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Interdependent Security Games on Networks

under Behavioral Probability Weighting∗

Ashish R. Hota and Shreyas Sundaram†

Abstract

We consider a class of interdependent security games on networks where each node chooses
a personal level of security investment. The attack probability experienced by a node is a
function of her own investment and the investment by her neighbors in the network. Most of
the existing work in these settings considers players who are risk-neutral. In contrast, studies in
behavioral decision theory have shown that individuals often deviate from risk-neutral behavior
while making decisions under uncertainty. In particular, the true probabilities associated with
uncertain outcomes are often transformed into perceived probabilities in a highly nonlinear
fashion by the users, which then influence their decisions. In this paper, we investigate the effects
of such behavioral probability weightings by the nodes on their optimal investment strategies
and the resulting security risk profiles that arise at the Nash equilibria of interdependent network
security games. We characterize graph topologies that achieve the largest and smallest worst
case average attack probabilities at Nash equilibria in Total Effort games, and equilibrium
investments in Weakest Link and Best Shot games.

1 Introduction

Interdependent security games are a class of strategic games where the security risk faced by a player
(often manifested as the probability of a successful attack) depends on her personal investment in
security and the investments by other interacting players [Laszka et al., 2014, Kunreuther and
Heal, 2003]. This is a broad framework to capture security interdependencies between independent
stakeholders in (networked) cyber-physical systems. There is a large literature on this class of
problems [Laszka et al., 2014, Kunreuther and Heal, 2003, Varian, 2004, Manshaei et al., 2013]
motivated by applications in cybersecurity, airline security and epidemic risks.

Much of the work in interdependent security games considers players who are risk-neutral, or
are risk averse in the sense of classical expected utility theory [Laszka et al., 2014]. On the other
hand, there is a rich literature in decision theory and behavioral economics showing that human
behavior consistently and significantly deviates from the predictions of classical expected utility
theory [Camerer et al., 2011]. While there have been some studies highlighting the significance
of biases and irrationalities in human decision-making in information security domains [Christin,
2011, Schneier, 2008, Garg and Camp, 2013], theoretical analyses of deviations from classical no-
tions of rational behavior are scarce in the literature on interdependent security games. Empirical
investigations are also limited [Christin et al., 2011].

The goal of this paper is to initiate a rigorous investigation of the impact of behavioral decision-
theoretic models in interdependent security games. In the context of security games, one of the

∗A preliminary version of this work appeared in the proceedings of GameSec 2015 [Hota and Sundaram, 2015].
†The authors are with the School of Electrical and Computer Engineering, Purdue University. E-mail:

{ahota,sundara2}@purdue.edu. This work is supported by a grant from the Purdue Research Foundation.
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most important behavioral deviations from the classical expected utility framework is the way
individuals perceive the probability of an uncertain outcome (e.g., cyber attack).1 In particular,
empirical studies show that individuals tend to overweight small probabilities and underweight large
probabilities. Thus, the true probabilities are typically transformed in a highly nonlinear fashion
into perceived probabilities, which are then used for decision-making [Tversky and Kahneman, 1992,
Gonzalez and Wu, 1999]. These transformations are captured in the form of probability weighting
functions.

In this paper, we analyze the effects of behavioral probability weighting on players’ equilibrium
strategies in interdependent security games on networks. We consider three canonical manifesta-
tions of the security risk in the forms of Total Effort, Weakest Link and Best Shot games. These
game-theoretic models were first introduced in [Varian, 2004] and have been studied extensively in
the literature to model several scenarios in the cybersecurity domain, as described below.

In Total Effort games on networks, the probability of a successful attack on a node is an (affine)
decreasing function of the average of the security investments by the node and her neighbors.
The total effort externality has been studied as an abstraction of several cybersecurity problems
[Grossklags et al., 2008, Grossklags and Johnson, 2009]. For instance, when an attacker tries
to slow down file transfers in peer-to-peer networks, the success of the attack depends on the
aggregate effort of all the participating agents [Grossklags et al., 2008]. Similar externalities arise
when underinvestment in security by a user potentially causes increasing spam activity for others
who communicate with her [Laszka et al., 2014]. In [Miura-Ko et al., 2008, Nguyen et al., 2009],
the authors consider a similar formulation, where the security risk faced by a node is a weighted
linear combination of her own investment and the investments by her neighbors. The authors
discuss multiple settings where such externalities arise, such as in web authentication and spam
verification. Amin et. al [Amin et al., 2013] study a related setting, where a set of independent
control systems interact over a shared communication network, and the failure probability is a
function of the number of controllers who have invested in security.2

In the Weakest Link game, a node is only as secure as the least secure node in her neighborhood,
while in the Best Shot game, the player with the maximum investment in the neighborhood must
be successfully attacked for the attack on a node to be successful. Weakest link externalities
are prevalent in cybersecurity domains; successful breach of one subsystem often increases the
vulnerability of connected subsystems by giving the attacker increased access to otherwise restricted
parts. Best shot externalities arise in cyber-physical systems that have built-in redundancies.
The attacker must breach the most secure subsystem for the attack to be successful. Best shot
externalities also arise in censorship resilient communication, where information is available to a
node as long as one of her neighbors possesses that information [Johnson et al., 2010]. We summarize
our main findings on the effects of network structure and probability weighting on players’ strategies
and equilibrium attack probabilities for all three games in Table 1.

Security investments often exhibit characteristics of a public good [Varian, 2004], and the dif-
ferent risk externalities described above have indeed been studied in the context of public good
games [Hirshleifer, 1983]. There is also a growing interest in networked public goods in recent years

1There are also various behavioral characteristics that affect the perceived values of gains and losses [Tversky and
Kahneman, 1992, Hota et al., 2016].

2Security externalities similar to the Total Effort formulation have also been studied in the broader interdependent
security game literature in the context of inefficiency of equilibria [Jiang et al., 2011], incomplete information about
the network topology [Pal and Hui, 2011] and cyber insurance [Schwartz et al., 2013]. In all these settings, the
security risk faced by a node is determined by the actions of the node and her immediate neighbors. This is different
from the line of work that models epidemic risks and cascading failures spreading over the network [Nowzari et al.,
2016].
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Externality Impact of Network Structure Impact of Weighting Function

The expected fraction of nodes that are In degree-regular graphs, the
Total successfully attacked at a PNE is highest interior PNE is more secure under
Effort in degree-regular graphs, among probability weighting when the

all graphs with a given average degree. graph is sufficiently dense.

In a connected graph, all The attack probabilities that
Weakest nodes have identical arise at a PNE have values
Link investments at a PNE. close to 1 and/or 0, depending

on the game parameters.

Nodes with nonzero investments Under probability weighting,
Best at a PNE form a the PNE is never fully insecure,
Shot maximal independent set. i.e., there always exist node(s)

with nonzero investment(s).

Table 1: Summary of main results of the pure Nash equilibrium (PNE) characteristics for
different attack probability functions.

[Galeotti et al., 2010, Bramoullé et al., 2014]. Our analysis of behavioral probability weighting
complements this line of research.

2 Probability Weighting

As discussed in the previous section, our focus in this paper will be on understanding the effects
of nonlinear weighting of true probabilities by individuals while making decisions under risk. Such
weightings have been comprehensively studied in the behavioral economics and psychology litera-
ture [Camerer et al., 2011], and more recently in wireless communications [Li and Mandayam, 2014]
and the smart grid [Saad et al., 2016]. Behavioral perception of probabilities by human decision
makers have certain fundamental characteristics, including (i) possibility effect: overweighting of
probabilities very close to 0, (ii) certainty effect: underweighting of probabilities very close to 1,
and (iii) diminishing sensitivity from the end points 0 and 1. These characteristics are usually
captured by an inverse S-shaped weighting function w : [0, 1] → [0, 1]; prominent parametric forms
of such weighting functions were proposed by Kahneman and Tversky [Tversky and Kahneman,
1992], Gonzalez and Wu [Gonzalez and Wu, 1999], and Prelec [Prelec, 1998], and are illustrated in
Figure 1.

