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Partition-based Distributed Kalman Filter with

plug and play features
Marcello Farina, Ruggero Carli

Abstract

In this paper we propose a novel partition-based distributed state estimation scheme for non-overlapping sub-

systems based on Kalman filter. The estimation scheme is designed in order to account, in a rigorous fashion, for

dynamic coupling terms between subsystems, and for the uncertainty related to the state estimates performed by the

neighboring subsystems. The online implementation of the proposed estimation scheme is scalable, since it involves

(i) small-scale matrix operations to be carried out by the estimator embedded in each subsystem and (ii ) neighbor-

to-neighbor transmission of a limited amount of data. We provide theoretical conditions ensuring the estimation

convergence. Reconfigurability of the proposed estimationscheme is allowed in case of plug and play operations.

Simulation tests are provided to illustrate the effectiveness of the proposed algorithm.

I. I NTRODUCTION

In many different engineering areas there has been, in the last years, a huge effort to develop algorithms

and protocols allowing a number of interconnected, possibly spatially distributed systems, devices, sensors, and

actuators, to operate cooperatively and to possess self-organization capabilities. Notable examples include smart

grids [24], environmental monitoring systems [36], large-scale irrigation and hydraulic networks [5], [18], and

multi-robot/vehicle systems [19], [20].

Related research on systems of systems [30] or cyber-physical systems [3] is nowadays fostered, pursuing several

challenges, including the design of hierarchical and distributed monitoring and control systems with reliability and

robustness properties with respect to uncertainties, changing environment, communication failures, etc.

In particular, theoretically sound distributed monitoring and state estimation methods are necessary to allow for

optimal managing of sensor networks. As also discussed in the survey paper [32], two main classes of estimation

techniques for distributed smart sensing schemes are presently under investigation. They are generally both referred,

in the literature, to asdistributed state-estimationalgorithms. While a widely-considered problem concerns the case

where the full state of the system is estimated by all subsystems, e.g., based on consensus and diffusion strategies,

e.g., [22], [37], [11], in this paper we focus onpartition-based estimation. The latter consists of estimating, for

each sensor, only a part of the state vector of a system, usinginformation transmitted by other neighboring sensors.
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This problem gives rise to low-order estimation problems solved in a distributed way, and is particularly useful

when the observed systems are large scale ones, e.g., power networks [39], [23], transport networks [31], process

plants [38], and robot fleets [21].

Concerning linear discrete-time systems, recent contributions include [38], [17], [34], [12], [13], [29], [15], [28],

[25].

Among these, [38], [17], [34], [29] propose Kalman filter-based estimation schemes suitable for systems affected by

stochastic noise. The papers [38], [34] propose methods based on local Kalman prediction equations (and neglect

the dynamic interconnection terms) and on consensus steps to account for possible overlapping states between

pairs of subsystems. The paper [17] proposes a two-step Kalman filter, where the correction step is performed by

each subsystem based on local measurements, while the prediction step is based on approximating the centralized

error process using a distributed iterate-collapse inversion algorithm forL-banded matrices [16]. As in [38], [34],

a consensus step is used to optimally account for overlapping states. Finally, in [29], a prediction/corrector-based

method for multi-rate systems is proposed. It is worth noting that sufficient convergence conditions are provided

just in [34] which, in case of non-overlapping subsystems, basically amount to the stability of the original system.

The papers [12], [13], [28], [25] assume that the system is affected by bounded noise and guarantee, under suitable

conditions, convergence of the estimator and the fulfillment of constraints on local states, e.g., in [12], or estimation

errors, e.g., in [13], [28], [25]. Finally, [15] proposes anapproximated distributed filter based on the moving horizon

estimator studied in [1]. A different - cooperative and iterative - approach based on Lagrange decomposition is

proposed in [14], where continuous-time systems are considered.

The conditions required for convergence of the estimators discussed in all the mentioned papers, where available,

(with the notable exception of [25]) require a centralized synthesis/analysis phase which (i) limits the application

to very large-scale systems and (ii ) requires a complete re-design in case of configuration changes (e.g., addi-

tion/removal of subsystems or sensors). On the other hand, in [25] the design phase (guaranteeing global properties)

is distributed, i.e., the state estimator embedded in each subsystem is devoted to solve a local design problem. This

has paved the way to a plug-and-play (PnP) implementation [35], [26], which confers flexibility, reconfigurability,

and reliability to the estimation architecture.

