distributed algorithmic mechanism design (DAMD) as of 2002 are
summarized in a review paper [21].

2) Asymptotic incentive compatibility: We introduce this
solution concept to justify the use of approximated Groves
taxes to incentivize followers to “act right” in a wide class
of optimization algorithms, including continuous optimization
algorithms. Due to the nature of the continuous optimization,
the exact solution cannot be obtained in finite time and
hence, Groves taxes must be inevitably approximated as well.
However, it has not been fully discussed in the literature
whether the use of approximated Groves mechanisms in this
context is justifiable or not. We argue that the use of approxi-
mated Groves mechanisms is justifiable whenever we have an
iterative distributed algorithm, which can be iterated as many
times as we wish, and we can compute approximated Groves
taxes from its output that diminish the followers’ incentives
for cheating to an arbitrary small ε. We believe such a situation
is satisfactory to convince followers to “act right” in the
algorithm, and hence is a practical solution concept. We name
this solution concept “asymptotic incentive compatibility.”

As mentioned earlier, the issue of approximating Groves
taxes is well studied in the AMD literature. However, our
focus in item 2) above is different. In the AMD literature, the
research focus is almost exclusively on discrete optimization
with approximation threshold strictly greater than zero (in the
language of [26]). In such cases, the research focus must
be on non-Groves mechanisms, since Groves mechanisms are
computationally impractical. On the other hand, our focus is
still on the (indirect) Groves mechanisms. We consider their
applications to continuous optimization problems and clarify
in what sense a mechanism can be “incentive compatible” in
those cases.

This paper is organized as follows. We start with a motivat-
ing example in Section II. Section III formally introduces the
framework of indirect mechanism design. Section IV develops
the notion of asymptotic incentive compatibility. In Sections
V and VI, we discuss faithful implementations of dual decom-
position algorithms and average consensus algorithms. Section
VII contains some additional discussion and conclusions.

II. MOTIVATING EXAMPLES

Consider a resource allocation problem of the form

min

N∑
i=1

vi(zi; θi), (2a)

s.t. Rz = c. (2b)

A vector z = (z1, · · · , zN ) ∈ Rnz1 ×· · ·×RnzN is a concate-
nation of the social decision variables, and R = [R1 · · · RN ].
Define Z to be the set of all z such that Rz = c.

Let L(z, λ) =
∑N
i=1 vi(zi; θi) + λ>(Rz − c) be the

Lagrangian with a Lagrange multiplier λ. The primal-dual
optimal solution (z∗, λ∗) is a saddle point of L(z, λ), and
assuming that cost functions are strictly convex, the saddle
point value L∗ is equal to the optimal value of (2); see [27].
The following iterations are guaranteed to converge to (z∗, λ∗)
if the step size γ is chosen to be sufficiently small [28]:

ẑki = arg min
ẑi

(
vi(ẑi, θi) + (λk−1)>Riẑi

)
(3a)

λk = λk−1 + γ(Rẑk − c). (3b)
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Notice that the above algorithm has an attractive form for
a distributed implementation since (3a) can be executed by
the followers. This type of parallelization is known as dual
decomposition. By increasing the number of iterations, the
optimal social decision can be approximated with an arbitrary
accuracy, provided that the followers faithfully implement (3a).

What kind of side payment (tax/subsidy) mechanism do we
need to incentivize the followers to execute (3a)? Let us make
a first attempt. Suppose that the leader introduces the following
format of auction mechanism:

Step 1: Each follower has some initial value z0
i , and the

leader has some initial value λ0.
Step 2: Run iteration (3) until it reaches a convergence to
(z∗1 , · · · , z∗N , λ∗).
Step 3: The leader determines the allocation according to
(z∗1 , · · · , z∗N ), and each player makes a payment p0

i = λ∗z∗i
to the leader.
In microeconomic theory, λ∗ is known as the “market-

clearing price” under which demand
∑N
i=1Rizi and supply

c are balanced. The above mechanism employs a particular
type of tax rule p0

i which is very natural: the tax imposed on
the i-th player is calculated by the share he has won times the
market-clearing price.

Unfortunately, the above auction mechanism is not incentive
compatible. It is easy to demonstrate that it is vulnerable to
strategic manipulations. Suppose N = 2, c = 1, Ri = 1, and
vi(zi; θi) = (zi − 1)2 for i = 1, 2. If both players follow
the suggested algorithm, the iteration reaches the optimal
solution (z∗1 , z

∗
2 , λ
∗) = (1/2, 1/2, 1), which brings a net cost

of vi(z∗i ; θi) + λ∗z∗i = 3/4 to each player. Now, suppose that
player 1 bids ẑk1 = 1/3 at every iteration (instead of executing
(3a) faithfully). Then it can be shown that the iteration arrives
at a different fixed point (z′1, z

′
2, λ
′) = (1/3, 2/3, 2/3). This

result brings net cost of v1(z′1; θ1) + λ′z′1 = 2/3 to player 1,
which is less than 3/4. Hence, player 1 is indeed better off
by deviating from (3a).

We also note that, when followers are “price-takers” (which
is the case, for instance, when every follower has sufficiently
small market power and the price cannot be affected by his sole
action), it makes sense to assume that each follower executes
(3a) in an effort to minimize his own net cost. However, many
realistic markets are oligopolistic, in which a stakeholder agent
knows that his sole action has a certain effect on the market-
clearing price [29]. In this case, he might be better off by
“exercising market power” rather than following (3a) as shown
in the above example. Analyzing strategic bidding in a given
auction mechanism (as in [30]–[32]) is an important topic.
In this paper, however, we are more interested in designing
mechanisms in which strategic manipulation by a follower
brings no benefit to him.

The primal-dual algorithm considered in this section is just a
motivating example. The result of the next section is applicable
to a much more general class of distributed algorithms.

III. INDIRECT MECHANISM DESIGN

A. Framework
The diagram in Fig. 1 shows an abstract framework for

indirect mechanisms. Let Θ = Θ1 × · · · × ΘN be the space

Θ Z × P

S

f = (ζ, π)

σ g = (gζ , gπ)

Fig. 1: Framework of indirect mechanisms.
Θ = Θ1 × · · · ×ΘN : The space of private parameters.
P ⊆ RN : The space of tax values p = (p1, · · · , pN ).
Z ⊆ Rnz : The space of social decisions z.
S = S1 × · · · × SN : The space of actions.
ζ : Θ→ Rnz : Decision rule.
π : Θ→ P: Tax rule.
σi : Θi → Si: Strategy function.
f : Θ→ Z ×P: Social choice function.
g : S → Z × P: Outcome function.

of private parameters. A function ζ : Θ → Rnz is called
a decision rule. For fixed sets Θ and the space Z ⊆ Rnz

of social decisions, a decision rule is said to be efficient if
ζ(Θ) ⊆ Z and

∑N
i=1 vi(ζ(θ); θi) ≤

∑N
i=1 vi(z; θi) for all

θ ∈ Θ and for all z ∈ Z . Let us also introduce a tax rule
π : Θ→ P where P ⊂ RN is the space of tax values assigned
to the followers. The pair f = (ζ, π), f : Θ 7→ Rnz × RN is
called a social choice function.

