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Minimum-Rank Dynamic Output Consensus Design
for Heterogeneous Nonlinear Multi-Agent Systems

Dinh Hoa Nguyen,Member, IEEE

Abstract—In this paper, we propose a new and systematic
design framework for output consensus in heterogeneous Multi-
Input Multi-Output (MIMO) general nonlinear Multi-Agent
Systems (MASs) subjected to directed communication topology.
First, the input-output feedback linearization method is utilized
assuming that the internal dynamics is Input-to-State Stable
(ISS) to obtain linearized subsystems of agents. Consequently,
we propose local dynamic controllers for agents such that the
linearized subsystems have an identical closed-loop dynamics
which has a single pole at the origin whereas other poles are
on the open left half complex plane. This allows us to deal with
distinct agents having arbitrarily vector relative degrees and to
derive rank-1 cooperative control inputs for those homogeneous
linearized dynamics which results in a minimum rank distributed
dynamic consensus controller for the initial nonlinear MAS.
Moreover, we prove that the coupling strength in the consensus
protocol can be arbitrarily small but positive and hence our
consensus design is non-conservative. Next, our design approach
is further strengthened by tackling the problem of randomly
switching communication topologies among agents where we
relax the assumption on the balance of each switched graph and
derive a distributed rank-1 dynamic consensus controller. Lastly,
a numerical example is introduced to illustrate the effectiveness
of our proposed framework.

I. I NTRODUCTION

Cooperative control of multi-agent systems (MASs) has
gained much attention recently since there are a lot of practical
applications, e.g., power grids, wireless sensor networks, trans-
portation networks, systems biology, etc, can be formulated,
analyzed and synthesized under the framework of MASs. One
of the key features in MASs is the achievement of a global
objective by performing local measurement and control at each
agent and simultaneously collaborating among agents using
that local information.

Employing the principle of relatively exchanged local in-
formation, a very important and extensively studied subject
in MASs is the consensus problem where agents’ states or
outputs come to a non-zero agreement. A huge collection of
results can be found for consensus of MASs, ranging from sin-
gle integrator dynamics of agents with fixed and time-varying
communication topology [1]–[4] to general linear agents [5]
and to nonlinear agents with disturbances, uncertainties,time
delays, etc [6], [7].

For linear MASs, one way to develop a systematic consen-
sus control design is to employ the LQR method, e.g. [8]–[11].
The paper [8] designed optimal consensus laws for network

Dinh Hoa Nguyen is currently with Control System Laboratory, De-
partment of Advanced Science and Technology, Toyota Technological In-
stitute, 2-12-1 Hisakita, Tempaku-ku, Nagoya 468-8511, Japan. e-mail:
dinhhoa_nguyen@toyota-ti.ac.jp, hoadn.ac@gmail.com.

of integrators utilizing two LQR cost functions. LQR-based
consensus designs for leader-follower MASs was presented in
[9] in which only local LQR problems were solved and no
global LQR problem was considered. Next, in our previous
research [10], we introduced an LQR-based method to design
a distributed consensus controller for general linear MASs
but the obtained controller is only sub-optimal. Recently,we
have proposed an approach in [11] to achieve a consensus
design with a non-conservative coupling strength where an
alternative MAS model namely edge dynamics was presented
that helps transforming the consensus design into an equivalent
stability synthesis which can be derived by LQR method. This
advanced result will be employed subsequently in the current
article.

In nonlinear MASs, many efforts have recently been con-
ducted for consensus problem, of which most are based on
passivity theory and internal model principle, e.g. [6], [12]–
[16], just to name a few. Consensus designs with linear and
nonlinear output couplings were introduced in [6] for hetero-
geneous SISO affine nonlinear MASs under the assumption of
passive dynamics of agents. This work was then extended in
[12] where the balanced condition of inter-agent communica-
tion graph was relaxed to be strongly connected graph. Robust
static output-feedback consensus controllers for heterogeneous
SISO affine relative-degree-two passive sector-bounded MASs
in presence of communication constraints were investigated in
[14]. In [15], distributed output tracking consensus controllers
were proposed based on internal model principle and passivity
for heterogeneous MIMO affine nonlinear networks of agents
with relative degree one and two. In a recent work, [16] pro-
posed a method to design distributed output tracking consensus
controllers for heterogeneous SISO nonlinear MASs utilizing
internal model principle and nonlinear controller forms that
satisfying global Lipschitz conditions. Although the passive
property can be found in a wide class of nonlinear systems,
this approach requires the number of inputs and outputs of
a nonlinear agent to be the same and further assumptions
or conditions must be satisfied. Moreover, finding the energy
function or the Lyapunov function to show the passivity of
nonlinear agents is not always easy.

Some other researches on consensus of nonlinear MASs
consider specific problems, e.g. [17], [18]. A special classof
homogeneous leader-follower MIMO affine MASs was studied
in [17] and sufficient conditions for static consensus con-
trollers were given based on Lipschitz assumption for agents
and Lyapunov theory. Tracking consensus controller based on
internal model principle and a specific, complicated selection
of control input were introduced in [18] for a very special class
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of heterogeneous SISO relative-degree-one nonlinear MASs.
These results are quite difficult to extend to more general
contexts.

On the other hand, our current article proposes a systematic
framework to designlinear dynamic output consensus con-
trollers for leaderless heterogeneous MIMO general nonlinear
MASs, following the idea of designing low-rank consensus
controller with non-conservative coupling strength in ourpre-
vious work [11]. It is worth noting that there are essential
differences between the current paper and [11] as follows.
First, the current article deals withheterogeneous nonlinear
MASs while [11] consideredhomogeneous linearMASs.
Second, this paper proposes consensus designs for MASs with
directed and switchingcommunication topologies, but [11]
developed consensus controllers for MASs withundirected
and fixedstructures. Third, the consensus controllers proposed
in this paper can be freely designed to have rank1, however
the ones in [11] could not.

The remarkable features of our proposed framework are
as follows. First, it gives us a distributeddynamic output
consensus controller design forheterogeneous MIMO general
nonlinear MASs with arbitrary vector relative degreethat: (i)
has anarbitrarily small but positivecoupling strength; (ii) has
minimum rank, i.e., rank-1. Second, the communication topol-
ogy among agents isdirectedand can berandomly switching
of which the component graphsneed not to be balanced. To
the best of our knowledge, there have not been similar results
in the literature so far, and thus the aforementioned properties
clearly show the contributions of this paper.

