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Performance Analysis of Incremental LMS over
Flat Fading Channels

Azam Khalili, Amir Rastegarnia

Abstract—We study the effect of fading in the communication
channels between sensor nodes on the performance of the
incremental least mean square (ILMS) algorithm, and derive
steady state performance metrics, including the mean-square
deviation (MSD), excess mean-square error (EMSE) and mean-
square error (MSE). We obtain conditions for mean convergence
of the ILMS algorithm, and show that in the presence of
fading channels, the ILMS algorithm is asymptotically biased.
Furthermore, the dynamic range for mean stability depends
only on the mean channel gain, and under simplifying technical
assumptions, we show that the MSD, EMSE and MSE are
non-decreasing functions of the channel gain variances, with
mean-square convergence to the steady states possible only if
the channel gain variances are limited. We derive sufficient
conditions to ensure mean-square convergence, and verify our
results through simulations.

Index Terms—Adaptive networks, distributed estimation, in-
cremental, least mean square.

I. INTRODUCTION

Many applications require us to learn or estimate some
parameters related to a phenomenon of interest, based on
all the available observations in a network [1]–[5]. Various
schemes have been investigated in the literature to facilitate
this, including the use of a fusion center to perform de-
centralized detection and estimation [6]–[8], and distributed
methods that do not rely on a fusion center. An example
of a distributed method is the consensus strategy [9]–[11] in
which each node performs a local estimation and fuses its
estimate with those of its neighbors so that all nodes converge
to the same estimate as the number of iterations increases.
An alternative distributed approach is the incremental update
method [12]–[17], which relies on nodes passing updates to
each other in a Hamiltonian cycle in the network. Yet another
method is the diffusion strategy [18]–[25] that performs online
estimation in a distributed manner by letting each node update
its local estimate based on information from all its neighbors
and over multiple observation epochs. In both the incremental
update and diffusion approaches, techniques from distributed
optimization [26], [27] are incorporated into the updates and
local estimates need not converge to the same value, which
leads to better performance over consensus strategies [28].
Networks that rely on in-network processing at each node
while allowing the node estimates to update and adapt to
new sensor observations have come to be known as adaptive
networks [12], [22]–[24].

One of the most popular approaches to modeling the
underlying process observed by the nodes in an adaptive
network is to adopt a linear model and use a least mean
squares (LMS) criterion in the estimation procedure. This is

because of its simplicity and wide applicability, for exam-
ple in localization of targets, collaborative spectrum sensing,
and in modeling group behaviors in biological systems [5],
[24]. In this paper, we investigate the performance of the
incremental LMS (ILMS) algorithm in a wireless adaptive
network with communication links between neighboring nodes
modeled as fading channels. In the original ILMS strategy
proposed by [29], it is assumed that nodes communicate
with each other via ideal links. However, this is typically
not true in practice. In [30]–[34], the effect of additive link
noise in the communication channels between nodes have
been investigated. In [35], the performance of general adaptive
diffusion algorithms in the presence of imperfect information
exchanges, including quantization errors, and model non-
stationarities has been considered. All these works however
do not apply directly to a wireless sensor network, whose
communication links are usually modeled by fading channels
[36]. The references [37], [38] propose diffusion LMS algo-
rithms for wireless sensor networks with fading channels but
under the assumption that channel state information is known
so that channel equalization can be performed. However, in
practice the fading coefficients can only be estimated up to an
uncertainty. Moreover, such channel equalization may be im-
practical for channels with time varying channel information.
As wireless sensor networks have many important practical
applications like building structure monitoring, it is therefore
important to investigate the performance of adaptive networks
in the presence of fading channels, without full knowledge of
channel state information.

In this paper, our objective is to investigate how the perfor-
mance of the ILMS algorithm is affected by the channel fading
statistics of the communication channels between nodes. We
restrict our analysis to the ILMS algorithm instead of the
more general class of diffusion algorithms because of the
significantly more complex analysis involved for diffusion
algorithms, which is out of the scope of this paper. Never-
theless, to the best of our knowledge, this work is the first to
analytically evaluate the performance of the ILMS algorithm
in a practical wireless sensor network with fading channels,
without exact knowledge of channel state information. We
believe that many of the insights obtained in this paper are
applicable to more general diffusion algorithms, which will
be addressed as part of future work. Our main contributions
in this paper are the following:

(i) We show that the ILMS algorithm over fading channels,
like the traditional ILMS algorithm, is stable in mean if
the step size is chosen in an appropriate range. We show
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that this range now not only depends on the regression
correlation, but also on the mean of the channel fading
gains. Moreover, our analysis reveals that in general,
fading communication channels lead to biased estimates
in steady state.

(ii) We derive closed-form expressions for the steady state
performance metrics, including the mean-square devi-
ation (MSD), excess mean-square error (EMSE) and
mean-square error (MSE), of the ILMS algorithm in
the presence of fading channels, and under a Gaussian
model. We show explicitly how these metrics are affected
by the fading channel statistics.

