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Abstract

We study asymptotic dynamical patterns that emerge among a set of nodes interacting

in a dynamically evolving signed random network, where positive links carry out standard

consensus and negative links induce relative-state flipping. A sequence of deterministic signed

graphs define potential node interactions that take place independently. Each node receives

a positive recommendation consistent with the standard consensus algorithm from its pos-

itive neighbors, and a negative recommendation defined by relative-state flipping from its

negative neighbors. After receiving these recommendations, each node puts a determinis-

tic weight to each recommendation, and then encodes these weighted recommendations in

its state update through stochastic attentions defined by two Bernoulli random variables.

We establish a number of conditions regarding almost sure convergence and divergence of

the node states. We also propose a condition for almost sure state clustering for essentially

weakly balanced graphs, with the help of several martingale convergence lemmas. Some fun-

damental differences on the impact of the deterministic weights and stochastic attentions

to the node state evolution are highlighted between the current relative-state-flipping model

and the state-flipping model considered in Altafini 2013 and Shi et al. 2014.
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1 Introduction

The emergent behaviors, such as consensus, swarming, clustering, and learning, of the dynamics

evolving over a large complex network of interconnected nodes have attracted a significant

amount of research attention in the past decades [2, 3, 4, 5, 6]. In most cases node interactions

are collaborative, reflected by that their state updates obey the same rule which is spontaneous

or artificially designed aiming for some particular collective task. This however might not always

be true since nodes take on different, or even opposing, roles, where examples arise in biology

[8, 9], social science [10, 11, 12], and engineering [13].

Consensus problems aim to compute a weighted average of the initial values held by a

collection of nodes, in a distributed manner. The DeGroot’s model [2], as a standard consensus

algorithm, described how opinions evolve in a network of agents, and showed that a simple

deterministic opinion update based on the mutual trust and the differences in belief between

interacting agents could lead to global convergence of the beliefs. Consensus dynamics have since

then been widely adopted for describing opinion dynamics in social networks, e.g., [6, 7, 14]. In

engineering sciences, a huge amount of literature has studied these algorithms for distributed

averaging, formation forming and load balancing between collaborative agents under fixed or

time-varying interaction networks [15, 16, 17, 18, 19, 20, 21, 22]. Randomized consensus seeking

has also been widely studied, motivated by the random nature of interactions and updates in

real complex networks [23, 24, 25, 26, 27, 28, 29, 30].

This paper aims to study consensus dynamics with both collaborative and non-collaborative

node interactions. A convenient framework for modeling different roles and relationships between

agents is to use signed graphs introduced in the classical work by Heider in 1946 [10]. Each link is

associated with a sign, either positive or negative, indicating collaborative or non-collaborative

relationships. In [34], a model for consensus over signed graphs was introduced for continuous-

time dynamics, where a node flips the sign of its true state to a negative (antagonistic) node

during the interaction. The author of [34] showed that state polarization (clustering) of the

signed consensus model is closely related to the so-called structural balance in classical social

signed graph theory [37]. In [35], the authors proposed a model for investigating the transition

between agreement and disagreement when each link randomly takes three types of interactions:

attraction, repulsion, and neglect, which was further generalized to a signed-graph setting in

[36].
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We assume a sequence of deterministic signed graphs that defines the interactions of the net-

work. Random node interactions take place under independent, but not necessarily identically

distributed, random sampling of the environment. Once interaction relations have been realized,

each node receives a positive recommendation consistent with the standard consensus algorithm

from its positive neighbors. Nodes receive negative recommendations from its negative neigh-

bors. After receiving these recommendations, each node puts a (deterministic) weight to each

recommendation, and then encodes these weighted recommendations in its state update through

stochastic attentions defined by two Bernoulli random variables. In [1], we studied almost sure

convergence, divergence, and clustering under the definition of Altafini [34] for negative interac-

tions, for which we referred to as a state-flipping model.

In this paper, we further investigate this random consensus model for signed networks under

a relative-state-flipping setting, where instead of taking negative feedback of the relative state

in standard consensus algorithms [2, 4], a positive feedback takes place along every interaction

arc of a negative sign. This relative-state flipping formulation is consistent with the models in

[35, 36], and can be viewed as a natural opposite of the DeGroot’s type of node interactions.

For the proposed relative-state-flipping model, we establish a number of conditions regarding

almost sure convergence and divergence of the node states. We also propose a condition for

almost sure node state clustering for essentially weakly balanced graphs, with the help of several

martingale convergence lemmas. Some fundamental differences on the impact of the deterministic

weights and stochastic attentions to the node state evolution are highlighted between the current

relative-state-flipping model and the state-flipping model.

The remainder of the paper is organized as follows. Section 2 presents the network dynamics

and the node update rules, and specifies the information-level difference between the relative-

state-flipping and state-flipping models. Section 3 presents our main results; the detailed proofs

are given in Section 4. Finally some concluding remarks are drawn in Section 5.

Graph Theory, Notations and Terminologies

A simple directed graph (digraph) G = (V, E) consists of a finite set V of nodes and an arc set

E ⊆ V × V, where e = (i, j) ∈ E denotes an arc from node i ∈ V to j ∈ V with (i, i) /∈ E for all

i ∈ V. We call node j reachable from node i if there is a directed path from i to j. In particular

every node is supposed to be reachable from itself. A node v from which every node in V is
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reachable is called a center node (root). A digraph G is strongly connected if every two nodes

are mutually reachable; G has a spanning tree if it has a center node; G is weakly connected if a

connected undirected graph can be obtained by removing all the directions of the arcs in E . A

subgraph of G = (V, E), is a graph on the same node set V whose arc set is a subset of E . The

induced graph of Vi ⊆ V on G, denoted G|Vi, is the graph (Vi, Ei) with Ei = (Vi × Vi) ∩ E . A

weakly connected component of G is a maximal weakly connected induced graph of G. If each

arc (i, j) ∈ E is associated uniquely with a sign, either ’+’ or ’−’, G is called a signed graph

and the sign of (i, j) ∈ E is denoted as σij . The positive and negative subgraphs containing the

positive and negative arcs of G, are denoted as G+ = (V, E+) and G− = (V, E−), respectively.