II. PRELIMINARIES

A. Notations and Symbols

The following notations and symbols will be used in the pa-
per.R, R−, andC stand for the sets of real, non-positive real,
and complex number.Re(x) denotes the real part of a complex
numberx. Moreover,1n and0n denote then× 1 vector with
all elements equal to1 and 0, respectively; andIn denotes
the n × n identity matrix. Next,Lfh(x) , (∂h(x)/∂x)f(x)
represents the notation for Lie derivative, and⊗ stands for
the Kronecker product. On the other hand,λ(A) andλmin(A)
denotes the eigenvalue set and the eigenvalue with smallest,
non-zero real part ofA, respectively. In addition,≻ and �
denote the positive definiteness and positive semi-definiteness
of a matrix. Lastly, K∞ denotes the class of scalar function
γ(x) : R+ → R+ which is continuous, strictly increasing,
unbounded, andγ(0) = 0; andKL denotes the class of scalar
functionγ(x, t) : R+ ×R+ → R+ such thatγ(., t) ∈ K∞ for
eacht andγ(x, t) ց 0 as t → ∞.

B. Graph Theory

Denote(G,V , E) the directed graph representing the infor-
mation structure in a multi-agent system composing ofN
agents, where each node inG stands for an agent and each edge
in G represents the interconnection between two agents;V and
E represent the set of vertices and edges ofG, respectively.
There is an edgeeij ∈ E if agent i receives information
from agentj. The neighboring set of a vertexi is denoted

by Ni , {j : eij ∈ E}. Moreover, letaij be elements of
the adjacency matrixA of G, i.e., aij > 0 if eij ∈ E and
aij = 0 if eij /∈ E . The in-degree of a vertexi is denoted by
degini ,

∑N
j=1 aij , then the in-degree matrix ofG is denoted

by D = diag{degini }i=1,...,N . Consequently, the Laplacian
matrix L associated toG is defined byL = D −A. The out-
degree of a vertexi is denoted bydegouti ,

∑N
j=1 aji. Then

G is said to be balanced ifdegini = degouti ∀ i = 1, . . . , N.
A directed path connecting verticesi andj in G is a set of

consecutive edges starting fromi and stopping atj. ThenG is
said to have a spanning tree if there exists a node called root
node from which there are directed paths to every other node.

Lemma 1: [19] The Laplacian matrixL always has a zero
eigenvalue with associated eigenvector1N , and all non-zero
eigenvalues ofL have positive real parts. Furthermore,L has
only one zero eigenvalue if and only ifG has a spanning tree.

If the communication topology among agents is varied with
time then we will write the time-varying terms with the time
index t, e.g.,Ni(t), aij(t),G(t),L(t), etc.

C. Consensus of Linear MASs

Let us consider an MAS composing ofN identical linear
agents whose dynamics is described by

ẋi = Axi +Bui, i = 1, . . . , N, (1)

wherexi ∈ Rn, ui ∈ Rm, A ∈ Rn×n, B ∈ Rn×m. A common
consensus protocol for (1) is

ui = −µK
∑

j∈Ni

aij(xi − xj), i = 1, . . . , N, (2)

whereK ∈ Rm×n is the consensus controller gain matrix,µ
is the coupling strength.

Lemma 2: [20], [21] A necessary and sufficient condition
for the MAS with agent dynamics (1) to reach consensus
defined as follows,

lim
t→∞

‖xi(t)− xj(t)‖ = 0 ∀ i, j = 1, . . . , N,

by the control law (2) is that its communication graphG has a
spanning tree andA−µλkBK are stable for allk = 2, . . . , N,
whereλk are non-zero eigenvalues ofL.

The following proposition shows a consensus design for
linear MASs with non-conservative coupling strength, which
serves as a basis for consensus design of nonlinear MASs with
non-conservative coupling strength in the next sections.

Proposition 1: Suppose that the following conditions are
satisfied: (i) the directed graphG representing the commu-
nication structure in the MAS (1) has a spanning tree; (ii)
(A,B) is controllable; (iii) λ(A) ∈ R−. Then this MAS
reaches consensus by the controller (2) for anyµ > 0 and
K = RBTP , whereR ∈ Rm×m, R ≻ 0, andP ∈ Rn×n,
P ≻ 0 is the unique solution of the following Riccati equation,

PA+ATP +Q − PBRBTP = 0, (3)

in which Q ∈ Rn×n, Q � 0, and(Q1/2, A) is observable.
Proof: Based on the result of Lemma 2, the MAS

(1) will reach consensus if condition (i) is satisfied and
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A − µλkBRBTP are stable for allk = 2, . . . , N, whereλk

are non-zero eigenvalues ofL. Note thatK = RBTP is in
fact an LQR controller gain, and from optimal control theory
[22], it is known that all eigenvalues ofA − BRBTP are
shifted to the left of the imaginary axis. On the other hand,
Re(λk) > 0 ∀ k = 2, . . . , N since G has a spanning tree
[20], [21]. Therefore, by scaling with a scalar parameterµλk

with positive real part for allk = 2, . . . , N , the controller gain
µλkRBTP still shifts all eigenvalues ofA to the left though
it could be more or less depending on whetherµλk > 1 or
µλk < 1. Since we have assumed thatλ(A) ∈ R−, this means
all eigenvalues ofA−µλkBRBTP belong to the open left half
complex plane for allk = 2, . . . , N , and thus the consensus
is achieved in the MAS (1).

III. O UTPUT CONSENSUS OFHETEROGENEOUSSISO
NONLINEAR MASS WITH FIXED DIRECTED TOPOLOGY

In this section, we present a novel approach to design
distributed controller for output consensus problem in hetero-
geneous SISO nonlinear MASs with fixed topology. The SISO
affine nonlinear MASs will be investigated first in Section
III-A then SISO general nonlinear MASs will consequently
be studied in Section III-B based on the results obtained for
affine ones.

A. Heterogeneous SISO Affine Nonlinear MASs

Consider a network ofN heterogeneous SISO affine non-
linear agents whose models are described as follows,

ẋi = fi(xi) + gi(xi)ui,

yi = hi(xi), i = 1, . . . , N,
(4)

wherexi ∈ Rni , ui ∈ R, and yi ∈ R are the state vector,
input, and output of theith agent, respectively;fi, gi ∈ Rni

andhi ∈ R are vector-valued and scalar-valued of continuous,
differentiable nonlinear functions.

Definition 1: The affine nonlinear agent (4) is said to have
relative degreeri > 0 if

LgiL
k
fihi(xi) = 0 as k = 0, . . . , ri − 2,

LgiL
k
fihi(xi) 6= 0 as k = ri − 1.

