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Abstract

In this paper, we study a strategic model of marketing and product consumption in social networks.

We consider two firms in a market competing to maximize the consumption of their products. Firms have

a limited budget which can be either invested on the quality of the product or spent on initial seeding in

the network in order to better facilitate spread of the product. After the decision of firms, agents choose

their consumptions following a myopic best response dynamics which results in a local, linear update

for their consumption decision. We characterize the unique Nash equilibrium of the game between firms

and study the effect of the budgets as well as the network structure on the optimal allocation. We show

that at the equilibrium, firms invest more budget on quality when their budgets are close to each other.

However, as the gap between budgets widens, competition in qualities becomes less effective and firms

spend more of their budget on seeding. We also show that given equal budget of firms, if seeding budget

is nonzero for a balanced graph, it will also be nonzero for any other graph, and if seeding budget is zero

for a star graph it will be zero for any other graph as well. As a practical extension, we then consider

a case where products have some preset qualities that can be only improved marginally. At some point

in time, firms learn about the network structure and decide to utilize a limited budget to mount their

market share by either improving the quality or new seeding some agents to incline consumers towards

their products. We show that the optimal budget allocation in this case simplifies to a threshold strategy.

Interestingly, we derive similar results to that of the original problem, in which preset qualities simulate

the role that budgets had in the original setup.
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I. INTRODUCTION

Many recent studies have documented the role of social networks in individual purchasing

decisions [2]–[4]. More data from online social networks and advances in information technolo-

gies have drawn the attention of firms to exploit this information for their marketing goals. As

a result, firms have become more interested in models of influence spread in social networks in

order to improve their marketing strategies. In particular, considering the relationship between

people in social networks and their rational choices, many retailers are interested to know how

to use the information about the dynamics of the spread in order to maximize their product

consumption and achieve the most profit in a competitive market.

A main feature of product consumption in these settings is what is often called the “network

effect” or positive externality. For such products, consumption of each agent incentivizes the

neighboring agents to consume more as well, as the consumption decisions between agents and

their neighbors are strategic complements of each other. There are diverse sets of examples for

such products or services. New technologies and innovations, mobile applications (e.g., Viber,

WhatsApp), online games (e.g., Warcraft), social network web sites (e.g., Facebook, Twitter) and

online dating services (e.g., Zoosk, Match.com, OkCupid) are among many examples in which

consuming from a common product or service is more preferable for people.

Also, a main property of many products is substitution. A substitute product is a product or

service that satisfies the need of a consumer that another product or service fulfills (e.g. Viber

and WhatsApp or Gmail and Yahoo email accounts). In all these examples, firms might be

interested to utilize the social network among consumers and the positive externality of their

products and services to incentivize a larger consumption of their products compared to rival

substitute products. Therefore, it is important for firms to know how to shape their strategies in

designing their products and offering them to a set of people in order to promote their products

intelligently, and eventually achieving a larger share in the market.

In this paper, we study strategic competition between two firms trying to maximize their

product consumption. Firms simultaneously allocate their fixed budgets between seeding a set

of costumers embedded in a social network and designing the quality of their products. The



consumption of each agent is the result of its myopic best response to the previous actions of

its peers in the network. Therefore, a firm should provide enough incentives for spread of its

product through the payoff that agents receive by consuming it. For this purpose and considering

their budgets, firms should strategically design their products and know how to initially seed the

network.

We model the above problem as a fixed-sum game between firms, where each firm tries to

maximize discounted sum of its product consumption over time, considering its fixed budget.

We describe the unique Nash equilibrium of the game between firms which depends on the

budgets of the firms and the network structure. We show that at the Nash equilibrium, firms

spend more budget on quality when their budgets are close. However, as the difference between

budgets increases, firms spend more budget on seeding. We also show that given equal budget

of firms, if seeding budget is nonzero for a balanced graph it will also be nonzero for any other

graph, and if seeding budget is zero for a star graph it will be zero for any other graph too.

Next, we study a different scenario in which firms produce products with some preset qualities.

At some point in time, firms learn about the network structure and dedicate some budget to

increase their product consumption. The budget can be spent on new seeding of agents in the

social network and marginally improving the quality of the products. We derive a simple rule

for optimal allocation of the budget between improving the quality and new seeding which in

particular depends on the network structure and preset qualities of the products. We show that

the optimal allocation of the budget depends on the entire centrality distribution of the graph.

Specially, we show that maximum seeding occurs in a graph with maximum number of agents

with centralities above a certain threshold. Also, the difference in qualities of firms plays an

important role in the optimal allocation of the budget. In particular, we show that as the gap

between the qualities of the products widens, the firms allocate more budget to seeding. We see

that the budgets in the first scenario and preset qualities of the second scenario play similar roles

in the optimal allocation.

It is worthwhile to note that the problem of influence and spread in networks has been

extensively studied in the past few years [5]–[11]. Also, diffusion of new behaviors and strategies



through local coordination games has been an active field of research [12]–[19]. Goyal and

Kearns proposed a game theoretic model of product adoption in [20]. They computed upper

bounds of the price of anarchy and showed how network structure may amplify the initial

budget differences. Similarly, in [21] Bimpikis, Ozdaglar and Yildiz proposed a game theoretic

model of competition between firms which can target their marketing budgets to individuals

embedded in a social network. They provided conditions under which it is optimal for the firms

to asymmetrically target a subset of the individuals. Also, Chasparis and Shamma assumed a

dynamical model of preferences in [10] and computed optimal policies for finite and infinite

horizon where endogenous network influences, competition between two firms and uncertainties

in the network model were studied. The main contribution of our work is to explicitly study the

tradeoff between investing on quality of a product and initial seeding in a social network. Our

model is similar to the model proposed in [22], however, instead of pricing strategy in [22], the

notion of quality is introduced and the tradeoff between quality and seeding is studied. Also,

our model is tractable and allows us to characterize the exact product consumption at each time,

instead of lower and upper bounds provided in [23], [24].

II. THE SPREAD DYNAMICS

There are n agents V = {1, . . . , n} in a social network. The relationship among agents is

represented by a directed graph G = (V,E) in which agents i, j ∈ V are neighbors if (i, j) ∈ E.

The weighted adjacency matrix of the graph G is denoted by a row stochastic matrix G where

the ij-th entry of G, denoted by gij , represents the strength of the influence of agent j on i.

For diagonal elements of matrix G, we have gii = 0 for all agents i ∈ V . We assume that

there are two competing firms a and b producing product a and b. Each agent has one unit

demand which can be supplied by either of the firms. We define the variable 0 ≤ xi(t) ≤ 1 and

0 ≤ 1− xi(t) ≤ 1 as the consumption of the product a and b by agent i at time t.

Denote by qa, qb ≥ ε > 0 the quality of product a and b respectively, where ε has an

infinitesimal value. The values of qa and qb can be interpreted as the payoff that any two agents

i and j would achieve if they both consume the same product. In other words, we can assume



qa and qb are payoffs of the following game

xj 1− xj

xi qaxixj 0

1− xi 0 qb(1− xi)(1− xj)

Since agents benefit from the same action of their neighbors, this game could be thought of as

a local coordination game. From the above table it follows easily that the payoff of agents i and

j from their interaction is

uij(xi, xj) = qaxixj + qb(1− xi)(1− xj).