Depending on the argument, | · | stands for the absolute value of a real number, the Euclidean

norm of a vector or the cardinality of a set. The σ-algebra of a random variable is denoted as σ(·).

We use P(·) to denote the probability and E{·} the expectation of their arguments, respectively.

2 Random Network Model and Node Updates

In this section, we present the considered random network model and specify individual node

dynamics. We use the same definition of random signed networks as introduced in [1], where

each link is associated with a sign indicating cooperative or antagonistic relations. In the current

work we study relative-state-flipping dynamics along each negative arcs, in contrast with the

state-flipping dynamics studied in [1]. The main difference of the information patterns between

the two models will also be carefully explained.

2.1 Signed Random Dynamical Networks

Consider a network with a set V = {1, . . . , n} of n nodes, with n ≥ 3. Time is slotted for

t = 0, 1, . . .. Let
{
Gt = (V, Et)

}∞
0

be a sequence of (deterministic) signed directed graphs over

node set V. We denote by σij(t) ∈ {+,−} the sign of arc (i, j) ∈ Et. The positive and negative

subgraphs containing the positive and negative arcs of Gt, are denoted by G+t = (V, E+t ) and

G−t = (V, E−t ), respectively. We say that the sequence of graphs {Gt}t≥0 is sign consistent if the

sign of any arc (i, j) does not evolve over time, i.e., if for any s, t ≥ 0,

(i, j) ∈ Es and (i, j) ∈ Et =⇒ σij(s) = σij(t).
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Figure 1: A signed network and its three positive clusters. The positive arcs are solid, and the

negative arcs are dashed. Note that negative arcs are allowed within positive clusters.

We also define G∗ = (V, E∗) with E∗ =
⋃∞
t=0 Et as the total graph of the network. If {Gt}t≥0 is

sign consistent, then the sign of each arc E∗ never changes and in that case, G∗ = (V, E∗) is a

well-defined signed graph. The notion of positive cluster in a signed directed graph is defined as

follows.

Definition 1 Let G be a signed digraph with positive subgraph G+. A subset V∗ of the set of

nodes V is a positive cluster if V∗ constitutes a weakly connected component of G+. A positive

cluster partition of G is a partition of V into V =
⋃Tp

i=1 Vi for some Tp ≥ 1, where for all

i = 1, . . . ,Tp, Vi is a positive cluster.

Note that G admitting a positive-cluster partition is a generalization of the classical definition

of weakly structural balanced graph for which negative links are strictly forbidden inside each

positive cluster [38]. From the above definition, it is clear that for any signed graph G, there is a

unique positive cluster partition V =
⋃Tp

i=1 Vi of G, where Tp is the number of positive clusters

covering the entire set V of nodes.

Each node randomly interacts with her neighboring nodes in Gt at time t. We present a general

model on the random node interactions at a given time t. At time t, some pairs of nodes are

randomly selected for interaction. We denote by Et ⊂ Et the random subset of arcs corresponding

to interacting node pairs at time t. To be precise, Et is sampled from the distribution µt defined

over the set Ωt of all subsets of arcs in Et. We assume that E0, E1, . . . form a sequence of

independent sets of arcs. Formally, we introduce the probability space (Θ,F ,P) obtained by

taking the product of the probability spaces (Ωt,St, µt), where St is the discrete σ-algebra on

5



Shi et al. Signed Random Dynamical Networks: Relative-State-Flipping Model

Ωt: Θ =
∏
t≥0 Ωt, F is the product of σ-algebras St, t ≥ 0, and P is the product probability

measure of µt, t ≥ 0. We denote by Gt = (V, Et) the random subgraph of Gt corresponding

to the random set Et of arcs. The disjoint sets E+
t and E−t denote the positive and negative

arc set of Et, respectively. Finally, we split the random set of nodes interacting with node i at

time t depending on the sign of the corresponding arc: for node i, the set of positive neighbors

is defined as N+
i (t) :=

{
j : (j, i) ∈ E+

t

}
, whereas similarly, the set of negative neighbors is

N−i (t) :=
{
j : (j, i) ∈ E−t

}
.

2.2 Node updates

Each node i holds a state si(t) ∈ R at t = 0, 1, . . . . To update her state at time t, node i

considers recommendations received from her positive and negative neighbors:

(i) The positive recommendation node i receives at time t is

h+i (t) := −
∑

j∈N+
i (t)

(
si(t)− sj(t)

)
;

(ii) The negative recommendations node i receives at time t is defined as:

h−i (t) :=
∑

j∈N−i (t)

(
si(t)− sj(t)

)
.

In the above expressions, we use the convention that summing over empty sets yields a recom-

mendation equal to zero, e.g., when node i has no positive neighbors, then h+i (t) = 0. In view of

the definition of h−i (t) in contrast to h+i (t), the model is referred to as the relative-state-flipping

model.

Remark 1 In [1], we have considered another notion of negative recommendations, namely the

state-flipping model introduced in [34], defined as h−i (t) := −
∑

j∈N−i (t)

(
si(t)+sj(t)

)
. We remark

that for the relative-state-flipping model, the network does not require a central global coordinate

system and nodes can interact based on relative state only. As has been pointed in [1], in the

state-flipping model, the network nodes are necessary to share a common knowledge of the origin

of the state space.

Remark 2 The two definitions of negative recommendations, the relative-state-flipping model

considered in the current paper, and the state-flipping model studied in [34, 1], have different
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physical interpretations and make different assumptions on the knowledge that nodes possess

about their neighbor relationships. In the state-flipping model, naturally it is the head node along

each negative arc, that possesses the knowledge of sign of that arc. In the relative-state-flipping

model, on the other hand, it is the tail node knows the sign of each directed arc so that nodes

know if a specific neighbor is positive or negative to implement the state updates that cause the

repulsive influence from its negative neighbors.