When the leader designs a decision making mechanism, the
action space S = S1 × · · · × SN must be specified, where Si
can be thought of as the space of all possible programming
codes that the i-th follower can potentially execute in the
distributed computation (for instance, executing (3a) is a valid
action in the algorithm considered in Section II, while bidding
ẑk1 = 1/3 at every step is another). The i-th follower with
private parameter θi determines his actions according to the
strategy function σi : Θi → Si. Outputs of the followers’
algorithms are processed by the leader’s algorithm called the
outcome function g : S → Z × P , which determines a social
decision and tax values.

Remark 1. For example, the above formulation can express
the following abstract model of multi-stage interactions be-
tween the leader and the followers. At each stage (indexed
by k = 1, 2, · · · , n), the leader broadcasts his current com-
putational output ηkL to the followers. Each follower transmits
his current computational output ηki to the leader and other
followers. Assume that the leader and followers can be mod-
eled as a state-based computer with the internal state ξkL and
ξki , i = 1, · · · , N respectively. Given initial states ξ0

L, ξ
0
i and

η0
L, η

0
i , i = 1, · · · , N , the state evolves according to:

ξkL = GkL(ξk−1
L , ηk1 , · · · , ηkN ); ηkL = Hk

L(ξkL), (4a)

ξki = Gki,θi(ξ
k−1
i , ηk−1

L , ηk−1
−i ); ηki = Hk

i,θi(ξ
k
i ), (4b)

for k = 1, 2, · · · , n. Finally, we require that ηnL = Hn
L(ξnL) =

(ζ(θ), π(θ)), which will be the value of the social choice. In
this communication model, the action of the i-th follower is the
sequence of functions in (4b), i.e., σi(θi) = {(Gki,θi , H

k
i,θi

) :
k = 1, 2, · · · , n} parametrized by his type θi. The outcome
function is defined by the sequence of functions in (4a),
i.e., g = {(GkL, Hk

L) : k = 1, 2, · · · , n}. For a practical
implementation, n must be a finite number. �
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Formally, a mechanism is a triplet M = (σ,S, g) of a
strategy function σ, the space of collective actions S, and
an outcome function g. Notice that a mechanism M suggests
followers to employ a particular strategy function specified by
σ, but it is followers’ choice to be faithful or not; followers
are allowed to take any actions in S.

A particular case with S = Θ, g = f , and σ = Id (i.e.,
identity map) is called a direct mechanism, in which followers
are asked to report their types θi to the leader directly. A
mechanism M = (σ,S, g) is said to be dominant strategy
incentive compatible if implementing the suggested action
σ(θ) = (σ1(θ1), · · · , σN (θN )) ∈ S constitutes dominant
strategies among the followers. However, this requirement
turns out to be often difficult to attain in indirect mechanism
design settings. Hence, we employ a weaker notion of incen-
tive compatibility.

Definition 1. A mechanism M = (σ,S, g) is said to be single
fault tolerant if for any i, si ∈ Si, and θ ∈ Θ, the mechanism
produces a feasible outcome g(si, σ−i(θ−i)) ∈ Z × P .

Definition 2. A mechanism M = (σ,S, g) is said to be
incentive compatible if ∀i,∀si ∈ Si,∀θ ∈ Θ,

vi(gζ(σi(θi), σ−i(θ−i)); θi) + gπi(σi(θi), σ−i(θ−i))

≤ vi(gζ(si, σ−i(θ−i)); θi) + gπi(si, σ−i(θ−i)).

In this case, the mechanism is said to implement a social
choice function f = g ◦ σ in ex-post Nash equilibria4.

Intuitively, single fault tolerance requires the mechanism
to make a valid social decision (if not optimal) even if at
most one follower did not implement suggested strategies
faithfully. Incentive compatibility requires that no follower is
incentivized to deviate from the suggested strategy if all other
followers faithfully implement suggested strategies.

B. Indirect Groves mechanism

In this paper, we focus on efficient distributed algorithms
(i.e., those that minimize social cost), and designing a tax rule
that induces the followers’ faithful actions in such algorithms.
The question is rephrased as follows: Given a pair (gζ , σ)
such that gζ ◦ σ is efficient, how can we design gπ so that
M = (σ,S, g) is incentive compatible?

Definition 3. A mechanism M = (σ,S, g) is said to be
in the class of indirect Groves mechanisms if, for every
i ∈ {1, · · · , N}, there exists a function ki : S−i → R
satisfying:

• For every θ−i ∈ Θ−i and si ∈ σi(Θi), the tax rule is

gπi
(si,σ−i(θ−i))

=
∑
j 6=i

vj(gζ(si, σ−i(θ−i)); θj) + ki(σ−i(θ−i)) (5)

4The term ex-post is commonly used to mean that σi(θi) is the best strategy
even without knowing θ−i. See [15], Section 9.

• For every θ−i ∈ Θ−i and si ∈ Si \ σi(Θi), the tax rule
satisfies

gπi
(si, σ−i(θ−i))

≥
∑
j 6=i

vj(gζ(si, σ−i(θ−i)); θj) + ki(σ−i(θ−i)). (6)

Theorem 1. (Sufficiency) A single fault tolerant mechanism
M = (σ,S, g) with an efficient decision rule gζ ◦σ is incentive
compatible if it is in the class of indirect Groves mechanisms.

Proof: Suppose on contrary that

vi(gζ(σi(θi), σ−i(θ−i)); θi) + gπi
(σi(θi), σ−i(θ−i))

> vi(gζ(si, σ−i(θ−i)); θi) + gπi
(si, σ−i(θ−i)).

for some i, si ∈ Si, θ ∈ Θ. The equality (5) is applicable on
the left hand side, while (5) or (6) is used on the right hand side
depending on si. In both cases, the above inequality implies

N∑
i=1

vi(gζ ◦ σ(θ); θi) >

N∑
i=1

vi(gζ(si, σ−i(θ−i)); θi).

Since M is single fault tolerant, gζ(si, σ−i(θ−i)) ∈ Z . Hence,
this is a contradiction to the efficiency of gζ ◦ s.

Theorem 1 is due to [22]. A less trivial fact is that the
converse of Theorem 1 also holds when each agent’s private
parameter space Θi is rich enough.

Assumption 1. For every i and every quadratic function q(·) :
Z → R, there exists θi ∈ Θi such that q(·) = vi(·; θi).

Theorem 2. (Necessity) Suppose Assumption 1 holds. A single
fault tolerant mechanism M = (σ,S, g) with an efficient
decision rule gζ ◦ σ is incentive compatible only if it is in
the class of indirect Groves mechanisms.