(5)

Definition 2: A multi-agent system with dynamics of agents
described by (4) is said to reach an output consensus if

lim
t→∞

|yi(t)− yj(t)| = 0 ∀ i, j = 1, . . . , N. (6)

The control design problem is to find a distributed control
strategy for the agents (4) such that their outputs cooperatively
reach consensus while they unidirectionally exchange informa-
tion through a directed graphG. Throughout this section, we
utilize the following assumption ofG.

A1: The directed graphG is time-invariant and has a spanning
tree.

Remark 1: In some practical situations, the directed graph
G could be time-varying due to the link failures, packet
losses, etc. This phenomenon of varied topology is usually
modeled in the literature as deterministic switches (e.g.,[23],

[16]) or random switches (e.g., [24], [25]). For the clarityof
approach representation, we first employ assumption A1 and
will investigate the scenario of switching topologies later in a
separated section.

Consequently, we employ the input-output feedback lin-
earization method [26] to derive linearized models of agents
and accordingly convert the output consensus problem of
initial nonlinear MAS to a state consensus problem of a new
linearized MAS. More specifically, the nonlinear models of
agents are changed by a diffeomorphismΦi(xi) = [ξTi , η

T
i ]

T

to normal forms

ξ̇i,1 = ξi,2,

ξ̇i,2 = ξi,3,

...

ξ̇i,ri = αi(ξi, ηi) + βi(ξi, ηi)ui,

η̇i = ϑi(ξi, ηi),

yi = ξi,1, i = 1, . . . , N,

(7)

where ξi,k , Φi,k(xi) , Lk−1
fi

hi(x), k = 1, . . . , ri, ξi =

[ξi,1, . . . , ξi,ri ]
T ∈ R

ri , ηi ∈ R
ni−ri ; αi(ξi, ηi) , Lri

fi
hi(x),

βi(ξi, ηi, di) , LgiL
ri−1
fi

hi(x), ϑi(ξi, ηi) ∈ Rni−ri . To avoid
the finite-escape-time (FET) phenomenon and guarantee the
internal stability of the closed-loop system, we employ the
following assumption [27],

A2: The internal dynamicṡηi = ϑi(ξi, ηi) is input-to-state
stable (ISS), i.e., there exist some functionsγi,1 ∈ KL
andγi,2 ∈ K∞ such that

‖ηi(t)‖2 ≤ γi,1(‖ηi(0)‖2, t) + γi,2(‖ξi(t)‖∞).

Then the design problem becomes finding a control law for
the linearized multi-agent system (7) such that linearizedstates
ξi,1 of agents are consensus. In light of assumption A2, we
are able to set the control input for theith agent as follows,

ui =
1

βi(ξi, ηi)
[−αi(ξi, ηi) + ûi], i = 1, . . . , N, (8)

where ûi ∈ R is a new control input for the linearized
subsystem. Since the dynamics of linearized subsystems are
different, a static consensus controller cannot be derived.
Instead, we will propose a dynamic controller which is able
to makeξi,1, i = 1, . . . , N converge to a common value, i.e.,
output consensus for (4) is achieved. Define

r = max
i=1,...,N

ri, i = 1, . . . , N. (9)

Consequently, each agent is equipped with the following
dynamic controller,

φ̇i = Diξi + Eiφi +Givi,

ui = Hiφi −
αi(ξi, ηi)

βi(ξi, ηi)
, i = 1, . . . , N,

(10)

whereφi ∈ Rr−ri is the controller’s state vector in which
φi,1 = ûi, vi ∈ R is a new control input, and

Gi =
[

0 0 · · · 0 1
]T ∈ R

r−ri ,

Hi =
[

1/βi(ξi, ηi) 0 · · · 0
]

∈ R
1×(r−ri),
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Di =















0 0 0 · · · 0
0 0 0 · · · 0
...

...
...

...
0 0 0 · · · 0
0 −b2 −b3 · · · −bri















∈ R
(r−ri)×ri ,

Ei =















0 1 · · · 0
0 0 · · · 0
...

...
...

0 0 · · · 1
−bri+1 −bri+2 · · · −br















∈ R
(r−ri)×(r−ri),

of which b2, . . . , br are coefficients of the following charac-
teristic equation whose poles are inR−,

sr + brs
r−1 + · · ·+ b2s = 0. (11)

Note that the free coefficient is chosen to be0 to ensure a
non-zero consensus. Denoteξ̂i = [ξTi , φ

T
i ]

T , then the overall
linearized dynamics of agents are made identical by the
dynamic controllers (10), and has the following representation,

˙̂
ξi = Aξ̂i +Bvi,

ui =
[

0 Hi

]

ξ̂i − αi(ξi, ηi)/βi(ξi, ηi), i = 1, . . . , N,
(12)

where

A =















0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

...
0 0 0 · · · 1
0 −b2 −b3 · · · −br















∈ R
r×r, B =













0
0
· · ·
0
1













∈ R
r.

We are now ready to state a foundation result of this paper
in the following theorem where the coupling strength in the
consensus law for nonlinear MASs isnon-conservative.

Theorem 1:The heterogeneous SISO affine nonlinear MAS
(4) reaches an output consensus by the local dynamic con-
trollers (10) and the cooperative controls

vi = −µ(r̂BTP1)
∑

j∈Ni

aij(ξ̂i(t)− ξ̂j(t)), (13)

for any µ > 0, where r̂ > 0 andP1 ∈ Rr×r is the unique
positive definite solution of the following Riccati equation

P1A+ATP1 +Q1 − r̂P1BBTP1 = 0, (14)

of which Q1 ∈ Rr×r, Q1 � 0, and(Q1/2
1 , A) is observable.

Proof: Since the incorporated models of linearized agents
in (12) are homogeneous, linear, and all of their poles are in
R−, we can immediately apply the result of Proposition 1 in
Section II-C for designing a distributed consensus controller
for (12) under the form of (13). Note that in the current
situation each linearized agent is SISO, so the weighting
matrix R becomes a scalar parameter that we denoted by
r̂. Consequently, in combination with the local dynamic con-
trollers (10), it gives us the output consensus of the initial
nonlinear MAS (4).

The control design for the whole system is demonstrated
in Figure 1, whereC(s) represents the transfer function of
identical linearized systems (12).

PSfrag replacements

uivi

ξi

ξ̂i

ξ̂j
µ(r̂BTP1)

∑

(i,j)∈E
aijξ̂j

yi

−αi

βi

Φi(xi)

Agent ithC(s)

Cooperative control

Local dynamic controller

Fig. 1. Block diagram of distributed output consensus design for SISO affine
nonlinear MASs based on input-output feedback linearization.