We also assume that each agent benefits from taking action xi irrespective of actions taken by

its neighbors. We assume the isolation payoff of consuming xi and 1− xi from product a and

b is represented by the following quadratic form functions

uaii = qa(αxi − βx2
i ), ubii = qb[α(1− xi)− β(1− xi)2],

where α and β are parameters of the isolation payoff. This forms of payoff indicates that a

product with higher quality has a higher isolation payoff. The total isolation payoff of agent i

can be written as

uii(xi) = {qa(αxi − βx2
i )}+ {qb

(
α(1− xi)− β(1− xi)2

)
}.

In order to have nonnegative isolation payoff for xi = 0 and xi = 1, we assume β ≤ α. Assuming

quadratic form function for the isolation payoff not only makes the analysis more tractable, but

also is a good second order approximation for the general class of concave payoff functions. By

changing the variables xi = 1
2

+ yi after simplification we get

uij(yi, yj) = qa(
1

2
+ yi)(

1

2
+ yj) + qb(

1

2
− yi)(

1

2
− yj),

uii(yi) = (qa + qb)(
α

2
− β

4
− βy2

i ) + (qa − qb)(α− β)yi.



Therefore, the total utility of agent i from taking action yi is given by

Ui(yi, ~y−i) = (qa + qb)(
α

2
− β

4
− βy2

i ) + (qa − qb)(α− β)yi

+ qa

n∑
j=1

gij(
1

2
+ yi)(

1

2
+ yj) + qb

n∑
j=1

gij(
1

2
− yi)(

1

2
− yj).

(1)

In the above equation ~y−i denotes an action vector of all agents other than agent i. From equation

(1) we can see that product a and b have a positive externality effect in the network, meaning that

the usage level of an agent has a positive impact on the usage level of its neighbors. Therefore,

it follows that qa and qb in addition to the payoff of a local coordination game, can be interpreted

as coefficients of network externality of product a and b respectively.

We assume agents repeatedly apply myopic best response to the actions of their neighbors.

This means that each agent, considering its neighbors consumptions at the current period, chooses

the amount of the product that maximizes its current payoff, as its consumption for the next

period. In other words, consumption of agent i at time t+ 1 is updated as follows

yi(t+ 1) = arg max
yi

Ui(yi(t), ~y−i(t)).

The above equation results in the following update dynamics

yi(t+ 1) = (
1

2β
)

n∑
j=1

gijyj(t) + (
qa − qb

4β(qa + qb)
)

n∑
j=1

gij + (
(α− β)(qa − qb)

2β(qa + qb)
).

Therefore, the consumption of the product a can be written as the following linear update

dynamics form

~y(t+ 1) = (
1

2β
)G~y(t) + (

(1 + 2(α− β))(qa − qb)
4β(qa + qb)

)~1. (2)

Similarly, for the consumption of the product b we have 1− xi(t) = 1
2
− yi(t).

Assumption 1: We assume 1 +α ≤ 2β. This assumption guaranties that 0 ≤ xi(t) ≤ 1 for all

i and all t under the update rule (2).



Using the above assumption and defining

W , (
1

2β
)G, ~ua ,

(
(
1 + 2(α− β)

4β
)(
qa − qb
qa + qb

)

)
~1, (3)

equations (2) can be written as

~y(t+ 1) = W~y(t) + ~ua.

The above equation can be expanded as

~y(t) = W t~y(0) +
t−1∑
k=0

W k~ua. (4)

Therefore, the consumption of agents depends on the initial preferences, i.e. ~y(0), the quality of

product a and b, i.e. qa and qb, and the structure of the network, i.e. the matrix G. In the next

section we discuss how firms can exploit this information in order to maximize their product

consumption and also characterize the unique Nash equilibrium of the game played between two

firms.

III. OPTIMAL BUDGET ALLOCATION

In this section we describe the game between firms where each firm aims to maximize the

consumption of its product over an infinite time horizon given a fixed budget. Each firm has

an initial budget that it can either invest on “quality” or spend it on promoting its product by

seeding some of the agents, or both. This initial seeding can be viewed as free offers to promote

the products in the network. We define the utility of each firm as the discounted sum of its

product consumption over time

Ua =
∞∑
t=0

δt~1T ((0.5)~1 + ~y(t)),

Ub =
∞∑
t=0

δt~1T ((0.5)~1− ~y(t)).

Each firm has a limited budget Ka, Kb that can spend on either initial seeding, i.e. ~Sa and ~Sb,

or designing the quality of its product, i.e. qa and qb, or both. Seeding ~Sa and ~Sb will change



the initial consumption of products a and b by ~Sa − ~Sb and ~Sb − ~Sa respectively. Therefore, the

amount that agents initially consume from product a and b will be ~x(0) = (0.5)~1 + ~Sa − ~Sb

and ~1− ~x(0) = (0.5)~1 + ~Sb − ~Sa. This means that if both firms seed an agent equally then the

agent has no preference for one product over the other, i.e. ~y(0) = ~0. This assumption can be

justified since agents should be initially indifferent between products before their consumption

and realizing the quality of products if initial seedings by firms are equal. In order to have

0 ≤ xi(0) ≤ 1 and 0 ≤ 1− xi(0) ≤ 1 for all agents i, we impose the constraints ‖~Sa‖∞ ≤ 0.5

and ‖~Sb‖∞ ≤ 0.5. This means that firms can initially seed agents up to their demand capacity

which is 0.5 for all agents. Using equations (3) and (4) and defining the centrality vector v

by v = (I − δW T )−1~1 where agents are ordered from the highest to the lowest centrality, i.e.

v1 ≥ v2 ≥ · · · ≥ vn, and noting that
∑
vi = 2βn

2β−δ , the utilities of firms can be written as

Ua = (
n

2(1− δ)
) + vT ~Sa − vT ~Sb + λ(

qa − qb
qa + qb

),

Ub = (
n

2(1− δ)
) + vT ~Sb − vT ~Sa + λ(

qb − qa
qa + qb

),

(5)

where

λ =
δ(1 + 2(α− β))n

2(1− δ)(2β − δ)
. (6)

We assume the cost of each unit of quality is given by cq and the cost of each unit of initial

seeding is given by cs. Therefore, the game between the firms can be written as

max
~Sa,qa

(
n

2(1− δ)
) + vT ~Sa − vT ~Sb + λ(

qa − qb
qa + qb

),

s.t. cs‖~Sa‖1 + cqqa = Ka,

for firm a, and

max
~Sb,qb

(
n

2(1− δ)
) + vT ~Sb − vT ~Sa + λ(

qb − qa
qa + qb

),

s.t. cs‖~Sb‖1 + cqqb = Kb,



for firm b. Since the effect of the action of ~Sb is decoupled from ~Sa in Ua, therefore, the

optimization problem of firm a is equivalent to

max
~Sa,qa

vT ~Sa + λ(
qa − qb
qa + qb

),

s.t. cs‖~Sa‖1 + cqqa = Ka.