Proof: Complete proof can be found in Appendix A. The
basic idea of the proof is attributed to the celebrated result by
Green and Laffont [25]. The proof for Case 1 is a modification
of Theorem 10.4.3 in [7].

Remark 2. Unlike the Groves mechanism in the direct
mechanism design, the indirect Groves mechanism does not
generally implement the desired algorithm in a dominant
strategy. Indeed, it was shown by Proposition 9.23 in [15]
that an indirect mechanism is dominant strategy incentive
compatible only if every map σi : Θi → Si is surjective.
We will see a concrete example of this fact in Example 1. �

Remark 3. The set S can be extremely rich, since it is the
space of all programs that can be executed by the followers
during the course of the algorithm. For instance, followers
are allowed to write a code to learn about other followers
during the algorithm to make future decisions. However, as an
implicit premise for Theorem 1 and 2, we must preclude the
followers’ ability to “hack the rule of the game.” For instance,
the intended algorithm must be securely announced to every
follower without strategic interventions by other followers.
Similarly, the tax value must be securely computed based on
the formula (5) and (6) without a danger of manipulation.
Such interventions are actually possible if a follower has an
opportunity to modify other players’ messages [19]. For the
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same reason, followers are not allowed to drop out of the game
in midstream to escape from a punitive tax. �

Remark 4. Direct communication links between the leader
and the followers are not constantly required during the course
of the algorithm. For instance, the main body of the average
consensus algorithm in Section VI requires only peer-to-peer
communications among neighboring followers, but followers
still cannot be better off by cheating. However, in order
to satisfy the requirement of the previous remark, secure
communication links between the leader and followers are
assumed at the initial phase (to announce the algorithm) and
at the final phase (to calculate taxes securely). �

C. Individual rationality, Budget balance

A mechanism is said to be individually rational [7] if the
net cost vi(gζ(s); θi) + gπi(s) is non-positive for every i.
This is a basic requirement for a mechanism that does not
incentivize the followers to quit the mechanism, when quitting
the mechanism is cost-free for them.

A mechanism is said to be budget balanced (resp. weakly
budget balanced) [7] if the tax income

∑N
i=1 pi is zero (resp.

non-negative).
Unfortunately, there may not exist a mechanism that simul-

taneously satisfies (1) efficiency, (2) incentive compatibility,
(3) individual rationality, and (4) budget balance. The afore-
mentioned result by Green and Laffont [25] shows that the
only efficient direct mechanisms that are dominant strategy
incentive compatible are Groves mechanisms. This observation
allows us to construct a simple example in which no effi-
cient mechanism simultaneously achieves dominant strategy
incentive compatibility, weak budget balance, and individual
rationality. In a Bayesian setting, [33] demonstrated that there
exists a simple exchange environment in which no (ex post)
efficient mechanism is simultaneously (Bayes-Nash) incentive
compatible, weakly budget balanced, and (ex interim) individ-
ually rational. This result was generalized in [34] using the
revenue maximization principle. We also note that a recent
study [35] of a particular indirect mechanism shows that no
budget balanced mechanism implements efficient decisions in
Nash equilibrium.

IV. ASYMPTOTIC INCENTIVE COMPATIBILITY

In this section, we generalize Theorem 1 so that it is
applicable to approximately efficient decision rules. This is an
important generalization, since in many realistic cases, social
decision must be made upon the result of iterative numerical
optimizations over continuous decision variables that, if termi-
nated at some finite step, only returns an approximate solution.
In such cases, incentives may even be needed to guarantee not
only that the suggested algorithm is implemented, but also that
the actions taken by the followers lead it to converge. Define
dist(z′,Z) = infz∈Z ‖z′ − z‖2, and let Proj(z′;Z) be the
projection of z′ onto Z .

Definition 4. For every n ∈ N, let ζn : Θ → Rnz be a
decision rule. A sequence of decision rules {ζn}n∈N is said to
be asymptotically efficient if dist(ζn(θ),Z) → 0 as n → ∞

and for every ε > 0, there exists n0 ∈ N such that for all
n ≥ n0,

N∑
i=1

vi(ζ
n(θ); θi) ≤

N∑
i=1

vi(z; θi) + ε, ∀θ ∈ Θ, ∀z ∈ Z.

Definition 5. A sequence of mechanisms {Mn}n∈N, Mn =
(σn,Sn, gn), is said to be asymptotically incentive compatible
if for every ε > 0, there exists n0 ∈ N such that for n ≥ n0,

vi
(
gnζ (σni (θi), σ

n
−i(θ−i))); θi

)
+ gnπi

(σni (θi), σ
n
−i(θ−i))

≤ vi
(
gnζ (sni , σ

n
−i(θ−i)); θi

)
+ gnπi

(sni , σ
n
−i(θ−i)) + ε

∀i,∀sni ∈ Sni ,∀θ ∈ Θ. In this case, the mechanism is said
to asymptotically implement a social choice function f :=
limn→∞ gn ◦σn in ex-post Nash equilibria, if the limit exists.

Remark 5. For iterative algorithms, n can be understood as
the number of iterations before termination. Since this only
gives an approximation of efficient social decisions, Mn may
not be incentive compatible for a fixed n ∈ N. However, as
n→∞, Mn provides every follower a diminishing incentive
to deviate from the suggested algorithm. Without loss of
generality, we assume that taxes are paid after the algorithm
has terminated. �

The next proposition presents a sequence of mechanisms
{Mn}n∈N motivated by the Groves mechanism by which the
followers’ incentive to deviate from the intended algorithm
can be made arbitrary small.

Proposition 1. Let {Mn}n∈N, Mn = (σn,Sn, gn), be
a sequence of single fault tolerant mechanisms such that
{gnζ ◦ σn}n∈N is asymptotically efficient. If the payment rule
is

gnπi
(sn) =

∑
j 6=i

vj(g
n
ζ (sn); θj) + ki(s

n
−i) ∀sn ∈ Sn,

then {Mn}n∈N is asymptotically incentive compatible.

Proof: Suppose there exist ε > 0, i, θ ∈ Θ, a sequence
of strategies sni ∈ Sni , and a subsequence {n`}`∈N such that

vi(g
n`

ζ (σn`
i (θi), σ

n`
−i(θ−i))); θi) + gn`

πi
(σn`
i (θi), σ

n`
−i(θ−i))

> vi(g
n`

ζ (sn`
i , σ

n`
−i(θ−i)); θi) + gn`

πi
(sn`
i , σ

n`
−i(θ−i)) + ε

for all ` ∈ N. This implies that for all ` ∈ N,
N∑
i=1

vi(g
n`

ζ (σn`
i (θi), σ

n`
−i(θ−i))); θi)

>

N∑
i=1

vi(g
n`

ζ (sn`
i , σ

n`
−i(θ−i)); θi) + ε.