For our general analysis of the Nash equilibrium in Total Effort games in Section 4 and Weakest
Link and Best Shot games in Section 7, we will assume that the derivative of the weighting function
satisfies the following properties.

Assumption 1. The probability weighting function w(x) has the following properties.

1. w′(x) has a unique minimum for x ∈ (0, 1) denoted as xmin,w := argminx∈[0,1]w
′(x), and

w′′(xmin,w) = 0.

2. w(x) is strictly concave for x ∈ [0,xmin,w), and is strictly convex for x ∈ (xmin,w, 1].

3. w′(ǫ) → ∞ as ǫ → 0, and w′(1− ǫ) → ∞ as ǫ → 0.

We impose the following additional requirements on the weighting functions in order to obtain
certain results on the effects of network structure on the equilibria in Section 5.
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Figure 1: Shape of the probability weighting function for different parametric forms proposed by
Gonzalez and Wu (GW) [Gonzalez and Wu, 1999], Prelec (Pr) [Prelec, 1998] and Kahneman and
Tversky (KT) [Tversky and Kahneman, 1992].

Assumption 2. The probability weighting function w(x) has the following properties.

1. w′′(x)
w′(x) < 1

1−x
for x ∈ (xmin,w, 1).

2. w′(x) is strictly convex for x ∈ (xmin,w, 1).

Remark 1. Assumption 1 and 2 hold true for the parametric forms of the weighting functions
proposed by Kahneman and Tversky [Tversky and Kahneman, 1992], Gonzalez and Wu [Gonzalez
and Wu, 1999], and Prelec [Prelec, 1998] for the ranges of parameter values under which these
functions have an inverse-S shape (Figure 1). In particular, the assumptions hold for the ranges of
parameter values estimated from empirical studies on human subjects; [Booij et al., 2010] contains
a review of several such studies.

For our results on the effect of the intensity of overweighting and underweighting of the weighting
functions on the equilibrium attack probabilities in Section 6, we will need to consider a specific
parametric form of the weighting function. For that purpose, we use the single-parameter Prelec
weighting function from [Prelec, 1998] due to its analytical tractability. In particular, if the true
probability of an outcome is x, the Prelec weighting function is given by

w(x) = exp(−(− ln(x))α), x ∈ [0, 1], (1)

where exp(·) is the exponential function. The parameter α ∈ (0, 1) controls the curvature of the
weighting function. For α = 1, we have w(x) = x, i.e., the weighting function is linear. For smaller
α, the function w(x) has a sharper overweighting of low probabilities and underweighting of high
probabilities. A useful property of this function is that regardless of the value of α, xmin,w = 1

e
,

and w(1
e
) = 1

e
. In other words, w′′(x) = 0 at x = 1

e
. The minimum value of w′(x) is w′(1

e
) = α.

3 Interdependent Security Games

In this paper, we consider interdependent security games on networks. Let G = {V, E} denote an
undirected network (or graph) with V being the set of nodes with |V| = n. Each node is an indepen-
dent decision-maker (player of the game) representing, for instance, an entity in a cyber-physical
system. The security investment by node i is denoted as si, with si ∈ [0, 1]. The security risk or
attack probability experienced by a node is a function of her investment si, and the investment
by her direct neighbors. We denote the set of neighbors of node i as N (i), and the investment
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profile of all nodes in N (i) as the vector sN (i). The true probability of a successful attack on node
i is given by fi(si, sN (i)) ∈ [0, 1], for some function fi. Node i incurs a cost-per-unit of security
investment of ci ∈ R≥0, and if the attack is successful, she incurs a loss of Li ∈ R>0. Her expected
utility (under the true probability of successful attack) is then

Eui(si, sN (i)) = −Lifi(si, sN (i))− cisi. (2)

For ease of notation, we define the extended neighborhood of node i, denoted N̄ (i), as the set of
nodes including herself and her neighboring nodes, i.e., N̄ (i) , N (i) ∪ {i}. We denote the size of
the extended neighborhood of a node i as,

di , 1 + |N (i)|. (3)

In this work, we consider three canonical models of interdependent security games initially pre-
sented in [Grossklags et al., 2008]. The models differ in the attack probability function fi(si, sN (i))
as described below.

• Total Effort: fi(si, sN (i)) = 1− 1
di
(
∑

j∈N̄ (i) sj).

• Weakest Link: fi(si, sN (i)) = 1−minj∈N̄ (i) sj.

• Best Shot: fi(si, sN (i)) = 1−maxj∈N̄ (i) sj.

Note that in prior works (e.g. [Grossklags et al., 2008]), the games were defined over complete
graphs, i.e., N̄ (i) = V, while we consider more general graph topologies. Most of our analysis
will focus on the Total Effort attack probability function, since the results also have potential
implications for other classes of security games considered in the literature [Miura-Ko et al., 2008,
Nguyen et al., 2009]. Since the focus of the present work is to understand the effects of behavioral
probability weighting functions and node degrees on the Nash equilibrium security levels, we only
focus on the case where the security risk of a node is influenced in an identical way by all of her
neighbors’ investments.

We formally define the notion of an equilibrium and best response in interdependent security
games as follows.

Definition 1. A strategy profile {s∗1, s
∗
2, . . . , s

∗
n} is a pure Nash equilibrium (PNE) if for every

player i ∈ {1, 2, . . . , n}, Eui(s
′
i, s

∗
N (i)) ≤ Eui(s

∗
i , s

∗
N (i)),∀s

′
i ∈ [0, 1].

Definition 2. The best response of player i at a given investment profile sN (i) by her neighbors

is the set bi(sN (i)) , argmaxsi∈[0,1] Eui(si, sN (i)). A strategy profile {s∗1, s
∗
2, . . . , s

∗
n} is a pure Nash

equilibrium if and only if s∗i ∈ bi(s
∗
N (i)) for every player i ∈ {1, 2, . . . , n}.

In other words, a PNE exists if the vector of best response mappings [b1(·), b2(·), . . . , bn(·)]
possesses a fixed point [Osborne and Rubinstein, 1994].

3.1 Equilibria without probability weighting

To establish a baseline, we present the following proposition that describes the main results
from [Grossklags et al., 2008] regarding the properties of the best response of a player with w(x) = x

in a Total Effort game; while that paper only considered complete graphs, the result extends di-
rectly to general graphs. We refer to a player with w(x) = x as a true expectation maximizer as
she maximizes her expected utility (2) without any behavioral probability weighing.

5



Proposition 1. Consider a player i with wi(x) = x in a Total Effort game with extended neigh-
borhood size di. Then, her best response is s∗i = 1 when dici

Li
< 1, and s∗i = 0 if dici

Li
> 1. In the

special case where dici
Li

= 1, any investment si ∈ [0, 1] is an optimal strategy.

Note that, except for the pathological case where dici
Li

= 1, the best response of a player is
to either fully protect herself or remain completely unprotected. As the size of her neighborhood
increases, her best response jumps from investing 1 to investing 0. Such behavior arises since the
marginal utility of a true expectation maximizer in (2) is independent of her strategy and the
strategies of the players in her neighborhood.

When the cost parameters ci and Li are homogeneous across players, only a set of nodes with
small enough degrees make an investment of 1, while the high degree nodes invest zero in any Nash
equilibrium of the Total Effort game. Furthermore, in degree regular graphs, the only equilibrium
that arises has all players investing 0 or investing 1, i.e., all players are either fully secure or fully
unprotected.

In our analysis, we will show that under behavioral probability weighting, both the best re-
sponses and the equilibria have much richer structural properties and vary more smoothly with the
weighting parameters and the network structure.

4 Pure Nash Equilibria in Total Effort Games with Behavioral

Probability Weighting

In this section, we consider Total Effort games on networks with player-specific probability weighting
functions wi(·) (satisfying Assumption 1) and cost parameters ci and Li. We first prove the existence
of a PNE in this class of games by establishing the existence of a fixed point of the best response
mapping (see Definition 2).