Let {Bt}t≥0 and {Dt}t≥0 be two sequences of independent Bernoulli random variables. We

assume that {Bt}t≥0, {Dt}t≥0, and {Gt}t≥0 define independent processes. For any t ≥ 0, define

bt = E{Bt} and dt = E{Dt}. The processes {Bt}t≥0 and {Dt}t≥0 represent how much attention

node i pays to the positive and negative recommendations, respectively. Node i updates her

state as follows:

si(t+ 1) = si(t) + αBth
+
i (t) + βDth

−
i (t), (1)

where α, β > 0 are two positive constants marking the weight each node put on the positive and

negative recommendations, respectively.

Let s(t) =
(
s1(t) . . . sn(t)

)T
be the random vector representing the network state at time t.

The main objective of this paper is to analyze the behavior of the stochastic process {s(t)}t≥0.

In the following, we denote by P the probability measure capturing all random components

driving the evolution of s(t).

In the remainder of the paper, we establish the asymptotic properties of the network state

evolution under relative-state-flipping model. As will be shown in the following, the state-flipping

and relative-state-flipping models share some common nature, e.g., almost sure state conver-

gence/divergence, no-survivor property, etc. In the mean time these common properties can be

driven by fundamentally different parameters regarding network connectivity and recommenda-

tion weights and attentions. For the consistency of presentation we introduce the same set of

assumptions on the random graph process and the connectivity of the dynamical environment

as used in [1].

A1. There is a constant p∗ ∈ (0, 1) such that for all t ≥ 0 and i, j ∈ V, P
(
(i, j) ∈ Et

)
≥ p∗ if

(i, j) ∈ Et.

A2. There is an integer K ≥ 1 such that the union graph G
(
[t, t+K − 1]

)
=
(
V,
⋃
τ∈[t,t+K−1] Eτ

)
is strongly connected for all t ≥ 0.
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A3. {Gt}t≥0 is sign consistent admitting a total graph G∗.

A4. There is an integer K ≥ 1 such that the union graph G+
(
[t, t+K]

)
=
(
V,
⋃
τ∈[t,t+K−1] E+τ

)
is strongly connected for all t ≥ 0.

A5. There is an integer K ≥ 1 such that the union graph G−
(
[t, t+K]

)
=
(
V,
⋃
τ∈[t,t+K−1] E−τ

)
is strongly connected for all t ≥ 0.

A6. The events {(i, j) ∈ Gt}, i, j ∈ V, t = 0, 1, . . . are independent and there is a constant

p∗ ∈ (0, 1) such that for all t ≥ 0 and i, j ∈ V, P
(
(i, j) ∈ Gt

)
≤ p∗ if (i, j) ∈ Et.

3 Main Results

In this section, we present the main results for the asymptotic behaviors of the random process

defined by the considered relative-state-flipping model.

3.1 General Conditions

First of all, the following theorem provides general conditions for convergence and divergence.

Theorem 1 Let A1 hold and α ∈ (0, (n− 1)−1) and β > 0. Assume that for any t ≥ 0, Gt ≡ G

for some digraph G, and that each positive cluster of G admits a spanning tree in G+. For

Algorithm (1) under the relative-state-flipping model, we have:

(i) If
∑∞

t=0 dt < ∞, then P
(

limt→∞ si(t) exits
)

= 1 for all node i ∈ V and all initial states

s(0);

(ii) If
∑∞

t=0 dt = ∞, G has two positive clusters with no negative links in each cluster, and

there is a negative arc between any two nodes from different clusters, then there exist an

infinite number of initial states s(0) such that

P
(

lim
t→∞

max
i,j∈V

|si(t)− sj(t)| =∞
)

= 1. (2)

The first part of the above theorem indicates that when the environment is frozen, and

when positive clusters are properly connected, then irrespective of the mean of the positive

8



Shi et al. Signed Random Dynamical Networks: Relative-State-Flipping Model

attentions {bt}∞0 , the system states converge if the attention each node puts in her negative

neighbors decays sufficiently fast over time. The second part of the theorem states that when

this attention does not decay, divergence can be observed.

Remark 3 Theorem 1 shows that well-structured positive arcs and asymptotically decaying at-

tention guarantee state convergence for relative-state-flipping model. The essential reason is that

when
∑∞

t=0 dt <∞, the first Borel-Cantelli lemma (cf. Theorem 2.3.1, [32]) ensures that along

almost every sample path, negative interactions happen only for a finite number of time instants.

The positive interactions continue to guide the network states to a finite limit under suitable con-

nectivity. It is then clear that the same condition can also guarantee state-convergence for the

state-flipping model considered in [1].

In fact, for the state convergence property of the state-flipping model, a much stronger con-

clusion regarding state convergence was shown (Theorem 1 in [1]) indicating that each posi-

tive/negative arc contributes to the state convergence under constant attention {bt} and {dt}, as

long as α+β ≤ (n−1)−1. We can easily build examples showing that it is a completely different

story on this matter for the relative-state-flipping model considered in the current paper.

Remark 4 The divergence statement in Theorem 1 is not true for the state-flipping model [1],

where almost sure state divergence always requires sufficiently large β.

3.2 Deviation Consensus

Next, we provide a sufficient condition for almost sure deviation consensus as defined below.

Definition 2 Algorithm (1) achieves almost sure deviation consensus if

P
(

lim sup
t→∞

max
i,j∈V

|si(t)− sj(t)| = 0
)

= 1.

Note that almost sure deviation consensus means that the distances among the node states

converge to zero, but convergence of each node state is not required. We need the following

assumption, which is a relaxed version of Assumption A4.

A7. There is an integer K ≥ 1 such that the union graph G+
(
[t, t+K]

)
=
(
Vi,
⋃
τ∈[t,t+K−1] E+τ

)
has a spanning tree for all t ≥ 0.
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Theorem 2 Assume that A1 and A7 hold and that α ∈ (0, (n− 1)−1). Denote K0 = (2n− 3)K

and ρ∗ = min{α, 1− (n− 1)α}. Define

Xm =
pn−1∗ ρK0

∗
2

(m+1)K0−1∏
t=mK0

(
bt(1− dt)

)
,

and

Ym =
(
1 + 2β(n− 1)

)K0
(
1−

(m+1)K0−1∏
t=mK0

(1− dt)
)
.