Since gn`

ζ (sn`
i , σ

n`
−i(θ−i)) ∈ Z due to the single fault tolerance,

this contradicts the asymptotic efficiency of gnζ ◦ σn.
In practice, the result of Proposition 1 is used as follows.

First, the leader chooses ε > 0 to which he wishes to diminish
the followers’ incentives to misbehave. Second, the leader
identifies n0 ∈ N satisfying the condition in Definition 4 by
analyzing the asymptotically efficient sequence of decision
rules to be implemented. Finally, the leader announces a
mechanism Mn as defined in Proposition 1 with some n ≥ n0.
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As a result, no follower has more than ε incentive to deviate
from the suggested algorithm.

Proposition 1 requires Mn to be single fault tolerant,
i.e., that the social decision made by Mn be feasible even
if one of the agents is misbehaving. In some applications
(such as dual decomposition algorithms to be considered in
Section V), this requirement can be met by simply projecting
the intermediate result onto the feasible set. However, this is
not always possible (as we will see in Section VI where the
average consensus algorithm over a cyber-physical system is
considered). To circumvent this difficulty, we need a sequence
of tax rules {gnπi

} that leads the algorithm to converge to the
optimal solution even under the lack of single fault tolerance.
Several ideas can be exploited. The following result is useful
when it is easy for the leader to observe dist(·,Z) and the
knowledge of the upper bound β(n) on dist(gnζ (σn(θ)),Z) is
available a priori. Roughly speaking, it penalizes all followers
if the expected convergence rate (to the feasible set) is not
observed.

Proposition 2. Assume that Z is a closed set and vi(z, θi),
∀i, is a continuous function of z for all θi ∈ Θi. Let
{Mn}n∈N, Mn = (σn,Sn, gn), be a sequence of mechanisms
such that (i) {gnζ ◦ σn}n∈N is asymptotically efficient and
(ii) supθ∈Θ dist(gnζ (σn(θ)),Z) ≤ β(n) for some sequence
{β(n)}n∈N with limn→∞ β(n) = 0. If for any sn ∈ Sn, a
payment rule is chosen as

gnπi
(sn)=

{∑
j 6=i vj(g

n
ζ (sn); θj) if dist(gnζ (sn),Z) ≤ β(n)

Ci otherwise

then, for sufficiently large Ci, {Mn}n∈N is asymptotically in-
centive compatible. In particular, the following choice suffices

Ci = − inf
θi∈Θi

inf
z∈Z′

vi(z; θi) + sup
θ∈Θ

sup
z∈Z′

N∑
j=1

vj(z; θj), ∀i

where Z ′ = {gnζ (σn(θ)) : ∀θ ∈ Θ}.

Proof: The tax rule belongs to the indirect Groves class
(Definition 3). Proof can be found in Appendix B.

Remark 6. Practical usefulness of the notion of asymptotic
incentive compatibility heavily depends on the computational
complexity of the algorithm. For computationally hard prob-
lems, realistically there is no mechanism that reduces un-
desirable incentive to ε in polynomial time. In such cases,
asymptotic incentive compatibility may not be a convincing
reasoning to induce faithful behaviors of followers. However,
the issue of computational complexity requires more problem-
specific discussions, which is not our focus in this paper. �

V. FAITHFUL IMPLEMENTATION OF DUAL DECOMPOSITION

A. Algorithm

Recall the dual decomposition algorithm considered in
Section II. Based on the developments so far, we are now going
to design a tax rule that incentivize followers to execute (3a)
faithfully. The idea is to design an asymptotically incentive
compatible sequence of mechanisms Mn = (σn,Sn, gn),
parameterized by the number of iterations n. Proposition 1

Algorithm 1 Distributed VCG mechanism Mn = (σn,Sn, gn) for
dual decomposition algorithms.

Output: Allocation decision ζn(θ) and tax assignments πn(θ)
1: (L) The leader announces the following algorithm;
2: // Solve optimization problem (2) by dual decomposition;
3: (L) Initialize and broadcast λ0;
4: for k = 1, . . . , n do
5: (F) Find ẑki = arg minzi(vi(zi; θi) + (λk−1)>Rizi) and

report the result to the leader;
6: (L) Update and broadcast λk = λk−1 + γ(Rẑk − c);
7: end for
8: // Solve marginal problems P−j(0) for every j;
9: for j = 1, . . . , N do

10: (L) Initialize and broadcast λ−j,0;
11: for k = 1, . . . , n do
12: (F) Every follower i( 6= j) finds and reports

ẑ−j,ki =arg minzi(vi(zi; θi) + (λ−j,k−1)>Rizi);
13: (L) Update and broadcast

λ−j,k = λ−j,k−1 + γ−j(
∑
i 6=j Riẑ

−j,k − c);
14: end for
15: end for
16: // Compute social outcomes;
17: (L) Compute and broadcast z = Proj(ẑn,Z) and z−j =

Proj(ẑ−j,n,Z−j) for every j = 1, . . . , N ;
18: (F) Every follower i computes v̂i = vi(zi; θi) and v̂−ji =

vi(z
−j
i ; θi) for every j 6= i and report them to the leader;

19: (L) Determine taxes πni (θ) =
∑
j 6=i v̂j −

∑
j 6=i v̂

−i
j and alloca-

tions ζn(θ) = z;

shows that tax rules attaining our goal are not unique, since the
choice of ki is arbitrary. In this section, we employ a particular
tax rule among them inspired by the VCG mechanism. As we
will see in the sequel, this tax rule turns out to be a natural
choice since it is intimately related to the notion of “market-
clearing prices.”

The VCG mechanism is also called the pivot mechanism,
since the tax for the follower i is calculated based on the
degree to which his presence/absence changes the social
cost [5]. For every i ∈ {1, · · · , N}, consider the “marginal
optimization problem” P−i(x) defined by

P−i(x) : min
∑
j 6=i

vj(zj ; θj) (7)

s.t.
∑
j 6=i

Rjzj = c−Rix.

Notice that P−i(x) is the optimization problem (2) in which
follower i’s allocation is fixed at zi = x. If his absence means
zi = 0, the optimal social cost in his absence is obtained by
solving P−i(0). Let (z∗, λ∗) and (z−i∗(x), λ−i∗(x)) be the
primal-dual optimal solution to (2) and (7) respectively. The
VCG-like tax for the i-th follower is defined by

pV CGi =
∑
j 6=i

vj(z
∗
j ; θj)−

∑
j 6=i

vj(z
−i∗
j (0); θj). (8)

In Algorithm 1, we propose a VCG-like mechanism for the
faithful implementation of the dual decomposition algorithm
applied to the resource allocation problem (2). In the iteration,
variables (ẑk, λk) and (ẑ−i,k, λ−i,k) are intended to approxi-
mate (z∗, λ∗) and (z−i∗(0), λ−i∗(0)) respectively.
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Fig. 2: Graphical interpretation of the VCG taxes.