(iii) We derive sufficient conditions for the convergence of
the MSD, EMSE and MSE, and show that for a fixed
step size, mean-square stability is lost if the channel
gain variances become large. Under simplifying technical
conditions, we show that under the decibel (dB) scale,
the MSD, EMSE and MSE are approximately non-
decreasing linear functions of the channel gain second
order moments.

We also perform extensive simulations to verify that our
theoretical analysis closely matches the actual steady state
performance observed in a network.

The remainder of this paper is organized as follows. In
Section II, we describe our system model and assumptions.
In Section III, we present theoretical analysis of the steady
state performance of the ILMS algorithm over fading channels,
and discuss some of our results. In Section IV, we present
simulation results to verify our theoretical analysis, and we
conclude in Section V.

Notation: We adopt boldface letters for random quantities.
The symbol ∗ denotes conjugation for scalars and Hermitian
transpose for matrices. The notation col{·} denotes a column
vector (or matrix) with the specified entries stacked on top of
each other. The notation diag{·} will be used in two ways:
X = diag{x} is a diagonal matrix whose entries are those
of the vector x, and x = diag{X} is a vector containing the
main diagonal of X . The exact meaning of this notation will
be clear from the context. We let 1 , diag{I} denote a vector
consisting of all 1s. We use λmax(A), λmin(A) and ρ(A) to
denote the largest eigenvalue, smallest eigenvalue, and spectral
radius of A, respectively. If Σ is a matrix, we use the notation
‖x‖2Σ = x∗Σx for the weighted square norm of x. If σ is a
vector, the notation ‖x‖σ is used to represent ‖x‖diag{σ}.

II. PROBLEM FORMULATION

In this section, we first describe the data model, and give
a brief overview of the traditional ILMS algorithm in [29].
We then describe how the ILMS updates are changed when
information is communicated over fading channels. Finally,
we list the assumptions we are making throughout this paper.

Consider a network composed of N nodes. At time i, node
k observes a scalar measurement dddk(i) and a 1×M regression
vector uuuk,i, which are related via a linear regression model

dddk(i) = uuuk,iw
o + vvvk(i), (1)

where vvvk(i) is the observation (or measurement) noise, and
the M × 1 vector wo = [wo(1), wo(2), · · · , wo(M)]T is a

deterministic (but unknown) vector. Based on the intended
application, wo may have different physical meanings. For
example, wo may represent the location of a target in space,
or the parameters of an AR model [24], [25]. We make the
following assumptions regarding the data model in (1). These
assumptions are commonly assumed in the literature [24], [25],
[29].

Assumption 1:
(i) For k = 1, . . . , N and i ≥ 1, the regression vectors

uuuk,i are independent over node indices k and observation
times i.

(ii) The measurement noises vvvk(i) for all nodes k =
1, . . . , N , and all observation times i ≥ 1, are zero-mean
and independent of each other and the regression vectors
uuuk,i.

The goal of the network is to estimate wo, at every node k,
using all observed data in the entire network. Mathematically,
the network seeks to find wo that minimizes the following
LMS objective function:

N∑
k=1

E
[
|dddk(i)− uuuk,iw|2

]
. (2)

It can be shown that the minimizer wo of (2) satisfies the
normal equation [39].

wo =

(
N∑
k=1

Ru,k

)−1( N∑
k=1

rdu,k

)
,

where

Ru,k = E[uuu∗k,iuuuk,i], and rdu,k = E[dddk(i)uuu∗k,i].

A. The ILMS Algorithm over Ideal Links

In [12], [29], an adaptive network based on incremental
cooperation amongst nodes at every observation time has
been developed wherein nodes communicate through a pre-
established Hamilton cycle. This is known as the ILMS
algorithm. Each node k receives a local estimate from the
previous node k − 1, updates it using its local data, and then
sends it to the next node k+1, where node indices are modulo
N . The update equations for the ILMS algorithm, at iteration
i is given by [12]{

www0,i ← wwwN,i−1

wwwk,i = wwwk−1,i + µk uuu
∗
k,i(dddk(i)− uuuk,iwwwk−1,i)

(3)

where wwwk,i is the local estimate of the node k at time i. It is
shown in [12], [24] that as i → ∞, we have wwwk,i → wo in
the mean, for every node k, and for an appropriately chosen
set of step sizes {µk : k = 1, . . . , N}.

B. The ILMS Algorithm over Fading Channels

In this paper, we consider the case where nodes communi-
cate over fading channels (see Fig. 1). To model model the
Impact of channel, let denote by rrrk,i the received signal at
node k and time i. By incorporating the impact of fading
channels we have

rrrk,i = hhhk(i)wwwk−1,i + qqqk,i (4)
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Fig. 1. The incremental LMS adaptive network with fading channels.

Using (4), the update equation for node k in (3) becomes

wwwk,i = rrrk,i + µkuuu
∗
k,i (dddk(i)− uuuk,irrrk,i) (5)

where hhhk(i) is the channel gain at time i for the commu-
nication channel between node k − 1 and k, and qqqk,i is the
additive channel noise. The update equation (5) in terms of
hhhk(i), wwwk−1,i and qqqk,i as

wwwk,i = hhhk(i)wwwk−1,i + qqqk,i

+ µkuuu
∗
k,i

(
dddk(i)− uuuk,i(hhhk(i)wwwk−1,i + qqqk,i)

)
, (6)

We make the following assumptions regarding the fading
channel statistics.

