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Abstract

In this paper we propose a novel partition-based distribstate estimation scheme for non-overlapping sub-
systems based on Kalman filter. The estimation scheme igrdssiin order to account, in a rigorous fashion, for
dynamic coupling terms between subsystems, and for thertantty related to the state estimates performed by the
neighboring subsystems. The online implementation of topgsed estimation scheme is scalable, since it involves
(i) small-scale matrix operations to be carried out by thenesttir embedded in each subsystem andngighbor-
to-neighbor transmission of a limited amount of data. Wevigl® theoretical conditions ensuring the estimation
convergence. Reconfigurability of the proposed estimasictreme is allowed in case of plug and play operations.
Simulation tests are provided to illustrate the effectesnof the proposed algorithm.

I. INTRODUCTION

In many different engineering areas there has been, in thieykwars, a huge effort to develop algorithms
and protocols allowing a number of interconnected, pogssplatially distributed systems, devices, sensors, and
actuators, to operate cooperatively and to possess gglfimation capabilities. Notable examples include smart
grids [24], environmental monitoring systenis [[36], lagpale irrigation and hydraulic networks| [5], [18], and
multi-robot/vehicle systems [19], [20].

Related research on systems of systdms$ [30] or cyber-m@iysistems[[3] is nowadays fostered, pursuing several
challenges, including the design of hierarchical and ithisted monitoring and control systems with reliability and
robustness properties with respect to uncertainties,gihgrenvironment, communication failures, etc.

In particular, theoretically sound distributed monitgriand state estimation methods are necessary to allow for
optimal managing of sensor networks. As also discussederstinvey paper [32], two main classes of estimation
techniques for distributed smart sensing schemes arentlesader investigation. They are generally both referred

in the literature, to adistributed state-estimatioalgorithms. While a widely-considered problem concermsdhse
where the full state of the system is estimated by all subsyst e.g., based on consensus and diffusion strategies,
e.g., [22], [37], [11], in this paper we focus grartition-based estimatianThe latter consists of estimating, for

each sensor, only a part of the state vector of a system, ugimgnation transmitted by other neighboring sensors.
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This problem gives rise to low-order estimation problemessh in a distributed way, and is particularly useful
when the observed systems are large scale ones, e.g., petwarks [39], [23], transport networks [31], process
plants [38], and robot fleets [21].

Concerning linear discrete-time systems, recent corntabs include [[33], [[1/7], [[34], [[12],[1113],[129],[115],[[28]
[25].

Among these [ [38]/[17]/134]/[29] propose Kalman filtersked estimation schemes suitable for systems affected by
stochastic noise. The papers|[38],1[34] propose methodsdbas local Kalman prediction equations (and neglect
the dynamic interconnection terms) and on consensus stepscount for possible overlapping states between
pairs of subsystems. The paperl[17] proposes a two-step dfafitter, where the correction step is performed by
each subsystem based on local measurements, while theteditep is based on approximating the centralized
error process using a distributed iterate-collapse imyeralgorithm forL-banded matrices [16]. As in [38], [34],

a consensus step is used to optimally account for overlgpgtates. Finally, in([29], a prediction/corrector-based
method for multi-rate systems is proposed. It is worth rgptimat sufficient convergence conditions are provided
just in [34] which, in case of non-overlapping subsystenasid¢ally amount to the stability of the original system.
The paperd [12]/[13]/128][125] assume that the systemfiscs#d by bounded noise and guarantee, under suitable
conditions, convergence of the estimator and the fulfillbedrconstraints on local states, e.g.,linl[12], or estinratio
errors, e.g., in[13],128]/125]. Finally, [15] proposes approximated distributed filter based on the moving horizon
estimator studied in_[1]. A different - cooperative and atidre - approach based on Lagrange decomposition is
proposed in[[14], where continuous-time systems are censid

The conditions required for convergence of the estimat@sudsed in all the mentioned papers, where available,
(with the notable exception of [25]) require a centralizgdthesis/analysis phase which) [imits the application

to very large-scale systems anid) (requires a complete re-design in case of configuration gésrie.g., addi-
tion/removal of subsystems or sensors). On the other harf@5] the design phase (guaranteeing global properties)
is distributed, i.e., the state estimator embedded in eabbkystem is devoted to solve a local design problem. This
has paved the way to a plug-and-play (PnP) implementaltih [26], which confers flexibility, reconfigurability,
and reliability to the estimation architecture.

In this paper we propose a novel partition-based distribatate estimation scheme based on Kalman filter (denoted
DKF) for non-overlapping subsystems affected by stochastise. The estimation scheme is designed to account
for dynamic coupling terms between subsystems, and for icertainty related to the state estimates performed by
the neighboring subsystems. This is done in a conservativedbrous way by means of suitable covariance matrix
bounds. The online implementation of the proposed estimatcheme is scalable, since it involvésgmall-scale
matrix operations to be carried out by the estimator embgddesach subsystem and)(neighbor-to-neighbor
transmission of a limited amount of data. Concerning thegtéanalysis phase, we provide both centralized (both
with suitable linear matrix inequalities and with aggregamall gain-type arguments) and distributed scalable
conditions to be verified ensuring the estimation convergemhe latter are then used to provide a fully distributed

and PnP implementation of DKF. More specifically, distrémireconfigurability conditions are provided in case a
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subsystem is added to or removed from the network, and alsase PnP operations involve sensors.

The paper is structured as follows. In Secfidn Il we intragland motivate the distributed Kalman filter equations,
while in Sectior1ll we provide the main conditions for conyence. In Sectiop IV we discuss how DKF can be
designed in a distributed fashion and the resulting apipdiodor PnP operations. Finally, in Sectibh V the algorithm
is tested both on an academic example and on a benchmarktoase and in Sectiob Y| some conclusions are
drawn. All proofs are postponed to Appendix A for better raitity.

Notation
The symbols> and> are used to denote semi-definite positive matrices and tkefinsitive matrices, respectively.
The symbolsZ and.¥ are used for brevity to denote the Riccati equation updatettad optimal Kalman predictor
gain, respectively, i.e.,

#(P,AC,QR) = APA" —APCT(CPC' +R)"!CPA" +Q

Z(PACR = APC(CPCT +R)™!

whereP, A, C, Q, andR are matrices of appropriate dimensions. Finally, the caldy of a set./" is denoted

with || and the spectral radius of matriis denotedo(A).