Proposition 3. Assume that vi(·; θi), i = 1, 2, . . . , N , are
strictly convex for every θi ∈ Θi. Then the sequence of mech-
anisms {Mn}n∈N provided in Algorithm 1 is asymptotically
incentive compatible.

Proof: See Appendix C.
Notice that lines 8–15 in Algorithm 1 are devoted to

calculating ki(s
n
−i) in Proposition 1. This is just one ex-

ample of such function (which is motivated by taxes in
VCG mechanisms). Removing the above mentioned lines from
Algorithm 1 and setting some other values to ki(s

n
−i) (e.g.,

ki(s
n
−i) = 0) still attains asymptotic incentive compatibility.

To relax strict convexity assumption, one may alternatively
consider the ADMM algorithm [36] (distributed implementa-
tion of the augmented Lagrangian algorithm [37]) in Algo-
rithm 1.

Example 1. As mentioned earlier, indirect Groves mecha-
nisms in general implement efficient decision rules in ex-post
Nash equilibria but not in dominant strategies. As an example,
consider minz1,z2

∑
i=1,2 vi(zi) s.t. z1 = z2 where v1(z1) =

(z1−1)2 and v2(z2) = (z2−2)2, and the dual decomposition
algorithm (Algorithm 1) is used. Suppose that the second
player chooses to act as ẑk2 = arg minz2(v̂2(z2) + λk−1z2)
where v̂2(z2) = (z2 − 3)2 instead of line 5 in the algorithm.
If the first player executes the algorithm faithfully, ẑk1 and
ẑk2 converge to 2, and the first player’s net cost converges
to v1(2) + p1 = v1(2) + v2(2) = 1. However, if the first
player deviates from the suggested algorithm and executes
ẑk1 = arg minz1(v̂1(z1) + λk−1z1) where v̂1(z1) = z2

1 instead
of line 5 in the algorithm, ẑk1 and ẑk2 converge to 1.5, and the
first player’s net cost converges to v1(1.5) + p1 = v1(1.5) +
v2(1.5) = 0.5. Hence, the first player is better off by not
following the intended algorithm. This means that faithful
execution is not a dominant strategy. �

B. Connection between VCG and clearing prices

Invoking Theorem 2, it is now clear why the “clearing price”
mechanism considered in Section II fails to be incentive com-
patible. This is simply because the “clearing price” mechanism
is not in the class of indirect Groves mechanisms. However,
it can be shown that the “clearing price” mechanism is ap-
proximately incentive compatible under the pure competition

[29] (i.e., when individual followers have negligible market
power to control market-clearing prices). We show this fact
by pointing out an intimate connection between the tax rule
p0
i = λ∗z∗i considered in Section II and the VCG-like tax

in (8). For simplicity, we assume that cost functions vi are
strongly convex and continuously differentiable.

To see a connection, for each i, consider a smooth path
xi : [0, 1]→ Rnzi defined by xi(t) = tz∗i . Intuitively, the path
xi continuously connects the follower i’s allocations in two
distinct situations: xi(0) = 0 corresponds to the case where
follower i is absent (allocation is zero), and xi(1) = z∗i is
the optimal allocation in (2). For every point on the path
xi(t), it is possible to consider the primal-dual optimal so-
lution (z−i∗(xi(t)), λ

−i∗(xi(t))) to the marginal optimization
problem (7). In particular, λ−i∗(xi(t)) shows how the market-
clearing price determined by the rest of society (excluding i)
changes if follower i’s allocation is fixed at different values
xi(t) between 0 and z∗i .

Proposition 4. The VCG payment for the i-follower is ob-
tained by integrating the market-clearing price λ−i∗ along
the path xi, i.e., pV CGi =

∫ z∗i
0
λ−i∗

>
(xi)Ridxi.

Proof: For notational ease, dependency of vi on θi is
suppressed. Notice that∫ z∗i

0

λ−i∗
>

(xi)Ridxi =

∫ 1

0

λ−i∗
>

(xi(t))Ri
dxi(t)

dt
dt

= −
∑
j 6=i

∫ 1

0

λ−i∗
>

(xi(t))Rj
dz−i∗j (xi(t))

dt
dt (9)

=
∑
j 6=i

∫ 1

0

∇zjvj(z−i∗j (xi(t)))
dz−i∗j (xi(t))

dt
dt (10)

=
∑
j 6=i

[
vj(z

−i∗
j (z∗i ))− vj(z−i∗j (0))

]
(11)

=
∑
j 6=i

vj(z
∗
j )−

∑
j 6=i

vj(z
−i∗
j ) = pV CGi

The identity Ri
dxi(t)
dt +

∑N
j 6=iRj

dz−i∗
j (xi(t))

dt = 0 is used in
(9) and (10) is from the optimality condition ∇zjv(z−i∗j (x))+

λ−i∗
>

(x)Rj = 0,∀j 6= i. The fundamental theorem of
calculus is used in (11).

A pictorial interpretation of pV CGi is shown in Fig. 2 (for
simplicity, assume Ri = 1 for every i in the resource allocation
problem (2) in Section II). This figure shows that pV CGi ≈
p0
i when the function λ−i∗(xi(·)) is nearly constant. In other

words, when the individual followers have negligible market
power, the “clearing price” mechanism can be identified with
the VCG mechanism.

VI. FAITHFUL IMPLEMENTATION OF AVERAGE CONSENSUS

Consider a multi-robot rendezvous problem in which N
robots want to meet in a single position (i.e., achieve a consen-
sus in space). Considering that each robot utilizes fuel/battery
to reach the rendezvous point, the social planner may want
them to end up at a point that minimizes the sum of their
distances from starting points, i.e., the average of the initial
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positions denoted by θi. Here, we design a mechanism that can
be used by the social planner (leader) to coordinate robots
(followers) to faithfully implement a distributed algorithm,
which lead them to the rendezvous point. In particular, we
consider an iterative average consensus algorithm [38] in
which robots are required to communicate with neighboring
robots in each iteration. Notice that an incentive design is
needed in such situations, since otherwise a particular robot
may choose to stand stationary, hoping that all other robots
will move towards it thereby, not using any fuel. Due to
the nature of the average consensus algorithms, the robots
do not achieve exact consensus in their position in finite
time. Moreover, if we consider the position ζn(θ) of robots
after n iterations of communication as the social decision, the
decision rule ζn(θ) with finite n may not yield a feasible
solution. Hence the mechanism cannot be made single fault
tolerant, and Proposition 1 is not applicable. Instead, we use
the result of Proposition 2. Note that the existence of a leader
does not mean that communications are required between the
leader and the followers at every iteration, and hence does
not ruin the advantage of distributed consensus algorithms.
Indeed, in our design, a consensus is formed solely by local
communications among robots, and the leader plays its role
only at the beginning (to announce the tax rule and the
algorithm to be implemented) and at the end (to compute taxes
based on the information about the final positions of robots).