Assumption 2:
1) We assume phase coherent reception at every node k and

model the channel gain as a non-negative random variable
with mk = E [hhhk(i)] and sk = E

[
hhh2
k(i)

]
as the mean

and second order moment of the channel gain for node
k, respectively.

2) The channel gains hhhk(i) for all nodes k = 1, . . . , N , and
all observation times i ≥ 1, are independent of each other.
For each node k, the channel gains {hhhk(i) : i ≥ 1} are
identically distributed.

3) The channel gains hhhk(i) for all nodes k = 1, . . . , N ,
and all observation times i ≥ 1, are independent of
(dddl(j),uuul,j) for all l and j.

4) The additive channel noises qqqk,i for all nodes k =
1, . . . , N , and all observation times i ≥ 1, are zero-
mean and independent of each other, the observation
noises vvvl(j), and the regression vectors uuul,i for all l
and j. The channel noise qqqk,i has covariance matrix

Qk = E
[
qqqk,iqqq

∗
k,i

]
.

Remark 1: When the channel fading coefficients hhhk(i) are
available, we can use zero-forcing (ZF) equalizer to mitigate
the effects of fading channels. To show this, let denote by zzzk,i
the ZF equalizer coefficient which is given by

zzzk(i) =
hhh∗k(i)

‖hhhk(i)‖2
(7)

Multiplying the received signal with the ZF equalizer coeffi-
cient gives

rrr′k,i = zzzk(i)rrrk,i = wwwk−1,i + qqq′k,i (8)

where qqq′k,i ,
hhh∗k(i)
‖hhhk(i)‖2qqqk,i can be interpreted as the effect of

fading channel in the special case when the fading coefficients

hhhk(i) are available. We can see that in this case the ILMS
algorithm with fading channels behaves like the ILMS network
with noisy links.

Remark 2: In practice, the channel fading coefficients hhhk(i)
are not available and only can be estimated by e.g. training
data. In this case even if the nodes perform channel state
estimation, it is not possible to measure the channel gains
with absolute certainty, especially if the channels experience
fast fading. To further the motivation for using (6), let ĥhhk(i)
be the estimate of the fading coefficient hhhk(i). Then, the ZF
equalizer coefficient becomes

zzz′k(i) =
ĥhh
∗
k(i)

‖ĥhhk(i)‖2
(9)

Using (9) rrr′k,i in (8) changes to

rrr′k,i = zzz′k(i)rrrk,i = hhh′k(i)wwwk−1,i + qqq′′k,i (10)

where

hhh′k(i) ,
hhhk(i)ĥhh

∗
k(i)

‖ĥhhk(i)‖2
, qqq′′k,i ,

ĥhh
∗
k(i)

‖ĥhhk(i)‖2
qqqk,i (11)

We can see from (10) that when the nodes perform channel
state estimation the channel gain for node k can still be
modeled as a non-negative random variable with a non-trivial
variance. Of particular interest is the case where channel
estimation is sufficiently accurate on average so that the
channel gain can be partially accounted for at the receiver
node. In this case, we can assume that mk = 1 and sk > 1. In
the next section, we show how the performance of the ILMS
algorithm depends on both mk and sk.

III. PERFORMANCE ANALYSIS

In this section, we analyze the mean stability and steady
state mean-square performance of the ILMS algorithm when
communication channels between nodes are fading channels.
Our analysis is based on the energy conservation approach of
[12], [39].

In our analysis, we will use the deviation between an
observed measurement and its prediction based on the current
local estimate, which is defined as

eeek(i) = dddk(i)− uuuk,iwwwk−1,i,

and the weight error vector, which is the deviation between
the local estimate wwwk,i and its true value wo, given by

w̃wwk,i = wo −wwwk,i.

It must be noted that in mean and mean-square analysis of
the ILMS algorithm with fading channels, we need to evaluate
the first and second order moments of the weight error vector
w̃wwk,i.
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A. Mean Stability Analysis

Consider the update equation (6). By subtracting wo from
both sides of (6) and using the definition of w̃wwk,i we obtain

w̃wwk,i = hhhk(i)w̃wwk−1,i

+ (1− hhhk(i))wo − µkhhhk(i)uuu∗k,iuuuk,iw̃wwk−1,i

− µkuuu∗k,ivvvk(i)− µk(1− hhhk(i))uuu∗k,iuuuk,iw
o − qqqk,i

+ µkuuu
∗
k,iuuuk,iqqqk,i. (12)

The recursion (12) shows how the weight error vector w̃wwk,i
evolves over each update of the ILMS algorithm at time i.
We use it to derive the required sufficient conditions for mean
convergence of the ILMS algorithm with fading channels in
the following result.