In this paper we propose a novel partition-based distributed state estimation scheme based on Kalman filter (denoted

DKF) for non-overlapping subsystems affected by stochastic noise. The estimation scheme is designed to account

for dynamic coupling terms between subsystems, and for the uncertainty related to the state estimates performed by

the neighboring subsystems. This is done in a conservative but rigorous way by means of suitable covariance matrix

bounds. The online implementation of the proposed estimation scheme is scalable, since it involves (i) small-scale

matrix operations to be carried out by the estimator embedded in each subsystem and (ii ) neighbor-to-neighbor

transmission of a limited amount of data. Concerning the design/analysis phase, we provide both centralized (both

with suitable linear matrix inequalities and with aggregate small gain-type arguments) and distributed scalable

conditions to be verified ensuring the estimation convergence. The latter are then used to provide a fully distributed

and PnP implementation of DKF. More specifically, distributed reconfigurability conditions are provided in case a
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subsystem is added to or removed from the network, and also incase PnP operations involve sensors.

The paper is structured as follows. In Section II we introduce and motivate the distributed Kalman filter equations,

while in Section III we provide the main conditions for convergence. In Section IV we discuss how DKF can be

designed in a distributed fashion and the resulting application for PnP operations. Finally, in Section V the algorithm

is tested both on an academic example and on a benchmark case study, and in Section VI some conclusions are

drawn. All proofs are postponed to Appendix A for better readability.

Notation

The symbols≥ and> are used to denote semi-definite positive matrices and definite positive matrices, respectively.

The symbolsR andL are used for brevity to denote the Riccati equation update and the optimal Kalman predictor

gain, respectively, i.e.,

R(P,A,C,Q,R) = APAT −APCT(CPCT +R)−1CPAT +Q

L (P,A,C,R) = APCT(CPCT +R)−1

whereP, A, C, Q, and R are matrices of appropriate dimensions. Finally, the cardinality of a setN is denoted

with |N | and the spectral radius of matrixA is denotedσ(A).

II. T HE DISTRIBUTED KALMAN FILTER

A. Statement of the problem

ConsiderM interconnected systems, each described by the following equations:

xi(k+1) = Aii xi(k)+∑ j 6=i Ai j x j(k)+wi(k)

yi(k) =Cixi(k)+ vi(k)
(1)

wherexi(k),wi(k) ∈ R
ni andyi(k),vi(k) ∈ R

pi . We assume thatwi(k) andvi(k) are zero-mean white noises, for all

i = 1, . . . ,M, and thatE{wi(k)wT
j (k)} = Qiδi j , E{vi(k)v j (k)} = Riδi j (with Ri > 0 for all i = 1, . . . ,M), and that

E{wi(k)vT
j (h)}= 0 for all i, j = 1, . . . ,M, andh,k≥ 0. For i ∈ {1, . . . ,M}, we define withNi the set of neighbors

(also denoted predecessors in [26]) of subsystemi defined asNi =
{

j |Ai j 6= 0
}

while Si is the set of successors

of subsystemi defined asSi =
{

j | i ∈ N j
}

. In our setup we assume that subsystemi can exchange information

with its neighbors. Note thati is in general included inSi andNi .

Collectively, if we define the variablesx(k)= (x1(k), . . . ,xM(k)), y(k)= (y1(k), . . . ,yM(k)), w(k)= (w1(k), . . . ,wM(k)),

andv(k) = (v1(k), . . . ,vM(k)), we can rewrite (1) as

x(k+1) = Ax(k)+w(k)

y(k) = Cx(k)+ v(k)
(2)

whereC =diag(C1, . . . ,CM), Q =diag(Q1, . . . ,QM), R =diag(R1, . . . ,RM), and

A =











A11 . . . A1M

...
. . .

...

AM1 . . . AMM











.
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The optimal centralized Kalman predictor [6] for system (2)is

x̂c(k+1) = Ax̂c(k)+Lc(k)(y(k)−Cx̂c(k)) (3)

where x̂c(k) denotes the one-step optimal predictor ofx(k). According to the classical Kalman prediction theory,

the optimal gain is

Lc(k) = L (Πc(k),A,C,R) (4)

whereΠc(k) is the centralized Kalman prediction error covariance matrix and is computed iteratively using the

Riccati equation

Πc(k+1) = R(Πc(k),A,C,Q,R)

= (A−L(k)C)Πc(k)(A−L(k)C)T +Q+L(k)RL(k)T
(5)

B. Distributed prediction scheme

As clear from (3)-(5), the optimal centralized Kalman predictor for system (2) is based on the iteration of the

Riccati equation (5), which requires a global knowledge of the system and, in general, leads to a matrix gain which

has not the sparsity properties of the dynamic system (i.e.,of matrix A).