In what follows, we formally introduce a mechanism that
asymptotically implements the average consensus algorithm.
Let an undirected graph G = ({1, . . . , N}, E), with vertex
set {1, . . . , N} and edge set E , be given to illustrate the
communication links between the agents. Following [39], we
can achieve average consensus by solving

min
z∈RN

N∑
i=1

(zi − θi)2, (12a)

s.t. zi = zj ,∀(i, j) ∈ E , (12b)

where zi ∈ R is the decision variable of follower i and θi ∈
Θi ⊆ R is its type. Let us define the incidence matrix B ∈
{−1, 0,+1}N×|E| so that bij = 1 if ej ∈ E leaves vertex i,
bij = −1 if ej ∈ E enters vertex i, and bij = 0 otherwise
(assignments of directions to edges are arbitrary).

Proposition 5. Let G be a tree. The sequence of mechanisms
{Mn}n∈N provided in Algorithm 2 is asymptotically incentive
compatible.

Proof: Proof can be found in Appendix D.

VII. DISCUSSION AND CONCLUSIONS

We have discussed a general indirect mechanism design
framework for faithful distributed algorithm implementations.
As examples, we have considered dual decomposition and
average consensus algorithms.

The framework of this paper is directly applicable to many
distributed control problems. Although the issue of incentive
is usually neglected in the control theory literature, it is an
important challenge that always arises when distributed agents

Algorithm 2 Distributed mechanism Mn = (σn,Sn, gn) for
asymptotically implementing the average consensus.

Output: Consensus decision ζn(θ) and tax assignment πn(θ)
1: (L) The leader announces the following algorithm;
2: // Solve optimization problem (12);
3: (L) Set α ∈ (0, 1/λmax(B>B)) and broadcast it;
4: (L) Set ρ = λmin(B>B)/λmax(B>B);
5: (F) Initialize z0

i = θi for each 1 ≤ i ≤ N ;
6: for k = 1, . . . , n do
7: (F) Calculate zki = zk−1

i + α
∑
j∈Ni

(zk−1
j − zk−1

i ), where
Ni is the neighbors of agent i in G, and transmit to neighbors;

8: end for
9: (F) Transmit zni and v̂i = (zni − θi)2 to the leader;

10: // Compute social outcomes;
11: (L) Determine and broadcast ζn(θ) = zn;
12: if dist(zn,Z) ≤ (1−ρ)n‖B(B>B)−1‖2 supq∈Θ ‖B>q‖2 then
13: (L) Determine πni (θ) =

∑
j 6=i v̂j ;

14: else
15: (L) Determine πni (θ) = supθ∈Θ supz∈Z′

∑
j(zj − θj)

2,
where Z ′ = YN with Y = {

∑
j αjθj :

∑
j αj = 1, αj ≥

0, θj ∈ Θj , ∀j}.
16: end if

are strategic. For example, a distributed control algorithm pro-
posed in [40] assumes that agents are faithful to the algorithm.
However, this requirement can be removed by introducing the
tax mechanism in Algorithm 1.

In the future, we may also consider the faithful implemen-
tations of distributed model predictive control (MPC) algo-
rithms [41]. Distributed MPC is expected to be a powerful tool
in large-scale social engineering problems (e.g., operations of
power systems [42] and transportation systems [43]). Faithful
implementations of distributed MPC requires online (real-
time) mechanisms. Several appropriate modifications need to
be made to the current framework (e.g., replacement of the
solution concept from Nash equilibrium to Markov perfect
equilibrium). Further study will be required in this research
direction. We believe this is a great opportunity for economic
theory (i.e., mechanism design) and engineering (i.e., control)
to merge in order to tackle challenging problems in the society.

APPENDIX

A. Proof of Theorem 2

Case 1: We will first show that the tax rule must
be in the form of (5) when si ∈ σi(Θi). Proof
is by contradiction. Suppose that gπi

(si, σ−i(θ−i)) =∑
j 6=i vj(gζ(si, σ−i(θ−i)); θj) + ki(si, σ−i(θ−i)) where there

exist si, s′i ∈ σi(Θi) such that

ki(si, σ−i(θ−i)) 6= ki(s
′
i, σ−i(θ−i)). (13)

(Step 1): Suppose gζ(si, σ−i(θ−i)) = gζ(s
′
i, σ−i(θ−i)). Let

θi, θ
′
i ∈ Θi satisfy si = σi(θi) and s′i = σi(θ

′
i). If player i’s

true parameter is θi, acting si minimizes his net cost since M
is incentive compatible. Thus,

vi(gζ(si, σ−i(θ−i)); θi) + gπi(si, σ−i(θ−i))

≤ vi(gζ(s′i, σ−i(θ−i)); θi) + gπi(s
′
i, σ−i(θ−i))

or gπi
(si, σ−i(θ−i)) ≤ gπi

(s′i, σ−i(θ−i)). On the other
hand, if player i’s true parameter is θ′i, it must be that
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gπi
(si, σ−i(θ−i)) ≥ gπi

(s′i, σ−i(θ−i)). Since both cases could
occur, the only possibility is

gπi(si, σ−i(θ−i)) = gπi(s
′
i, σ−i(θ−i)). (14)

The left hand side of equation (14) can be written
as
∑
j 6=i vj(gζ(si, σ−i(θ−i)); θj) + ki(si, σ−i(θ−i)), while

the right hand side is
∑
j 6=i vj(gζ(s

′
i, σ−i(θ−i)); θj) +

ki(s
′
i, σ−i(θ−i)). Since we are assuming gζ(si, σ−i(θ−i)) =

gζ(s
′
i, σ−i(θ−i)), equation (14) implies

ki(si, σ−i(θ−i)) = ki(s
′
i, σ−i(θ−i)).

This is a contradiction to (13).
(Step 2): Now we can assume gζ(si, σ−i(θ−i)) 6=

gζ(s
′
i, σ−i(θ−i)). Without loss of generality, we can also

assume ki(si, σ−i(θ−i)) < ki(s
′
i, σ−i(θ−i)). Then,

ki(si, σ−i(θ−i)) < ki(s
′
i, σ−i(θ−i))− ε (15)

for some ε > 0. For every j 6= i, 1 ≤ j ≤ N , assume vj(·; θj)
are quadratic functions. Since Θi exhausts the space of all
quadratic functions, there exists θ′′i ∈ Θi such that

vi(z; θ
′′
i ) = −

∑
j 6=i

vj(z; θj)

+ ε

(
‖z − gζ(s′i, σ−i(θ−i))‖2

‖gζ(si, σ−i(θ−i))− gζ(s′i, σ−i(θ−i))‖2
− 1

)
. (16)

By incentive compatibility, player i whose true type is θ′′i
attains smaller net cost by acting σi(θ′′i ) than acting si. (Here,
σi(θ

′′
i ) and si may or may not be equal.)

vi(gζ(σi(θ
′′
i ), σ−i(θ−i)); θ

′′
i ) + gπi

(σi(θ
′′
i ), σ−i(θ−i))

≤ vi(gζ(si, σ−i(θ−i)); θ′′i ) + gπi
(si, σ−i(θ−i)). (17)

By efficiency, the outcome z of the mechanism minimizes

vi(z; θ
′′
i ) +

∑
j 6=i

vj(z; θj)

= ε

(
‖z − gζ(s′i, σ−i(θ−i))‖2

‖gζ(si, σ−i(θ−i))− gζ(s′i, σ−i(θ−i))‖2
− 1

)
.