Similarly, for firm b we have

max
~Sb,qb

vT ~Sb + λ(
qb − qa
qa + qb

),

s.t. cs‖~Sb‖1 + cqqb = Kb.

Remark 1: It can be easily shown that for a seeding budget ‖Sa‖1, the optimal seeding strategy

is to seed the agents in the order of their centralities (from highest to lowest) until we either

ran out of budget or all the agents are seeded. Therefore, an optimal action (~Sa, qa) is fully

determined from (‖Sa‖1, qa), thus reducing the action space of firm a to only qa, given its

budget constraint. Similar argument holds for firm b. Therefore, we may look at the utilities Ua

and Ub as functions of (qa, qb) under the optimal seeding and fixed budgets.

In order to study the existence and uniqueness of the Nash equilibrium for the above game,

we use a variation of the well-known Sion’s minimax theorem (see [25] for the original Sion’s

theorem) as below.

Lemma 1: Consider a two person zero-sum game, on closed, bounded, and convex finite-

dimensional action sets Ω1×Ω2, defined by the continuous function L(x1, x2). Let L(x1, x2) be

strictly convex in x1 for each x2 ∈ Ω2 and strictly concave in x2 for each x1 ∈ Ω1. Then the

game admits a unique pure strategy Nash equilibrium.

Proof: See Theorem A.4 on page 286 in [26].

In the following theorem we characterize the Nash equilibrium of the game played between

firms.

Theorem 1: Consider firms a and b with utility functions Ua and Ub as described in (5). The



game between firms admits a unique Nash equilibrium of form

q∗a = (2λ)(
cs
cq

)(
ṽl

(ṽk + ṽl)2
), q∗b = (2λ)(

cs
cq

)(
ṽk

(ṽk + ṽl)2
),

S∗ai =


1
2

1 ≤ i < k,

Ka
cs
− k−1

2
− 2λṽl

(ṽk+ṽl)2
i = k,

0 i > k,

S∗bi =


1
2

1 ≤ i < l,

Kb
cs
− l−1

2
− 2λṽk

(ṽk+ṽl)2
i = l,

0 i > l,

(7)

for some vk ≤ ṽk ≤ vk−1 and vl ≤ ṽl ≤ vl−1 that satisfy

0 ≤ S∗ak =
Ka

cs
− k − 1

2
− 2λṽl

(ṽk + ṽl)2
<

1

2
,

0 ≤ S∗bl =
Kb

cs
− l − 1

2
− 2λṽk

(ṽk + ṽl)2
<

1

2
,

(8)

where ṽk = vk if S∗ak > 0 and ṽl = vl if S∗al > 0. 1

Proof: Given the optimal seeding of each firm, i.e. seeding agents from the highest to the

lowest centrality, as discussed in Remark 1, the tradeoff between seeding amount and quality

can be solved by optimizing Ua and Ub with respect to qa and qb respectively. The action space

of firms, i.e. ε ≤ qa ≤ Ka
cq

and ε ≤ qb ≤ Kb
cq

, is a closed, bounded, and convex finite-dimensional

set. Also, Ua + Ub = n
(1−δ) , hence, the game is a fixed-sum game and can be transformed to

a zero sum game by subtracting the constant value of n
2(1−δ) from Ua and Ub. The term vT ~Sa

in Ua is piecewise linear in ‖Sa‖1 and thus in qa, under optimal seeding. Using this, it is easy

to see that Ua(qa, qb) is strictly concave in qa for each qb, and strictly convex in qb for each

qa via a similar argument. Therefore, based on Lemma 1, the game admits a unique Nash

equilibrium. Assume that the first (k − 1) and (l − 1) agents are fully seeded by firms a and b

respectively at equilibrium. Then, from the budget constraints we have S∗ak = Ka
cs
− k−1

2
− ( cq

cs
)qa,

and S∗bl = Kb
cs
− l−1

2
− ( cq

cs
)qb, therefore, by plugging in the vector of optimal seeding S∗a and S∗b

1We define v0 ,∞. If S∗an = 1
2

or S∗bn = 1
2

, then ṽn ≤ vn.



as described earlier, the optimization problem of firms is given by

max
ε≤qa≤Kacq

(
1

2
)
k−1∑
i=1

vi + (
Ka

cs
− k − 1

2
− (

cq
cs

)qa)vk + λ(
qa − qb
qa + qb

),

max
ε≤qb≤

Kb
cq

(
1

2
)
l−1∑
i=1

vi + (
Kb

cs
− l − 1

2
− (

cq
cs

)qb)vl + λ(
qb − qa
qa + qb

).

If 0 < S∗ak <
1
2

and 0 < S∗bl <
1
2
, the first order optimality condition requires taking the derivative

of the two equations above with respect to qa and qb and setting them to zero

− (
cq
cs

)vk + (
2λqb

(qa + qb)2
) = 0,

− (
cq
cs

)vl + (
2λqa

(qa + qb)2
) = 0.

Solving equations above we get

q∗a = (2λ)(
cs
cq

)(
vl

(vk + vl)2
),

q∗b = (2λ)(
cs
cq

)(
vk

(vk + vl)2
),

where 1 ≤ k, l ≤ n are integers that must satisfy conditions in (8) for ṽk = vk and ṽl = vl. If

S∗ak = 0 and S∗bl = 0, the first order optimality condition is as follows

vk ≤ ṽk ≤ vk−1, vl ≤ ṽl ≤ vl−1, (9)

where

ṽk = (2λ)(
cs
cq

)(
qb

(qa + qb)2
), ṽl = (2λ)(

cs
cq

)(
qa

(qa + qb)2
), (10)

and if S∗an = 1
2

or S∗bn = 1
2

then ṽn ≤ vn. We can solve q∗a and q∗b in terms of ṽk and ṽl as

described in (7).

Corollary 1: If firms have equal budgets Ka = Kb = K, then in the unique symmetric Nash



equilibrium of the game between firms we have

q∗a = q∗b = (
λ

2
)(
cs
cq

)(
1

ṽl
), S∗ai = S∗bi =


1
2

1 ≤ i < l,

K
cs
− l−1

2
− λ

2ṽl
i = l,

0 i > l,

(11)

for some vl ≤ ṽl ≤ vl−1 that satisfy

0 ≤ S∗al = S∗bl =
K

cs
− l − 1

2
− λ

2ṽl
<

1

2
, (12)

where ṽl = vl if S∗al = S∗bl > 0. 2

Equation (7) indicates that the Nash equilibrium depends on both the budgets of the firms, i.e.

Ka and Kb, centrality distribution of agents in the network, i.e. v. We will discuss the effect of

each of these factors on the Nash equilibrium in the following subsections. All of our analysis

here is for firm a and similar results can be shown for firm b as well. For simplicity, we only

discuss seeding budget; quality budget can be found easily using the budget constraint.