[I. THE DISTRIBUTED KALMAN FILTER
A. Statement of the problem
ConsiderM interconnected systems, each described by the followingténs:
Xi(k+1) = Aixi(k) + 3 4 Aijx; (K) +wi (k)
yi(K) = Cixi (k) +vi(k)
wherex; (k),w; (k) € R andy;(k),vi(k) € RF.. We assume that; (k) andv;(k) are zero-mean white noises, for all
i=1...,M, and that]E{wi(k)ij(k)} =Qidj, E{vi(kvj(k)} =R &; (with R >0 for all i =1,...,M), and that
]E{Wi(k)va(h)} =0 foralli,j=1,...,M, andh,k > 0. Fori € {1,...,M}, we define with.4 the set of neighbors

1)

(also denoted predecessors|in|[26]) of subsystefefined as# = {j|Aj # 0} while .% is the set of successors
of subsysten defined as¥; = {j li € JV,} In our setup we assume that subsystecan exchange information
with its neighbors. Note thatis in general included in”; and 4.
Collectively, if we define the variablegk) = (x1(K),...,xm(K)), y(K) = (y1(K),...,ym(K)), w(k) = (w1 (K), ..., wm (K)),
andv(k) = (vi(k),...,vm(k)), we can rewrite[{1) as

x(k+1) = Ax(k)+w(k)

y(k) = Cx(k) +v(k)
whereC =diag(Cy,...,Cu), Q =diagQs,...,Qm), R =diag(Ry,...,Ru), and

)

A1 ... Am

Avi ... Aum
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The optimal centralized Kalman predictor [6] for systdmh i)
Xe(k+1) = Ac(K) + Lc(K) (y(K) — Ce(K)) 3)

whereX¢(k) denotes the one-step optimal predictorxgk). According to the classical Kalman prediction theory,
the optimal gain is

whereN¢(k) is the centralized Kalman prediction error covariance mand is computed iteratively using the

Riccati equation
nc(k"' 1) = %(HC(k)aAa Ca Qv R)

= (A—L(k)C)M¢(k)(A—L(KK)C)T +Q+L(kRL (k)T ©

B. Distributed prediction scheme

As clear from [(B){(b), the optimal centralized Kalman prtdi for system[({P) is based on the iteration of the
Riccati equation[{5), which requires a global knowledgehef $ystem and, in general, leads to a matrix gain which
has not the sparsity properties of the dynamic system @fanatrix A).

In contrast, in this paper we seek for a distributed obsémplementation, meaning that) @t most data originated
by neighbors are used by the local observers, to reduce tmenooication load of the schemdi)(information
about the model of the overall system is not required to beedtby each local observer, but at most information
concerning the neighboring subsystenis) the computational load required by each local filter is aiok.
In line with this we propose an estimation scheme of the type

Si(k+1)= 5 {Aj%i(k)+Lij(K)(y; (k) —Ci%j(K)) } (6)

JeM

where

Lij (k) = Aij Py (K)IC] (CiP; (KCf +Ry)~*. 7
The matriceR (k), i =1,...,M are updated according to the following distributed equmatio

R(k+1) = Sjes (AiPIOAT - AR (CT @
(GPKET +R)ERAT ) +Q
where, for alli, j=1,...,M, we have define&ij = /GA;j, G = VGG, andR = GR;, whereg = |-#]. Note that[(¥)
and [B) are equivalentta; (k) = .2 (P; (k), Aij,Cj,R)) = Z (P (K), Aij ,Cj,R)) andRi (k+1) = 5 4 2(P; (K),A;,Cj, 0,Ry) +
Q = Yje.x GZ(Pi(k),Aj,Cj,0,R) + Qj, respectively.
Equation[(6) is distributed, i.eLjj # 0 only if Ajj # 0. Therefore, the computation bf; can be done distributedly
and communication is required between local state estimatb dynamically interconnected subsystems only.

Concerning the scalability of the algorithm observe alsa,tfori € {1,...,M}, subsystem permanently stores in

memory only the matrice®;, R, Ai, G and, forj € .4, Ajj, Cj andR;; on the other hand, the information which
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must be transmitted and temporarily stored at each time atepists ofyj, X;j, P}, LJ-F for all j € 4. The DKF

algorithm is formally described in Algorithm 1.

Algorithm 1 DKF algorithm
Memory requirements

Fori € {1,...,N}, subsysteni stores in memory
- PermanentlyQ;, R, Ai, Ci, {Aj,Cj,Rj;j € A}
- Temporarily, for eactk > 1, {y;(k),%;(k),P;(K),Lij (K); j € A};

On-line implementation
At each time stefk > 1 subsysteni:
1) Measuresyi(k)
2) Broadcasts to its successors the quantijjés), Xi(k), andP (k);
3) Gathers from its neighbors the informatidw; (k), % (k), Pj(k); j € A };
4) Computes the gainéLij(k); j € 4} as in [7);
5) Computes the estimate(K+ 1) and the matrix® (k+ 1) as in [6) and[(B), respectively.

C. Main properties

Let us definex(k) = (%1(K),...,%u(K)), and the distributed filter estimation errefk) = x(k) — X(k). From [2)
and [6) we obtain that
e(k+1) = (A—-L(k)C)e(k) — L (k)v(k) +w(k) 9)

whereL (k) is the matrix whose block entries alg (k). Let Mg (k) =var(e(k)). From [9) the following is obtained.
Ma(k+1) = (A —L(K)C)Mg(K)(A —L(K)C)T —L(KRL(K)™ +Q (10)

The following result can be derived.
Lemma 1:Assume that the paifA,G) is stabilizable (wher€&6G' = Q) and that there exist symmetric matrices
P >0,i=1,...,M such that

R> 5 2(P.A;.ClL0R)+Q, (11)
i&n

foralli=1,...,M. Foralli,j =1,...,M, let Lij = £(P;,A;j,Cj,R;) and letL be the matrix whose block entries
are Eij. Then, the matrixA — LC is Schur stable. O
Thanks to Lemmall, aimplified versiorof the DKF Algorithm 1 can be devised: assuming that eachysibm
i stores in memory matri®}, i = 1,...,M, with property [Z1L), then it is sufficient to sét(k) = R and Lij (k) =

Lij =.2(P,,Aj,Cj,R)) for all k to guarantee that the estimation erggk) is a stationary process. Therefore, the

June 14, 2021 DRAFT



error covariance of this modified scheme is asymptoticatigvergent to a bounded definite positive matrix, i.e.,
limy_,., Mg(K) = Mg for some positive definite matrik.

In case the Algorithm 1 is implemented, under the assumptiahthere exist steady-state solutionsofR8) 0,
i=1,...,M, the next result can be proved.