Then under the relative-state-flipping model, if 0 ≤ Xm−Ym ≤ 1 for all m ≥ 0 and
∑∞

m=0(Xm−

Ym) =∞, Algorithm (1) achieves almost sure deviation consensus for all initial states.

Remark 5 A direct consequence of Theorem 2 is that if bt ≡ b and dt ≡ d with b, d ∈ (0, 1)

and β > 0, there exists d? > 0 such that whenever d < d?, deviation consensus is achieved

almost surely. Observe that deviation consensus does not necessarily guarantee the convergence

of the state of each node. In fact, simple examples can be constructed with arbitrarily small β

such that under the relative-state-flipping model, the state of each node grows arbitrarily large

while deviation consensus still holds. This contrasts the result for the state-flipping model: the

condition α+β < (n−1)−1 prevents the state of individual nodes to diverge (Theorem 1 in [1]).

3.3 Almost Sure Divergence

We continue to provide conditions under which the maximal gap between the states of two nodes

grows large almost surely, and establish a no-survivor property. We introduce a new connectivity

condition on the negative graph, which is a relaxed version of Assumption A5.

A8. There is an integer K ≥ 1 such that the union graph G−
(
[t, t+K]

)
=
(
V,
⋃
τ∈[t,t+K−1] E−τ

)
is weakly connected for all t ≥ 0.

Theorem 3 Assume that A1, A6, and A8 hold and that α ∈ [0, (n − 1)−1/2). Let bt ≡ b

and dt ≡ d for some constants b, d ∈ (0, 1). Let β > 0 and fix d. Then for Algorithm (1)

under the relative-state-flipping model, there is b? > 0 such that whenever b < b?, we have

P
(

limt→∞maxi,j∈V |si(t) − sj(t)| = ∞
)

= 1 for almost all initial states (under the standard

Lebesgue measure).
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Remark 6 Theorem 3 indicates that in relative-state-flipping model, almost sure relative-state

divergence can be achieved as long as negative interactions happen sufficiently more often than

the positive interactions. As explained in above remarks, for state-flipping model, state divergence

necessarily require sufficiently large weight on negative recommendations.

3.4 State Clustering

Finally, we investigate the clustering of states of nodes within each positive cluster.

A9. Assume that A3 holds and let V =
⋃Tp

i=1 Vi be a positive-cluster partition of the total graph

G∗. There is an integerK ≥ 1 such that the union graph G+
(
[t, t+K]

)∣∣
Vi

=
(
Vi,
⋃
τ∈[t,t+K−1] E+τ

∣∣
Vi

)
has a spanning tree for all t ≥ 0.

Theorem 4 Assume that A1, A3 and A9 hold and let V =
⋃Tp

i=1 Vi be a positive-cluster partition

of G∗. Let α ∈ (0, (n − 1)−1). Define J(m) =
∏(m+1)K0−1
t=mK0

bt and W (m) =
∑(m+1)K0−1

t=mK0
dt with

K0 = (2n−3)K. Further assume that
∑∞

m=0 J(m) =∞,
∑∞

t=0 dt <∞, and limm→∞W (m)/J(m) =

0. Then under the relative-state-flipping model, for any initial state s(0), Algorithm (1) achieves

a.s. state clustering in the sense that there are Tp real-valued random variables, w∗1, . . . , w
∗
Tp

,

such that

P
(

lim
t→∞

si(t) = w∗j , i ∈ Vj , j = 1, . . . ,Tp

)
= 1.

Theorem 4 shows the possibility of state clustering for every positive cluster, whose proof is

based on a martingale convergence lemma.

4 Proofs of Statements

In this section, we establish the proofs of the various statements presented in the previous

section.

4.1 Supporting Lemmas

We list three martingale convergence lemmas (see e.g. [33]), and a result that will be instrumental

in the analysis of the system convergence under the relative-state-flipping model.
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Lemma 1 Let {vt}t≥0 be a sequence of non-negative random variables with E{v0} <∞. Assume

that for any t ≥ 0,

E{vt+1|v0, . . . , vt} ≤ (1 + ξt)vt + θt,

where {ξt}t≥0 and {θt}t≥0 are two (deterministic) sequences of non-negative numbers satisfying∑∞
t=0 ξt <∞ and

∑∞
t=0 θt <∞. Then limt→∞ vt = v a.s. for some random variable v ≥ 0.

Lemma 2 Let{vt}t≥0 be a sequence of non-negative random variables with E{v0} <∞. Assume

that for any t ≥ 0,

E{vt+1|v0, . . . , vt} ≤ (1− ξt)vt + θt,

where {ξt}t≥0 and {θt}t≥0 are two (deterministic) sequences of non-negative numbers satisfying

∀t ≥ 0, 0 ≤ ξt ≤ 1,
∑∞

t=0 ξt = ∞,
∑∞

t=0 θt < ∞, and limt→∞ θt/ξt = 0. Then limt→∞ vt = 0

a.s..

Lemma 3 Let {vt}t≥0, {ξt}t≥0, {θt}t≥0 be sequences of non-negative random variables. Assume

that for any t ≥ 0,

E{vt+1|Ft} ≤ (1 + ξt)vt + θt,

where Ft = σ(v0, . . . , vt; ξ0, . . . , ξt; θ0, . . . , θt). Suppose
∑∞

t=0 ξt < ∞ and
∑∞

t=0 θt < ∞ almost

surely. Then limt→∞ vt = v a.s. for some random variable v ≥ 0.

We define h(t) := mini∈V si(t), H(t) := maxi∈V si(t), and H(t) := H(t)− h(t), which will be

used throughout the rest of the paper. The following lemma holds.

Lemma 4 Assume that α ∈ [0, (n−1)−1] and that
∑∞

t=0 dt <∞. Then under the relative-state-

flipping model, for all initial states, each of h(t), H(t), H(t) converges almost surely.

Proof. We build the proof in steps.

Step 1. In this step, we prove the convergence of H(t). Since α ∈ [0, (n − 1)−1], the proposed

algorithm simply does weighted averaging whenDt = 0. It is therefore well known thatH(t+1) ≤

12
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H(t), h(t+ 1) ≥ h(t), and H(t+ 1) ≤ H(t) if Dt = 0. On the other hand, when Dt = 1, it holds

from the structure of the algorithm that H(t+ 1) ≤ (2β(n− 1) + 1)H(t). We deduce that:

E
{
H(t+ 1)|H(t)

}
≤
(
1 + 2β(n− 1)dt

)
H(t), (3)

which, in view of Lemma 1, implies that H(t)→ H∗ almost surely for some H∗ ≥ 0.