In contrast, in this paper we seek for a distributed observerimplementation, meaning that: (i) at most data originated

by neighbors are used by the local observers, to reduce the communication load of the scheme; (ii ) information

about the model of the overall system is not required to be stored by each local observer, but at most information

concerning the neighboring subsystems; (iii ) the computational load required by each local filter is scalable.

In line with this we propose an estimation scheme of the type

x̂i(k+1) = ∑
j∈Ni

{

Ai j x̂ j(k)+Li j (k)(y j (k)−Cj x̂ j(k))
}

(6)

where

Li j (k) = Ai j Pj(k)C
T
j (CjPj(k)C

T
j +Rj)

−1. (7)

The matricesPi(k), i = 1, . . . ,M are updated according to the following distributed equation.

Pi(k+1) = ∑ j∈Ni

(

Ãi j Pj(k)ÃT
i j − Ãi j Pj(k)C̃T

j

·(C̃jPj(k)C̃T
j + R̃j)

−1C̃jPj(k)ÃT
i j

)

+Qi

(8)

where, for alli, j = 1, . . . ,M, we have defined̃Ai j =
√ς j Ai j , C̃i =

√ςiCi , andR̃i = ςiRi , whereςi = |Si |. Note that (7)

and (8) are equivalent toLi j (k)=L (Pj(k),Ai j ,Cj ,Rj)=L (Pj(k), Ãi j ,C̃j , R̃j) andPi(k+1)=∑ j∈Ni
R(Pj(k), Ãi j ,C̃j ,0, R̃j)+

Qi = ∑ j∈Ni
ς jR(Pj(k),Ai j ,Cj ,0,Rj)+Qi, respectively.

Equation (6) is distributed, i.e.,Li j 6= 0 only if Ai j 6= 0. Therefore, the computation ofLi j can be done distributedly

and communication is required between local state estimators of dynamically interconnected subsystems only.

Concerning the scalability of the algorithm observe also that, for i ∈ {1, . . . ,M}, subsystemi permanently stores in

memory only the matricesQi , Ri , Aii , Ci and, for j ∈ Ni , Ai j , Cj andRj ; on the other hand, the information which
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must be transmitted and temporarily stored at each time stepconsists ofy j , x̂ j , Pj , LF
j for all j ∈ Ni . The DKF

algorithm is formally described in Algorithm 1.

Algorithm 1 DKF algorithm
Memory requirements

For i ∈ {1, . . . ,N}, subsystemi stores in memory

- PermanentlyQi , Ri , Aii , Ci ,
{

Ai j ,Cj ,Rj ; j ∈ Ni
}

;

- Temporarily, for eachk≥ 1,
{

y j(k), x̂ j(k),Pj (k),Li j (k); j ∈ Ni
}

;

On-line implementation

At each time stepk≥ 1 subsystemi:

1) Measuresyi(k)

2) Broadcasts to its successors the quantitiesyi(k), x̂i(k), andPi(k);

3) Gathers from its neighbors the information
{

y j(k), x̂ j (k),Pj(k); j ∈ Ni
}

;

4) Computes the gains
{

Li j (k); j ∈ Ni
}

as in (7);

5) Computes the estimate ˆxi(k+1) and the matrixPi(k+1) as in (6) and (8), respectively.

C. Main properties

Let us definex̂(k) = (x̂1(k), . . . , x̂M(k)), and the distributed filter estimation errore(k) = x(k)− x̂(k). From (2)

and (6) we obtain that

e(k+1) = (A−L(k)C)e(k)−L(k)v(k)+w(k) (9)

whereL(k) is the matrix whose block entries areLi j (k). Let Πd(k) =var(e(k)). From (9) the following is obtained.

Πd(k+1) = (A−L(k)C)Πd(k)(A−L(k)C)T −L(k)RL(k)T +Q (10)

The following result can be derived.