Thus, the decision by the mechanism is

gζ(σi(θ
′′
i ), σ−i(θ−i)) = gζ(s

′
i, σ−i(θ−i)). (18)

Substituting (18) into (17) gives

vi(gζ(s
′
i, σ−i(θ−i)); θ

′′
i ) + gπi(σi(θ

′′
i ), σ−i(θ−i))

≤ vi(gζ(si, σ−i(θ−i)); θ′′i ) + gπi(si, σ−i(θ−i)).

Rewriting the above relation using (16),

−
∑
j 6=i

vj(gζ(s
′
i, σ−i(θ−i)); θj)−ε

+
∑
j 6=i

vj(gζ(σi(θ
′′
i ), σ−i(θ−i)); θj)+ki(σi(θ

′′
i ), σ−i(θ−i))

≤ −
∑
j 6=i

vj(gζ(si, σ−i(θ−i)); θj)

+
∑
j 6=i

vj(gζ(si, σ−i(θ−i)); θj) + ki(si, σ−i(θ−i)).

Using (18) again, this can be simplified to

ki(σi(θ
′′
i ), σ−i(θ−i))− ε ≤ ki(si, σ−i(θ−i)). (19)

Since (18), by applying the argument in Case 1, it must follow
that

ki(σi(θ
′′
i ), σ−i(θ−i)) = ki(s

′
i, σ−i(θ−i)). (20)

Substituting (20) into (19), we have ki(s
′
i, σ−i(θ−i)) − ε ≤

ki(si, σ−i(θ−i)). This is a contradiction to (15). Hence, we
have shown that the tax rule must be in the form of (5) when
si ∈ σi(Θi).

Case 2: Now we need to show that the inequality (6) must
be satisfied for every si ∈ Si \ σ(Θi), where ki is the same
function as in Case 1. Suppose, on the contrary, that there exist
si ∈ Si \ σ(Θi) and θ−i ∈ Θ−i such that

gπi(si, σ−i(θ−i)) + ε

<
∑
j 6=i

vj(gζ(si, σ−i(θ−i)); θj) + ki(σ−i(θ−i)) (21)

with ε > 0. By incentive compatibility, the i-th follower can
minimize the net cost by acting σi(θi):

vi(gζ(σi(θi), σ−i(θ−i)); θi) + gπi
(σi(θi), σ−i(θ−i))

≤ vi(gζ(si, σ−i(θ−i)); θi) + gπi
(si, σ−i(θ−i)).

By the discussion in Case 1, the equality
gπi

(σi(θi), σ−i(θ−i)) =
∑
j 6=i vj(gζ(σi(θi), σ−i(θ−i)); θj) +

ki(σ−i(θ−i)) is applicable on the left hand side. Also, by
substituting (21) into the right hand side, we obtain
N∑
i=1

vi(gζ(σi(θi), σ−i(θ−i));θi)<

N∑
i=1

vi(gζ(si, σ−i(θ−i));θi)−ε.

Now, consider an extreme situation in which all cost functions
are constant, i.e., vi(·; θi) = c for every i ∈ {1, · · · , N}. Then,
the last inequality leads to ε < 0, a contradiction.

B. Proof of Proposition 2
To prove this proposition, assume that, ∀n ∈ N, agent i

follows sni ∈ Sni and the rest of the agents follow σn−i(θ−i).
Let us define sets

M = {m ∈ N |dist(gnm

ζ (snm
i , σnm

−i (θ−i)),Z) > β(nm)},
L = {` ∈ N |dist(gn`

ζ (sn`
i , σ

n`
−i(θ−i)),Z) ≤ β(n`)}.

Now, we prove the following two claims.
Claim 1: If M 6= ∅, ∀ε > 0, ∃m̄ ∈M such that

vi(g
nm

ζ (σnm
i (θi), σ

nm
−i (θ−i)); θi) + gnm

πi
(σnm
i (θi), σ

nm
−i (θ−i))

≤ vi(gnm

ζ (snm
i , σnm

−i (θ−i)); θi) + gnm
πi

(snm
i , σnm

−i (θ−i)) + ε,

for all m ∈M such that m ≥ m̄.
To prove this claim, note that, ∀m ∈M, we have

vi(g
nm

ζ (snm
i , σnm

−i (θ−i)); θi) + gnm
πi

(snm
i , σnm

−i (θ−i))

=vi(g
nm

ζ (snm
i , σnm

−i (θ−i)); θi)

− inf
θi∈Θi

inf
z∈Z′

vi(z; θi) + sup
θ∈Θ

sup
z∈Z′

N∑
j=1

vj(z; θj)

≥ sup
θ∈Θ

sup
z∈Z′

N∑
j=1

vj(z; θj). (22)
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Now, because gnm

ζ (σnm
i (θi), σ

nm
−i (θ−i)) ∈ Z ′, we get

sup
θ∈Θ

sup
z∈Z′

N∑
j=1

vj(z; θj) ≥
N∑
j=1

vj(g
nm

ζ (σnm
i (θi), σ

nm
−i (θ−i)); θj),

which, in combination with (22), gives

vi(g
nm

ζ (σnm
i (θi), σ

nm
−i (θ−i)); θi) + gnm

πi
(σnm
i (θi), σ

nm
−i (θ−i))

≤ vi(gnm

ζ (snm
i , σnm

−i (θ−i)); θi) + gnm
πi

(snm
i , σnm

−i (θ−i)).

This proves Claim 1 by setting m̄ = minm∈Mm (which is
well-defined as M 6= ∅).

Claim 2: If L 6= ∅ and |L| =∞, ∀ε > 0, ∃¯̀∈ L such that

vi(g
n`

ζ (σn`
i (θi), σ

n`
−i(θ−i)); θi) + gn`

πi
(σn`
i (θi), σ

n`
−i(θ−i))

≤ vi(gn`

ζ (sn`
i , σ

n`
−i(θ−i)); θi) + gn`

πi
(sn`
i , σ

n`
−i(θ−i)) + ε,

for all ` ∈ L such that ` ≥ ¯̀.
Let us define

ẑn` ∈ arg min
z∈Z

‖gn`

ζ (sn`
i , σ

n`
−i(θ−i))− z‖2, ∀` ∈ L.