Step 2. Now for H(t), we easily see from (3) that

E
{
H(t+ 1)|H(t)} ≤ H(t) +

(
1 + 2β(n− 1)dt

)
H(t). (4)

Since we have proved that H(t) converges a.s. and
∑

t dt <∞, we deduce that
∑

t

(
1 + 2β(n−

1)dt
)
H(t) <∞ a.s.. Further, in light of the first Borel-Cantelli Lemma (cf. Theorem 2.3.1, [32]),∑

t dt <∞ ensures that

P
(

lim inf
t→∞

H(t) > −∞
)

= 1

because H(t) ≥ h(t) and {
h(t+ 1) < h(t)

}
⊆
{
Dt = 1

}
for any t ≥ 0. Thus, H̄(t) := H(t) − inft≥0H(t) is a well-defined nonnegative random variable

for any t ≥ 0, and (4) implies

E
{
H̄(t+ 1)|H̄(t)} ≤ H̄(t) +

(
1 + 2β(n− 1)dt

)
H(t). (5)

Hence, we can invoke Lemma 3 to conclude that H̄(t) converges to a nonnegative random

variable almost surely as t grows to infinity, which immediately implies that H(t) converges

almost surely.

Step 3. The convergence of h(t) follows from a symmetric argument as the analysis to H(t). We

have now completed the proof. �

Lemma 5 Assume that Dt = 0 for t = 0, . . . , 2(n− 2)K − 1. Let α ∈ (0, (n− 1)−1) and i ∈ V.

Then for any t = 0, . . . , 2(n− 2)K − 1, there hold

(i) If si(t) ≤ ζ0h(0) + (1 − ζ0)H(0) for some ζ0 ∈ (0, 1), then si(t + 1) ≤ λ∗ζ0h(0) + (1 −

λ∗ζ0)H(0), where λ∗ = 1− α(n− 1);

(ii) If si(t) ≤ ζ0h(0) + (1 − ζ0)H(0) for some ζ0 ∈ (0, 1), Bt = 1, and (i, j) ∈ Gt, then

sj(t+ 1) ≤ αζ0h(0) + (1− αζ0)H(0).

13
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Proof. Note that the conditions that Dt = 0 for t = 0, . . . , 2(n− 2)K − 1 and α ∈ (0, (n− 1)−1)

yield H(t+ 1) ≤ H(t) and h(t+ 1) ≥ h(t) for all t = 0, . . . , 2(n− 2)K − 1.

(i). If Dt = 0 and si(t) ≤ ζ0h(0) + (1− ζ0)H(0) for some ζ0 ∈ (0, 1), then

si(t+ 1) = si(t) + αBth
+
i (t)

≤ si(t)− α
∑

j∈N+
i (t)

(
si(t)− sj(t)

)
≤ (1− α|N+

i (t)|)si(t) + α|N+
i (t)|H(t)

≤ (1− α|N+
i (t)|)

(
ζ0h(0) + (1− ζ0)H(0)

)
+ α|N+

i (t)|H(0)

≤ λ∗ζ0h(0) + (1− λ∗ζ0)H(0) (6)

in light of the fact that α ∈ (0, (n− 1)−1), where λ∗ = 1− α(n− 1).

(ii) If si(t) ≤ ζ0h(0) + (1− ζ0)H(0) for some ζ0 ∈ (0, 1), Bt = 1, and (i, j) ∈ Gt, there holds that

sj(t+ 1) = sj(t)− α
∑

k∈N+
j (t)

(
sj(t)− sk(t)

)
= (1− α|N+

j (t)|)sj(t) + αsi(t)

+ α
∑

k∈N+
j (t)\{i}

sk(t)

≤ (1− α)H(t) + α
(
ζ0h(0) + (1− ζ0)H(0)

)
≤ αζ0h(0) + (1− αζ0)H(0). (7)

This proves the desired lemma. �

4.2 Proof of Theorem 1

(i). Let
∑∞

t=0 dt <∞. Then as long as
∑∞

t=0 bt <∞, the first Borel-Cantelli Lemma guarantees

that almost surely, each node revises its state for only a finite number of slots, which yields the

desired claim follows straightforwardly. In the following, we prove the desired conclusion based

on the assumption that
∑∞

t=0 bt =∞.

With
∑∞

t=0 dt <∞, from the first Borel-Cantelli Lemma,

K∗ := inf{k ≥ 0 : Dt = 0,∀t ≥ k}

14
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is a finite number almost surely. We note that K∗ is not a stopping time for {Dt}t≥0, but a

stopping time for {Bt}t≥0 by the independence of {Bt}t≥0 and {Dt}t≥0. Hence, we can recursively

define

Km+1 := inf{t > Km : Bt = 1}, m = 0, 1, . . .

with K0 := inf{t ≥ K∗ : Bt = 1}, which are are stopping times for {Bt}t≥0. Now in view of the

independence of {Gt}t≥0 and {Bt}t≥0, we know that {GKm}m≥0 is an independent process and

each GKm satisfies P
(
(i, j) ∈ EKm

)
≥ p∗ for all (i, j) ∈ G under Assumption A1.

Let V† be a positive cluster of G. By assumption, V† has a spanning tree. Since α < 1/(n−1),

the above discussion shows that at times Km,m = 0, 1, . . . , the considered relative-state-flipping

model defines a standard consensus dynamics on independent random graphs where each arc

exists with probability at least p∗ for any fixed time slot. Therefore, applying Theorem 3.4

in [39] on randomized consensus dynamics with arc-independent graphs, we conclude that the

connectivity of V† ensures that

P
(

lim
m→∞

H†(Km) = 0
)

= 1,

where H†(t) = maxi∈V† si(t)−mini∈V† si(t). This immediately gives us

P
(

lim
t→∞
H†(t) = 0

)
= 1

by the definition of the Km.