A. Effect of Budget of Firms on Firms’ Decisions:

In this subsection we study how the budget of each firm, i.e. Ka and Kb, can influence the

Nash equilibrium. As it can be seen from (7), the Nash equilibrium depends on both ṽk and

ṽl, which in turn depend on firm’s and its rival’s budgets, i.e. both Ka and Kb. In the first

proposition, we compare the seeding budget and quality of two firms at the Nash equilibrium

with respect to their budgets. We first prove the following lemma.

Lemma 2: At the Nash equilibrium, if q∗a < q∗b , then ‖~S∗a‖1 ≤ ‖~S∗b ‖1.

Proof: If q∗a < q∗b , then from (7), we have ṽl < ṽk. If ṽl < ṽk then either k < l or l = k.

If k < l it is obvious to see that ~S∗a ≤ ~S∗b . If l = k then we have two cases: If 0 < S∗ak <
1
2
,

then based on (9) we have ṽk = vk = vl ≤ ṽl which is a contradiction with ṽl < ṽk. If S∗ak = 0,

then obviously S∗ak ≤ S∗bl and therefore, ~S∗a ≤ ~S∗b . If S∗an = 1
2
, then ṽl < ṽk = ṽn ≤ vn, hence,

S∗bn = 1
2
. This finishes the proof.

2We define v0 ,∞. If S∗an = S∗bn = 1
2

, then ṽn ≤ vn.



The next proposition states that the firm with higher budget surpasses the rival in both quality

and seeding.

Proposition 1: The firm with higher budget has higher seeding budget and quality, i.e. if

Kb ≤ Ka, then ‖~S∗b ‖1 ≤ ‖~S∗a‖1 and q∗b ≤ q∗a.

Proof: Suppose that q∗a < q∗b . From Lemma 2 we have ‖~S∗a‖1 ≤ ‖~S∗b ‖1, which contradicts

with Kb ≤ Ka. Also, suppose ‖~S∗a‖1 < ‖~S∗b ‖1, then from Lemma 2 we have q∗a ≤ q∗b , which

contradicts with Kb ≤ Ka. This completes the proof.

In the next proposition we explain how the seeding budget and quality at the Nash equilibrium

vary with Ka and Kb.

Proposition 2: Given a fixed graph, the optimal seeding ‖S∗a‖1 and quality q∗a at the Nash

equilibrium are increasing functions of Ka. Furthermore, ‖S∗a‖1 is a decreasing function of Kb

if Kb ≤ Ka and an increasing function of Kb if Ka ≤ Kb.

Proof: First note that ‖S∗a‖1, ‖S∗b ‖1, q∗a, q∗b (and as a result ṽk and ṽl) are continuous

functions of Ka and Kb. To see this, let B(qa, qb, Ka, Kb) denote the best response of the firms

to qualities (qa, qb) when the budgets are (Ka, Kb). It follows from the continuity of the best

response and compactness of action spaces that the set {(q∗a, q∗b )|B(q∗a, q
∗
b , Ka, Kb) = (q∗a, q

∗
b )},

that is the equilibrium space, is closed. This implies that the graphs of the functions q∗a(Ka, Kb)

and q∗b (Ka, Kb) are closed and thus are continuous.

Now, if 0 < S∗ak <
1
2
, then ṽk = vk. If Ka marginally increases, then, using the continuity

of the equilibrium, the level k and as a result ṽk does not change. Thus, given fixed Kb, the

constraint for firm b in (8) and hence ṽl does not change. Therefore, if Ka marginally increases,

from the Nash equilibrium in (7), q∗a does not change and S∗ak marginally increases. If S∗ak = 0

and vk < ṽk < vk−1, and Ka marginally increases, from the continuity of Nash we still have

vk < ṽ′k < vk−1 and as a result S∗ak = 0 does not change and hence, q∗a marginally increases. If

S∗ak = 0 and ṽk = vk or ṽk = vk−1, and Ka marginally increases, either we have vk < ṽ′k < vk−1

which means S∗ak = 0 does not change and q∗a marginally increases, or ṽk does not change. In this

latter case, given the fixed budget Kb, the constraint for firm b in (8) will remain unchanged and

hence ṽl will not change. Therefore, from the Nash equilibrium in (7), q∗a does not change and



as a result S∗ak marginally increases. It is to be noted here that the cases where ṽk moves above

vk−1 or below vk are not feasible as they will cause a jump in the seeding budget, contradicting

the continuity of equilibrium. The analysis for the case when S∗an = 1
2

and ṽn ≤ vn is quite

similar. Therefore, ∂‖~S∗a‖1
∂Ka

≥ 0 and ∂q∗a
∂Ka
≥ 0.

For the second part of the proposition, if S∗ak = 0 and vk < ṽk < vk−1 and Kb marginally

increases, from continuity of ṽk we still have vk < ṽ′k < vk−1, and therefore, S∗ak = 0 and given

the fixed Ka, q∗a does not change. Hence, we only need to consider the case where 0 < S∗ak <
1
2

and ṽk = vk, or S∗ak = 0 and ṽk = vk or ṽk = vk−1. In these cases, it is easy to see that

either ṽk or S∗ak remains unchanged. In the latter case, (given the fixed Ka) q∗a does not change.

Similar argument holds for when S∗an = 1
2

and ṽn ≤ vn. Therefore, we only need to consider

the case where ṽk does not change. From the first part of the proposition, q∗b is an increasing

function of Kb. Also, from Proposition 1, if Kb ≤ Ka (Ka ≤ Kb), then q∗b ≤ q∗a (q∗a ≤ q∗b ).

Therefore, if Kb ≤ Ka (Ka ≤ Kb) and Kb marginally increases, equations (10) implies that q∗a

must marginally increase (decrease) or does not change so that ṽk remains fixed. Hence, given

constant Ka, S∗ak marginally decreases (increases) or does not change. Therefore, ∂‖~S∗a‖1
∂Kb

≤ 0,

for Kb ≤ Ka and ∂‖~S∗a‖1
∂Kb

≥ 0, for Ka ≤ Kb.

Proposition 2 implies that when Kb ≤ Ka, the higher the budget of the rival firm, the lower

the seeding budget of firm a, i.e., if Kb ≤ K ′b ≤ Ka then, ‖~S∗a(K ′b)‖1 ≤ ‖~S∗a(Kb)‖1. On the

other hand, when competing with a firm which has a higher budget, i.e. Ka ≤ Kb, the higher

the budget of the rival firm, the higher firm a should spend on seeding. In other words, if

Ka ≤ Kb ≤ K ′b then, ‖~S∗a(Kb)‖1 ≤ ‖~S∗a(K ′b)‖1.

Combining these two results, we can see that given a fixed value of Ka, the seeding budget of

firm a is increasing with the difference |Ka−Kb|. The seeding budget attains its minimum when

Kb = Ka, implying that the firm should allocate more budget to quality to distance itself from

the rival firm. However, as the gap between budget widens, competition in qualities becomes

less effective and firms spend more budget on seeding.



B. Effect of Network Structure on Firms’ Decisions

In this subsection we study the effect of network structure on the Nash equilibrium. Since we

already studied the effect of the budget on the Nash equilibrium, for the rest of this subsection

we assume Ka = Kb = K so that we can observe only the effect of the network structure. We

first focus on two well studied graphs, i.e. star and balanced graphs, and highlight how they can

reflect important properties of the seeding budget. Before continuing further, we first formally

define these two graphs and find their network centralities in the next lemma.