Proposition 1: Under Assumptions 1 and 2, the ILMS
algorithm over fading channels, given by the update equation
(6), is stable in mean for any initial conditions if we have

max

{
0,

mk − 1

mkλmin(Ru,k)

}
< µk <

mk + 1

mkλmax(Ru,k)
. (13)

Proof: To derive the stability condition in the mean, we
need to derive a condition on the step-size in order to guarantee
convergence in the mean so that lim

i→∞
E [w̃wwk,i] = 0. To this end

we consider again (12). By taking expectation on both sides
of (12) and using Assumptions 2 yields

E [w̃wwk,i] = mkJkE [w̃wwk−1,i] + (1−mk)Jkw
o (14)

with
Jk , I − µkRu,k. (15)

By iterating (14), we obtain that the weight error vector
evolves according to

E [w̃wwk,i] =

(
N∏
n=1

mnJn

)
E [w̃wwk,i−1]

+

N∑
n=1

(
(1−mn)Jn

N∏
`=n+1

m`J`

)
wo. (16)

We can see from (16) that convergence in mean for the ILMS
algorithm with fading channels depends on the modes of the
matrix

M ,
N∏
n=1

mnJn. (17)

The necessary and sufficient condition required for conver-
gence of (6) in the mean is that the matrix M be stable.
Equivalently, all eigenvalues of M must be inside the unit
circle, i.e.,

ρ (M) < 1, (18)

We already know that the spectral radius of any matrix X we
have ρ (X) < ‖X‖ for any induced matrix norm [40]. Thus
we have

ρ(M) ≤ ‖M‖
≤ ‖m1J1‖‖m2J2‖ · · · ‖mNJN‖
= ρ(m1J1)ρ(m2J2) · · · ρ(mNJN )

Since every {Jk} is a Hermitian matrix, its 2-induced norm
agrees with its spectral radius, which explains the last equality.
Thus, to guarantee that for any k the constraint (18) is satisfied
if for all k = 1, . . . , N , it is enough to have ρ(mkJk) ≤ 1
which can be stated in terms of the λ of Ru,k as

|mk(1− µkλ)| < 1. (19)

Therefore, if the step-size µk is chosen such that

max

{
0,

mk − 1

mkλmin(Ru,k)

}
< µk <

mk + 1

mkλmax(Ru,k)

convergence of E [w̃wwk,i] in the mean is guaranteed, and the
proof is complete.

Remark 3: It is worth noting that for the traditional ILMS
algorithm in (3), where information is exchanged perfectly
over ideal links (i.e., we have mk = 1 for all nodes k), the
convergence condition (13) reduces to

0 < µk <
2

λmax(Ru,k)
, (20)

which is the same as that derived in [24].
Remark 4: We can conclude from (13) that even in the pres-

ence of fading channels, it is possible to ensure convergence of
the ILMS algorithm in the mean, by choosing µk sufficiently
small for all nodes k. Furthermore, the range that the step
size can be chosen depends only on the mean of the channel
fading statistics. This implies that if the channel gain can be
estimated so that the resulting deviation gives mk = 1, then
the step size can be chosen to be the same as in the ideal link
case. Furthermore, by comparing (13) with (20), we see that,
in the presence of fading channels, the allowable range of step
sizes for stability in mean can increase or decrease depending
on the average channel gain.

Proposition 2: Suppose that Assumptions 1 and 2 hold, and
that µk satisfies (13) for all k = 1, . . . , N . Then, for the ILMS
algorithm over fading channels, we have

lim
i→∞

E [w̃wwk,i]

= (I −M)−1
N∑
n=1

(
(1−mn)Jn

N∏
`=n+1

m`J`

)
wo.

Proof: At steady state, we have limi→∞ E [w̃wwk,i] =
limi→∞ E [w̃wwk,i−1] for every node k. Taking the limit as
i→∞ in (16), we obtain the desired result.

Remark 5: From the proof of Proposition 2, it follows that
if mk = 1 for all nodes k, then the ILMS algorithm is
asymptotically unbiased, which is consistent with the result for
the mean convergence of the ILMS algorithm over ideal links
or links with only additive noise [30], [31]. Furthermore, we
see that if channel estimation achieves an error with average
mean mk = 1 for all channels, then the ILMS algorithm
will also produce an asymptotically unbiased estimate. On the
other hand, if mk 6= 1 for some of the nodes k, then it is
possible for the ILMS algorithm to produce an estimate that
is asymptotically biased. From Proposition 2, this bias is the
same for all nodes in the network. This is reminiscent of the
convergence result for the ideal link case, which states that all
the estimators wwwk,i converge in the mean to wo.