Proposition 1: Consider the DKF Algorithm 1. Assume th8{(1), i =1,...,M, are such that there exisBswith
the property that

lim R(k) =PR. (12)

k—00
Let |5:diag(l51, e P_M). Then, there exists a positive definite matfly such that lim e Mg(k) = Mg andMy < P.

]

Note that, under the validity of (12), then in steady stateditions also [(Il1) is verified. Therefore the DKF
Algorithm 1 provides a stationary equation error; also,p@sition[1 states that, fdr=1,...,M, matrix P plays

the role of an upper bound of the covariance of the prediatioar X (k) — Xi(k) in steady state.

Observe that Lemnid 1 and Propositidn 1 require the existehemtricesP, i = 1,...,M, such that either property
(@) or property[(IR) are satisfied. However, differentlgnir the centralized Kalman filter, these properties are not
guaranteed by standard detectability assumptions on tteray

In this paper we provide conditions under which these ptgsecan be verified. In particular, in Sectionl 11l we
discuss the conditions allowing the application of ceiteal design procedures while, in Sectlod IV, we provide
a distributed design procedure.

We conclude this section with a couple of remarks.

Remark 1:Consider the DKF algorithm and assume thaf (12) holds treeM; be the steady-state covariance
of the prediction error for the centralized Kalman filter.\@usly, if Mg(1) = M¢(1) thenN¢(k) < Mg(k) for all
k>1.

Remark 2: Assume that[(11) holds true and consider #implified DKF algorithmdescribed after Lemmid 1.
Then, also in this case, the asymptotic covariance of thdigtien errorx;(k) — X (k) is upper-bounded by the

matrix P.

Ill. CENTRALIZED DESIGN

In this section we address the problem of providingoonditions that can be used to guarantee a-priori the
validity of properties[(Il1) or[(12) andi) practical methods for computing them. First, in SecfidpAlwe will
analyze[(Il1) through a linear matrix inequality approa&tosdly, in Sectiof TlI-B we will provide an aggregate

design procedure, based on small gain arguments, to gearfIR)

A. Design using LMI's

In this section we provide a practical method based on LMiisdomputing, if possible, matrice® verifying
(11). Then, as already highlighted, if we $&tk) = P, for all k and for alli = 1,...,M, then it is guaranteed that

this simplified version of the DKF algorithm has suitable wengence properties in view of Lemrha 1. Also, its
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suboptimality features are discussed in Renfark 2.

Using LMI's we aim to compute (see Lemma R) i = 1,...,M verifying

R> 5 (APA] - APC(CPCT +R) 'CPA]) +Q (13)
i&x

Provided thaiP_j is non singular for eachi € .4{, the algebraic inequality (13) is equivalent to

PR >3 AjPi(P+PCIRICiP)PAL +Q

LV (14)
> Yjen A (P +CIRC) A +Q
thanks to the application of the matrix inversion lemma.gumdity (I14) can be cast as the following LMI
R Aid ... Awbum Gi
* AV 0 0
>0 (15)
* 0 JAYY! 0
| * 0 0 | ]

whereG; is defined in such a way théiiGiT =Qjand, forallj=1,...,M, Aj > (P_J-’1+(§J-TI§JT1(§J-)*1. If we define

Q= P_J-’l, the latter inequality can be written as

A I
R = (16)
I Qj+C/RC
Finally, the equalityQ; = P_J-‘1 can be managed using the recursive approach proposed imdeled, we solve the
following LMI
Qj |
_| >0 17)
I P

and, at the same time, we minimize the additional cost fundni{QjP_j}. The problem can be managed using the

recursive cone complementarity linearization algorithistdssed in[[9].

B. Design using small gain arguments

In this section we investigate conditions ensuring theditgliof (12). In particular, the following result addresses
the offline design issue providing an aggregate and liglgiateanalytical condition, which relies on small-gain
arguments. First, the following assumption is required.

Assumption 1:For subsysteni, A; is invertible. O
We will also need one of the following assumptions for prdyénitializing P(1) for the implementation of
Algorithm 1.

Assumption 2:For subsysten

() (Ai,G) is detectable;
(i) (Ai,Gi) is stabilizable, wher&; verifiesGiGiT =Q;
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Assumption 3:For subsysten
() (Ai,G) is detectable;
(i) (Ai,G) is stabilizable;
Note that, while AssumptioQl 2 is required to define, for a gigabsysten, F7iN as the unique semi-positive definite
solution to the local Riccati algebraic equatigh = 2 (PN, Ai, G, Qi,R), Assumptiori B allows to definéN as the
unique semi-positive definite solution B = Z(PN, A;,G,Q,R)).

Let us now define full ranky; arbitrary transformation matriced;, i =1,...,M, i.e., H; € R"*" (introduced
for reducing, if possible, the conservativity of the resudtated next) and gairls, selected in such a way that
Fi = Ai — LiG is Schur stable. Define al$o = HiFH, ! andAjj = HA; Hfl, forall j =1,...,M. Finally we define

r_{y.,-_oz N if =i
Wi = Tz IAGARHE i
Scalarsy; > 1, A € [0,1) are defined in such a way thgE"|| < wA". We introduce a further assumption.

Assumption 4:For some values of;, H;, (i) o(F) <1 foralli=1,...,M, and (i) o(T") < 1.

Note that, a necessary condition for the existence of maﬁ;ri;guaranteeing thaU(lf.) < 1 is that (Aii,éi) is
detectable, i.e., Assumptidn 3; therefore, the latter iglicitly required by Assumptiofl4.

Theorem 1:If Assumption[1 holds for alli = 1,...,M and under Assumptiohl 4, there exBt> 0 for all
i=1,...,M such thatP (k) — P_I ask — o if one of the following initializations is used:
a.R(l)=0foralli=1,...,M.

b. R(1) = PN if Assumption2 holds for all = 1,...,M.

c. R(1) = PN if Assumption3 holds for all = 1,...,M. O
Regarding Assumptioh] 4, provided that Assumpfidn 3 (i) isifiesl, it is always possible of find; such that
o(F) <1 foralli=1,...,M. Note that, in case the system has a cascade topology fiieadmits a lower - or
upper - block triangular form[[33]); is block triangular, and therefore Assumptidh 4 can be yasitified.