With probability weighting, the expected utility of player i with investment si ∈ [0, 1] is given
by

Eui(si, sN (i)) = −Liwi

(

1−
si + s̄−i

di

)

− cisi, (4)

where s̄−i =
∑

j∈N (i) sj is the total investment in security by the neighbors of i. The quantity di
is the size of the extended neighborhood of player i as defined in (3). The marginal utility is given
by

∂Eui

∂si
=

Li

di
w′
i

(

1−
si + s̄−i

di

)

− ci. (5)

The solutions of ∂Eui

∂si
= 0 (if any) satisfy the first order necessary condition of optimality, and are

therefore candidate solutions for player i’s best response. Note that
(

1− si+s̄−i

di

)

is the true attack

probability faced by player i (without probability weighting).
We illustrate the nature of solutions of the first order condition (5) in Figure 2 for a Prelec

weighting function with parameter α = 0.4. One can see from the figure and (5) that if dici
Li

≤

w′
i(xmin,wi

) = minx∈[0,1]w
′
i(x), we have ∂Eui

∂si
≥ 0 for si ∈ [0, 1], and investing 1 is the only best

response of a player irrespective of the strategies of her neighbors.3

Now suppose dici
Li

> w′
i(xmin,wi

). In this case, the first order condition w′
i(x) = dici

Li
has two

distinct interior solutions corresponding to true attack probabilities Vi < xmin,w and Xi > xmin,w,
as illustrated in Figure 2. Note that as the degree of the node increases, Xi − Vi increases as well.

3When dici
Li

= w′
i(xmin,wi

), there is a unique solution to ∂Eui

∂si
= 0 at xmin,wi

, and ∂Eui

∂si
> 0 for all other si. The

player prefers to invest 1 in this case. The proof is similar to Case 4 in the proof of Lemma 1.
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Figure 2: Interior solutions of w′(x) = dc
L

are denoted by V and X. In this example, dc
L

= 0.8 and
is shown by the horizontal line. The Prelec weighting parameter is α = 0.4.

When s̄−i is the total investment by the neighbors of player i, player i’s strategy can change
her true attack probability in the interval

X (s̄−i) ,

[

1−
1 + s̄−i

di
, 1−

s̄−i

di

]

. (6)

In other words, when the extended neighborhood size is di, each player can directly change the
probability of successful attack by at most 1

di
. We will make the following assumptions.

Assumption 3. For any player i with dici
Li

> w′
i(xmin,wi

), let the size of the extended neighborhood

(di), and the cost parameters (ci and Li) be such that, (1) Xi − Vi > 1
di
, (2) Vi < 1

di
and (3)

wi(
1
di
) < ci

Li
.

The first condition implies that at a given s̄−i, player i does not contain both Vi and Xi in
X (s̄−i). This is required for maintaining continuity of the best response as s̄−i varies. We will
discuss the implications of the last two assumptions later in the analysis. Unless otherwise stated,
the results of this section hold under Assumption 1 for the probability weighting functions and
Assumption 3 for the neighborhood sizes and the cost parameters.

We start with the following characterization of the best response of a player. In particular, we
show that under Assumptions 1 and 3, the best response of a player is unique, continuous, and
monotonically decreasing in the aggregate investment by other nodes in her neighborhood. The
proof is presented in Appendix A.

Lemma 1. Suppose dici
Li

> minx∈[0,1]w
′
i(x) for a player i. Then, for a given aggregate investment

s̄−i by the neighboring nodes, the best response of player i is given by,

bi(s̄−i) =











1 when s̄−i ≤ di(1 −Xi)− 1

0 when s̄−i ≥ di(1 −Xi),

di(1−Xi)− s̄−i otherwise.

where Xi is the solution to w′
i(x) =

dici
Li

for x ∈ (xmin,wi
, 1].

We use the properties of the best response proven in the above lemma to establish the existence
of PNE in Total Effort games on networks under behavioral probability weighting.

Theorem 1. Consider a Total Effort game on a graph where the weighting functions of the players
satisfy Assumption 1 and the cost parameters and neighborhood sizes satisfy Assumption 3. Then
this game admits a pure Nash equilibrium.

7



Proof. For a player i, if dici
Li

≤ w′
i(xmin,wi

), her best response is to invest 1 regardless of the invest-
ments by her neighbors. Otherwise, the best response is unique and continuous in the strategies
of her neighbors (from Lemma 1). In addition, the strategy space of each player is [0, 1], which is
compact and convex. Thus, according to Brouwer’s fixed point theorem [Ok, 2007], there exists a
fixed point of the best response mapping, which corresponds to a PNE.

As a consequence of Lemma 1, at a PNE, the investments in the extended neighborhood of any
player i for whom dici

Li
> w′(xmin,wi

) can be expressed as,

s∗i = min(max(di(1−Xi)− s̄∗−i, 0), 1). (7)

In particular, we have

1 + s̄∗−i < di(1−Xi) =⇒ s∗i = 1

s∗i + s̄∗−i = di(1−Xi) =⇒ s∗i ∈ [0, 1]

s̄∗−i > di(1−Xi) =⇒ s∗i = 0,

(8)

where w′
i(Xi) =

dici
Li

with Xi ∈ (xmin,w, 1). The converse of the second identity above holds when
s∗i ∈ (0, 1).

Remark 2 (Equilibrium computation). Recently, the authors in [Gharesifard et al., 2016] showed
that when the best responses of the players are given by Lemma 1, continuous best response dynamics
converge to a PNE strategy profile. Furthermore, a strategy profile that satisfies (8) can be computed
by solving a Linear Complementarity Program; a similar result was obtained in [Miura-Ko et al.,
2008]. We present an expanded discussion in Appendix B.

In general, strategy profiles that satisfy equation (7) need not be unique, and therefore, we
need not have a unique PNE. However, in the special case of complete graphs (the classical setting
for Total Effort games [Grossklags et al., 2008]), we show that the strategy profiles at the Nash
equilibria are unique up to the true equilibrium attack probability experienced by the players.

Proposition 2. Consider a Total Effort game on a complete graph where each player i has a player-
specific weighting function wi(·) satisfying Assumption 1, and cost ratio ci

Li
satisfying Assumption 3.

Then all Nash equilibria have the same (true) probability of successful attack at the nodes.

The proof is presented in Appendix A.
If the strategy profile at each neighborhood satisfies the second identity of (8), then we refer

to such a PNE as an interior equilibrium. In other words, at an interior equilibrium, the strategy
profile s∗ satisfies,

(A+ In)s
∗ = d ◦ (1−X), (9)

where A is the adjacency matrix of the graph, d is the vector of neighborhood sizes, 1 is the all-
ones vector, X is the vector of Xi’s of the players, and “◦” denotes the Hadamard (element-wise)
product. Thus, at every interior equilibrium, the true attack probability faced by each node i is Xi.
The existence of an interior equilibrium is not always guaranteed, except in certain special cases,
such as when players are homogeneous and all nodes in the graph have identical degrees (i.e., the
graph is degree-regular).

Proposition 3. Consider a degree-regular graph with degree d− 1 and homogeneous players such
that dc

L
> w′(xmin,w). Then the symmetric strategy profile where each node invests 1−X constitutes

an interior PNE, where w′(X) = dc
L
,X ∈ (xmin,w, 1].

The proof is straightforward by substituting s∗ = 1−X for every player in equation (8).

8



4.1 Existence of secure equilibrium

Assumption 3 ensures that the best response of a player remains continuous in the strategies of
other players, which helps us establish the existence of PNE in Theorem 1. It is possible to also
show the existence of a PNE where all players invest 1 at equilibrium, when the second and third
conditions of Assumption 3 do not hold for all the players.

Proposition 4. Suppose that for every player i in a Total Effort game, either Vi ≥
1
di

or wi(
1
di
) >

ci
Li
. Then there exists a PNE where all players invest 1.

Proof. Consider a player i with Vi ≥
1
di
, and assume that all of her neighboring nodes are investing

1. Then, the marginal utility ∂Eui

∂si
of player i is nonnegative over the interval X =

[

0, 1
di

]

, and her

best response is to invest 1.
Similarly, when Vi <

1
di
, and wi(

1
di
) > ci

Li
for player i, then her optimal investment is 1 when

s̄−i = di− 1. This follows from Case 4 of in the proof of Lemma 1 as substituting s̄i = di− 1 yields
Eui(1, sN (i))− Eui(0, sN (i)) > 0 when wi(

1
di
) > ci

Li
.