Remark 2: It can be seen in Theorem 1 thatµ can be
arbitrarily chosen as long as it is positive. On the other hand,
in other researches, e.g., [5], [20], [21], [28],µ is lower
bounded by1/Re(λmin(L)) which can be extremely big as the
number of agents increases and the inter-agent communication
topology is sparse and hence is very conservative. Moreover,
λmin(L) is a global information and therefore to make the con-
sensus law fully distributed, other methods need to be further
developed to estimate this global term, e.g., adaptive designs
[25]. This unexpectedly increases the complexity of the control
design and implementation. Nevertheless, this conservatism is
removed in our work, which makes our consensus design non-
conservative and more effective in design and implementation.

Remark 3:The output consensus design in Theorem 1 re-
lies on the outputyi, its first-order and higher-order derivatives
which may not be available in some practical systems. In that
cases, local estimation techniques can be employed to obtain
the approximated values of those unmeasurable derivatives.
Let us denoteθi = Cξ̂i the partial information that could be
exchanged among agents withC ∈ R1×r, then we can employ
a decentralized Luenberger observer [29] for each agent as
follows,

˙̌ξi = Aξ̌i +Bvi +M(θi − θ̌i),

θ̌i = Cξ̌i, i = 1, . . . , N,
(15)

whereM ∈ Rr. Denoteei = ξ̂i − ξ̌i the error vector between
the real statêξi and the estimated statěξi. Then by subtracting
(12) with (15), we obtain the following error model,

ėi = (A−MC)ei. (16)

As a result, by selecting the observer gainM such thatA −
MC is stable,e(t) → 0 as t → ∞, i.e., ξ̌i → ξ̂i as t → ∞.
Lastly, the cooperative control inputvi is modified by

vi = −µ(r̂BTP1)
∑

j∈Ni

aij(ξ̌i(t)− ξ̌j(t)), (17)

whereξ̌ is obtained from the local observer (15).
In Theorem 1, a local rank-r Riccati equation (14) needs

to be solved to obtain the consensus controller, which would
cost more computational time than expected for high relative
degree nonlinear agents. Hence, we next propose a method
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to derive a minimum rankdistributed consensus controller
by solving a local rank-1, i.e., scalar Riccati equation. The
controller is therefore fully analytical, which requires no
additional time for solving Riccati equation.

First, we chooseb2, . . . , br such that matrixA defined in
(III-A) has only one eigenvalue at the origin while other
eigenvalues belong to the open left half complex plane. Let
νT ∈ R1×r be the left eigenvector ofA associated with the
eigenvalue0. Second, selectQ1 = νq1ν

T where q1 > 0.
Suppose that(Q1/2

1 , A) is still observable. Then, the rank-1
distributed dynamic consensus controller is derived as follows.

Theorem 2:The heterogeneous SISO affine nonlinear MAS
(4) reaches an output consensus by the distributed dynamic
consensus controllers (10) with the rank-1 cooperative inputs
vi, i = 1, . . . , N , synthesized as follows,

vi = −µ
√

q1r̂ν
T
∑

j∈Ni

aij(ξ̂i(t)− ξ̂j(t)). (18)

Furthermore, the consensus speed, i.e., the smallest non-zero
absolute of real parts of closed-loop eigenvalues, is equalto

min
{

µ
√

q1r̂B
T νRe(λmin(L)), λmin(−A)

}

. (19)

Proof: First, we prove the rank-1 consensus controller’s
formula. LetP1 = νp1ν

T , p1 > 0, then substitutingQ1 and
P1 back to the Riccati equation (14), we obtain

ν
(

p1ν
TA+AT νp1 + q1 − r̂νTBBT νp21

)

νT = 0, (20)

which is equivalent to the vanishment of the expression inside
the bracket. SinceνTA = 0, this impliesq1− r̂νTBBT νp21 =
0, which leads top1 =

√
q1/

√
r̂BT ν. Since (14) has a unique

positive semidefinite solution,P1 = ν
√
q1/(

√
r̂BT ν)νT is

indeed that unique one. Consequently, substituting this value
of P1 into the cooperative control input (13) gives us (18).
Obviously, rank(vi) = 1, so together with (10) we derive a
rank-1 distributed dynamic consensus controller.

Next, we reveal how to obtain the consensus speed. Em-
ploying the same process in the proof of Theorem 3 in [11],
we can easily show that the eigenvalue set of the closed-loop
dynamics of the linearized MAS is given by





⋃

γ∈λ(L),γ 6=0

−µγ
√

q1r̂B
T ν





⋃

(λ(A)\{0}) . (21)

Thus, the consensus speed is determined by (19).
Remark 4: It can be observed from Theorem 2 thatµ, the

pole of A closest to the imaginary axis, andq1 and r̂ are
parameters that affect to the consensus speed. Hence, we may
adjust them to obtain an expected consensus speed.

B. Heterogeneous SISO General Nonlinear MASs

In this scenario, the models of agents are in the following
general form

ẋi = fi(xi, ui),

yi = hi(xi), i = 1, . . . , N,
(22)

wherexi ∈ R
ni , ui ∈ R, and yi ∈ R are the state vector,

input, and output of theith agent, respectively;fi ∈ Rni and

hi ∈ R are vector-valued and scalar-valued of continuous,
differentiable nonlinear functions.

Definition 3: The general nonlinear agent (22) is said to
have relative degreeri if

∂

∂ui
Lk
fihi(xi) = 0 as k = 0, . . . , ri − 1,

∂

∂ui
Lk
fihi(xi) 6= 0 as k = ri.