Definition 1: A star graph is a directed graph in which there is an edge from any noncentral

agent i ∈ V − {j} to the central agent j with the weight gij = 1 and there are edges from the

central agent j to all noncentral agents i ∈ V − {j} such that
∑

i gji = 1.

Definition 2: A balanced graph is a directed graph in which the in-degree of each agent is

equal to its out-degree, i.e.
∑

j gji =
∑

j gij = 1.

Lemma 3: The centrality of the agents in a balanced graph is given by v̄ = 2β
2β−δ . In a star

graph, the centrality of the central agent is

vsh =
1 + δ(n−1)

2β

1− ( δ
2β

)2
,

and the centrality of non central agents is

vsl =
1 + δ

2β(n−1)

1− ( δ
2β

)2
.

Moreover, for any arbitrary graph G, v̄ ≤ v1 ≤ vsh.

Proof: First part simply follows from the fact that v = (I − δW T )−1~1, where W is given

by (3), and that for any agent i in a balanced graph
∑
gji =

∑
gij = 1. For the star graph,

noting that v = ~1 + δW Tv, we can obtain

vsh = 1 +
δ(n− 1)vsl

2β
,

vsl = 1 +
δvsh

2β(n− 1)
,

solving which we can find vsh and vsl as given in the lemma.



Also, for any arbitrary graph G, v1 ≥
∑
vi
n

= v̄. To show v1 ≤ vsh, using v = ~1 + δW Tv for

all j 6= 1 we can obtain

vj ≥ 1 + (
δ

2β
)g1jv1.

This yields
n∑
j=1

vj ≥ (n− 1) + (1 +
δ

2β
)v1.

Applying simple algebra along with the fact that
∑
vj = 2βn

2β−δ leads to v1 ≤ vsh.

The next proposition provides a condition for seeding profitability of any general graph. Also,

the seeding budget of star and balanced graphs are compared and it is shown that the graph with

higher seeding budget can be any of the two, depending on the budget.

Proposition 3: If seeding budget is nonzero for a balanced graph, it will be nonzero for any

other graph too. On the other hand, if seeding budget is zero for a star graph, it will also be

zero for any other graph. Moreover, if 1
2

+ λ
2v̄
< K

cs
< n

2
+ λ

2vsl
, a balanced graph has a larger

seeding budget than a star graph, and if λ
2vsh

< K
cs
< 1

2
+ λ

2v̄
, a star graph has a larger seeding

budget than a balanced graph. For n
2

+ λ
2vsl

< K
cs
< n

2
+ λ

2
they have the same seeding budget.

Proof: If seeding budget is nonzero for a balanced graph, then according to (12) we have

λ
2v̄
< K

cs
. As a result, for any other graph we will have λ

2v1
< K

cs
, since according to Lemma 3

v̄ ≤ v1. This means that there exists at least one agent that must be seeded. On the other hand,

if seeding budget is zero for a star graph, then we must have K
cs
≤ λ

2vsh
. Since we know vsh ≥ vi

for any agent i of any arbitrary graph, therefore, K
cs
≤ λ

2vi
and no agent can be seeded in any

other graph.

For the second part of the proposition, denote quality and seeding budget of balanced and star

graphs by qr, ‖~Sr‖1 and qs, ‖~Ss‖1 respectively. If 1
2

+ λ
2v̄
< K

cs
< n

2
+ λ

2vsl
, then seeding budget is

nonzero for balanced graph and hence, qr = ( cs
cq

) λ
2v̄

. This implies ‖~Sr‖1 = K
cs
− λ

2v̄
> 1

2
. For star

graph 1
2

+ λ
2v̄
< K

cs
< n

2
+ λ

2vsl
implies 1

2
+ λ

2vsh
< K

cs
. Therefore, the central agent in star graph

must be seeded, i.e. Sa1 = 1
2
. If Sa2 = 0, then ‖~Ss‖1 = 1

2
and clearly ‖~Ss‖1 < ‖~Sr‖1. If Sa2 > 0,

then a noncentral agent must be seeded and we must have qs = ( cs
cq

) λ
2vsl

. This implies qr < qs



and as a result ‖~Ss‖1 < ‖~Sr‖1.

If λ
2vsh

< K
cs
< 1

2
+ λ

2v̄
, then we have two cases. If K

cs
≤ λ

2v̄
then ‖~Sr‖1 = 0. On the other hand

‖~Ss‖1 > 0 since λ
2vsh

< K
cs

. Therefore, clearly ‖~Sr‖1 < ‖~Ss‖1. So let’s assume λ
2v̄
< K

cs
< 1

2
+ λ

2v̄
.

This implies seeding budget is nonzero for balanced graph and hence, qr = ( cs
cq

) λ
2v̄

. As a result,

‖~Sr‖1 = K
cs
− λ

2v̄
< 1

2
. Now again consider two cases. If K

cs
< 1

2
+ λ

2vsh
, then qs = ( cs

cq
) λ

2vsh
, and

hence qs < qr. This implies ‖~Sr‖1 < ‖~Ss‖1. Otherwise, if 1
2

+ λ
2vsh
≤ K

cs
then ‖~Ss‖1 ≥ 1

2
. As a

result, again we have ‖~Sr‖1 <
1
2
≤ ‖~Ss‖1.

If n
2

+ λ
2vsl

< K
cs
< n

2
+ λ

2
, then all agents in star graph are seeded up to agents maximum

demand capacities which is 0.5 for each agent. Also, since vsl < v̄, we have n
2

+ λ
2v̄

< K
cs

.

Hence, all agents in balanced graph are also seeded up to agents maximum demand capacities.

Therefore, both graphs have the same seeding budget. This completes the proof.

The next proposition provides us with a lower and an upper bound for minimum and maximum

seeding budget. In order to characterize the graphs with maximum and minimum seedings for

a given budget K, we need to introduce a few notations first.

Definition 3: Define vmaxl = max vl, i.e. the maximum of the l-th centrality vl among all

possible graphs subject to
∑
vi = 2βn

2β−δ . We can see that vmax1 = vsh and

vmaxl =
nδ

l(2β − δ)
+ 1, (13)

for l ≥ 2. Similarly, define vminl = min vl, i.e. the minimum of the l-th centrality vl among all

possible graphs subject to
∑
vi = 2βn

2β−δ . It is easy to see that vmin1 = v̄, vmin2 = vsl , and vminl = 1

for l ≥ 3.