5

B. Steady State Mean-Square Performance Analysis

We now consider the steady state mean-square performance
of the ILMS algorithm over fading channels. We are interested
to quantify the performance using the following metrics at
every node k:

ηk , lim
i→∞

E
[
‖w̃wwk−1,i‖2

]
(MSD) (21)

ζk , lim
i→∞

E
[
‖w̃wwk−1,i‖2Ru,k

]
(EMSE) (22)

ξk , lim
i→∞

E
[
|eeek(i)|2

]
= ζk + σ2

v,k (MSE) (23)

In general, to derive the above steady state performance met-
rics, we need to evaluate quantities of the form E

[
‖w̃wwk,i‖2Σk

]
where Σk is a positive semi-definite Hermitian matrix. To this
end, we consider the weight vector update equation given by
(12). Let

Ck,i = mkJkCk−1,i + (1−mk)Jk, (24)

where C0,i = CN,i−1, and C0,1 = I . Note that the matrix Ck,i
is such that

E [w̃wwk,i] = Ck,iw
o. (25)

By equating the weighted norm of both sides of (12), taking
expectations and using Assumptions 1 and 2, and (25), we
obtain the following recursive relationship:

E
[
‖w̃wwk,i‖2Σk

]
= E

[
‖w̃wwk−1,i‖2Σ′k

]
+ µ2

kσ
2
v,kE

[
‖uuuk,i‖2Σk

]
+ E

[
‖qqqk,i‖2Gk

]
+ ‖wo‖2Tk+Hk,i

, (26)

where

Gk = Σk − µkE
[
Σkuuu

∗
k,iuuuk,i + uuu∗k,iuuuk,iΣk

]
(27)

+ µ2
kE
[
‖uuuk,i‖2Σk

uuu∗k,iuuuk,i
]

Σ′k = skGk (28)
Tk = (1− 2mk + sk)Gk (29)

Hk,i = (mk − sk)(Ck−1,iGk +GkCk−1,i). (30)

In order to compute all the moments that appear in the recur-
sive equation (26) and to obtain closed-form expressions, we
now make the following assumption regarding the regression
vectors uuuk, for all nodes k = 1, . . . , N .

Assumption 3: For each k = 1, . . . , N , the distribution of
uuuk is a Gaussian distribution with

Ru,k = UkΛkU
∗
k , (31)

where Λk is a diagonal matrix with diagonal elements being
the eigenvalues of the correlation matrix Ru,k, and Uk is
unitary matrix.

Making use of Assumption 3, we further define the follow-
ing transformed quantities:

w̄wwk,i = U∗kw̃wwk,i, Σ̄k = U∗kΣkUk,
Σ̄′k = U∗kΣ′kUk, ūuuk,i = uuuk,iUk,
T̄k = U∗kTkUk, H̄k,i = U∗kHk,iUk,
w̄o = U∗kw

o, C̄k−1,i = U∗kCk−1,iUk,
Q̄k = U∗kQkUk, D = w̄ow̄o∗ = wowo∗.

From the above definitions, equation (26) can now be rewritten
in the following equivalent form

E
[
‖w̄wwk,i‖2Σ̄k

]
= E

[
‖w̄wwk−1,i‖2Σ̄′k

]
+ µ2

kσ
2
v,kE

[
‖ūuuk,i‖2Σ̄k

]
+ E

[
‖q̄qqk,i‖2Ḡk

]
+ ‖w̄o‖2T̄k+H̄k,i

(32)

where in (32) we have

Ḡk = Σ̄k − µkE
[
Σ̄kūuu

∗
k,iūuuk,i + ūuu∗k,iūuuk,iΣ̄k

]
+ µ2

kE‖ūuuk,i‖2Σ̄k
ūuu∗k,iūuuk,i

= Σ̄k − µk(Σ̄kΛk + ΛkΣ̄k)

+ µ2
k(ΛkTr[Σ̄kΛk] + ΛkΣ̄kΛk) (33)

Σ̄′k = skḠk (34)
T̄k = (1− 2mk + sk)Ḡk

H̄k,i = (mk − sk)(C̄k−1,iḠk + ḠkC̄k−1,i) (35)

Further algebraic manipulations of (32) yields

E
[
‖w̄wwk,i‖2Σ̄k

]
= E

[
‖w̄wwk−1,i‖2Σ̄′k

]
+ µ2

kσ
2
v,kTr[ΛkΣ̄k]

+ Tr[Q̄kḠk] + Tr[DT̄k] + Tr[DH̄k,i]. (36)

To derive (21)-(23), we only need to consider the case where
Σ̄k is a diagonal matrix. In this case, matrix Σ̄′k is also a
diagonal matrix. We let

σ̄k , diag{Σ̄k}, σ̄′k , diag{Σ̄′k}, λk , diag{Λk}, (37)

and
F̄k = I − µkXk + µ2

kYk, (38)

with Xk = 2Λk and Yk = Λ2
k+λkλ

T
k . The M×M matrix F̄k

contains the statistics of data local to node k. We then have

E
[
‖w̄wwk,i‖2σ̄k

]
= E

[
‖w̄wwk−1,i‖2σ̄′k

]
+ gk,iσ̄k, (39)

where gk,i and σ̄′k are given respectively by

gk,i = µ2
kσ

2
v,kλ

T
k + diag{Q̄k}T F̄k

+ (1− 2mk + sk)diag{D}T F̄k
+ 2(mk − sk)diag{D}T C̄k−1,iF̄k,

σ̄′k = skF̄kσ̄k. (40)

We next use (39) to derive conditions that guarantee conver-
gence in the mean-square sense for the ILMS algorithm with
fading channels.