(23)

The dynamic distributed controller (10) for affine nonlinear
MASs cannot be utilized in this scenario. However, it is
possible if we consider the followingaugmented modelsof
agents which are affine,

˙̃xi = f̃i(x̃i) + g̃(x̃i)u̇i,

yi = h̃i(x̃i), i = 1, . . . , N,
(24)

where x̃i , [xT
i , ui]

T , f̃i(x̃i) , [fi(xi, ui)
T , 0]T , g̃i(x̃i) ,

[0Tni
, 1]T , h̃i(x̃i) , hi(xi). Consequently, it can be easily

checked that the relative degree of the augmented affine non-
linear agents (24), in the sense of Definition 1, areri +1, i =
1, . . . , N . Similarly to the case of affine nonlinear MASs, we
employ the input-output linearization feedback approach with
diffeomorphisms̃Φi(x̃i) = [ξ̃Ti , η̃

T
i ]

T assumed that the internal
dynamicsη̃i is ISS.Then the linearized subsystems of agents
are obtained by the following control inputs

u̇i =
1

β̃i(ξ̃i, η̃i)
[−α̃i(ξ̃i, η̃i) + ũi], i = 1, . . . , N, (25)

where β̃i(ξ̃i, η̃i) , Lg̃iL
ri
f̃i
h̃i(x̃i); α̃i(ξ̃i, η̃i) , Lri+1

f̃i
h̃i(x̃i);

ũi ∈ R is a new control input for the linearized subsystem of
the augmented nonlinear agents (24). Letr be defined as in
(9). Then we propose the following dynamic controller

˙̃φi = D̃iξ̃i + Ẽiφ̃i + G̃iṽi,

wi = H̃iφ̃i −
α̃i(ξ̃i, η̃i)

β̃i(ξ̃i, η̃i)
,

u̇i = wi, i = 1, . . . , N,

(26)

where φ̃i ∈ Rr−ri is a vector of controller’s states in which
φ̃i,1 = ũi; ṽi ∈ R is a new control input;wi ∈ R is an
additional state of the controller;̃Ei and G̃i are defined as
follows,

D̃i =















0 0 0 · · · 0
0 0 0 · · · 0
...

...
...

...
0 0 0 · · · 0

0 −b̃2 −b̃3 · · · −b̃ri+1















∈ R
(r−ri)×(ri+1),

Ẽi =















0 1 · · · 0
0 0 · · · 0
...

...
...

0 0 · · · 1

−b̃ri+2 −b̃ri+2 · · · −b̃r+1















∈ R
(r−ri)×(r−ri),

G̃i =
[

0 0 · · · 0 1
]T ∈ R

r−ri ,

H̃i =
[

1/β̃i(ξ̃i, η̃i) 0 · · · 0
]

∈ R
1×(r−ri),
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of which b̃2, . . . , b̃r+1 are coefficients of the following char-
acteristic equation whose poles are inR−,

sr+1 + b̃r+1s
r + · · ·+ b̃2s = 0. (27)

This controller can be viewed as a cascade of two controllers
in which the first one composes of the first two equations
in (26) while the second one is an integrator corresponding to
the last equation (26). Subsequently, the closed-loop linearized
dynamics of agents are made homogeneous by the dynamic
controllers (26), and has the following representation,

ζ̇i = Ãζi + B̃ṽi,

wi =
[

0 H̃i

]

ξ̂i − α̃i(ξ̃i, η̃i)/β̃i(ξ̃i, η̃i), i = 1, . . . , N,
(28)

where

ζi =
[

ξ̃Ti φ̃T
i

]T
,

Ã =















0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

...
0 0 0 · · · 1

0 −b̃2 −b̃3 · · · −b̃r+1















∈ R
(r+1)×(r+1),

B̃ =
[

0 0 · · · 0 1
]T ∈ R

r+1.

(29)

The control design for the whole system is demonstrated
in Figure 2, whereC̃(s) represents the transfer function of
identical linearized systems in (28) from the inputsṽi to the
outputswi, i = 1, . . . , N .

PSfrag replacements

uiwiṽi

ξ̃i

ζi

ζj
µ(r̃B̃T P̃1)

∑

(i,j)∈E
aijζj

yi

−α̃i

β̃i

Φ̃i(x̃i)

Agent ithC̃(s)
1

s

Cooperative control

Local dynamic controller

Fig. 2. Block diagram of distributed output consensus design for SISO
general nonlinear MASs based on input-output feedback linearization.

Similarly to the scenario of SISO affine nonlinear MASs, we
can design rank-1 distributed dynamic consensus controllers
for the MAS (22). Let us select̃b2, . . . , b̃r+1 such that matrix
Ã defined in (29) has only one eigenvalue at the origin while
other eigenvalues belong to the open left half complex plane.
Denote ν̃T ∈ R1×(r+1) the left eigenvector ofÃ associated
with the eigenvalue0. Consequently, choosẽQ1 = ν̃q̃1ν̃

T ,

where q̃1 > 0. Assuming that(Q̃1/2
1 , Ã) is still observable,

then the rank-1 distributed dynamic consensus controller in
this case is introduced in the following theorem.

Theorem 3:The heterogeneous SISO general nonlinear
MAS (22) reaches an output consensus by the distributed dy-
namic consensus controllers (26) with the rank-1 cooperative

inputs ṽi, i = 1, . . . , N , synthesized as follows,

ṽi = −µ
√

q̃1r̃ν̃
T
∑

j∈Ni

aij(ζi(t)− ζj(t)). (30)

Furthermore, the consensus speed is equal to

min
{

µ
√

q̃1r̃B̃
T ν̃Re(λmin(L)), λmin(−Ã)

}

. (31)

Proof: The proof of this theorem is the same as that of
Theorem 2, so we omit it for brevity.

IV. OUTPUT CONSENSUS OFHETEROGENEOUSMIMO
NONLINEAR MASS WITH FIXED DIRECTED TOPOLOGY

Consider a MAS composing ofN heterogeneous MIMO
affine nonlinear agents whose models are described as follows,

ẋi = fi(xi) +Gi(xi)ui,

yi = hi(xi), i = 1, . . . , N,
(32)

wherexi ∈ R
ni , ui ∈ R

mi , andyi ∈ R
p are the state, input,

and output vectors of theith agent, respectively;fi(xi) ∈ Rni ,
hi(xi) ∈ Rp, and Gi ∈ Rni×mi are vector-valued and
matrix-valued of continuous, differentiable nonlinear func-
tions; hi(xi) = [hi,1(xi), . . . , hi,p(xi)]

T , hi,τ (xi) ∈ R ∀ τ =
1, . . . , p; Gi(xi) = [gi,1(xi), . . . , gi,mi

(xi)], gi,j(xi) ∈
Rni ∀ j = 1, . . . ,mi. The communication topologyG among
agents is also assumed to satisfy assumption A1 in Section III.
The output dimensions of all agents are equal to be meaningful
in the context of output consensus, which is defined as follows.

Definition 4: The outputs of agents whose models are de-
scribed by (32) are said to reach a consensus if

lim
t→∞

‖yi(t)− yj(t)‖ = 0 ∀ i, j = 1, . . . , N. (33)

In the use of input-output feedback linearization for non-
linear systems [26], the dimensions of input and output are
usually assumed to be equal, however we consider here a more
general context where those dimensions may be different.
Accordingly, the definition ofvector relative degree[26] can
be modified as follows.