On the other hand, for more general system structures, wet teeeetrieve a suitable “decentralized” change of
coordinates and, at the same time, a suitable “auxiliargedéalized linear observer, for whicm(lfl) < 1 for all
i=1,...,M and the corresponding matrlx is stable. This amounts to a design problem, which can be faast

example, as the following optimization.

min o(l 18a
{Hial—i}iM:;L ( ) ( )
subject to the definition off and to
olMN<1 (18b)
oR)<1i=1,....M (18c)

To reduce the computational load bf{18) the valueblo€an be constrained. For example, one can try to minimize

the termsy; by constrainingH; to take values corresponding to whiBh= HiF_.Hf1 is diagonal (provided tha is
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diagonalizable and has real eigenvalues), or one cahisetl,. The optimization[(I8) is nonlinear, and therefore
a suitable initialization is fundamental, for example stitey F as the Kalman predictor gains.
To reduce the computational complexity and to allow for tidxiand reliable operation, in next Section we provide

a distributed and scalable design procedure to be applieddit subsystem level.

IV. DISTRIBUTED DESIGN AND PLUG AND PLAY FEATURES

In many practical applications, it is of interest to perfottme design of the DKF in a distributed fashion, i.e., to
have a set of conditions to be verified locally by each sulesyspossibly using pieces of information provided by
the neighboring subsystems.

Focusing on the main assumptions of Theokém 1, while Assiomgifl and¥ (i) are local conditions, to be verified

at a single subsystem level, Assumpt[dn 4 (ii) is centrdlifalthough aggregate), since it involves information

concerning the overall system. We now introduce the foll@rassumption, providing a conservative, yet distributed
and very simple, condition, that must be verified at a singlesgstem level by each subsystem, that implies the
Schur stability ofl", as proved in Propositidd 2 stated below.

Assumption 5:For alli=1,...,M and for some values df;, H;, it holds that

M
=1
Proposition 2: If Assumption[$ holds, then Assumpti@h 4 (ii) is verified. O

As it will be shown in the remainder of the section, this réslibws for PnP operation. The PnP scenario consists
of the case when one or more subsystems (each describEt) lmy levices (and specifically a transducer) is added
to or removed from the interconnected system.
Before to proceed, the following standing assumption dedsstenario where PnP operations take place, assuming
that the PnP event occurs at time instkat Tppp.

Assumption 6:
- For k < Tppp, Assumptiong ¥4 ()15, and 1 (for all=1,...,M) hold.
- At k= Tppp the updated{8) are in steady state, iR(Tpnp) = P for all i = 1,...,M. O
It is important to remark that, when PnP operations invajviubsystems take place, the number of successors,
for some subsystems, may change. Denote with the set of successors of subsysteafter the PnP event and
G" =1]"|. In general it holds that;" # ¢. From this, it also follows that the matriceﬁsj, G, andR must be
redefined, i.e.,&ﬁ = /G A} = \/?A'J Cr=.\/¢'C= %CN:, andR" = ¢'R = %F?. Importantly, in case
G" > g, this may prevent the detectability of the péﬁ:ﬁ,éﬁ) to hold, which may jeopardize the verifiability of
Assumptior# (i). We also assume thétandL; are not redefined, far=1,...,M after the PnP event. From this
it follows that, for alli,j = 1,...,M, |Af(A;) 7] = |AjA .

A. Plug-in of a subsystem

Assume that, at stefpnp, the subsysteniM + 1) is introduced. For each=1,...,M
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10

o if i € Ari1UMasa, theny,g) =0. Also, sinceg = g, R =F, thenp”™ = i and A" = A;. In view of
this, " = 310 = Sikavi =p <L

o if i € Aus1 buti € i1, theng' = g: Thereforelfi+ =F, 't = pi, andA;" = A;. However, sinceM +1€ .4,
V1) > 0. Thereforep” = S5ty = i+ ¥y g > i

o if i € May1 bUti & Aui1, theny,q) = 0. However,g" = g +1 and thereford " = /G + 1(Aj — LiG) =
/(G +1)/GF may not be Schur stable. B is stableu" = i but, at the same timey" = /(g + 1)/GA; >
Ai. In view of this i = (1—-A?)/(1—A;"2)y; for all j=1,...,M. Thereforep,” = (1-A2)/(1—A"?)pi > pi;

e i €.%:1N s 1, the Schur stability of* is not guaranteed. IF* is Schur stable, we can compuypg =

SIav+ Yimsa) = (1-2A2) /(1= A"2)pi+ Yim;1) > Pi, in view of the fact that bottd" > A andyj, ;) > 0.
The design olLy.1, Hu,1 can be addressed through the following optimization proble
i + A
HMIT,'PM+1 Pvt1t » M+1yj(M+1) (20a)
subject to:
0(Fus1) <1 ppag <1 (20b)
+ 1- )‘1'2 ;
Yimen) < 1-— ij for all j € Avs1 (20c)

i
When a plug-in request is received from subsysidnt 1, the following design procedure must be adopted: (i) if

(20) admits a solution and if, for aile A1, o <1 anda(lf.) < 1, then allow the plug-in, otherwise deny it;
(i) properly initialize Py1(Tpnp).
The following corollary of Theorerhl1l addresses the stepafiijl guarantees convergence of the system matrices
R(k), k=1,...,M+1 to steady state solutions.

Corollary 1: If Assumption1 holds also far=M + 1 and if, after the plug-in event, Assumptidds 4 (i) ahd 5 are

verified, then there exig®" >0 for all i = 1,...,M such thatp (k) — P ask — o if the following initialization
is used:R(Tppp) = P for all i = 1,...,M and (a)Ru.1(Tprp) = 0, or (b) if Assumptior P holds for = M + 1,
Pv+1(Tenp) = FT'h}+1, or (c) if AssumptioriB holds for=M+1, Bu;1(Tpnp) = I:N’h'),‘H. O

Note that the initializations (b) and (c) limit possible wsitable transients on the state estimates. Note also
that, at the(M + 1)-th subsystem level, to solvé(20), the required data cbirsi¢) the local system matrices
(AM+1)(M+1),Cm+1), (if) the numbergy .1 of successors of subsystevhy1, (iii) Agy1)j, Ajj, Hj forall j € A1,