Proposition 3: Under assumptions 1, 2 and 3, the ILMS
algorithm over fading channels converges in the mean-square
sense if the step sizes µk are chosen to be sufficiently small
so that the

skρ(F̄k) < 1. (41)

Proof: From (39) and using the results in Section 6.9 of
[24], the ILMS algorithm with fading channels is stable in
the mean-square sense if matrix F̄ ′k , skF̄k is a stable matrix.
Therefore, if we select the step size µk to be sufficiently small
so that ρ(F̄ ′k) < 1, then stability in the mean-square sense is
guaranteed. The proof is now complete.

Remark 6: Suppose that sk = s for all nodes k, and the
step sizes µk are fixed. Then, if s is sufficiently large, the left
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hand side of (39) diverges and we no longer have mean-square
stability. This shows that deteriorating fading conditions have
detrimental impact on the ILMS algorithm, and care should
be taken to adjust the step sizes according to Proposition 3.

Assuming that step sizes are chosen sufficiently small, and
by letting i → ∞, the recursive equation (39) at steady-state
gives

E
[
‖w̄wwk,∞‖2σ̄k

]
= E

[
‖w̄wwk−1,∞‖2σ̄′k

]
+ gkσ̄k, (42)

where

gk = µ2
kσ

2
v,kλ

T
k + diag{Q̄k}T F̄k

+ (1− 2mk + sk)diag{D}T F̄k
+ 2(mk − sk)diag{D}T C̄k−1,∞F̄k, (43)

and using (14) and (25), C̄k−1,∞ in (43) is given by

C̄k−1,∞ = U∗k

(
(I −M)−1×

N∑
n=1

(
(1−mn)Jn

N∏
`=n+1

m`J`

))
Uk. (44)

We observe that (42) shows how E
[
‖w̄wwk,∞‖2σ̄k

]
evolves

through the network, which in its current form makes it diffi-
cult to derive the desired metrics (21)-(23) directly. In fact, we
have to find a recursive equation that reveals how E

[
‖w̄wwk,i‖2σ̄k

]
evolves in time. By iterating (39), and using www0,i+1 = wwwN,i,
we can obtain a set of N coupled equations. With suitable
manipulation of these equations, along with proper selections
of σ̄k, it is possible to solve the resulting equalities to derive
the desired metrics. Following the argument given in [12],
we can derive the required metrics in a similar way. For
completeness, we provide an outline of the proof in Appendix
A.

Proposition 4: Under Assumptions 1, 2 and 3, the steady
state performance of the ILMS algorithm over fading channels
for each node k in the mean-square sense is given by the
following expressions:

ηk = ak(I −Πk,1)−11 (45)

ζk = ak(I −Πk,1)−1λk (46)

ξk = ζk + σ2
v,k (47)

where

Πk,l ,

( N∏
k=1

sk

)(
F̄k+l−1F̄k+l · · · F̄N F̄1 · · · F̄k−1

)
, (48)

ak , gkΠk,2 + gk+1Πk,3 + . . .+ gk−2Πk,N + gk−1, (49)

where l = 1, · · · , N and all the subscripts are in mod N .
Remark 7: Note that g′k = µ2

kσ
2
v,kλ

T
k is the equivalent

expression for (43) for the original ILMS algorithm over ideal
communication links (see equation (55) in [12]). By comparing
(43) with equation (55) in [12], we can see that we can model
the effect of fading channels as additional terms to g′k with

gk = g′k + diag{Q̄k}T F̄k + (1− 2mk + sk)diag{D}T F̄k
+ 2(mk − sk)diag{D}T C̄k−1,∞F̄k. (50)

The first additional term on the right hand side of (50) is due
to the additive noise of the fading channel. The rest of the
additional terms are due to statistics of the fading channel.

C. Dependence of MSD, EMSE and MSE on Channel Gain
Variances

In this subsection, we investigate the dependence of the
MSD, EMSE and MSE on the channel gain variance or
second order moment by making some assumptions in order
to simplify the analysis. We show that the MSD, EMSE and
MSE are non-decreasing functions of sk. To do this, we adopt
the same Gaussian model used in the previous subsection, with
the further assumptions that

1) mk = 1, Ru,k = λI, Qk = σ2
c,kI , and

2) µk = µ and µ is sufficiently small so that (41) holds, and
F̄k can be approximated as

F̄k ≈ I − µX = (1− 2µλ)I.

Since F̄k is now a diagonal matrix, the matrix Πk,` ≈
F̄1F̄2 · · · F̄N is also diagonal, and can be approximated as

Πk,` ≈ sp(1− 2µλ)NI, (51)

with sp ,
∏N
k=1 sk. Using (51) we have

I −Πk,` ≈
(
1− sp(1− 2µλ)N

)
I (52)

Similarly, we can also obtain approximations for gk and ak as
follows:

gk ≈ (µ2σ2
v,kλ)1T + (σ2

c,k(1− 2µλ))1T

+ sp(sk − 1)(1− 2µλ)diag{D}T

≈
(
µ2σ2

v,kλ+ σ2
c,k(1− 2µλ))

)
1T

+ sp(sk − 1)(1− 2µλ)diag{D}T

ak ≈ sp(1− 2µλ)N

(
N∑
n=1

gn − gk−1

)
+ gk−1

≈
(
sp(1− 2µλ)N

) N∑
n=1

gn + (sp(1− 2µλ)N )gk−1. (53)

Let ĝk , gk1. Since diag{D} = [|wo(1)|2, · · · , |wo(M)|2]T ,
we have

ĝk = µ2σ2
v,kλ+ σ2

c,k(1− 2µλ)

+ sp(sk − 1)(1− 2µλ)‖wo‖2.