Definition 5: The MIMO nonlinear system (32) is said to
have anextended vector relative degree{ri,1, ri,2, . . . , ri,p} at
a point x̂i ∈ Rni if the following conditions hold.

(i) Lgi,jL
k
fi
hi,l(xi) = 0 ∀ k = 0, . . . , ri,l−2; j = 1, . . . ,mi;

1 ≤ l ≤ p; and for allxi in a neighborhood of̂xi.
(ii) rank(Πi(xi)) = p at the point̂xi, whereΠi(xi) is defined

in (34).

Note that condition (ii) above is satisfied if and only ifp ≤
mi, i.e., theextended vector relative degreeis only defined for
the MIMO affine nonlinear systems that have the number of
outputs not more than the number of inputs. Ifp = mi then it
reduces to thevector relative degreein [26] since condition (ii)
meansΠi(xi) is invertible atx̂i. Furthermore, thisextended
vector relative degreeallows us to treat a scenario that the
vector relative degreein [26] cannot, where some agents in a
MIMO affine nonlinear MASs have the same number of inputs
and outputs but other agents do not.

To design a distributed output consensus controller for
the MAS (32), we also try to obtain linearized models of
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Πi(xi) =













Lgi,1L
ri,1−1
fi

hi,1(xi) Lgi,2L
ri,1−1
fi

hi,1(xi) · · · Lgi,mi
L
ri,1−1
fi

hi,1(xi)

Lgi,1L
ri,2−1
fi

hi,2(xi) Lgi,2L
ri,2−1
fi

hi,2(xi) · · · Lgi,mi
L
ri,2−1
fi

hi,2(xi)
...

...
. . .

...
Lgi,1L

ri,p−1
fi

hi,p(xi) Lgi,2L
ri,p−1
fi

hi,p(xi) · · · Lgi,mi
L
ri,p−1
fi

hi,p(xi)













. (34)

agents and then design the consensus controller based on those
models. Similarly to the scenario of SISO nonlinear MASs,
we utilize the input-output feedback linearization technique for
nonlinear agents (32) that can be processed as follows. Denote
κi =

∑p
l=1 ri,l, i = 1, . . . , N. Consequently, the agents’

models are changed to normal forms by a diffeomorphism
Φi(xi) = [ξTi , η

T
i ]

T where

Φi(xi) , [Φ1
i,1(xi), . . . ,Φ

1
i,ri,1(xi), . . . ,Φ

p
i,1(xi), . . . ,

Φp
i,ri,p

(xi),Φi,κi+1(xi), . . . ,Φi,ni
(xi)]

T ,

ξli,j ,Φl
i,j(xi) , Lj−1

fi
hi,l(xi)

∀ j = 1, . . . , ri,l; ∀ l = 1, . . . , p,

ξi , [ξ1i,1, . . . , ξ
1
i,ri,1 , . . . , ξ

p
i,1, . . . , ξ

p
i,ri,p

]T ,

ηi , [Φi,κi+1(xi), . . . ,Φi,ni
(xi)]

T .

(35)

The linearized model for agentith is as follows,

ξ̇li,1 = ξli,2,

ξ̇li,2 = ξli,3,

...

ξ̇li,ri,l = αl
i(ξi, ηi) +

mi
∑

k=1

βl
i,k(ξi, ηi)ui,k,

η̇i = ϑi(ξi, ηi) +

mi
∑

k=1

χi,k(ξi, ηi)ui,k,

yli = ξli,1 ∀ l = 1, . . . , p; i = 1, . . . , N,

(36)

where ui,k is the kth control input of theith agent,k =
1, . . . ,mi, and

αl
i(ξi, ηi) , L

ri,l
fi

hi,l(xi), β
l
i,k(ξi, ηi) , Lgi,kL

ri,l−1
fi

hi,l(xi),

ϑi(ξi, ηi) ∈ R
ni−κi ,

χi,k(ξi, ηi) , [Lgi,kΦi,κi+1(xi), . . . , Lgi,kΦi,ni
(xi)]

T .

The following assumption is employed to avoid the FET
phenomenon.

A3: The internal dynamicsηi in (36) is ISS for all i =
1, . . . , N .

Then theri,l-th equations,l = 1, . . . , p, in the linearized
model (36) of agents can be collected and written in the
following form

˙̌ξi = α̌i(ξi, ηi) + Πi(ξi, ηi)ui, (37)

where ξ̌i = [ξ1i,ri,1 , ξ
2
i,ri,2

, . . . , ξpi,ri,p ]
T ∈ Rp, α̌i(ξi, ηi) =

[α1
i (ξi, ηi), . . . , α

p
i (ξi, ηi)]

T ∈ Rp, Πi(ξi, ηi) ∈ Rp×mi is
defined in (34). Sincerank(Πi(ξi, ηi)) = p, there exists a
right inverseΠi(xi)

† of Πi(xi) defined byΠi(ξi, ηi)
† ,

Πi(ξi, ηi)
T (Πi(ξi, ηi)Πi(ξi, ηi)

T )−1. Accordingly, the MIMO

nonlinear system (agent) (32) can be input-output decoupled
by the following controller

ui = Πi(ξi, ηi)
†(−α̌i(ξi, ηi) + ǔi), (38)

where ǔi = [ǔi,1, . . . , ǔi,p]
T ∈ Rp is a new control input

vector. As a result, the input-output decoupling is achieved
for each agent as follows,

ξ̇li,1 = ξli,2,

ξ̇li,2 = ξli,3,

...

ξ̇li,ri,l = ǔi,l,

η̇i = ϑi(ξi, ηi) +

mi
∑

k=1

χi,k(ξi, ηi)ui,k,

yli = ξli,1, ∀ l = 1, . . . , p; i = 1, . . . , N.

(39)

At this point, we can see that the consensus design for
output vectors of nonlinear agents (32) is decomposed into
independent consensus designs of individual outputs of agents
that is similar to SISO affine nonlinear MASs in Section III-A.
Hence, all steps of designing consensus controller for SISO
affine nonlinear MASs can be adopted straightforwardly. Thus,
to avoid the complexity and duplication in representing results,
we skip the details here. Similar situation applies to MIMO
general nonlinear MASs.

V. OUTPUT CONSENSUS OFHETEROGENEOUS

NONLINEAR MASS UNDERSWITCHING TOPOLOGY

In this section, we aim at investigating the consensus design
for heterogeneous nonlinear MASs subjected to randomly
switching topologies described by continuous-time Markov
chains. Due to space limitation, only results for SISO affine
nonlinear MASs are presented.