(iv) (1—/\j2)/(1—/\j+2)pj, Ajm+1), Hj forall j € #m1. Itis therefore clear that this local design problem reegiir
the transmission of a limited amount of information, i.@rough a neighbor-to-neighbor communication graph.
Also, remark that the optimization problefm {20) is a nordinene; to simplify it, an efficient strategy amounts,
for example, to definély, 1 as the matrix such thaky, 1 is diagonal (i.e., in casBy, 1 is diagonalizable and has
real eigenvalues), makingy.1 depend upony.1, or simply settingHv1 = In. In this way we can reduce the

number of free variables of the problem.
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B. Unplug of a subsystem
Assume that, without loss of generality, at stRpp, subsystenM is unplugged. Note that,
o if i g AU, thenp™ =My =My = pi < 1
o if i € A buti g A, thenp" = 3y = pi—ym < 1
« if i € A1 buti ¢ Ay, theng™ = g — 1 and therefor€& " = /(g — 1)/GF. From this it follows thagst = 1 but,
at the same time);" = /(G —1)/GAi < Ai. Also i = (1—A?)/(1—A"?)y; for all j =1,...,M. Therefore
P =(1-2D)/(1-A"?)pi < p;
o i €SN, it follows thatp” = 3M v = (1-A2)/(1— A7) (pi — yim) < pi, in view of the fact that both
AT <A andyy, =0.
In view of this, since Assumptiond 5 ahtl 4 (i) hold before thelug event, then they are guaranteed for the system
deprived of theM-th subsystem. Therefore, any unplug request can be acgegthout hampering the convergence
properties of the estimator.
The following corollary of Theorerml1 guarantees convergasfche system matricd3(k), k=1,...,M —1 to new
steady state solutions.
Corollary 2: After the un-plug event, there exi§p+ >0 foralli=1,...,M such thatR (k) — P_fr ask — oo if

the following initialization is usedB (Tpnp) = P for all i = 1,....M—1.

C. Plug and play of transducers

In many practical applications, the sensors embedded irbgystem can be added, removed, or replaced. We
consider that changes occur to fileth subsystem for simplicity, but without loss of genesalRractically, this case
consists in a change in the mat@ (and, consequentlfy), while the topology of the system and its dynamics
remain unchanged. Therefore, for &l M, p;" = pj, sincep;, i # M, do not depend o€y, but only on matrices
A;j and on the number of successors, which remain unchanged.

On the other hand, focusing on subsystism

« if a transducer is plugged in, this consists of adding a rogréldenoted,qq) to matrixCy, i.e.,

|

Cadd
This means that the detectability properties of the pghisCi) and (A;i ,Ci) are not jeopardized by the plug-in
event. Also, ifHy remains unchanged and if we talzﬁ = [EM o}, then py; = pm. This means that the
addition of a new transducer does not compromize the coemergproperties of the DKF scheme.

« if a sensor is replaced or unplugged, this consists of a antiat variation of the matriCy. This means that,
before to allow the PnP operation, one must verify the emisteof a gainLy such that the following are
verified: (1) Schur stability of; (Il py < 1. Concerning the latter, note thiely should remain unchanged,

in order not to affect the values @, i # M.
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In the case considered in this section, however, it is narckeow the PnP operation impacts on the values of
the matriceR(k), i =1,...,M. In order to guarantee the convergence of the matf@gg to a steady state, the
following practical procedure can be adopted, suggeste€dupllaries[1 and]2: (a) fok > Tppp, make R (k),
i=1...,M—1 evolve as if subsystermM were unplugged; (b) after convergence is achieved (saynsiant
Teony) MakeR(K), i=1,...,M, k> Teony €VOlve as if subsystervl were plugged-in at tim8cony, i.€., by setting

P (Teorv+ 1) = R(Teony), i = 1,...,M and Pu(Teonv+ 1) = PY.

V. SIMULATION RESULTS

In this section we provide some simulation results illustigathe application of DKF to two different examples,

an academic one and the Hycon2 benchmark described in fjectively.

A. Academic example

In this section we consider a system composed of intercaedestibsystems. We set

09 01
Ai = and  G=[1 1
01 —09

and, for all j € 4, Ajj =diaga, —a), wherea > 0. Also E [wiw | = Qi =1, andE [viv| | = R = 1 wherel, is
the 2-dimensional identity matrix.

1) Dependence on coupling and centralized design:
First consideM = 2, with .41 = 45 = {1,2}. In Figure[1 we show the relationship between the couplingngth
a € [0,6.5] and {) the spectral radiug(I") of matrix I'; (i) the spectral radius oA — LC obtained through the
LMI-based design procedure sketched in Sediion1lI-A. Tatéet procedure has given numerically reliable results
for a <6.5.
To realize the upper plot, two different choicesHf are adopted: (I) such th&,1 is diagonal; (I)H; = I, for
alli=12. As it is apparent, the spectral radiuslofloes not significantly vary in the latter cases.
In both cases it is apparent that the small-gain procedwetels&d in Sectioh III-B is applicable when the coupling
strength is sufficiently small. Also, from the lower paneisitapparent that (') < 1 is just sufficient to guarantee
thato(A—LC) < 1.

2) Plug and play scenario:
Now, assume thal =3 anda =0.1. At timet =0, .4 = 45 = {1,2} and .43 = {3}, i.e., subsystem 3 is not

connected with the network. In this case

0 01334 O
= 101334 0
0 0 0

Therefore, we have that; < 1 fori=1,23.
At t =100 subsystem 3 plugs in and connects with subsystem 2. Meafially .41 = {1,2}, 45 = {1,2,3},
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a(r)
50

=
©

Fig. 1. Upper panel: values af(I") as a function ofx (settingH; such that5 is diagonal - dots; settingl; = I, - circles); lower panel: values
of 6(A—LC) as a function ofa.

and .3 = {2,3}. In this case
0 0.1334 0

IN'=10.1535 0 01535
0 0.0976 0
The plug-in request is accepted, simge< 1 fori=1,2,3.
Finally, att = 200, subsystem 1 unplugs, meaning th&t = {1} and .45 = .43 = {2,3}. As discussed in Sec-
tion [\V-B] the unplug request is automatically acceptedit s witnessed by the values taken by the entriedon

in this case:
0 0 0

=10 0 01334
0 0.0976 0
In Figure[2 the state trajectories are depicted, showingdifferent collective dynamical behaviours taken in

correspondence with the different graph configurations.

In Figure[3 the trajectories of the root mean estimationrsrrmse= /1/nsy =, [[xi(t) — Xi(t)[|? for all subsys-
tems’ states are depicted, showing that, in view of the propegrix initializations, when plug and play operations

occur the estimation error does not suffer from undesirghlesients.

B. Power network benchmark

In this section we consider a power network system includingumber of power generation areas coupled
through tie-lines. This system has been adopted also InjB8}e the authors proposed a partition-based distributed
estimation scheme tailored to power networks applicatemgd exhibiting promising numerical results (although

without any theoretical guarantees).
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1000 / -2000
0 50 100 150 200 250 300 50 100 150 200 250 300

Fig. 2. State trajectoriesq i denotes thé-th entry ofx;.