Both Vi ≥
1
di

and wi(
1
di
) > ci

Li
occur when the weighting function sufficiently overweights very

small attack probabilities. Overweighting of small attack probabilities discourages a player from
reducing her investment, even when all other players are fully secure, as it would lead to a large
perceived increase in attack probabilities from a relatively secure state. This results in a fully secure
equilibrium.

While such a fully secure PNE possibly coexists with other equilibria, identifying conditions
under which such a PNE exists has potential implications for designing incentive mechanisms to
encourage users to achieve a secure PNE.

5 Effects of Network Structure

In this section, we focus on understanding the effect of network structure, vis-a-vis the degrees
of the nodes, on the security investments and attack probabilities at the PNE of Total Effort
games. We consider players with homogeneous weighting functions and cost parameters in order
to isolate the effects of their degrees on their investments. We will use the characterization of the
PNE strategy profile given in equation (8). For the analysis in this section, we assume that the
weighting functions satisfy both Assumptions 1 and 2.

When the weighting functions and the cost parameters are homogeneous across the players,
then the quantity di(1−Xi) is only a function of the size of the extended neighborhood di. Recall
that w′(Xi) =

dic
L
, and Xi > xmin,w. The properties of Xi as a function of di are the basis of the

analytical results of this section.

Remark 3. Note that Xi is an increasing function of di, as w′(x) is strictly increasing in x for
x ∈ (xmin,w, 1], as illustrated in Figure 2.

5.1 Investments by nodes with overlapping neighborhoods

Without probability weighting, Proposition 1 indicated that a lower degree node always invests at
least as much as a higher degree node. This monotonicity does not hold in general under behavioral
probability weighting. Nonetheless, we can prove certain monotonicity properties when d(1 −X)
is a monotonically decreasing function of d, which holds under Assumption 2 as shown below.
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Lemma 2. Let c
L
> minx∈[0,1]w

′(x) so that the quantity X is defined for d ≥ 1. If the probabil-

ity weighting function satisfies w′′(x)
w′(x) < 1

1−x
for x ∈ (xmin,w, 1), then d(1 − X) is monotonically

decreasing in d.

The proof of Lemma 2 is presented in Appendix C. We now prove the following result using
Lemma 2. Recall that N̄ (i) denotes the extended neighborhood of node i.

Proposition 5. Consider a Total Effort game on a network with homogeneous players whose
weighting functions satisfy Assumptions 1 and 2. Let the cost parameters satisfy Assumption 3,
and let c

L
> minx∈[0,1]w

′(x). If N̄ (i) ⊂ N̄ (j), then at any PNE, s∗i ≥ s∗j .

Proof. Consider any equilibrium strategy profile where player j invests s∗j > 0, for otherwise, the

result holds trivially. Then from equation (8), and from the fact that N̄ (i) ⊂ N̄ (j), we obtain

∑

k∈N̄ (i)

s∗k ≤
∑

k∈N̄ (j)

s∗k ≤ dj(1−Xj) < di(1−Xi),

which follows from the monotonicity of d(1 − X) shown in Lemma 2. As a result, from (8), we
must have s∗i = 1.

From Lemma 2, we know that d(1−X) is a decreasing function of d. From the PNE character-
ization in (8), node i invests such that the aggregate investment in her extended neighborhood is
di(1−Xi) subject to her investment being within [0, 1]. For a node with a few neighbors, the desired
investment d(1−X) is larger, and therefore, the node has to increase her personal investment. On
the other hand, for a node with large degree, d(1 − X) is smaller and she has a large number of
neighbors to rely on to meet the target investment.

5.2 Upper bound on average probability of successful attack at equilibrium

For a PNE strategy profile s∗, we denote the average (true) probability of successful attack as

Φ(s∗) :=
1

n

n
∑

i=1

(

1−

∑

j∈N̄ (j) s
∗
j

di

)

. (10)

Note that Φ(s∗) is also equal to the expected fraction of nodes that are successfully attacked under
the PNE strategy profile s∗. We obtain an upper bound on Φ(s∗) when 1−Xi <

1
di

for every player
i, with the proof presented in Appendix C.

Proposition 6. Consider a Total Effort game on a graph with homogeneous players who satisfy
Assumptions 1, 2 and 3. In addition, suppose dic

L
> minx∈[0,1]w

′(x) and 1 − Xi < 1
di

for every
player i. Then at any PNE with strategy profile s∗,

1. the attack probability at node i is at most Xi, and

2. Φ(s∗) ≤ 1
n

∑n
i=1 Xi.

Furthermore, if there exists an interior PNE with strategy profile s∗I , then Φ(s∗I) =
1
n

∑n
i=1Xi.

Remark 4. If there is a leaf node i with di = 2 that satisfies Assumption 3, then we must have
1−Xi <

1
2 ; otherwise Xi−Vi <

1
2 , which violates the first condition of Assumption 3. Since d(1−X)

is decreasing in d (according to Lemma 2 under Assumption 2), this implies that 1−Xj <
1
dj

holds

for every node j in the graph.
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We now state the main result of this section. We show that degree-regular graphs achieve the
highest 1

n

∑n
i=1 Xi over all graph topologies with the same average degree.

Theorem 2. Consider a Total Effort game on a graph under Assumptions 1, 2 and 3. Let dic
L

>

w′(xmin,w) for every player i, and let davg , 1
n

∑n
i=1 di be the average of all extended neighborhood

sizes. Then,

Φ(s∗) ≤
1

n

n
∑

i=1

Xi ≤ Xavg,

where s∗ is a PNE strategy profile and Xavg ∈ (xmin,w, 1] is such that w′(Xavg) =
davgb

L
.

Proof. Let the function h : R+ → [xmin,w,∞) be defined as the inverse of w′(·), i.e., h(dic
L
) , Xi.

From Assumptions 1 and 2, we know that w′(x) is strictly increasing and is strictly convex for
x ∈ (xmin,w, 1]. Therefore, the inverse function h(·) is strictly increasing and strictly concave in di

for di ∈ R. From the strict concavity of h(·), we have 1
n

∑n
i=1 h

(

dic
L

)

≤ h
(

davgc

L

)

, which yields
1
n

∑n
i=1Xi ≤ Xavg. Equality holds when di = davg for every node i.

The above result states that graphs with identical node degrees have a larger worst case Φ(s∗).
Furthermore, as a graph becomes more dense, the bound on Φ(s∗) grows with the average degree
of the nodes.

5.3 Graphs with smallest average attack probability bound

In this subsection, we answer the complementary question regarding graph topologies that have
the smallest upper bound on Φ(s∗).

In order to highlight the dependence of Xi on di, we will use a slightly modified notation in the
proof of the following result. In particular, we denote Xi as Xdi for player i.

Proposition 7. Consider Total Effort games with n homogeneous players that satisfy Assump-
tions 1, 2 and 3. Let dc

L
> w′(xmin,w) for d = 2. Then, among all connected graphs with n nodes,

the star graph achieves the smallest
∑n

i=1Xdi .

Proof. Recall from Remark 3 that Xdi is an increasing function of di. If the graph is not a tree, then
we can remove a set of edges until the resulting subgraph is a tree. This reduces the neighborhood
sizes and decreases

∑n
i=1 Xdi .

It remains to show that among all trees, the star graph minimizes
∑n

i=1Xdi . Consider a tree that
is not a star graph. Then, maxni=1 di < n. Consider a node u with highest extended neighborhood
size du < n. Since the graph is not a star, there must exist a leaf node l which is connected to a
node other than u. Let the neighbor of l be denoted as v, with neighborhood size dv ≤ du. We
argue that

∑n
i=1Xdi decreases if we remove the edge between l and v, and add an edge between l

and u. Under this operation, Xdu increases to Xdu+1 for node u and Xdv decreases to Xdv−1 for
node v. For all other nodes, Xdi remains unchanged. We compute the change in

∑n
i=1Xdi as,

Xdu+1 −Xdu +Xdv−1 −Xdv

<(Xdu −Xdu−1)− (Xdv −Xdv−1)

≤(Xdv −Xdv−1)− (Xdv −Xdv−1) = 0. (11)

The first inequality follows from Theorem 2 with two players having extended neighborhood sizes
du − 1 and du +1, i.e., Xdu+1 +Xdu−1 < 2Xdu for du ≥ 3. The second inequality holds for dv ≤ du
following the strict concavity of h(·) (where h(dc

L
) = Xd) as shown in Theorem 2. Therefore, for

any tree which is not a star graph, we can construct another tree which reduces
∑n

i=1 Xdi .