Lemma 1:Assume that the pair(A,G) is stabilizable (whereGGT = Q) and that there exist symmetric matrices

P̄i ≥ 0, i = 1, . . . ,M such that

P̄i ≥ ∑
j∈Ni

R(P̄j , Ãi j ,C̃j ,0, R̃j)+Qi, (11)

for all i = 1, . . . ,M. For all i, j = 1, . . . ,M, let L̄i j = L (P̄j ,Ai j ,Cj ,Rj) and letL̄ be the matrix whose block entries

are L̄i j . Then, the matrixA− L̄C is Schur stable. �

Thanks to Lemma 1, asimplified versionof the DKF Algorithm 1 can be devised: assuming that each subsystem

i stores in memory matrix̄Pi , i = 1, . . . ,M, with property (11), then it is sufficient to setPi(k) = P̄i and Li j (k) =

L̄i j = L (P̄j ,Ai j ,Cj ,Rj) for all k to guarantee that the estimation errore(k) is a stationary process. Therefore, the
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error covariance of this modified scheme is asymptotically convergent to a bounded definite positive matrix, i.e.,

limk→∞ Πd(k) = Π̄d for some positive definite matrix̄Πd.

In case the Algorithm 1 is implemented, under the assumptionthat there exist steady-state solutions of (8)P̄i ≥ 0,

i = 1, . . . ,M, the next result can be proved.

Proposition 1: Consider the DKF Algorithm 1. Assume thatPi(1), i = 1, . . . ,M, are such that there exists̄Pi with

the property that

lim
k→∞

Pi(k) = P̄i. (12)

Let P̄ =diag(P̄1, . . . , P̄M). Then, there exists a positive definite matrixΠ̄d such that limk→∞ Πd(k) = Π̄d andΠ̄d ≤ P̄.

�

Note that, under the validity of (12), then in steady state conditions also (11) is verified. Therefore the DKF

Algorithm 1 provides a stationary equation error; also, Proposition 1 states that, fori = 1, . . . ,M, matrix P̄i plays

the role of an upper bound of the covariance of the predictionerror xi(k)− x̂i(k) in steady state.

Observe that Lemma 1 and Proposition 1 require the existenceof matricesP̄i, i = 1, . . . ,M, such that either property

(11) or property (12) are satisfied. However, differently from the centralized Kalman filter, these properties are not

guaranteed by standard detectability assumptions on the system.

In this paper we provide conditions under which these properties can be verified. In particular, in Section III we

discuss the conditions allowing the application of centralized design procedures while, in Section IV, we provide

a distributed design procedure.

We conclude this section with a couple of remarks.

Remark 1:Consider the DKF algorithm and assume that (12) holds true. Let Π̄c be the steady-state covariance

of the prediction error for the centralized Kalman filter. Obviously, if Πd(1) = Πc(1) then Πc(k) ≤ Πd(k) for all

k≥ 1.

Remark 2:Assume that (11) holds true and consider thesimplified DKF algorithmdescribed after Lemma 1.

Then, also in this case, the asymptotic covariance of the prediction error xi(k)− x̂i(k) is upper-bounded by the

matrix P̄i.

III. C ENTRALIZED DESIGN

In this section we address the problem of providing (i) conditions that can be used to guarantee a-priori the

validity of properties (11) or (12) and (ii ) practical methods for computing them. First, in Section III-A we will

analyze (11) through a linear matrix inequality approach; secondly, in Section III-B we will provide an aggregate

design procedure, based on small gain arguments, to guarantee (12)

A. Design using LMI’s

In this section we provide a practical method based on LMI’s for computing, if possible, matrices̄Pi verifying

(11). Then, as already highlighted, if we setPi(k) = P̄i for all k and for all i = 1, . . . ,M, then it is guaranteed that

this simplified version of the DKF algorithm has suitable convergence properties in view of Lemma 1. Also, its
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suboptimality features are discussed in Remark 2.

Using LMI’s we aim to compute (see Lemma 1)̄Pi, i = 1, . . . ,M verifying

P̄i ≥ ∑
j∈Ni

(

Ãi j P̄j Ã
T
i j − Ãi j P̄jC̃

T
j (C̃j P̄jC̃

T
j + R̃j)

−1C̃j P̄j Ã
T
i j

)

+Qi (13)

Provided thatP̄j is non singular for eachj ∈ Ni , the algebraic inequality (13) is equivalent to

P̄i ≥ ∑ j∈Ni
Ãi j P̄j(P̄j + P̄jC̃T

j R̃−1
j C̃j P̄j)

−1P̄j ÃT
i j +Qi

≥ ∑ j∈Ni
Ãi j (P̄

−1
j +C̃T

j R̃−1
j C̃j )

−1ÃT
i j +Qi

(14)

thanks to the application of the matrix inversion lemma. Inequality (14) can be cast as the following LMI






















P̄i Ãi1∆1 . . . ÃiM∆M Gi

∗ ∆1 . . . 0 0
...