Finally, applying Lemma 4 to the subgraph generated by node set V†, both maxi∈V† si(t) and

mini∈V† si(t) almost surely converge, and define their limits as, respectively, H†∗ and h†∗. Thus,

there holds that

P
(

lim
t→∞

max
i∈V†

si(t) = H†∗
)

= 1

and that

P
(

lim
t→∞

min
i∈V†

si(t) = h†∗
)

= 1.

The fact that P
(

limt→∞H†(t) = 0
)

= 1 immediately leads to H†∗ = h†∗ almost surely. As a

result, we conclude that

P
(

lim
t→∞

si(t) = H†∗ = h†∗
)

= 1

for all i ∈ V†. This proves the desired statement.

15
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(ii) Let V1 and V2 be the two positive-clusters of G. Let si(0) = 0, i ∈ V1 and si(0) = C0, i ∈ V2

for some C0 > 0. We define

f1(t) := max
i∈V1

si(t); f2(t) := min
i∈V2

si(t).

Since the either of the positive cluster contains positive links only and α ∈ (0, (n− 1)−1), there

always holds that

f1(t+ 1) ≤ f1(t); f2(t+ 1) ≥ f2(t).

Now that there is a negative arc between any two nodes from different clusters, it is straightfor-

ward to see that

f2(t+ 1)− f1(t+ 1) ≥ (1 + β)
(
f2(t)− f1(t)

)
≥ f2(t)− f1(t) + C0 (8)

whenever Dt = 1 and either (i∗, j∗) ∈ Et or (j∗, i∗) ∈ Et with i∗ = arg maxi∈V1 si(t) and

j∗ = arg mini∈V2 si(t). In light of Assumption A1, the second Borel-Cantelli Lemma (cf., Theorem

2.3.6, [32]) leads to that the event defined in (8) happens infinitely often with probability one

when
∑∞

t=0 dt =∞. The desired conclusion follows immediately.

The proof is now complete. �

4.3 Proof of Theorem 2

The proof relies on Lemma 2, cf., [29] for the analysis of randomized consensus.

Consider 2n − 3 intervals [mK, (m + 1)K − 1],m = 0, . . . , 2(n − 2). With Assumption A7,

there is a center node vm ∈ V in each of G([mK, (m+ 1)K − 1]). As a result, we can find n− 1

center nodes (repetitions are allowed) out of the vm’s and denote them as vm1 , . . . , vmn−1 , that

satisfy either or svmj
(0) > (h(0)+H(0))/2, for all j = 1, . . . , n−1. The two cases are symmetric

and without loss of generality, we consider the first case only.

Now we assume that Dt = 0 for t = 0, . . . , 2(n−2)K−1. We carry out the following recursive

argument:

1) By our selection vm1 is a center node of the graph G([τ1K, (τ1 + 1)K − 1]) for some

τ1 = 0, . . . , 2(n − 2) with svm1
(0) ≤ (h(0) + H(0))/2. Applying Lemma 5.(i) we conclude

that

svm1

(
K0

)
≤ ρK0

∗
2
h(0) +

(
1− ρK0

∗
2

)
H(0),
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where K0 and ρ∗ are defined in the statement of Theorem 2.

2) Since vm1 is a center, there exist t1 ∈ [τ1K, (τ1 + 1)K − 1] and j∗ 6= vm1 ∈ V such that

(vm1 , j∗) ∈ Et1 with probability at least p∗. If Bt1 = 1 and (vm1 , j∗) ∈ Et1 , then we can

apply Lemma 5 and then conclude

sj∗
(
K0

)
≤ ρK0

∗
2
h(0) +

(
1− ρK0

∗
2

)
H(0).

For convenience we re-denote vm1 and j∗ as u1 and u2, respectively.

3) We proceed for vm2 . If vm2 /∈ {u1, u2}, applying Lemma 5.(i) again and we can obtain the

same bound for sj∗
(
K0

)
. Otherwise either vm2 = u1 or vm2 = u2 allows us to find another

node u3 with the bound for su3
(
K0

)
obtained as step 2).

From the selection of vm1 , . . . , vmn−1 , the above procedure eventually gives us the same bound for

nodes u1, . . . , uN , and calculating the probability of the required events in the above argument

we obtain

P
(
si
(
K0

)
≤ ρK0

∗
2
h(0) +

(
1− ρK0

∗
2

)
H(0), i ∈ V

)
≥ pn−1∗

K0−1∏
t=0

(
bt(1− dt)

)
.

This implies

P
(
H
(
K0

)
≤
(
1− ρK0

∗
2

)
H(0)

)
≥ pn−1∗

K0−1∏
t=0

(
bt(1− dt)

)
. (9)

On the other hand, from the definition of the algorithm there always hold

P
(
H
(
t+ 1

)
≤
(
1 + 2β(n− 1)

)
H(0)

)
= 1 (10)

and

P
(
H
(
K0

)
> H(0)

)
≤ 1−

K0−1∏
t=0

(1− dt). (11)

Since {Bt}t≥0, {Dt}t≥0, and {Gt}t≥0 define independent processes, we conclude from (9),

(10), and (11) that

E
{
H
(
(m+ 1)K0

)∣∣H(mK0

)}
≤
(
1−Xm + Ym

)
H
(
mK0

)
.

The desired theorem then follows directly from Lemma 2 and (10). �
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4.4 Proof of Theorem 3

In light of α ∈ [0, (n− 1)−1/2), we first prove two claims.

Claim A. P
(
H(t+ 1) ≥

(
1− 2(n− 1)α

)
H(t)

)
= 1.

Claim B. P
(
H(t+ 1) < H(t)

)
≤ b.

Take i, j ∈ V satisfying si(t) = h(t) and sj(t) = H(t). Similarly as the proof of Lemma 5, we

can establish that almost surely,

si(t+ 1) ≤ λ∗h(t) + (1− λ∗)H(t) (12)

and

sj(t+ 1) ≥ λ∗H(t) + (1− λ∗)h(t) (13)

hold, where λ∗ = 1− α(n− 1). Noting that (12) and (13) yield

H(t+ 1) ≥ |sj(t+ 1)− si(t+ 1)|

≥ |2λ∗ − 1|H(t)

=
(
1− 2(n− 1)α

)
H(t), (14)

Claim A is proved.