Subsystem 1

0 i i d i i j
50 100 150 200 250 300

Subsystem 2

50 100 150 200 250 300
Subsystem 3

0 i i i i h j
50 100 150 200 250 300

Fig. 3. Root mean estimation error for each subsystem, mddfaivith DKF - solid line - and centralized KF - dotted line gtlines are

practically overlapping).

Our contributions are two-fold: firstly, in Sectién V-B1 wempare DKF with the centralized Kalman filter and
the distributed strategy proposed in][29]; secondly, intisa@~B2 we test the PnP features of DKF in case a new
subsystem is plugged in the network during its operation.

The dynamics of each power generation area, equipped wiithapy control and linearized around the equilibrium
value for all variables, is described by the following cantus time LTI model[[27]

%i(t) = Ajxi(t) + Bfu + LFAR, + 5 AfjXj (21)

jen
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wherex; = (A6, Aw, APy, AR,) is the statey; = ARy is the control input of each area, an#; is the local power

load. Note that the letteh is used to denote the deviation from steady-state. The ceatof system[(21) are

0 1 0 o0 0
O R S R
0 0 —T—}i % 0
0 —R#gi 0 _%. %

0 0 0 O 0

a6 A 0 0 0 T —
0 0 0 O 0
0 0 0 O 0

where the parameters and their numerical values are definf&f]. Since botM\Pef, andAR,; are assumed to be
constant and known, for the sake of simplicity, we negleetritfrom our analysis.

We discretize the proceds {21) with a sampling intefivalccording to the technique proposed(inl[10], leading to
the discrete-time mode[l(1) where the matriégs Ajj can be easily constructed frofn{21). The ma@ixis

1 0 0 O
Ci pr—
01 0 O
Forie{1,...,M}, E[ww ] =Q =3ls andE [viy] | = R =, wherel, is thek-dimensional identity matrix.
1) Comparison test:

In this section we consider the scenario 1[in|[27], whigre- 4 and where the adjacency matéd, defining the

neighboring relationships between areas, is

Ad

0
1
0
1

o B O O

1
0
1
0

o O +» O

namely,Ad; # 0 if and only if Zi,ji £ 0. In Figure[Z we depich; and its estimaté\d; generated by the DKF
algorithm.
In Figuredd anf{l6 we compare the performance of DKF algorithith that of the centralized Kalman predictor

and of the distributed strategy proposedinl [29]. In Figureebplot the normalized estimation erret) defined as

e(t) = 71M|\x<t> ()|

for the first 100 iterations. In Figufd 6 we pleft) fromt =30 up tot = 100 (i.e., in stationary conditions). In

the Tabld V-B1 we report the average value of the estimatioor @valuated between iteration 30 and 100.

Centralized| DKF | Strategy in [29]
Error Mean 13.74 14.08 17.21
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I I I I I 1 1 I I
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Fig. 4. Trajectory ofAf; (blue line) and its estimate (red line), obtained with DKF

300

250F —DKF
—strategy in [29]

—centralized Kalmjh

150 il

100!

501 q
0 L ! h Y ! n T
0 7

40 50 60
Iterations

Estimation Error

Fig. 5. Trajectory ofe(t) obtained with DKF (red line), with a centralized Kalman potor (blue line), and with the method proposed|inl[29]
(black line), witht € [0,100.

Notice that the performance of DKF algorithm is quite closehe performance of the centralized Kalman filter
and that it outperforms the performance of the strategy @. [Rdditionally Assumptio 5 is satisfied withH; = I4.

2) Plug and play scenario:
In this section we consider a PnP scenario. Specifically waras that at time step 50 a new area (i.e., area 5) is

added to the power network, and that, in particular, it getsnected to area 2. Again the values of the parameters

50F —DKF
—strategy in [29]

—centralized Kalmjh

Estimation Error

Fig. 6. Trajectory ofe(t) obtained with DKF (red line), with a centralized Kalman potor (blue line), and with the method proposed|inl[29]
(black line), witht € [20,100.
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—centralize:
—DKF

N
o
=)

1001

Estimation Error
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Fig. 7. Trajectory ofe(t) obtained with DKF (red line) and with a centralized Kalmaedictor (blue line) in the PnP scenario.

defining area 5 can be found in_[27]. The adjacency matrix rilEag the interconnections after step 50 is

01 0 0O
1 01 0 1
Ad=|10 1 0 1 O
0 01 0O
01 0 0 O

In Figure[V-B2 we depict the behavior of the estimation efimrboth the centralized Kalman filtering algorithm
and DKF. Observe that, also in this plug and play scenarigpiiéormance of the DKF algorthm is comparable
with that of the centralized Kalman filter. As expected, wizenew area is added to the network the value(of
increases mainly due to the poor estimation quality corniogriine state of the area 5. However, after few iterations

the value ofe(t) settles around a value which is comparable to its value befue addition of the new area.

VI. CONCLUSIONS

In this paper a novel partition-based distributed obsepasied Kalman filter, named DKEF, is proposed. The main
advantages of the discussed state estimator grecdlability, in terms of both computational and commuticca
loads required for the online operations) the convergence properties can be proved under mild dondit(ii)
distributed and plug and play design are allowed. In fadtpndy centralized (although aggregate) but also distetut
conditions for estimation convergence are given, whichf@oreconfigurability to the proposed estimation scheme.
Simulation tests are provided to illustrate the effectesnof DKF. For example, we have considered a well-known
benchmark example, proposed in the framework of the Hycafe&t. Future work include the application of

DKF to a real test case, e.g. smart grids.