Since the communication topology is randomly switching,
G is time-varying and is denoted byG(t). Suppose thatG(t)
switches among the elements of a finite set ofℓ topologies
SG , {G1, . . . ,Gℓ}, where the switching process is repre-
sented by a continuous-time Markov chain with a switching
signal σ(t) ∈ {1, . . . , ℓ}. DenoteQ = [qij ] ∈ Rℓ×ℓ and
π = [π1, . . . , πℓ]

T the transition rate matrix and the stationary
distribution of this Markov process. Here, we assume that the
Markov process is ergodic, soπ is unique,πk > 0 ∀ k =
1, . . . , ℓ, and each state of the Markov chain can be reached
from any other state. Furthermore, we can also assume that the
Markov process starts fromπ [24]. As a result, the distribution
of σ(t) is equal toπ for all t ≥ 0.

Let us denote the union of all possible topologies byG∪ ,
⋃

k=1,...,ℓ

Gk. The following assumption is utilized.
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• A4: G∪ has a spanning tree and is balanced.

The consensus of agents in this context is defined as follows.
Definition 6: The nonlinear MAS (4) with a randomly

switching topologyG(t) is said to reach amean-square
consensusfor any initial condition of agents and any initial
distribution of the continuous-time Markov process if

lim
t→∞

E
[

‖xi(t)− xj(t)‖2
]

= 0, ∀ i, j = 1, . . . , N, (40)

whereE[·] denotes the expectation taken with some chosen
probability measure.

Remark 5:Note that assumption A4 is milder than the
frequently used one in literature (see e.g., [24], [25]) which
assumes the balance ofGk ∀ k = 1, . . . , ℓ. This relaxation on
the switching topologies is an advantage that greatly broaden
the class of MAS topologies under random switches to achieve
consensus.

Consequently, the following theorem shows that our pro-
posed distributed rank-1 consensus controller design in Sec-
tion III-A can be generalized to this scenario of switching
topologies.

Theorem 4:Under assumption A4, the nonlinear MAS (4)
reaches a mean-square consensus in the sense of Definition 6
by the distributed dynamic consensus controller (10) with the
following rank-1 cooperative input

vi(t) = −µ
√

q1r̂ν
T
∑

j∈Ni(t)

aij(t)(ξ̂i(t)− ξ̂j(t)). (41)

Moreover, the consensus speed is specified by

π∗µ
√

q1r̂B
T νλmin

(

L∪ + LT
∪
)

, (42)

whereπ∗ = min
k=1,...,ℓ

πk, L∪ is the Laplacian matrix associated

with G∪.
Proof: Denote

ξ̂ave =
1

N
(ξ̂1(0) + · · ·+ ξ̂N (0)),

δi(t) = ξ̂i(t)− ξ̂ave, k = i, . . . , N,

δ(t) =
[

δ1(t)
T , . . . , δN(t)T

]T
.

It is then followed from substituting the rank-1 cooperative
input (41) to the homogeneous linearized systems (12) that

δ̇(t) = [IN ⊗A− µL(t)⊗ (Br̂BTP1)]δ(t).

Let us define the following Lyapunov functions

V (t) = E
[

δ(t)T (IN ⊗ P1)δ(t)
]

,

Vk(t) = E
[

δ(t)T (IN ⊗ P1)δ(t)1{σ(t)=k}
]

, k = 1, . . . , ℓ,

where 1· is the Dirac measure. Obviously,V (t) =
∑ℓ

k=1 Vk(t). Consequently, using Lemma 4.2 in [30], we
obtain

dVk(t) = E
[

(dδ(t))T (IN ⊗ P1)δ(t)1{σ(t)=k}
+δ(t)T (IN ⊗ P1)dδ(t)1{σ(t)=k}

]

+

ℓ
∑

j=1

qjkVj(t)dt+ o(dt),

whereo(·) stands for the Little-o notation. Accordingly,

V̇k(t) = E
[

δ(t)T [IN ⊗ (P1A+AP1)

−µ(L(t) + LT (t)) ⊗ (P1Br̂BTP1)]δ(t)1{σ(t)=k}
]

= E
[

−µδ(t)T [(L(t) + LT (t))⊗ (νq1ν
T )]δ(t)1{σ(t)=k}

]

,

sinceP1A = νp1ν
TA = 0 as shown in the proof of Theorem

2. Hence,

V̇ (t) = E

[

−µδ(t)T

(

ℓ
∑

k=1

πk(Lk + LT
k )⊗ (νq1ν

T )

)

δ(t)

]

≤ −π∗µE
[

δ(t)T [(L∪ + LT
∪)⊗ (νq1ν

T )]δ(t)
]

,

since πk ≥ π∗ ∀ k = 1, . . . , ℓ, and
∑ℓ

k=1 Lk = L∪. On
the other hand,L∪ + LT

∪ can be regarded as a Laplacian
matrix of an connected undirected graph due to assumption
A4. Therefore, there exists an orthogonal matrixU ∈ R

N×N

such thatL∪ + LT
∪ = UΛUT whereΛ = diag{λi}i=1,...,N

is a diagonal matrix whose diagonal elements are eigenvalues
of L∪ + LT

∪ andU =
[

1√
N
1N , U2

]

with U2 ∈ RN×(N−1).
Subsequently,

δ(t)T [(L∪ + LT
∪)⊗ (νq1ν

T )]δ(t)

= δ(t)T (U ⊗ In)[Λ ⊗ (νq1ν
T )](UT ⊗ In)δ(t)

= δ(t)T (U2 ⊗ In)diag{λiνq1ν
T }i=2,...,N (UT

2 ⊗ In)δ(t)

≥ λmin

(

L∪ + LT
∪
)
√

q1r̂B
T νδ(t)T (U2 ⊗ In)(IN−1 ⊗ P1)

× (UT
2 ⊗ In)δ(t)

= λmin

(

L∪ + LT
∪
)
√

q1r̂B
T νδ(t)T (IN ⊗ P1)δ(t).

This leads to

V̇ (t) ≤ −π∗µ
√

q1r̂B
T νλmin

(

L∪ + LT
∪
)

V (t).

Thus, V (t) exponentially converges to0 with the speed
π∗µ

√
q1r̂B

T νλmin

(

L∪ + LT
∪
)

, i.e., the mean-square consen-
sus is achieved with the speed specified in (42).