11
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Figure 3: w′
i(x) for Prelec weighting functions with parameters α1 = 0.4 and α2 = 0.8. At x = X̄,

w′
1(x) = w′

2(x).

The proof of Proposition 7 relies on the properties of the quantities Xi which arise due to the
nature of the behavioral weighting functions. In addition, the result that star graphs achieve the
smallest security risk upper bound is an artifact of the Total Effort risk externalities, which assume
that the attack on each node only depends on the average security investment in her neighborhood.
In other words, the attacks are not targeted (in the sense of trying to disconnect the network).

An interesting avenue for future work is to characterize network topologies that maximize more
complex network value functions (such as those considered in [Gueye et al., 2010, Schwartz et al.,
2011, Cerdeiro et al., 2015]) under behavioral probability weighting and targeted attacks.

6 Comparative Statics in Weighting Functions

In this section, we compare the effect of the intensity of probability weighting on Φ(s∗) (the average
equilibrium probability of successful attack) in degree-regular graphs. Analyzing degree-regular
graphs not only isolates the effects of heterogeneity in degrees from the effects of the weighting
function, but as we showed in the previous section, such graphs possess an interior equilibrium that
upper bounds the Φ(s∗) that arise in a broader class of graphs.

In order to compare two different weighting functions, we use the parametric form (1) proposed
by Prelec with parameter α ∈ (0, 1]. When α = 1, the weighting function is linear; as α decreases
from 1, the magnitudes of overweighting and underweighting increase.

We consider two Total Effort games on a (d − 1)−regular graph, i.e., the size of the extended
neighborhood of the nodes is d. Let the cost parameters c and L be the same among the players
across the two games. The first game has homogeneous players with weighting parameter α1, and
the second game has homogeneous players with weighting parameter α2, with α1 < α2 < dc

L
. In

other words, the players in the first game have a more significant overweighting and underweighting
of the true probabilities compared to the players in the second game. Let X1 andX2 be the solutions
to the equations w′

i(x) =
dc
L
, i ∈ {1, 2}, such that Xi > xmin,w. Here wi(x) is the Prelec weighting

function (1) with weighting parameter αi. From Proposition 3, the attack probability at each node
is equal to Xi at the respective interior PNEs and Φi(s

∗) = Xi.
As we illustrate in Figure 3 for α1 = 0.4 and α2 = 0.8, w′

1(x) is initially smaller than w′
2(x) as x

starts to increase from 1
e
, until the quantity x = X̄ (which depends on the values of α1 and α2) at

which w′
1(x) = w′

2(x). For x > X̄ , w′
1(x) > w′

2(x). We state this formally in the following lemma.
The proof is presented in Appendix D.

Lemma 3. Consider two Prelec weighting functions w1(·) and w2(·) with parameters α1 and α2,
respectively and let α1 < α2. Then there exists a unique X̄ > 1

e
such that (1) w′

1(X̄) = w′
2(X̄), (2)

for x ∈ (1
e
, X̄), w′

1(x) < w′
2(x), and (3) for x ∈ (X̄, 1), w′

1(x) > w′
2(x).
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Now we present the main result of this section, which follows from the above lemma.

Theorem 3. Let Xi, i ∈ {1, 2} be the true probability of successful attack at a node at the interior
PNE of a (d − 1)-regular graph where the nodes have a Prelec weighting function with parameter
αi, i ∈ {1, 2}, with α1 < α2. Let X̄ be the intersection point defined in Lemma 3 for α1 and α2.
Then,

1. if dc
L

> w′(X̄), we have X̄ < X1 < X2,

2. otherwise, if α2 <
dc
L

< w′(X̄), we have X̄ > X1 > X2, and

3. if dc
L

= w′(X̄), we have X̄ = X1 = X2.

The above result shows that when dc
L

is such that the attack probability at a node at PNE is
high enough (greater than X̄), the players with substantial underweighting of probabilities (i.e.,
with smaller α) view increased security investments to be highly beneficial in terms of reducing the
perceived attack probabilities. As a result, the attack probability at a node at the PNE is smaller
in the game with weighting parameter α1.

On the other hand, when the attack probability is less than X̄, the players with smaller α do
not find the perceived reduction in attack probabilities to be sufficient to make a high investment.
However players with weighting functions closer to linear observe greater perceived reduction in
probability due to increased investment, and as a result, these players have smaller average attack
probability at the interior equilibria.

When we keep c
L
fixed and increase the neighborhood size d, then we eventually end up in the

regime where the equilibrium attack probability is greater than X̄. Thus, the expected fraction of
nodes that are successfully attacked at equilibrium (Φi(s

∗)) is smaller under behavioral probability
weighting when the graph is sufficiently dense (i.e., has a large number of edges for a given number
of nodes), and vice versa.

7 Weakest Link and Best Shot Games

The Nash equilibrium strategies in Weakest Link and Best Shot games have very special properties,
as the security level at each neighborhood is determined by the investment of a single player (the
one with the smallest and largest investment, respectively). Therefore, we first state the following
results that characterize the security investment by an isolated player (i.e., d = 1). The proofs of
the following results are in Appendix E.

Lemma 4. Consider a weighting function that satisfies Assumption 1. Let z > xmin,w be such that

w′(z) = w(z)
z

. Then i) z exists and is unique, and ii) for x > z, w′(x) > w(x)
x

.

Proposition 8. Let z be as defined in Lemma 4. If c
L

< w′(z), the optimal investment of a
single player is s∗ = 1. Otherwise, the optimal investment is s∗ = 1 −X, where w′(X) = c

L
,X ∈

(xmin,w, 1].

We now analyze the PNE in Weakest Link games.

Proposition 9. Consider a Weakest Link game on a connected graph with homogeneous players.
Then at any PNE, all nodes make identical investments. If c

L
≥ w′(z), where z is as defined in

Lemma 4, then there is a continuum of pure Nash equilibria where the successful attack probabilities
at the nodes are greater than or equal to X. When w′(xmin,w) <

c
L
< w′(z), then there are additional

equilibria (including the ones in the previous case) with attack probabilities close to 0.
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Proof. Consider a node v1 with security investment s1, and let ŝ < s1 be the smallest investment
in her neighborhood. Then the attack probability on node v1 is fi(si, sN (i)) = 1 − ŝ > 1 − s1.
If node v1 reduces her investment to ŝ, then her cost of investment decreases, while the attack
probability remains unchanged. Therefore, at a PNE, the investment by any node must be equal
to the minimum investment in her extended neighborhood. As a result, in connected graphs, all
nodes must make identical security investments at a PNE.

When c
L
≥ w′(z), Proposition 8 states that a single node investing in isolation would prefer to

invest s∗ = 1 −X. Now suppose all nodes have identical security investment s ≤ s∗, i.e., the true
attack probability at any node is 1− s ≥ X. Since for each player w′(x) > c

L
for x > X (i.e., the

marginal utility is positive), no player would unilaterally deviate to make a smaller investment.
Therefore, any investment s ≤ 1−X by all the nodes would result in a PNE.

When w′(xmin,w) <
c
L
< w′(z), the optimal investment of a single player is to invest 1. There-

fore, a strategy profile where each node invests s = 1 − ǫ for sufficiently small ǫ > 0 such that
Eu(s) > Eu(1−X), is a PNE, with attack probability ǫ at every node. For this strategy profile, all
players have positive marginal utility, and prefer to invest 1 − ǫ over 1 −X due to the continuity
of the utility functions. These equilibria exist in addition to the set of equilibria with attack prob-
abilities at least X. Note that any investment s ∈ (V,X) by the nodes is not a PNE since ∂Eu

∂s
< 0

for s ∈ (V,X).