APPENDIX

The following preliminary result is needed for the proofsbafth Lemmdll and Propositidn 1.
Lemma 2:Define P(k) = diag(P.(Kk),...,Pu(k)). If R(k) i=1,...,M are updated according tbl(8), then

P(k+1) > Z(P(k),A,C,Q,R). 22)
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Proof of Lemmal2
SinceP(k) is block-diagonal define

PF(k) = P(k)—P(k)CT(CP(k)CT +R)1CP(k)
= diagPf (k),...,P; (k)
where
R" (k) = R(k) — R(KC' (GR(KC' +R)'CiR(k) >0 (23)

foralli=1,...,M. Furthermore, it holds that
APF(KAT +Q < diagPy(k+1),...,Ru(k+1)) (24)
where

M
R(k+1)= Zc,—/squf<k>Aﬁ+Qi (25)
=

which is equivalent td{8). Inequalitf/ (R4) can be proveddalivs. Define a vectov = (vy,...,vm), wherey; € R™
for all i =1,...,M. We compute thav" APF (k)ATv =

S ALV

[EihilViTAil zg\ilViTAiM} P" (k) (26)
SH ALY

= 4 (Zi'\ilwﬁ Z!wzlwij)
wherewjj = \/% -iji. Remark thatwij = O identically iff A;; =0, and that the number of nonzero vectors
w.; is equal tog;. We compute thaf M, wi M wij = 5, o o Wi wsj. Note that, sincejwsj —wj |2 > 0, wfjwsj <
B whj W) Therefores o, WijWej < 3 e (W 17+ 112) = G Bicr, I 1= Sicr, 1M1 0 -

From this, it follows that
Y (Zg\ilwﬁ Zi’\ilwij) <yt ||Vi|\§jA”ij(k)Aﬁ
<M jjy112
= 2=alv ”Z?’Llcﬁi"f(k)/ﬂ
= vTdiag 31 GiALPF (KAT, -, 311 AW PE (K)A; v
from which [24) readily follows. O

Proof of Lemmall

From LemmdZR, one has that
P>(A—LC)P(A—LC)T+Q+LRLT (27)

where the block entries df are Eij = ,%(P_J-,Aij,Cj,Rj), which is equivalent td = Z(I;,A,C,R). The latter
follows from the fact thal = Adiag(L},...,LF,), where diagLf,...,LE) = PCT(CPCT +R)~1, which is block-
diagonal in view of the block-diagonality o, P, andR. Assume, by contradiction, th&A — I:C) is not Schur
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stable. Therefore, there is at least an eigenvalue/eigémvgair A ,v of (A —LC) such thatA —LC)Tv=Av and
|A] > 1. From [27)
VIPv> VI (A—LC)P(A—LC)Tv+V Qv+ VILRL v

from which it follows that(1— |A |2)vTPv > vT Qv+ VT LRLTv. Since the right hand side of the latter inequality is
>0 and|A| > 1, the only possibility is thatA| = 1, vVQv =0, andLTv= 0. In view of this,ATv=v andGTv
should hold at the same time which, recalling the PBH tesin isontradiction with the assumption that the pair
(A,G) is stabilizable. This concludes the proof of Lemnia 1. O

Proof of Propositior 1L

As a preliminary step, we show that, f4(1) < P(1), thenTy(k) < P(k) for all k > 0. This can be proved
using induction arguments. Assume that, at inskauit holds thatM4(k) < P(k). Recalling Lemmé&]2, we have that
P(k+1) > 2(P(k),A,C,Q,R), where Z(P(k),A,C,Q,R) = (A — L(k)C)P(k)(A —L(k)C)T + L(KIRL(K)T +Q.
From this and[{10) it results that

P(k+1) —Mg(k+1) > (A —L(K)C)(P(k) — Mg (k))(A—L(kK)C)T >0

ThereforeMg(k+ 1) < P(k+1). By applying induction arguments, we can prove thia(k) < P(k) for all k> 0.
If P(k) — P ask — o, thenL (k) — L such that, in view of Lemmid 3 — LC is Schur stable. Consider the evolution
of matrix Mg(k). From the stability ofA — L C, theng(k) — Mg, for all initial conditionsMy(1), whereMy is the
unigue solution to the Lyapunov equatibla = (A —LC)Mg(A—LC)T+Q+LRLT. If we setMy(1) = 0, from the
preliminary result therilgq(k) < P(k) for all k>0 andMy < P. Noting thatf is the unique steady-state attained

for all possible initial conditions the proof is concluded. O

The proof of Theorerh]1 heavily relies on classical result&atman filters, e.g.,[14],[12],[16],[[8]. Similarly to
well known results on the discrete-time Riccati equatior,veed two intermediate results.
Lemma 3:1f PA(k) > PB(k) for all j =1,...,M, thenP?(k+1) > PB(k+ 1) whereR*(k+1) andPB(k+1) are
the matrix evolutions, obtained withl(8), starting frd?ﬁ(k) and PjB(k), respectively.
Proof: Note that we can writd {8) as
Rk+1) = 3™, (A; —LijKC))P(K)(Aj — Lij (K)C))T
+Lij (ORjLij (k)T +Q

(28)

where, according to the classical Kalman filter thedry(k) = .2 (P;(k),A;j,Cj,R;) minimizes the term(A;j; —
Lij (K)C))P; (k) (Aj — Lij (KC))T + Lij (KR;Lij (k)T for all i,j = 1,...,M. Therefore, consider the matric®$, P2,

whereP” > PP for all i = 1,...,M, and optimal the gains{} andLf corresponding tP” and PB, respectively,
then for all j, (A —LEC))PE(A; —LEC)T + LERj(LE)T < (A — LAC)PP(A; —LAC)T + LR (L) < (A —
LAC)PAA; — LAC)T + LAR; (L), and the proof is concluded. D [

Lemma 4:If Assumptiong (for ali = 1,...,M) and[4 hold then, for alR(1) > 0i=1,...,M, there exisPMAX
for alli=1,...,M such that? (k) < PMAX for all k > 0.
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Proof: An alternative formulation of[{8) is
R(k) =PR"(k) +8i(K) (29)

where B-(k+ 1) = AiPF (KA +Q = (Ai — Li (KIC)P.(K)(Ai — Lii (K)C)T + Li (WRLT (k) + Q and Aj(k+1) =
3 i AjPF ()AL, being P (k) defined in [2B). In view of Assumptidnl 1, we can wrig (k— 1) = A;*(RH(k) —
Q)(AHT. Therefore
) = ;Aji\ﬁ(P,-L(k) —QIATA] (30)
|A
SinceF; = (A; — i) is Schur stable (thanks to Assumptidn 4 (i)) dnds a suboptimal gain
AL(k+1) < R(R"(K) +2i(K)R" +Qi+LiR (L)'

Solving the latter we obtain:

R

r_
x
| -~

) <FCR)RT)! (31)
1

F1 (Foi(k—h)FRT +Q + LR (L)) (FH?
h 1
Using the transformation matricés, we defineP-(k) = HiP-(k)HT, Qi = HiQiH" 6i = Hi(Qi + LR (L)TH/.