Furthermore, if bt = 0, only negative recommendations can be effective in the node state

update. This implies Claim B.

Now we define L0 := inf{t ∈ Z : (1 + β)t ≥ 2(n − 1)}. Consider time intervals [mK, (m +

1)K − 1] for m = 0, 1, . . . , (n2 − n)(L0 − 1). Denote KL0 = K((n2 − n)(L0 − 1) + 1). Under

Assumption A8 and based on the fact that there are at most n(n − 1) arcs, there are two

nodes i∗, j∗ ∈ V and L0 instants 0 ≤ τ1 < τ2 < · · · < τL0 < KL0 such that (i∗, j∗) ∈ G−τk and

|si∗(τk)− sj∗(τk)| ≥ H(τk)/(n− 1) for all τk.

Consider the following event:

E∗ :=
{
Dτk = 1, i∗ = N−j∗(τk) for all τk;

Bt = 0 for all t ∈ [0,KL0 − 1]
}
. (15)

The event E∗ implies

H(KL0) ≥ |si∗(KL0)− sj∗(KL0)| ≥ H(0)(1 + β)L0 · (n− 1)−1.
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As a result, we can bound the probability of E∗ and conclude

P
(
H(KL0) ≥ H(0)(1 + β)L0 · (n− 1)−1

)
≥
(
dp∗(1− p∗)n−2

)L0(1− b)KL0 . (16)

We can now apply the same argument as the proof of Proposition 1 in [1]. With (16), Claim

A, and Claim B, there holds

E
{

logH(KL0)− logH(0)
}
≥
(
dp∗(1− p∗)n−2

)L0(1− b)KL0

· log
(

(1 + β)L0 · (n− 1)−1
)

+ b log
(
1− 2(n− 1)α

)
≥
(
dp∗(1− p∗)n−2

)L0(1− b)KL0 log 2

+ b log
(
1− 2(n− 1)α

)
> 0 (17)

when b < b? for some sufficiently small b? > 0. We can proceed to define U(m) = logH(mKL0)

for m = 0, 1, . . . . Recursively applying the above arguments to the process {Um} we obtain that

U(m) has a strictly positive drift when b < b?, which implies that lim infm→∞ U(m) =∞ holds

almost surely.

This completes the proof. �

4.5 Proof of Theorem 4

Let us focus on a given positive cluster V† of G. We use the following notations

Ψ(t) = max
i∈V†

si(t), ψ(t) = min
i∈V†

si(t),Θ(t) = Ψ(t)− ψ(t).

Applying Lemma 4 on the positive cluster V†, we conclude that each of Θ(t), Ψ(t), and ψ(t)

converge to a finite limit almost surely if
∑∞

t=0 dt <∞.

In light of Assumption A9, applying the same argument we used in order to establish (9) of

Theorem 2 on the cluster V†, we similarly have

P
(

Θ
(
(m+ 1)K0

)
≤
(
1− ρK0

∗
2

)
Θ(mK0)

)
≥ pn−1∗

(m+1)K0−1∏
t=mK0

(
bt(1− dt)

)
. (18)
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Moreover, from the effect of the negative recommendations on nodes in V†, we can easily modify

(10) and (11) to that for all t,

P
(
Θ
(
t+ 1

)
> Θ(t)

)
≤ dt (19)

and

P
(

Θ
(
t+ 1

)
≤ (1 + 2β(n− 1))H(t)

)
= 1. (20)

With (18), (19) and (20), we arrive at

E
{

Θ
(
(m+ 1)K0

)∣∣Θ(m(K0)
)}

≤
(
1−Xm

)
Θ
(
mK0

)
+ (1 + 2β(n− 1))

(m+1)K0−1∑
t=mK0

dtH(t), (21)

where Xm is defined in Theorem 2.

On the other hand, from (3) we know that

E(H(t)) ≤ H0

∞∏
t=0

(
1 + 2β(n− 1)dt

)
for all t ≥ 0. Taking the expectation from the both sides of (21), we obtain:

E
{

Θ
(
(m+ 1)K0

)}
≤
(
1−Xm

)
E
{

Θ
(
mK0

)}
+
[
(1 + 2β(n− 1))H0

∞∏
t=0

(
1 + 2β(n− 1)dt

)]
W (m), (22)

where W (m) =
∑(m+1)K0−1

t=mK0
dt.

Note that it is well known that
∑∞

t=0 dt <∞ implies
∏∞
t=0(1−dt) > 0 and

∏∞
t=0

(
1 + 2β(n−

1)dt
)
< ∞. Consequently,

∑∞
m=0 J(m) = ∞ implies

∑∞
m=0Xm = ∞. In view of Lemma 2, we

have

lim
m→∞

E
{

Θ
(
(m+ 1)K0

)}
= 0 (23)

if limm→∞W (m)/J(m) = 0. Invoking Fatou’s lemma (e.g., Theorem 1.6.5, [32]), we further

conclude that

E
{

lim inf
m→∞

Θ
(
(m+ 1)K0

)}
≤ lim

t→∞
E
{

Θ
(
(m+ 1)K0

)}
= 0, (24)
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which actually implies

E
{

lim
m→∞

Θ
(
(m+ 1)K0

)}
= 0 (25)

since Θ
(
(m+ 1)K0

)
converges almost surely. Therefore, we have reached

P
(

lim
m→∞

Θ
(
(m+ 1)K0

)
= 0
)

= 1, (26)

which in turn leads to

P
(

lim
t→∞

Θ(t) = 0
)

= 1, (27)

again, from the fact that Θ(t) converges almost surely.