Note that as long as the graph remains connected, its structure plays no role on the equilibrium
investments and attack probabilities. The first part of the above result (i.e., identical investments
by all players) holds for true expectation maximizers (players with w(x) = x) as well. The main
differences with weighting functions are twofold. First, for large enough c

L
, the only possible

equilibrium with true expectation maximizers is when all players invest 0 (Proposition 1 with
d = 1), while with probability weighting, there is a range of possible equilibrium investments, with
resulting attack probabilities greater than X. Second, for w′(xmin,w) < c

L
< 1, any investment

by the players can give rise to a PNE for true expectation maximizers, while with probability
weighting, there exist attack probabilities that can be supported at a PNE are either close to 0 or
at least X. Finally, when c

L
≤ w′(xmin,w), X is not defined, though the optimal investment by a

single player is still 1. In this case, any investment by the players can give rise to a PNE.
We finally discuss the PNEs that arise in Best Shot games.

Proposition 10. Consider a Best Shot network security game with homogeneous players. Then a
strategy profile is a PNE if and only if there is a set of nodes who form a maximal independent set
and invest according to Proposition 8, and all other nodes invest 0.

Proof. In a Best Shot game, the attack probability on a node is a function of the highest investment
in her extended neighborhood. Suppose at a neighborhood there is a player making an investment
in accordance with Proposition 8. Since this is the optimal investment a single node can make, her
neighbors do not find investing more than this level (and thereby reducing their attack probabilities)
profitable. Therefore, their optimal strategy is to invest 0, as it eliminates their security investment
cost csi, while the attack probability is unchanged. Therefore, any two nodes who make a nonzero
investment must not be adjacent to each other. Furthermore, every node that is making a zero
investment must have a neighbor who invests a nonzero amount. Therefore, the set of nodes
making a nonzero investment must belong to a maximal independent set. The converse is also true;
any maximal independent set with investments determined by Proposition 8, and all other nodes
investing 0 constitute a PNE.

The independent set characterization holds for true expectation maximizers as well; nonlinear
weighting functions change the level of investment. With true expectation maximizers, the nonzero
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Figure 4: Graph topology analyzed in Example 1

investment level is at one of the boundary points, either 0 or 1 (Proposition 1 with d = 1).
With probability weighting, there are no equilibria that are entirely unprotected, and the nonzero
equilibrium investment is at one of the interior solutions when c

L
> w′(z).

8 Numerical Examples

We illustrate our theoretical characterizations of the impacts of network structure and probability
weighting on the equilibrium investments in two numerical examples presented below.

Example 1. Consider the graph shown in Figure 4 with n = 10 nodes. Each node is a decision
maker with a Prelec weighting function with parameter α = 0.6 and c

L
= 0.45. The extended

neighborhood sizes range from 2 to 5. These parameters satisfy Assumptions 1, 2 and 3.
Under the Total Effort externalities, sequential best response dynamics converged to a PNE

strategy profile in this example. In this PNE, the leaf nodes, 1, 2, 3, 9, 10 have an investment 0.4095,
node 7 invests 0.1442 and nodes 4, 5, 6, 8 invest 0. These investments satisfy (8). Note that node
7 has a larger neighborhood size compared to node 8, yet it invests more than node 8 at the PNE.
This is in contrast with the equilibria that arise without probability weighting (Proposition 1), where
the equilibrium investments were either 0 or 1 and the investment of a node was at most that of
a node with a smaller degree. Furthermore, the investments of the leaf nodes are larger than their
neighbors, as shown in Proposition 5.

Under the Best Shot externality, a set of nodes which form a maximal independent set have a
nonzero investment (Proposition 9). In the graph shown in Figure 4, nodes 1, 2, 3, 7, 9, 10 form a
maximal independent set. Another such set consists of nodes 4, 2, 3, 8. For the Prelec weighting
function with α = 0.6, w′(z) = 0.8304 for the value of z defined in Lemma 4. Accordingly, if
c
L

≤ 0.8304, an equilibrium investment profile is when the nodes in a maximal independent set
invest 1, while other nodes invest 0. On the other hand, if c

L
> 0.8304, the equilibrium investment

by the nodes is 1−X, where w′(X) = c
L
,X ∈ (1

e
, 1].

In the above example, we discussed the effects of network structure on PNE investments in Total
Effort and Best Shot games. The impact of the intensity of overweighting and underweighting of
probabilities in degree-regular graphs is illustrated in the following example and corroborates our
theoretical findings in Section 6.

Example 2. We consider two degree-regular graphs on n = 6 nodes as shown in Figure 5. The
nodes in the graph in Figure 5a (respectively, Figure 5b) have extended neighborhood sizes d =
3 (respectively, d = 5). We consider two types of players with Prelec weighting functions with
parameters α1 = 0.4 and α2 = 0.8, respectively. The derivative of the weighting functions for such
players was shown in Figure 3. Let c

L
= 0.3 for all players.

First we consider the 2-regular graph shown in Figure 5a. When all the players have weight-
ing functions with parameter α1 = 0.4, then the attack probability at every node at the interior
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Figure 5: Graph topologies analyzed in Example 2

equilibrium is equal to 0.8588, while for players with parameter α2 = 0.8, the corresponding attack
probability is 0.6912. In this case, the equilibrium is more secure for the players whose weighting
functions are closer to linear. In contrast, in the 4-regular graph shown in Figure 5b, the attack
probabilities at every node at the interior PNEs are equal to 0.9325 and 0.9643 for players with
weighting function parameters α1 and α2, respectively.

As we noted in Theorem 3 and the succeeding discussion, the above example illustrates that the
equilibrium is more secure for players with a substantial degree of overweighting and underweighting
(captured by a smaller parameter value α) when the graph is sufficiently dense.

9 Discussion and Conclusion

We studied a class of interdependent security games on networks where the players exhibit cer-
tain behavioral attributes vis-a-vis their perception of attack probabilities, while making security
investment decisions. We analyzed three canonical interdependent security game models, (i) Total
Effort, (ii) Weakest Link, and (iii) Best Shot games.

The Nash equilibria in Total Effort games have much richer structural properties under behav-
ioral probability weighting than the corresponding equilibria with players that are true expectation
maximizers. A sharper overweighting of small probabilities may disincentivize a node from reducing
her investment when her neighbors make high investments. Underweighting of large probabilities
leads to equilibria where the nodes are not completely unprotected, as opposed to equilibria without
probability weighting. The effect of behavioral probability weighting is most beneficial (in terms
of reducing the security risk) when the probability of successful attack is sufficiently high at the
PNE. On the other hand, if the attack probability is only moderately high, players with weighting
functions that are closer to linear have a more secure equilibrium. We obtained an upper bound on
the expected fraction of nodes that are successfully attacked at any PNE, in terms of the average
degree of the nodes. Furthermore, among the class of graphs with a given average degree davg, the
davg-regular graph has a PNE which achieves this upper bound. Conversely, star graphs achieve
the smallest average security risk upper bound among all connected graphs.

When the graph is connected, all nodes make identical investments in a Weakest Link game, and
there is a continuum of attack probabilities, independent of the graph structure, that can arise at
a PNE. On the other hand, a strategy profile is a PNE in a Best Shot game if and only if the nodes
making nonzero security investments form a maximal independent set. In both cases, equilibria are
never completely unprotected under behavioral probability weighting.
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A Proofs Pertaining to Equilibrium Characterization

Proof of Lemma 1:

Proof. For ease of notation, we will drop the subscript i since the proof holds for every player.
Let s̄ ∈ [0, d − 1] be the total security investment by the neighbors and d be the size of the

extended neighborhood of the player. Under Assumption 3, the interval X (s̄) in (6) falls into one
of four different cases.

Case 1: X < 1− 1+s̄
d

(i.e., s̄ < d(1 −X)− 1)
In this case, the interval X (s̄) lies to the right of X. Therefore, at any attack probability

x ∈ X (s̄), L
d
w′(x) > c (from Figure 2). Thus, ∂Eu

∂s
|s=x > 0 and consequently, b(s̄) = 1.