Note also thatHiAjAj"H ™ = HiAH THATH T = A;,-Aﬂl. In view of this and [[3D), we can rewrit€ {31) as

follows

B0 < RO RT3 R
=1

;ZF“A\, GH(PH(k—h) — Q) (A TAL(RT)" (32)

h=1

Recalling thatPf-(k) > P-(k) —Q; >0 for all j =1,...,M, we have that

k-1 a
IR < IFHIZIR @I+ 5 IR IQl
h=1

k—1
+Z_|‘AijAﬁl|‘2 S IR"P(IPF(k—h)| (33)
J#I h=1
Therefore
IR < AR (D] + 1= AZHQ.H
+ 3 VAP ma 1B (1 i (34)
I

Denoting nj (k) = maxXcjoiq [PH(h)[|, B4) implies that 0< ni(k) < g + 34 %jnj(k) where g = p2||P-(1)[| +
2 2 2 a4 .

ﬁz”QiH and yij = 1%‘AFHA@J—AJ-*J-HF. Finally denote the vectora(k) = (ny(k),...,nm(k)) and q = (qa,...,qu)-

We obtain that

(Im—T)n(k) <q (35)

June 14, 2021 DRAFT



21

According to [7], if the spectral radius &f is strictly smaller than one, for every initial conditioreés e.g., Lemma
13 for the general nonlinear case), the solution to the sy$&9) exists and is uniformly bounded, singedoes
not depend ork. O

[ |

Now we are in the position to provide the proof of Theofem 1.

Proof of Theorenill

First consider all the initializations a, b, and c.
a.Incasek(1l)=0foralli=1,...,M thenR(2) >0=R(1) foralli=1,...,M.

b. SetR (1) = P_iN foralli=1,...,M. Note that matriceﬁ?N exist and are unique for all=1,...,M in view of
Assumptio 2. From[{8), for all=1,...,M
R = ¢Z(PYAi.C,QR)+Y e GZ(PYA;jCi,OR))
Z(RN.Ai,C.QLR) =R =R(1)

v

c. SetR(1) = f’i’\‘ for all i =1,...,M. Note that matrice§>iN exist and are unique (for all=1,...,M) in view
of Assumptior{B. SeB,(1) = PN for all i = 1,...,M. Then, from [8), for ali =1,...,M
R = Z(PNAi.C.Q.R)+3jesniZPN,AjCi0R)
> 2BV Ai,G,Q,R)=PN=R(1)

In all cases, applying induction arguments and in view ofrtienotonicity property (i.e., Lemnid 3p,(k+1) >
R (k) for all k > 1 and for alli = 1,...,M. Therefore the sequence of matride&) =diag(Pi(k),...,Pu(k)) is
monotonically increasing, in the sense tigk+ 1) > P(k) for all k. In view of the boundedness property (i.e.,
Lemmal2), there exig® for all i, such that?(k) — P ask — . O

Proof of Propositiorf 2
The proof easily follows from the Gershgorin circle theordndeed, each eigenvalue bflies in at least one of
the M Gershgorin circles, i.e., sincg = 0 for all i, the values ofA satisfying|A| < pi = E?A:1|Mj| = sz:l yj, for

eachi=1,....M. Then, ifpj< 1 foralli=1,...,M, all eigenvalues verifyA| < 1. O

Proof of Corollary[1
When plug-in events take place, jit< M is a neighbor (also saigredecessom [26]) of M + 1, thenqj+ =¢+1,
; : < A SREY - S SRR 5+ Gl - .
otherwiseg;" = ;. In view of this, Al = “o=Aj (forie 7)), Cf = ~==Ci, andR{ = “o-Rj forall j € Aui;
otherwiseA! = Ajj, €/ =Cj, andR/ = R;. Therefore, for all initializations and for ail=1,...,M

R(Tene+1) = 3jc s+ Z2(P(Tenp), A7.CLOR) +Q
¢t ~ ~

= Yjes &2 (Pi(Tonp). Aj,Cj,0.R}) + Q

+Z (R 1(Tenp), AIMH) ) ér\+/|+1v 0, 'iml)

ZJEM‘%(P_JaAUaéJva ﬁJ)"—(?I = FTI: PI(TPHP)

v
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a. if Bys1(Tenp) =0, Pu+1(TPap+1) > 0.
b. if Bur1(Terp) = FT',\)‘H, Pv+1(Tenp+1 (P_,\')fHaA(MH)(MH)a Cvm+1,Qu+1,Rut1) = F?|\’>|l+]_ = Pu1(Tenp),
c. if Pus1(Tenp) = Py, 1, Pusa(Tenp+ 1 (ID_,\')'+1,A(+M+1)(M+1)7 Gz, Qme1. R 1) = P, 1 = Pusa(Tenp)

In all cases it follows that, for ail=1,... M +1, B(Tenp+ 1) > R(Tpnp). Applying an induction argument and in

)= %
)=

view of the monotonicity property (k+ 1) > R (k) for all k> Tpnp and for alli = 1,... M. Therefore the sequence
of matricesP(k) =diag(Pi(k),...,Pu(k)) is monotonically increasing, in the sense ti{k+ 1) > P(k) for all
k > Tpnp. Since Assumptiofl4 (i) holds in view of Assumptibh 5 and gasition[2, the boundedness property
holds in view of Lemm4#4, and therefore there et for all i = 1,...,M +1, such thaR,(k) — P ask — «.0J

Proof of Corollary[2
When the unplug event takes placejji& M is a neighbor oM, then cj+ =¢—1, otherwisecj+ = ¢j. In view of
this, Al = CJC—TlA., if i .7}, andC; = %CJ andR/ = %ﬁj for all j € .#u; otherwiseA| = A;j, Cf =C;,
andR/ =R;. Therefore, for ali =1,...,M -1

R(Tenp+1) = ¥jc s+ Z(Pi(Tenp), ALCIORN+Q

Ziest %@(PJ (Tene),Aj.Cj,0,R)) +Q
S e Z (P (Tene), A, Cj,0.R)) + Q
S jes Z(Pi(Tenp), A}, Cj,0,R)) + Q
~2 (P (Tenp),Aim,Cm,0,Ru) < R = R(Tenp)
Then, applying an induction argument and in view of the monixity propertyR (k+ 1) < B (k) for all k> Tpnp and

IN

foralli=1,...,M. Therefore the sequence of matri¢g&) =diag(P1(k),...,Pu(k)) is monotonically decreasing, in
the sense th&(k+ 1) < P(k) for all k > Tppp. In view of the fact thaP(k) > 0, there exisP_i+ foralli=1,..., M+1,
such thatR (k) — P ask — w. O
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