Finally, Θ(t) converging almost surely to zero means that Ψ(t) and ψ(t) must converge to

the same limit (their convergence is established in the beginning of the proof), which must be

the limit of the each node state in V†. We have now completed the proof. �

5 Conclusions

This paper continued the study of [35, 36] investigating a relative-state-flipping model for con-

sensus dynamics over signed random networks. A sequence of deterministic signed graphs define

potential node interactions that happen independently but not necessarily i.i.d. The positive rec-

ommendations are consistent with the standard consensus algorithm; negative recommendations

are defined by relative-state flipping from its negative neighbors. Each node puts a (determinis-

tic) weight to each recommendation, and then encodes these weighted recommendations in its

state update through stochastic attentions defined by two Bernoulli random variables. We have

established several fundamental conditions regarding almost sure convergence and divergence of

the network states. A condition for almost sure state clustering was also proposed for weakly bal-

anced graphs, with the help of martingale convergence lemmas. Some fundamental differences

were also highlighted between the current relative-state-flipping model and the state-flipping

model considered in [1, 34].

21



Shi et al. Signed Random Dynamical Networks: Relative-State-Flipping Model

References

[1] G. Shi, A. Proutiere, M. Johansson, J. S. Baras, and K. H. Johansson, “Emergent behav-

iors over signed random dynamical networks: state-flipping model,” IEEE Transactions on

Control of Network Systems, in press, preliminary version available arXiv 1411.0074.

[2] M. H. DeGroot, “Reaching a consensus,” Journal of the American Statistical Association,

vol.69, pp. 118–121, 1974.

[3] T. Vicsek, A. Czirok, E. B. Jacob, I. Cohen, and O. Schochet, “Novel type of phase transi-

tions in a system of self-driven particles,” Physical Review Letters, vol. 75, pp. 1226–1229,

1995.

[4] A. Jadbabaie, J. Lin, and A. S. Morse, “Coordination of groups of mobile autonomous agents

using nearest neighbor rules,” IEEE Trans. Autom.Control, vol. 48, no. 6, pp. 988–1001,

2003.

[5] E. Bonabeau, M. Dorigo, and G. Theraulaz. Swarm Intelligence: From Natural to Artificial

System. Oxford University Press, New York, 1999.

[6] B. Golub and M. O. Jackson, “Naive learning in social networks and the wisdom of crowds,”

American Economic Journal: Microeconomics vol. 2, pp. 112–149, 2010.

[7] P. M. DeMarzo, D. Vayanos, J. Zwiebel, “Persuasion bias, social influence, and unidimen-

sional opinions,” Quarterly Journal of Economics, vol. 118, no. 3, pp. 909–968, 2003.

[8] L. Edelstein-Keshet. Mathematical Models in Biology. McGraw-Hill. 1987.

[9] N. Yosef et al., “Dynamic regulatory network controlling TH17 cell differentiation,” Nature,

vol. 496, pp. 461–468, 2013.

[10] F. Heider, “Attitudes and cognitive organization,” J Psychol, vol. 21, pp. 107–112, 1946.

[11] S. Galam, “Fragmentation versus stability in bimodal coalitions,” Physica A., vol. 230, pp.

174-188, 1996.

[12] T. Antal, P. L. Krapivsky, and S. Redner, “Social balance on networks: the dynamics of

friendship and enmity,” Physica D, 224, pp. 130-136, 2006.

22



Shi et al. Signed Random Dynamical Networks: Relative-State-Flipping Model

[13] G. Theodorakopoulos and J. S. Baras, “Game theoretic modeling of malicious users in

collaborative networks,” IEEE J. Selected Areas in Communications, vol.26, pp. 1317-1327,

2008.

[14] D. Acemoglu, A. Ozdaglar and A. ParandehGheibi, “Spread of (Mis)information in social

networks,” Games and Economic Behavior, vol. 70, no. 2, pp. 194–227, 2010.

[15] J. N. Tsitsiklis, D. Bertsekas, and M. Athans, “Distributed asynchronous deterministic and

stochastic gradient optimization algorithms,” IEEE Trans. Autom. Control, vol. 31, pp.

803–812, 1986.

[16] L. Xiao, and S. Boyd, “Fast linear iterations for distributed averaging,” Systems and Control

Letters, vol.53, pp. 65–78, 2004.

[17] V. Blondel, J. M. Hendrickx, A. Olshevsky and J. Tsitsiklis, “Convergence in multiagent

coordination, consensus, and flocking,” IEEE Conf. Decision and Control, pp. 2996–3000,

2005.

[18] L. Moreau, “Stability of multi-agent systems with time-dependent communication links,”

IEEE Trans. Autom. Control, vol. 50, pp. 169–182, 2005.

[19] W. Ren and R. Beard, “Consensus seeking in multi-agent systems under dynamically chang-

ing interaction topologies,” IEEE Trans. Autom. Control, vol. 50, no. 5, pp. 655–661, 2005.

[20] R. Olfati-Saber, J. A. Fax, and R. M. Murray, “Consensus and cooperation in networked

multi-agent systems,” Proc. IEEE, vol. 95, no. 1, pp. 215–233, 2007.

[21] M. Cao, A. S. Morse and B. D. O. Anderson, “Reaching a consensus in a dynamically

changing environment: a graphical approach,” SIAM J. Control Optim., vol. 47, no. 2,

575–600, 2008.

[22] J. M. Hendrickx and J. N. Tsitsiklis, “Convergence of type-symmetric and cut-balanced

consensus seeking systems,” IEEE Trans. on Automatic Control, vol. 58, pp. 214–218, 2013.

[23] Y. Hatano and M. Mesbahi, “Agreement over random networks,” IEEE Trans. on Autom.

Control, vol. 50, no. 11, pp. 1867–1872, 2005.

[24] S. Boyd, A. Ghosh, B. Prabhakar and D. Shah, “Randomized gossip algorithms,” IEEE

Trans. Inf. Theory, vol. 52, no. 6, pp. 2508–2530, 2006.

23



Shi et al. Signed Random Dynamical Networks: Relative-State-Flipping Model

[25] F. Fagnani and S. Zampieri, “Randomized consensus algorithms over large scale networks,”

IEEE J. on Selected Areas of Communications, vol. 26, no.4, pp. 634–649, 2008.

[26] S. Kar and J.M.F. Moura, “Distributed consensus algorithms in sensor networks with im-

perfect communication: link failures and channel noise,” IEEE Transactions on Signal Pro-

cessing, vol.57, no. 5, pp. 355–369, 2009.
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