Replacing (52) and (53) in (45) we finally have

ηk ≈
(

1

1− sp(1− 2µλ)N
− 1

) N∑
n=1

ĝn + ĝk−1. (54)

Similarly, we obtain

ζk ≈ λ
(

1

1− sp(1− 2µλ)N
− 1

) N∑
n=1

ĝn + λĝk−1, (55)

and the approximation for the MSE ξk follows from (47).
Since ĝn is a non-decreasing and non-negative function of sk
for all k, from (54) and (55), we see that the MSD, EMSE and
MSE are all non-decreasing functions of sk (or equivalently
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Fig. 2. Node profile and channel noise information: σ2
v,k (up), σ2

c,k (middle)
and Tr(Ru,k) (down).

the channel gain variances since we have assumed that the
channel gain mean is 1).

Suppose further that sk = s ≥ 1 for all k = 1, . . . , N , and
the step size µ is chosen so that s(1 − 2µλ) is a constant in
(0, 1) for all values of s. In this case, from (54) and (55),
we obtain ηk = O(NsN+1) and ζk = O(NsN+1).1 This
means that under the dB scale, the MSD, EMSE and MSE are
approximately linear with respect to the channel gain second
order moment. Simulations in Section IV are presented to
verify our conclusions.

IV. SIMULATION RESULTS

To verify our theoretical performance analysis, we present
some simulation results and compare them with the results
in Section III. We assume a network composed of N = 20
nodes, where the nodes are connected via a ring topology
as in the ILMS algorithm. The regressors uuuk,i are generated
as independent realizations of a Gaussian distribution with a
covariance matrix Ru,k whose eigenvalue spread is 4. The
measurement data dddk(i) at each node k is generated by using
the data model (1) where the parameter wo is chosen to
be [1 1 1 1]T /2, and the observation noise vvvk(i) is drawn
from a Gaussian distribution with variance σ2

v,k as shown
in Figure 2. The additive channel noises are generated from
Gaussian distributions with covariance matrix Qk = σ2

c,kI , for
k = 1, . . . , 20. The values of σ2

c,k are shown in Figure 2. We
generate the channel gains hhhk(i) using a Rayleigh distribution
with mk =

√
2/2 for all values of k. To obtain the steady-state

values of MSD, EMSE and MSE, we run the ILMS algorithm
with 2000 iterations and average the last 200 samples. Finally,
each steady-state value is obtained by averaging over 100
independent runs.

In Figure 3, we show the steady-state performance metrics
MSD, EMSE and MSE as functions of the node index k when
the step size µ = 0.02. We can see that the simulated results
closely match the theoretical results. In Figure 4, we have
plotted the steady-state EMSE at node k = 1 versus step size
µ. We see that in contrast to the ideal link case, the curve is

1A non-negative function f(x) is O(g(x)) if there exists a > 0 and x0
such that for all x ≥ x0, f(x) ≤ ag(x).
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Fig. 3. Steady-state curves versus for each individual node k, µ = 0.02.
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Fig. 4. Steady-state EMSE versus µ for node k = 1.

no longer a monotonically increasing function of the step-size
µ.

To show how the channel statistics affect the estimation
performance, we simulate the case where all channels have
average gain 1. We further let sk = s for all k = 1, . . . , 20,
and evaluate the EMSE performance when s increases. We plot
the steady-state EMSE at node k = 1 versus varying values
of s in Figure 5. The step size is chosen as µ = 0.02. It can
be seen that as s increases, we get worse performance. On the
other hand, as s→ 0, the performance of the ILMS algorithm
over fading channels tend to the steady-state performance of
the ILMS algorithm with additive noise links. Similar behavior
is also seen for other steady-state metrics, i.e. MSD and
MSE. This simulation also verifies our prediction of the linear
relationship between EMSE and s in dB.