Proposition 4: Let (l, ṽmaxl ) be the unique pair satisfying condition (12) where vmaxl ≤ ṽmaxl ≤

vmaxl−1 and if 0 < S∗al in (12), then ṽmaxl = vmaxl . The maximum seeding budget occurs in any

graph for which ṽl = ṽmaxl . An example for such a graph is an l-star graph if ṽmaxl = vmaxl

and an (l − 1)-star graph if ṽmaxl > vmaxl . 3 Similarly, let (l, ṽminl ) be the unique pair satisfying

condition (12) where vminl ≤ ṽminl ≤ vminl−1 and if 0 < S∗al in (12), then ṽminl = vminl . The

3ṽmaxn ≤ vmaxn if S∗an = 1
2

.



minimum seeding budget occurs in any graph for which ṽl = ṽminl . An example for such graphs

is the balanced graph for l = 1, the star graph for l = 2, and any graph with n− 2 agents with

centrality of one for l ≥ 3. 4

Proof: Let G be a graph attaining the maximum seeding (thus the minimum quality) and

denote its corresponding equilibrium with (l′, ṽl′). Note that l′ ≥ l, since in a graph with ṽl =

ṽmaxl the first (l − 1) agents are fully seeded. Now, if l′ > l, then from ṽl′ ≤ vmaxl′−1 ≤ vmaxl and

vmaxl ≤ ṽmaxl it follows that ṽl′ ≤ ṽmaxl . But, then both pairs (l′, ṽl′) and (l, ṽmaxl ) cannot satisfy

(12). Therefore, in a graph with maximum seeding we should have l′ = l. Now, if ṽmaxl < ṽl′ ,

then vmaxl < ṽl′ ≤ vmaxl−1 , which contradicts the uniqueness of the pair (l, ṽmaxl ). To complete the

proof, we also need to show that ṽl = ṽmaxl is achievable. It is quite straightforward to show

that for ṽmaxl = vmaxl an l-star graph with v1 = . . . = vl = vmaxl , and for ṽmaxl > vmaxl an

(l− 1)-star graph with v1 = . . . = vl−1 = vmaxl−1 admit (l, ṽmaxl ) as the equilibrium. The proof for

the minimum seeding budget is similar.

Example 1: As a numerical example for the minimum and maximum seeding budgets, we

consider a network with n = 15 agents with budget K = 2, quality and seeding costs of

cs = cq = 1 and parameters of α = β = 1 and δ = 0.5. For this example from equations (6)

we have λ = 5. As a result, we can see that for l = 3 and vmax3 = 8
3

from (13), condition

0 < S∗a3 = 1
16
< 1

2
in (12) is satisfied. Therefore, a graph with the maximum seeding budget is a

3-star with the seeding budget of 17
16

as illustrated in Fig. 1. Also, we can see that for l = 1 and

v̄ = 4
3
, condition 0 < S∗a1 = 1

8
< 1

2
in (12) is satisfied. Thus, balanced graph has the minimum

seeding budget of 1
8
. Given vsh = 4.8 and vsl = 1.08, it can be seen that in star graph ṽ2 = 5

3
and

star graph has a seeding budget of 0.5 which is neither a minimum nor a maximum.

As we saw, the structure of the graphs with minimum and maximum seeding budget depends

on the budget. However, for certain values of budget K the seeding budget will be independent

of the structure of the graph, as described in the next proposition.

Proposition 5: If K
cs
< λ

2vsh
no graph can be seeded. On the other hand, if K

cs
> n

2
+ λ

2
all

4ṽminn ≤ vminn if S∗an = 1
2

.



Fig. 1. A graph with maximum seeding budget

graphs can be seeded up to agents maximum demand capacities.

Proof: The maximum possible centrality happens for the central agent of the star graph

as shown in Lemma 3. As a result, if K
cs
< λ

2vsh
, then we have K

cs
< λ

2vi
for all i in any graph

and from condition (12) no agent can be seeded. Also, since from definition 1 ≤ vi for all i, if

K
cs
> 1

2
+ λ

2
then we have K

cs
> n

2
+ λ

2vi
for all agents in any graph, and any graph can be seeded

up to agents’ maximum demand capacities which is 0.5 for each agent.

IV. SEEDING VERSUS QUALITY IMPROVEMENT

In this section we describe a scenario in which firms have already produced their products

with some preset quality. We assume at some point in time, say t = 0, firms learn about

the network structure and utilize a fixed budget to maximize their marginal utility by either

marginally “improving the quality” of their products or new seeding some agents to change

their consumption towards their products or both. Since the products have been in the market

for a while, we assume agents have already decided on their consumption from products a and

b which are denoted by ~x(0) and ~1− ~x(0) respectively. Each firm has a limited budget, i.e. Ka

and Kb, that can spend on either new seeding, i.e. ~Sa and ~Sb, or enhancing the quality of its

product, i.e. ∆qa and ∆qb, or both. New seeding ~Sa and ~Sb will change the initial consumption

of products a and b by ~Sa − ~Sb and ~Sb − ~Sa respectively. In order to have 0 ≤ xi(0) ≤ 1

and 0 ≤ 1 − xi(0) ≤ 1 for all agents i, we impose the constraints ‖~Sa + ~y(0)‖∞ ≤ 0.5 and

‖~Sb−~y(0)‖∞ ≤ 0.5. This means that firms can initially seed agents up to their demand capacity.

From equation (5) the marginal change in the utility of firm a and b resulted from the new



budget Ka and Kb are given by

∆Ua = vT ~Sa − vT ~Sb +
2λqb∆qa
(qa + qb)2

− 2λqa∆qb
(qa + qb)2

,

∆Ub = vT ~Sb − vT ~Sa +
2λqa∆qb
(qa + qb)2

− 2λqb∆qa
(qa + qb)2

.

We assume the cost of improving the quality by ∆q is given by cq∆q and cq is a large number,

and also the cost of each unit of new seeding is given by cs. Each firm maximizes its marginal

utility given its fixed budget. Since the effect of the action of firm b, i.e. ~Sb and ∆qb, is decoupled

from that of the action of firm a in ∆Ua, thus firm a should solve the following optimization

problem

max
~Sa,∆qa

vT ~Sa +
2λqb∆qa
(qa + qb)2

,

s.t. cs‖~Sa‖1 + cq∆qa = Ka.

(14)

Similarly, for the firm b we have

max
~Sb,∆qb

vT ~Sb +
2λqa∆qb
(qa + qb)2

,

s.t. cs‖~Sb‖1 + cq∆qb = Kb.

(15)

From equations (14) and (15) it can be seen that the optimal strategy of each firm is independent

of the action of the other firm. It is to be noted that despite the independence of the actions, the

optimal strategy of each firm depends on the state (i.e., quality) of the rival firm. This results in

a Nash equilibrium to be simply the pair of the optimal actions of the firms. In the next Theorem

we describe a simple rule for the optimal allocation of the budget for each firm and discuss the

resulting Nash equilibrium.

Theorem 2: For firm a, it is more profitable to seed agent j rather than enhancing the quality

of its product if vj > vac where

vac , (2λ)(
cs
cq

)(
qb

(qa + qb)2
). (16)

Similarly, for firm b, it is more profitable to seed agent j rather than enhancing the quality of



its product if vj > vbc where

vbc , (2λ)(
cs
cq

)(
qa

(qa + qb)2
). (17)

Moreover, any pair of the optimal strategies of the firms described by the above threshold rules

describes a Nash equilibrium.