Case 2: 1− 1+s̄
d

≤ X ≤ 1− s̄
d

In this case, X ∈ X (s̄), and therefore, the player has a feasible investment strategy s∗ =
d(1−X)− s̄ at which the first order condition is satisfied with equality. For any investment y < s∗,
we have the resulting attack probability 1− y+s̄

d
> X and ∂Eu

∂s
= L

d
w′(X) − c > 0. As a result, no
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value of y < s∗ would satisfy the first order necessary condition of optimality. On the other hand,
for any y > s∗, we have 1 − y+s̄

d
< X. However, from our assumption that X > 1

d
+ V , we would

have 1 − y+s̄
d

> V . Therefore, ∂Eu
∂s

< 0 for any y > s∗. As a result, x = s∗ is the only candidate
for optimal investment, and it also satisfies the second order sufficient condition since w′′(X) > 0
as X > xmin,w. Since the optimal solution s∗ must have the property that 1 − s∗+s̄

d
= X, it is

continuous and linearly decreasing in s̄, with boundary values at 1 and 0 for s̄ = d(1−X)− 1 and
s̄ = d(1−X), respectively.

In the remaining two cases, we have s̄ > d(1 −X).
Case 3: V < 1− 1+s̄

d
and X > 1− s̄

d

In this case, the interval X (s̄) lies in the region between V and X. Therefore, for any true
attack probability x ∈ X (s̄), ∂Eu

∂s
< 0. As a result, b(s̄) = 0.

Case 4: 1− 1+s̄
d

≤ V ≤ 1− s̄
d

In this case, there are three candidate solutions for utility maximization, s = 1, s = d(1−V )− s̄

and s = 0. We have 1 − s+s̄
d

as the true attack probability resulting from the strategies of the
players.

First we show that the player would always prefer to invest 1 over investing s∗ = d(1− V )− s̄.
We denote the resulting attack probability while investing 1 as Y1 = 1− 1+s̄

d
. Note that V − Y1 =

1
d
(1− s∗). Now using (4) we compute

Eu(1, sN )− Eu(s∗, sN )

=L(w(V )− w(Y1))− c(1− s∗)

=L(w(V )− w(Y1))− cd(V − Y1)

=L(V − Y1)

[

w(V )− w(Y1)

(V − Y1)
−

dc

L

]

>L(V − Y1)

[

w′(V )−
dc

L

]

= 0,

where the inequality is due to the fact that w(x) is strictly concave for x ∈ [0,xmin,w), and Y1 <

V < xmin,w. Therefore, the player will always prefer the boundary solution s = 1 to the potential
interior solution s∗.

This leads to the possibility that the best response might have a discontinuous jump from 0 to
1 at some value of s̄ in this region. However, we show that under the second and third conditions
of Assumption 3, the player would always prefer to invest 0 over investing 1. We compute

Eu(1, sN )− Eu(0, sN )

=L

[

w
(

1−
s̄

d

)

−w

(

1−
1 + s̄

d

)]

− c

=L

[

w

(

λ+
1

d

)

− w(λ)

]

− c ≤ L

[

w

(

1

d

)

− w(0)

]

− c,

where λ = 1 − 1+s̄
d
. The last inequality follows because the function l1(λ) , w(λ + 1

d
) − w(λ)

is a strictly decreasing function of λ for λ ∈ [0, V ]. Indeed, l′1(λ) = w′(λ + 1
d
) − w′(λ) < 0, as

w′(λ) ≥ w′(V ) = dc
L
, and w′(λ + 1

d
) < dc

L
, as V ≤ λ + 1

d
< X. Therefore, if w(1

d
) < c

L
, the

player would always prefer to invest 0 over investing 1, regardless of the value of s̄ (including when
s̄ = d− 1).

Proof of Proposition 2:
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Proof. Without loss of generality, let players be ordered such that X1 ≤ X2 ≤ X3 ≤ . . . ≤ Xn,
where Xi is the largest solution to w′

i(x) = nci
Li

. When there is no solution to w′
i(x) = nci

Li
, i.e.,

minx∈[0,1]w
′(x) > nci

Li
for a player, then we define Xi = 0 for that player. When Xn = 0, then all

players investing 1 is the only PNE.
The true attack probability at the PNE must be at least 0. When X1 > 0, no objective attack

probability 0 ≤ X < X1 would be a PNE, since there would always exist a player with positive
investment who would prefer to invest 0.

Now suppose there are two PNEs with different probabilities of successful attack X∗ and Y ∗,
with X∗ < Y ∗. Consider the strategy profile with the smaller attack probability X∗. Note that
we have ruled out the possibility of X∗ < X1 above. There are two exhaustive cases: either
Xl < X∗ < Xl+1 for some player l, or Xl = X∗ for some player l.

Let Xl < X∗ < Xl+1 for some player l. By the definition of the quantities Xi, we have
w′
i(X

∗) < nci
Li

for i ∈ {l + 1, . . . , n}, and therefore, s∗i = 0 for i ∈ {l + 1, . . . , n}. Similarly,

w′
i(X

∗) > nci
Li

and s∗i = 1 for i ∈ {1, . . . , l}. In this case, X∗ = 1 − l
n
. Now at the second PNE

with true attack probability Y ∗ > X∗, the players in {1, . . . , l} would continue to invest 1, with
the possibility of more players investing nonzero amounts if Y ∗ ≥ Xl+1. But then the true attack
probability would decrease from X∗, contradicting the assumption that Y ∗ > X∗. The proof of the
case where X∗ = Xl for some player l follows identical arguments.

B Linear Complementarity Problem Formulation

We can exploit the structure of the best response as presented in (8) to represent the Nash equi-
librium strategy profile as a solution to a Linear Complementarity Problem (LCP).4

Proposition 11. Consider a total effort game on a graph with n vertices with adjacency matrix A,
and let dici

Li
> w′

i(xmin,wi
) for every player i. Then, under Assumptions 1 and 3, a strategy profile

is a Nash equilibrium of this game if and only if it is a solution of the LCP (q,M), where q ∈ R
2n

and M ∈ R
2n×2n are given by

q =

[

−d(1−X2)
1n×1

]

and M =

[

A+ In In
−In 0n×n

]

,

where the jth entry of q is dj(1−X
j
2) for j ∈ {1, 2, . . . , n}.

Proof. The solution to the LCP (q,M) is a vector z ∈ R
2n which we can write as z =

[

s

µ

]

, where

s is the vector of investments by the players (strategy profile) and µ is a set of variables which
assume nonzero values when a corresponding investment si = 1.

From the definition of a LCP, the solution z ≥ 0, i.e., s ≥ 0 and µ ≥ 0. Secondly, from
q+Mz ≥ 0, for each player i, we have

si +
∑

j∈N (i)

sj + µi ≥ di(1−Xi
2), and

− si + 1 ≥ 0.

The second inequality ensures that si ≤ 1. Therefore, the investment by any player at any solution
of the LCP is feasible, i.e., si ∈ [0, 1].

4Formally, given a vector q ∈ R
n, and a matrix M ∈ R

n×n, the LCP (q,M) is the problem of finding a solution
vector z ∈ R

n such that i) z ≥ 0, ii) q +Mz ≥ 0, and iii) zT(q +Mz) = 0.
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Finally, zT(q+Mz) = 0 gives us

si(si +
∑

j∈N (i)

sj + µi − di(1−Xi
2)) = 0, and

µi(−si + 1) = 0,

for every node i. As a result, when si ∈ (0, 1), we have µi = 0, and therefore, the investments satisfy
the second part of equation (8). When si = 0, we also have µi = 0, and the resulting investments
satisfy the third part of equation (8). Finally, when si = 1, we have µi > 0 such that the first part
of equation (8) holds. This concludes the proof.

A comprehensive discussion on LCPs and different solutions algorithms can be found in [Cottle
et al., 1992]. The structure of the LCP often determines the performance of different algorithms. We
show that the LCP defined in Proposition 11 satisfies certain properties, as proven in Proposition 12,
that guarantee the convergence of the Lemke’s pivotal method to converge to a solution (i.e., a PNE
strategy profile), if the problem is non degenerate. The convergence result is due to [Cottle et al.,
1992].