Although we assume that the regression vectors uuuk,i are
independent in this paper, our simulations indicate that the
theoretical results also hold approximately for regression vec-
tors with a shift structure [12]. To show this, we suppose that
at each node k, and for all times i, the regression vector uuuk,i
can be expressed as

uuuk,i = [uk(i), uk(i− 1), · · · , uk(i−M + 1)],
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Fig. 5. Steady-state EMSE versus channel gain second order moment s for
node k = 1.

where uk(i) is generated according to the following recursion

uk(i) = αkuk(i− 1) + βkτk(i), (56)

which represents a first-order autoregressive (AR) process
where with a pole at αk. In (56), τk denotes a white, zero-
mean, Gaussian random sequence with unit variance, while we
choose αk ∈ (0, 0.5] randomly and βk =

√
σ2
u,k(1− α2

k). In
Figure 6, we show the steady-state performance metrics MSD,
EMSE and MSE as functions of the node index k. We can see
that for this case the simulated results have good match with
the theoretical derivations. We also have plotted the steady-
state EMSE at node k = 1 versus step size µ in Fig. 7.
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V. CONCLUSION

In this paper, we have investigated the steady state perfor-
mance of the ILMS algorithm when the links between nodes
are fading channels, and we do not have perfect channel state
information. Our analysis reveals some interesting behaviors,
including (i) in the presence of fading channels, the ILMS
algorithm is asymptotically biased, (ii) a dynamic range for the
step-sizes for mean stability that depends only on the mean
channel gain can be derived and (iii) mean-square stability
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Fig. 7. Steady-state EMSE versus µ for node k = 1. We have considered
regression vectors with shift structure.

depends on the channel gain variances, with the MSD, EMSE
and MSE being non-decreasing functions of these variances.
We present simulation results to verify our theoretical analysis.
Simulation results also show that the EMSE performance
degrades as the fading channel gain variance increases.

In this paper, we focus on analyzing the effect of fading
channels on incremental updates for the LMS filter. We believe
that most of the insights obtained from this analysis are appli-
cable to the more general class of diffusion LMS algorithms,
whose performances under fading channels deserve further
research.

APPENDIX A
OUTLINE PROOF OF PROPOSITION 4

In this appendix, we provide an outline proof of Proposition
4 for completeness. The proof steps are the same as those given
in [12], except with additional mk and sk terms.

As we mentioned before, (42) is a coupled equation since
it involves both E

[
‖w̄wwk,i‖2σ̄k

]
and E

[
‖w̄wwk,i‖2σ̄k−1

]
, i.e., infor-

mation from two spatial nodes. However, we need to find a
recursive equation that reveals how E

[
‖w̄wwk,i‖2σ̄k

]
evolves in

time. We can exploit the ring (incremental) topology together
with the weighting matrices to resolve this difficulty. To this
end, let pppk , w̄wwk,∞. By iterating (42) and using (40), we
obtain the following coupled equalities

E
[
‖ppp1‖2σ̄1

]
= E

[
‖pppN‖2s1F̄1σ̄1

]
+ g1σ̄1,

E
[
‖ppp2‖2σ̄2

]
= E

[
‖ppp1‖2s2F̄2σ̄2

]
+ g2σ̄2

...

E
[
‖pppk−2‖2σ̄k−2

]
= E

[
‖pppk−3‖2sk−2F̄k−2σ̄k−2

]
+ gk−2σ̄k−2

(57)

E
[
‖pppk−1‖2σ̄k−1

]
= E

[
‖pppk−2‖2sk−1F̄k−1σ̄k−1

]
+ gk−1σ̄k−1

(58)
...

E
[
‖pppN‖2σ̄N

]
= E

[
‖pppN−1‖2sN F̄N σ̄N

]
+ gN σ̄N (59)
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We can see from (58) that E
[
‖pppk−1‖2σ̄k−1

]
in term of

E
[
‖pppk−2‖2sk−1F̄k−1σ̄k−1

]
. Now, if we choose the weighting

vector σ̄k−2 = sk−1F̄k−1σ̄k−1 in (57) we get

E
[
‖pppk−2‖2sk−1F̄k−1σ̄k−1

]
= E

[
‖pppk−3‖2sk−1sk−2F̄k−2F̄k−1σ̄k−1

]
+ sk−1gk−2F̄k−1σ̄k−1 (60)

Replacing (60) in (58) yields

E
[
‖pppk−1‖2σ̄k−1

]
= E

[
‖pppk−3‖2sk−1sk−2F̄k−2F̄k−1σ̄k−1

]
+ sk−1gk−2F̄k−1σ̄k−1

+ gk−1σ̄k−1 (61)

Iterating in this manner, we can obtain an expression for
E
[
‖pppk−1‖2σ̄k−1

]
as follows

E
[
‖pppk−1‖2σk−1

]
= E

[
pppk−1‖2F ′k...F ′NF ′1...F ′k−1σk−1

]
+ gkF

′
k+1 . . . F

′
NF1 . . . F

′
k−1σk−1

+ gk+1F
′
k+2 . . . F

′
NF
′
1 . . . F

′
k−1σk−1

+ · · ·+ gk−2F
′
k−1σk−1 + gk−1σk−1 (62)

Using (48) and (49) we can represent (62) in the following
form

E
[∥∥pppk−1

∥∥2

(I−Πk,1)σk−1

]
= akσk−1. (63)

Finally, we use equation (63) to derive the required metrics
at node k. In fact, since we are free to select the weight
vector σk−1, choosing σk−1 = (I − Πk,1)−1diag{I} results
in the expressions for the steady-state MSD as given by
(45). Likewise, letting σk−1 = (I − Πk,1)−1λk results in the
expressions for the steady-state EMSE as given by (46).
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