...
.. .

...
...

∗ 0 . . . ∆M 0

∗ 0 . . . 0 I























≥ 0 (15)

whereGi is defined in such a way thatGiGT
i = Qi and, for all j = 1, . . . ,M, ∆ j ≥ (P̄−1

j +C̃T
j R̃−1

j C̃j)
−1. If we define

Ω j = P̄−1
j , the latter inequality can be written as





∆ j I

I Ω j +C̃T
j R̃−1

j C̃j



≥ 0. (16)

Finally, the equalityΩ j = P̄−1
j can be managed using the recursive approach proposed in [9].Indeed, we solve the

following LMI




Ω j I

I P̄j



≥ 0 (17)

and, at the same time, we minimize the additional cost function tr{Ω j P̄j}. The problem can be managed using the

recursive cone complementarity linearization algorithm discussed in [9].

B. Design using small gain arguments

In this section we investigate conditions ensuring the validity of (12). In particular, the following result addresses

the offline design issue providing an aggregate and lightweight analytical condition, which relies on small-gain

arguments. First, the following assumption is required.

Assumption 1:For subsystemi, Aii is invertible. �

We will also need one of the following assumptions for properly initializing Pi(1) for the implementation of

Algorithm 1.

Assumption 2:For subsystemi

(i) (Aii ,Ci) is detectable;

(ii) (Aii ,Gi) is stabilizable, whereGi verifiesGiGT
i = Qi ;
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Assumption 3:For subsystemi

(i) (Ãii ,C̃i) is detectable;

(ii) (Ãii ,Gi) is stabilizable;

Note that, while Assumption 2 is required to define, for a given subsystemi, P̄N
i as the unique semi-positive definite

solution to the local Riccati algebraic equation̄PN
i = R(P̄N

i ,Aii ,Ci ,Qi ,Ri), Assumption 3 allows to definẽPN
i as the

unique semi-positive definite solution tõPN
i = R(P̃N

i , Ãii ,C̃i ,Qi , R̃i).

Let us now define full rankni arbitrary transformation matricesHi , i = 1, . . . ,M, i.e., Hi ∈ R
ni×ni (introduced

for reducing, if possible, the conservativity of the results stated next) and gains̄Li , selected in such a way that

F̄i = Ãii − L̄iC̃i is Schur stable. Define alsôFi = HiF̄iH−1
i andÂi j = HiAi j H−1

j , for all j = 1, . . . ,M. Finally we define

Γ =







γi j = 0 if j = i

γi j =
µ2

i
1−λ 2

i
‖Âi j Â

−1
j j ‖2 if j 6= i

Scalarsµi ≥ 1, λi ∈ [0,1) are defined in such a way that‖F̂h
i ‖ ≤ µiλ h

i . We introduce a further assumption.

Assumption 4:For some values of̄Li , Hi , (i) σ(F̂i)< 1 for all i = 1, . . . ,M, and (ii) σ(Γ)< 1.

Note that, a necessary condition for the existence of matrixL̄i guaranteeing thatσ(F̂i) < 1 is that (Ãii ,C̃i) is

detectable, i.e., Assumption 3; therefore, the latter is implicitly required by Assumption 4.

Theorem 1:If Assumption 1 holds for alli = 1, . . . ,M and under Assumption 4, there exist̄Pi ≥ 0 for all

i = 1, . . . ,M such that,Pi(k)→ P̄i ask→ ∞ if one of the following initializations is used:

a. Pi(1) = 0 for all i = 1, . . . ,M.

b. Pi(1) = P̄N
i if Assumption 2 holds for alli = 1, . . . ,M.

c. Pi(1) = P̃N
i if Assumption 3 holds for alli = 1, . . . ,M. �

Regarding Assumption 4, provided that Assumption 3 (i) is verified, it is always possible of find̄Li such that

σ(F̂i)< 1 for all i = 1, . . . ,M. Note that, in case the system has a cascade topology (i.e., if it admits a lower - or

upper - block triangular form, [33]),Γ is block triangular, and therefore Assumption 4 can be easily verified.