Let us show arg minz∈Z ‖g
n`

ζ (sn`
i , σ

n`
−i(θ−i))− z‖2 6= ∅. Fix

an arbitrary z0 ∈ Z and define B = {z ∈ Rnz |‖z − z0‖2 ≤
2‖gn`

ζ (sn`
i , σ

n`
−i(θ−i))− z0‖2}. For all z ∈ Z \ B, we have

‖gn`

ζ (sn`
i , σ

n`
−i(θ−i))− z‖2 ≥‖z − z0‖2

− ‖gn`

ζ (sn`
i , σ

n`
−i(θ−i))− z0‖2

>‖gn`

ζ (sn`
i , σ

n`
−i(θ−i))− z0‖2,

where the first and the second inequalities, respectively, follow
from the triangular inequality and that z ∈ Z \ B. Hence,

inf
z∈Z
‖gn`

ζ (sn`
i , σ

n`
−i(θ−i))− z‖2

= inf
z∈Z∩B

‖gn`

ζ (sn`
i , σ

n`
−i(θ−i))− z‖2, (23)

because, as we showed above, any z /∈ Z ∩ B results in a
strictly larger distance than z0 ∈ Z ∩ B. Note that Z ∩ B is
compact because it is bounded (subset of bounded set B) and
closed (intersection of two closed sets). Theorem 4.16 in [44,
p. 89] shows ∃z′ ∈ Z∩B that achieves the infimum on the right
hand side of (23) and, thus, the infimum on the left hand side
of (23). Therefore, z′ ∈ arg minz∈Z ‖g

n`

ζ (sn`
i , σ

n`
−i(θ−i))−z‖2

because z′ ∈ Z . Therefore, ẑn` is well-defined. For any ε > 0,
there exists `1 ∈ L such that for all ` ∈ L that ` ≥ `1, we get∣∣∣∣ N∑

j=1

vj(g
n`

ζ (sn`
i , σ

n`
−i(θ−i)); θj)−

N∑
j=1

vj(ẑ
n` ; θj)

∣∣∣∣ ≤ ε/2,
because of the continuity of vi(·; θi), ∀i, and the fact
that lim`∈L,`→∞ dist(gn`

ζ (sn`
i , σ

n`
−i(θ−i)),Z) = 0 since

{β(n`)}`∈L is a vanishing sequence (as |L| =∞). Hence,

N∑
j=1

vj(ẑ
n` ; θj) ≤

N∑
j=1

vj(g
n`

ζ (sn`
i , σ

n`
−i(θ−i)); θj) + ε/2

=vi(g
n`

ζ (sn`
i , σ

n`
−i(θ−i)); θi)

+ gn`
πi

(sn`
i , σ

n`
−i(θ−i)) + ε/2. (24)

Note that, by construction, ẑn` ∈ Z , ∀` ∈ L. Hence, for any
ε > 0, there exists `2 ∈ L such that for all ` ∈ L that ` ≥ `2,
we get

vi(g
n`

ζ (σn`
i (θi), σ

n`
−i(θ−i)); θi) + gn`

πi
(σn`
i (θi), σ

n`
−i(θ−i))

=

N∑
j=1

vj(g
n`

ζ (σn`
i (θi), σ

n`
−i(θ−i)); θj)

≤
N∑
j=1

vj(ẑ
n` ; θj) + ε/2, (25)

where the last inequality is because {gn`

ζ ◦σn`}`∈L is asymp-
totically efficient as |L| = ∞ (note that, by definition, if a
sequence of decision rules is asymptotically efficient, every
infinite subsequence of it is also asymptotically efficient).
Combining (24) and (25) while setting ¯̀= max(`1, `2) proves
Claim 2.

Now, we are ready to prove the statement of this proposition.
If |L| < ∞ (which implies that |M| = ∞ as, by definition,
M ∪ L = N and M ∩ N = ∅), the proposition follows
from Claim 1 and by setting n0 = max{nmax`∈L `, nm̄} (in
Definition 5). Otherwise, if |L| = ∞, the proof follows from
Claims 1 and 2 and by setting n0 = max{n¯̀, nm̄}.

C. Proof of Proposition 3

First, note that the payments introduced in Algorithm 1 is of
the form introduced in Proposition 1 when setting ki(sn−i) =

−
∑
j 6=i v̂

−i,n
j for all 1 ≤ i ≤ N . Note that this quantity does

not depend on follower i’s actions. Second, for each n ∈ N,
the mechanism Mn is single fault tolerant, since the outcome
of the mechanism is guaranteed to be feasible (i.e., ζn(θ) ∈ Z)
due to the operation in line 17 of Algorithm 1. Third, by the
convergence property of the dual decomposition algorithm and
the continuity of cost functions, we have

lim
n→∞

N∑
i=1

vj(ζ
n
i (θ); θi) = min

Rz=c

N∑
i=1

vi(zi; θi).

Hence, the sequence of decision rules {ζn}n∈N is asymptoti-
cally efficient. Now, the rest follows from Proposition 1.

D. Proof of Proposition 5

Note that Z = {z|B>z = 0}. For any ẑ ∈ RN ,
dist(ẑ,Z) = ‖B(B>B)−1B>ẑ‖2 as (I − B(B>B)−1B>)ẑ
is the projection of ẑ into Z . Following [45, p. 74], we get

λmax(I − αB>B) ≤ λmax(I) + λmax(−αB>B)

= λmax(I)− αλmin(B>B)

≤ 1− ρ,

and

λmin(I − αB>B) ≥ λmin(I) + λmin(−αB>B)

= λmin(I)− αλmax(B>B)

≥ 0.

Now, note that

B>zk+1 = B>(I − αBB>)zk = (I − αB>B)B>zk,
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which results in

‖B>zk+1‖22 ≤ ‖I − αB>B‖22‖B>zk‖22
≤ λmax(I − αB>B)2‖B>zk‖22
≤ (1− ρ)2‖Rzk‖22,

where the second inequality follows from [45, p. 133]. This
shows that

‖B>zk‖22 ≤ (1− ρ)2k‖B>z0‖22 ≤ (1− ρ)2k sup
q∈Θ
‖B>q‖22.

Define β(n) = (1−ρ)n‖B(B>B)−1‖2 supq∈Θ ‖B>q‖2. Evi-
dently, limn→∞ β(n) = 0 since 0 < ρ ≤ 1 (as λmin(B>B) >
0 because G is a tree). Furthermore, since 1>zk = 1>z0

following the update dynamics in Algorithm 2 (see [46]), we
get limk→∞ zk =

(
1
N

∑N
i=1 θi

)
1. Therefore, {gnζ ◦ σn}n∈N

is asymptotically efficient. Now, the rest of the proof follows
from applying Proposition 2.
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