Proposition 12. For the LCP (q,M) defined in Proposition 11,

1. the matrix M is copositive and

2. q ∈ SOL(0,M)∗.

Proof. For the proof of the first statement, consider any vector xT = [x1 x2]
T where xi ≥ 0, for

i = 1, 2. Then we have,

xTMx = [x1 x2]
T

[

Ax1 + x1 + x2

−x1

]

= xT

1Ax1 + xT

1 x1 ≥ 0.

For the second part, consider any solution y =

[

y1

y2

]

of the LCP (0,M). Then, we must have

y ≥ 0, and My =

[

(A+ In)y1 + y2

−y1

]

≥ 0. As a result, we must have y1 = 0.

For any vector yT =
[

yT

1 yT

2

]

, with y1 = 0 and y2 ≥ 0, we have qTy = 1Tn×1y ≥ 0. Thus,
q ∈ SOL(0,M)∗.

C Proofs Pertaining to the Effects of Network Structure

Proof of Lemma 2:

Proof. We denote the inverse of w′(·) as the function h(·), i.e., h : R+ → [xmin,w,∞) such that
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h(dc
L
) = X. Now, consider the function

φ(d) , d(1−X) = d

(

1− h

(

dc

L

))

=⇒ φ′(d) = 1− h

(

dc

L

)

− d

[

h

(

dc

L

)]′

= 1− h

(

dc

L

)

−
dc

L

1

w′′(h
(

dc
L

)

)

= 1−X −
dc

L

1

w′′(X)
.

The second inequality follows from differentiating the inverse of the w′ function. Now for x ∈
(xmin,w, 1), the weighting function w satisfies

w′′(x)

w′(x)
<

1

1− x

=⇒ (1−X) <
w′(X)

w′′(X)
=

dc

L

1

w′′(X)
=⇒ φ′(d) < 0.

Since φ(d) is strictly decreasing in d, we have d(1−X) strictly decreasing when d is interpreted as
the size of the extended neighborhood of a node.

Proof of Proposition 6:

Proof. We first show that when di(1 −Xi) < 1, the attack probability at node i is at most Xi at
a PNE. Recall from Lemma 1 that the best response of player i is bi(s̄−i) = 1 when the aggregate
investment by her neighbors s̄−i ≤ di(1 − Xi) − 1. When di(1 − Xi) < 1, the above condition is
not satisfied since s̄−i ≥ 0. As a result, the investment of player i at any PNE lies in [0, 1). When
s̄−i ≥ di(1−Xi), the investment by node i is 0, and the resulting attack probability is at most Xi.
Otherwise, the sum of the investments by node i and her neighbors satisfy the first order condition
(5) with equality, in which case the resulting attack probability is exactly Xi.

The upper bound on average attack probability follows by averaging Xi’s over all nodes. At an
interior PNE, each player experiences an attack probability exactly equal to Xi and therefore the
bound holds with equality.

D Proofs Pertaining to the Impact of Weighting Function

We first state and prove the following lemma whose result will be useful in the proof of Lemma 3.

Lemma 5. The function

g(x) , (− ln(x))α2−α1 exp((− ln(x))α1 − (− ln(x))α2),

with α1 < α2 < 1 is strictly decreasing for x ∈ [1
e
, 1].
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Proof. We compute

g′(x) = exp((− ln(x))α1 − (− ln(x))α2)×
[

(α1(− ln(x))α1−1 − α2(− ln(x))α2−1)
−1

x
×

(− ln(x))α2−α1 − (α2 − α1)(− ln(x))α2−α1−1 1

x

]

=
1

x
exp((− ln(x))α1 − (− ln(x))α2)(− ln(x))α2−α1−1

× [−(α1(− ln(x))α1 + α1 + α2(− ln(x))α2 − α2] .

When x > 1
e
, (− ln(x)) < 1 and thus 1 > (− ln(x))α1 > (− ln(x))α2 . As a result, 1− (− ln(x))α1 <

1 − (− ln(x))α2 . Since α1 < α2, this implies α1(− ln(x))α1 − α1 > α2(− ln(x))α2 − α2. Therefore,
g′(x) < 0 for x ∈ [1

e
, 1].

Proof of Lemma 3:

Proof. The first derivative of the Prelec weighting function is given by w′(x) = w(x)α
x
(− ln(x))α−1.

Therefore, if at a given x, w′
1(x) = w′

2(x), we have

w1(x)α1(− ln(x))α1 = w2(x)α2(− ln(x))α2

=⇒
α1

α2
=

w2(x)(− ln(x))α2

w1(x)(− ln(x))α1

=⇒
α1

α2
= (− ln(x))α2−α1 exp((− ln(x))α1 − (− ln(x))α2)

=⇒
α1

α2
= g(x).

From the definition of g(x), g(1
e
) = 1 > α1

α2
. Furthermore, as x → 1, g′(x) → −∞. As a result,

g(x) becomes smaller than α1

α2
for some x < 1. Thus there exists X̄ at which w′

1(x) = w′
2(x). The

uniqueness of X̄ follows from the strict monotonicity of g(x) as proved in Lemma 5.
In order to prove the second and third parts of the lemma, it suffices to show that w′′

1(X̄) >

w′′
2(X̄). Therefore, we compute

w′′(x) =
w′(x)

−x ln(x)
[1 + ln(x) + α((− ln(x))α − 1)].

From the previous discussion in Lemma 5, α1(− ln(x))α1 −α1 > α2(− ln(x))α2 −α2, and w′′(x) > 0
for x > 1

e
. Therefore at X̄ , w′′

1(X̄) > w′′
2(X̄). This concludes the proof.

E Proofs Pertaining to Weakest Link and Best Shot Games

Proof of Lemma 4:

Proof. Consider the function l2(x) , w′(x) − w(x)
x

for x ∈ [xmin,w, 1). At x = xmin,w, l2(x) =

−
w(xmin,w)
xmin,w

< 0. Furthermore, l2(1 − ǫ) → ∞ as ǫ → 0. Therefore, l2(x) must have a root for

x ∈ [xmin,w, 1).
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Suppose there exist z1, z2 with z1 < z2 such that w′(zi) =
w(zi)
zi

, i ∈ {1, 2}. Since w(x) is strictly
convex for x ∈ (xmin,w, 1], we have

w(z1) > w(z2) + w′(z2)(z1 − z2) = z1w
′(z2)

=⇒
w(z1)

z1
> w′(z2) > w′(z1),

which is a contradiction. Thus, z is unique.
For the second part, suppose that there exists an x > z at which w′(x) ≤ w(x)

x
. Again from the

convexity of w, we have

w(z) > w(x) + w′(x)(z − x) ≥ zw′(x)

=⇒
w(z)

z
> w′(x) > w′(z),

which contradicts the definition of z.

Proof of Proposition 8:

Proof. When there is a single player investing in isolation, we have three candidate solutions for
utility maximization, s1 = 1− V , s2 = 1−X or s3 = 1. Here X and V are solutions to w′(x) = c

L
,

as defined in Section 4. Note that since c
L

is finite, we have ∂Eu
∂s

> 0 at s = 0, so investing 0 in
security is not a utility maximizer.

From the analysis in Case 4 of Lemma 1 with s̄ = 0 and d = 1, we have Eu(1) > Eu(1 − V ).
Therefore, between the potential interior solution s1 = 1−V that satisfies the first order condition,
and the boundary solution s3 = 1, the player always prefers the boundary solution.

Now, to compare the utilities at the solutions s2 and 1, we compute

Eu(1)− Eu(s2) = Lw(1− s2)− c(1− s2)

= L(1− s2)

[

w(1 − s2)

1− s2
− w′(1− s2)

]

,

where c
L
= w′(1 − s2). Thus, from Lemma 4, when w′(1 − s2) =

c
L
> w′(z), then, 1 − s2 > z and

the player prefers to invest s2. Otherwise, the optimal investment is 1.
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