Proof: From equation (14) and (15) the relative marginal utility to cost for spending budget

to seed agent j is vj
cs

. Therefore, it is always more profitable to seed an agent with higher

centrality. Also, the relative marginal utility to cost for spending budget on enhancing quality

of product a is 2λqb
cq(qa+qb)2

according to (14). Therefore, for firm a it is more profitable to seed

agent j rather than enhancing the quality of its product iff

vj
cs
>

2λqb
cq(qa + qb)2

.

This completes the proof. Similar story holds for firm b. Moreover, since the best response of

each firm resulting from equations (14) and (15) is independent of the action of the other firm,

any Nash equilibrium of the game between firms is simply a pair of firms best responses.

Corollary 2: If firms have equal qualities qa = qb = q, for both firms a and b, it is more

profitable to seed agent j rather than enhancing the quality of their products if vj > vc where

vc , (
λ

2
)(
cs
cq

)(
1

q
). (18)

Moreover, any pair of the optimal strategies of the firms described by the above threshold rules

describes a Nash equilibrium.

Remark 2: If we compare the thresholds

vac , (2λ)(
cs
cq

)(
qb

(qa + qb)2
), vbc , (2λ)(

cs
cq

)(
qa

(qa + qb)2
), (19)

with qualities in Section III

q∗a = (2λ)(
cs
cq

)(
ṽl

(ṽk + ṽl)2
), q∗b = (2λ)(

cs
cq

)(
ṽk

(ṽk + ṽl)2
), (20)

we can see a similarity as follows: In equation (19), qa and qb determine vac and vbc which in turn



determine the trade off between ~S and ∆q according to Theorem 2. In Section III, Ka and Kb

determine ṽk and ṽl based on the inequalities in (8) and ṽk and ṽl determine q∗a and q∗a according

to (20), which in turn determine the trade of between ~S and q based on the budget constraint.

Therefore, as it will be discussed later, we can achieve similar results for the effect of qa and qb

on the optimal budget allocation, as we did for the effect of Ka and Kb on the Nash equilibrium.

Following the above theorem, the optimal allocation of the budget for each firm is to follow

a so called water-filling strategy, that is, to start seeding in the order of agents’ centralities

until the centrality falls below the threshold given by (16) for firm a or (17) for firm b (in

which case the firm spends the rest of the budget on improving the quality), or the firm runs

out of budget. Also, the amount that agents can be seeded is up to their demand capacity, i.e.

~Smaxa = (0.5)~1 − ~y(0) > 0 and ~Smaxb = (0.5)~1 + ~y(0) > 0. Also, note that if the centrality of

any agent is equal to the threshold defined in (16) or (17), then firms are indifferent between

seeding that agent and quality improvement. Equations (16) and (17) indicate that the optimal

allocation depends on quality of products, i.e. qa and qb and centrality distribution of agents in

the network, i.e. v. In what follows, we will study the effect of each of these factors on the

optimal allocation of the firms in more details. All of our analysis here is for firm a and similar

results can be shown for firm b as well. For simplicity, we only discuss optimal seeding budget;

optimal quality improvement budget can be found easily using the budget constraint.

A. Effect of Quality of Products on Firms’ Decisions:

In this subsection we study how the quality of each product, i.e. qa and qb, can influence the

optimal allocation of seeding and quality improvement budgets.

As it can be seen from equation (16), the threshold vac depends on both firm’s and its rival’s

qualities, i.e. both qa and qb. In the next proposition, we compare the seeding budget of two

firms in the optimal allocation with respect to their qualities.

Proposition 6: Given an equal budget, the firm with higher quality also has higher seeding

budget, i.e. if qa ≤ qb, then ‖~S∗a‖1 ≤ ‖~S∗b ‖1.

Proof: From equations (16) and (17) it can be easily seen that if qa ≤ qb, then vbc ≤ vac .



As a result, more agents satisfy the condition (17) for firm b compared to firm a and therefore,

‖~S∗a‖1 ≤ ‖~S∗b ‖1.

This result is due to diminishing return of quality which means if a firm already has a high

quality it would profit less by spending on quality improvement and it would be better for the

firm to invest on seeding. Also, note that the result of Proposition 6 is similar to the result

of Proposition 1. The only difference is that instead of budgets Ka and Kb in Proposition 1,

qualities qa and qb in Proposition 6 play the role of the budgets while comparing the seedings

of the firms.

In the next proposition we explain how the optimal seeding budget vary with qa and qb.

Proposition 7: Given a fixed graph, the optimal seeding budget is an increasing function of

qa. Furthermore, it is a decreasing function of qb if qb ≤ qa and an increasing function of qb if

qa ≤ qb.

Proof: The optimal seeding budget is a decreasing function of the threshold value vac . Also,

it is easy to see that the threshold value of vac is a decreasing function of qa. This implies the

first part of proposition. For the second part, it is easy to see that the threshold value of vac is a

decreasing function of qa. This implies the first part of proposition. For the second part, it is easy

to see that the threshold value of vac is an increasing function of the quality of product b, when

qb ≤ qa and a decreasing function of the quality of product b, when qb ≥ qa. This completes the

proof.

Proposition 7 implies that a higher quality in a firm’s product results in a higher seeding

budget in the optimal allocation. This can be due to the diminishing return of quality: when

quality is higher there is less need for quality improvement and it would be more profitable to

spend on seeding. Furthermore, when qb ≤ qa, the higher the quality of the rival firm’s product,

the lower the seeding budget of firm a, i.e., if qa ≥ q′b ≥ qb then, ‖~S∗a(q′b)‖1 ≤ ‖~S∗a(qb)‖1. On

the other hand, when competing with a firm whose product has a higher quality, i.e. qb ≥ qa,

the higher the quality of the rival firm’s product, the higher firm a should spend on seeding. In

other words, if qa ≤ qb ≤ q′b then, ‖~S∗a(qb)‖1 ≤ ‖~S∗a(q′b)‖1.

Combining these two results, we can see that given a fixed value of qa, the seeding budget of



firm a is increasing with the difference |qa− qb|. The seeding budget attains its minimum when

qb = qa, implying that the firm should allocate more budget to quality improvement to distance

itself from the rival firm. However, as the gap between qualities widens, competition in qualities

becomes less effective and firms spend more budget on seeding. Also, note that the result of

Proposition 7 is similar to the result of Proposition 2. The only difference is that seeding budgets

vary with qa and qb in Proposition 7, whereas they vary with Ka and Kb in Proposition 2.

B. Effect of Network Structure on Firms’ Decisions:

In this subsection we study the effect of network structure on the optimal allocation of the

budget for seeding and quality improvement. First we define seeding capacity of a graph.

Definition 4: The seeding capacity of a graph is the amount that it can be seeded in the

optimal allocation when there is no budget constraint.

We first focus on two well studied graphs, i.e. star and balanced graphs, and highlight how

they can reflect important properties of the seeding budget. The next proposition provides a

condition for seeding profitability of any general graph. Also, the seeding capacity of star and

balanced graphs are compared and it is shown that the graph with higher seeding capacity can

be any of the two, depending on the threshold value of vac in (16).