VI. NUMERICAL EXAMPLE

To illustrate the proposed approach, let us consider a simple
MAS composing of5 distinct SISO affine nonlinear agents
described by the following dynamics,

• Agent 1: f1(x1) = [−x1,1 − x5
1,1 + x1,2, x1,3, 0]

T ,
g1(x1) = [0, 0, 1]T , h1(x1) = x1,2.

• Agent 2: f2(x2) = [−x2,1 − x3
2,1 + x2,2, x2,3, 0]

T ,
g2(x2) = [0, 0, 1]T , h2(x2) = x2,2.

• Agent 3: f3(x3) = [x3,1x3,2+x3,1x3,3, x
2
3,2+x3,3, x3,1+

x3,2x3,3]
T , g3(x3) = [1, 0, 0]T , h3(x3) = x3,2.

• Agent 4: f4(x4) = [−4x4,1 − x3
4,1 + x4,2, x4,3, 0]

T ,
g4(x4) = [0, 0, 1]T , h4(x4) = x4,2.

• Agent 5: f5(x5) = [−2x5,1 − x5
5,1 + x5,2, x5,3, 0]

T ,
g5(x5) = [0, 0, 1]T , h5(x5) = x5,2.

It can be verified that the relative degrees of agents1, 2, 4, 5
are2 and of agent3 is 3, then the maximum relative degree
of agents is3 and hence by following the consensus design in
Section III-A, agents1, 2, 4, 5 will be equipped with dynamic
consensus controllers whereas agent3 will be incorporated
with a static consensus controller.
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For agent i, i ∈ {1, 2, 4, 5}: αi(ξi, ηi) = 0, βi(ξi, ηi) = 1.
The matrices of local dynamic controller is:Di =

[

0 −b2
]

;
Ei = −b3; Gi = 1; Hi = 1/βi(ξi, ηi).

For agent 3: α3(ξ3, η3) = x3,1(x3,2 + x3,3) + (6x2
3,2 +

3x3,3)(x
2
3,2 + x3,3) + 3x3,2(x3,1 + x3,2x3,3), β3(ξ3, η3) = 1.

A. Fixed Directed Topology

The communication topology among agents and the associ-
ated Laplacian matrix in this case are presented in Figure 3.

2

4

1

L =















1 0 −1 0 0

−1 1 0 0 0

0 0 1 −1 0

0 0 −1 1 0

0 0 0 −1 1















35

Fig. 3. Communication structure in the MAS.

Consequently, we would like to demonstrate the distributed
minimum rank, i.e., rank-1 consensus controller in Theorem
2 that shows the advanced features of our proposed approach.
Let us chooseb2 = 2 and b3 = 3 then matrix A of
homogeneous linearized system has only one zero eigenvalue
with the associated left eigenvectorνT =

[

2 3 1
]

.
First, we attempt to verify the coupling strengthµ to the

consensus of agents by selectingr̂ = 1, q1 = 1 and varying
µ. The simulation results for the rank-1 consensus controller
in this case are displayed in Figure 4. It can be seen that even
when µ is very small, the consensus among agents is still
achieved. This confirms our claim on the non-conservative
design of arbitrarily small but positive coupling strength.
Furthermore, the consensus speed is slower asµ is smaller.
That is because it solely depends onµ whenµ is varied and
small, which is deduced from the expression of consensus
speed (19).
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Fig. 4. Consensus of the given nonlinear MAS by a distributed rank-1

controller with non-conservative coupling strengthµ.

Next, we would like to check the effects of the parameters
q and r̂ to the consensus speed. Since the roles ofq and r̂
are similar in the consensus speed formula (19), let us choose
r̂ = 1, µ = 1, and changeq1. Then we can observe from

simulation results in Figure 5 that the consensus speeds of
agents asq1 = 10 and q1 = 10 are similar and are faster
than whenq1 = 1. This is explained by the consensus speed
determined in (19) as follows. We haveλmin(−A) = 2 while
µ
√
q1r̂B

T νRe(λmin(L)) = 1.5
√
q1, and hence whenq1 = 1

the consensus speed is equal to1.5
√
q1 = 1.5, but whenq1 =

10 or q1 = 100 the consensus speed is equal toλmin(−A) = 2
which is independent ofq1.
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Fig. 5. Consensus of the given nonlinear MAS by a distributed rank-1

controller asq1 is changed.

B. Switching Directed Topology

Here we assume that the communication topology among
agents is randomly switched between two directed graphs
G1 and G2 shown in Figure 6, where the random process
is described by a continuous-time Markov chain with gen-

erator matrixQ =

[

−1 1
1 −1

]

and the invariant distribution

π = [ 12 ,
1
2 ]. It can be seen that neitherG1 nor G2 is balanced

and none of them has a spanning tree, but their union graphG∪
is balanced and has a spanning tree. Next, the parameters of
the distributed rank-1 consensus controllers arêr = 1, µ = 1,
q = 1. Then the simulation result is exhibited in Figure 7. We
can observe that the outputs of nonlinear agents still reacha
consensus in spite of the switching topology. This confirms
our result in Theorem 4.

2

4

1

35

2

4

1

35

G1 G2

2

4

1

35

G∪

Fig. 6. Switching topologies of the given nonlinear MAS.

VII. CONCLUSIONS ANDDISCUSSIONS

This article has proposed a systematic framework to design
distributed dynamic rank-1 consensus controllers for a fairly
general class of heterogeneous MIMO nonlinear MASs sub-
jected to fixed and randomly switching directed topologies.
The framework has been developed based on the input-output
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Fig. 7. Consensus of the given nonlinear MAS under a randomly switching
topology by a distributed rank-1 controller.

feedback linearization and LQR methods with the following
appealing properties. First, distributeddynamicconsensus con-
trollers are derived forheterogeneous MIMO nonlinear MASs
with arbitrary vector relative degree. Second, the coupling
strength in the consensus controller can bearbitrarily small
but positivewhich allows us to achieve consensus with any
speed. Third, the dynamic consensus controller hasminimum
rank, i.e., rank-1 which is very computationally efficient. And
last, the proposed design works well under randomly switching
topologies where the switched graphs areunnecessary to be
balanced, which greatly relaxes the assumptions on switching
topologies.

The current results can be further developed in several direc-
tions that are worth investigating. One issue is the robustness
and adaptability of the consensus controller in the presence
of time delays, unmeasured disturbances or noises, and model
uncertainties. Another direction is to design dynamic consen-
sus controllers for heterogeneous nonlinear MASs under some
constraints for control inputs or state flows.
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