Proposition 8: If seeding capacity is nonzero for a balanced graph, it will be nonzero for

any other graph too. On the other hand, if seeding capacity is zero for a star graph, it will also

be zero for any other graph. Moreover, if vsl < vac < v̄, a balanced graph has a larger seeding

capacity than a star graph, and if v̄ < vac < vsh, a star graph has a larger seeding capacity than

a balanced graph. For 1 < vac < vsl they have the same seeding capacity.

Proof: If seeding capacity is nonzero for a balanced graph, then we have vac < v̄. As a

result, for any other graph we will have vac < vmax, where vmax = max vi, since according to

Lemma 3 v̄ ≤ vmax. This means that there exists at least one agent that must be seeded. On the

other hand, if seeding capacity is zero for a star graph, then we must have vac > vsh. Since we

know vsh ≥ vi for any agent i of any arbitrary graph, therefore, vac > vi and no agent can be

seeded in any other graph. For the second part of the proposition, if vsl < vac < v̄, then seeding



capacity for the star graph will be Smaxai
, where Smaxa1

≥ Smaxa2
≥ · · · ≥ Smaxan are elements of the

demand capacity vector ~Smaxa and agent i is the central agent. However, for the balanced graph

all agents can be seeded up to their maximum demand capacities and the seeding capacity will

be ‖~Smaxa ‖1. On the other hand, if v̄ < vac < vsh, still seeding for the star graph will be Smaxai
,

however, no agent can be seeded in the balanced graph. For 1 < vac < vsl , agents in both graphs

can be seeded up to ‖~Smaxa ‖1.

It is easy to see that Proposition 8 presents very similar results as Proposition 3. The next

proposition provides us with a lower and an upper bound for minimum and maximum seeding

capacities.

Proposition 9: If 1 < vac < vsh, the maximum seeding capacity is given by

‖~S∗a‖max1 =
k∑
i=1

Smaxai
,

where

k = min{b nδ

(vac − 1)(2β − δ)
c, n}. (21)

On the other hand, the minimum seeding capacity is Smaxan + Smaxan−1
if 1 < vac < vsl , is Smaxan if

vsl < vac < v̄, and is zero if v̄ < vac < vsh.

Proof: From condition (16) the more agents with centralities above the threshold vac , the

more seeding budget can be allocated. Therefore, the maximum number of k agents with

centralities above the threshold vac must be found. Since vi ≥ 1 for all agents, first a centrality

of one is given to each agent and then the remainder of the centrality sum is distributed among

maximum number of agents so that each agent receives at least vac − 1, making its overall

centrality greater than vac . It is easy to see that the number of such agents is upper bounded by

b
2βn
2β−δ−n
vac−1

c. This along with the fact that 1 ≤ k ≤ n results in (21). Note that, in order to complete

the proof, we should also provide an example achieving this maximum capacity. For k = 1, the

maximum seeding capacity is clearly achieved by the star graph with the seeding capacity of

Smaxa1
. For k ≥ 2, a graph with largest seeding capacity is the one with k central agents having



the largest demand capacities and with equal centralities of

ṽsh =
nδ

k(2β − δ)
+ 1,

where k is given in (21), and the remainder n−k agents with the minimum centrality of ṽsl = 1.

For the graph with minimum seeding capacity, similar to the proof of Proposition 8, we have

minimum seeding capacity of Smaxan in star graph if vsl < vac < v̄, and zero in balanced graph

if v̄ < vac < vsh. For the case where 1 < vac < vsl , let i be the agent with the highest centrality.

Clearly, vsl < vi ≤ vsh. Now, considering the fact that sum of the centralities is fixed, there is an

agent j ∈ V − {i} for which vsl ≤ vj . This implies that there exist at least two agents whose

centralities are above vac . An example of a graph with exactly two centralities above vac is a

directed star graph where all edges are directed towards the center except one edge which goes

both ways.

It can be seen from both Proposition 9 and Proposition 4 that graphs with similar structures

attain maximum and minimum seeding in both scenarios.

Example 2: As a numerical example for the minimum and maximum seeding capacities, we

consider a network with n = 15 agents with demand capacity vectors of ~Smaxa = ~Smaxb = (0.5)~1,

qualities of qa = qb = 1, quality and seeding costs of cs = cq = 1 and parameters of α = β = 1

and δ = 0.5. For this example from equations (16) and (17) we have vac = vbc = 2.5 and as a result,

from equation (21) we get k = 3. Therefore, a graph with the maximum seeding capacity is a

3-star with seeding capacity of 1.5 as illustrated in Fig. 1. Also, since v̄ = 4
3
< vac , v

b
c < vsh = 4.8,

a balanced graph has the minimum seeding capacity of zero. A star graph has a seeding capacity

of 0.5 which is neither a minimum nor a maximum.

Note that in both Example 1 and Example 2 a graph with the maximum seeding budget

and capacity is a 3-star graph and a graph with the minimum seeding budget and capacity is

a balanced graph. A star graph has neither a minimum nor a maximum seeding budget and

capacity in both examples.

As we saw, the structure of the graphs with minimum and maximum seeding capacity depends

on the threshold value of vac . However, for certain values of vac the seeding capacity will be



independent of the structure of the graph, as described in the next proposition.

Proposition 10: If vac > vsh no graph can be seeded. On the other hand, if vac < 1 all graphs

can be seeded equally up to agents’ maximum demand capacities.

Proof: The maximum possible centrality happens for the central agent of the star graph as

shown in Lemma 3. As a result, if vac > vsh, then we have vac > vi for all i in any graph and from

condition (16) no agent can be seeded. Also, since from definition 1 ≤ vi for all i, if vac < 1

then we have vac < vi for all agents in any graph, and any graph can be seeded up to agents’

maximum demand capacities, given the availability of budget.

It is easy to see that Proposition 10 presents very similar results as Proposition 5.

V. CONCLUSION

We proposed and studied a strategic model of marketing and product consumption in social

networks. Two firms compete for maximizing the consumption of their products in a social

network. Initially firms utilize a limited budget to either design the quality of their products or

initially seed a set of agents in the social network. Agents are myopic yet utility maximizing,

given the qualities of the products and actions of their neighbors. This myopic best response

results in a local, linear update dynamics for the consumptions of the agents. We characterized

the unique Nash equilibrium of the game between firms. We showed that at the Nash equilibrium,

firms invest more budget on quality when their budgets are close. However, as the difference

between budgets increases, firms spend more budget on seeding. We also showed that given equal

budget of firms, if seeding budget is nonzero for a balanced graph it will also be nonzero for

any other graph, and if seeding budget is zero for a star graph it will be zero for any other graph

too. Afterwards, we considered a different scenario in which firms produce two products with

some preset qualities that can only be improved marginally. At some point in time, firms spend

a limited budget to marginally improve the quality of their products and to give free offers to a

set of agents in the network in order to promote their products. We derived a simple threshold

rule for the optimal allocation of the budget between new seedings and quality improvement. We

showed that the optimal allocation of the budget in particular depends on the entire centrality



distribution of the graph and the qualities of the products. Furthermore, we derived similar results

to the original setup for this scenario, in which preset qualities resemble the role of budgets.
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