On the other hand, for more general system structures, we need to retrieve a suitable “decentralized” change of

coordinates and, at the same time, a suitable “auxiliary” decentralized linear observer, for whichσ(F̂i)< 1 for all

i = 1, . . . ,M and the corresponding matrixΓ is stable. This amounts to a design problem, which can be cast, for

example, as the following optimization.

min
{Hi ,Li}M

i=1

σ(Γ) (18a)

subject to the definition ofΓ and to

σ(Γ)< 1 (18b)

σ(F̂i)< 1, i = 1, . . . ,M (18c)

To reduce the computational load of (18) the values ofHi can be constrained. For example, one can try to minimize

the termsµi by constrainingHi to take values corresponding to whichF̂i = HiF̄iH
−1
i is diagonal (provided that̄Fi is
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diagonalizable and has real eigenvalues), or one can setHi = Ini . The optimization (18) is nonlinear, and therefore

a suitable initialization is fundamental, for example selecting F̄i as the Kalman predictor gains.

To reduce the computational complexity and to allow for flexible and reliable operation, in next Section we provide

a distributed and scalable design procedure to be applied ateach subsystem level.

IV. D ISTRIBUTED DESIGN AND PLUG AND PLAY FEATURES

In many practical applications, it is of interest to performthe design of the DKF in a distributed fashion, i.e., to

have a set of conditions to be verified locally by each subsystem, possibly using pieces of information provided by

the neighboring subsystems.

Focusing on the main assumptions of Theorem 1, while Assumptions 1 and 4 (i) are local conditions, to be verified

at a single subsystem level, Assumption 4 (ii) is centralized (although aggregate), since it involves information

concerning the overall system. We now introduce the following assumption, providing a conservative, yet distributed

and very simple, condition, that must be verified at a single subsystem level by each subsystem, that implies the

Schur stability ofΓ, as proved in Proposition 2 stated below.

Assumption 5:For all i = 1, . . . ,M and for some values of̄Li , Hi , it holds that

ρi =
M

∑
j=1

γi j < 1 (19)

Proposition 2: If Assumption 5 holds, then Assumption 4 (ii) is verified. �

As it will be shown in the remainder of the section, this result allows for PnP operation. The PnP scenario consists

of the case when one or more subsystems (each described by (1)) or devices (and specifically a transducer) is added

to or removed from the interconnected system.

Before to proceed, the following standing assumption sets the scenario where PnP operations take place, assuming

that the PnP event occurs at time instantk= TPnP.

Assumption 6:

- For k< TPnP, Assumptions 4 (i), 5, and 1 (for alli = 1, . . . ,M) hold.

- At k= TPnP the updates (8) are in steady state, i.e.,Pi(TPnP) = P̄i for all i = 1, . . . ,M. �

It is important to remark that, when PnP operations involving subsystems take place, the number of successors,

for some subsystems, may change. Denote withS
+
i the set of successors of subsystemi after the PnP event and

ς+
i = |S +

i |. In general it holds thatς+
i 6= ςi . From this, it also follows that the matrices̃Ai j , C̃i , and R̃i must be

redefined, i.e.,Ã+
i j =

√

ς+
j Ai j =

√

ς+j
ς j

Ãi j , C̃+
i =

√

ς+
i Ci =

√

ς+i
ςi

C̃i , and R̃+
i = ς+

i Ri =
ς+i
ςi

R̃i . Importantly, in case

ς+
i > ςi , this may prevent the detectability of the pair(Ã+

ii ,C̃
+
i ) to hold, which may jeopardize the verifiability of

Assumption 4 (i). We also assume thatHi and L̄i are not redefined, fori = 1, . . . ,M after the PnP event. From this

it follows that, for all i, j = 1, . . . ,M, ‖Â+
i j (Â

+
j j )

−1‖= ‖Âi j Â
−1
j j ‖.

A. Plug-in of a subsystem

Assume that, at stepTPnP, the subsystem(M+1) is introduced. For eachi = 1, . . . ,M

June 14, 2021 DRAFT



10

• if i 6∈ SM+1∪NM+1, thenγi(M+1) = 0. Also, sinceς+
i = ςi , F̂+

i = F̂i, then µ+
i = µi and λ+

i = λi . In view of

this, ρ+
i = ∑M+1

j=1 γ+i j = ∑M
j=1 γi j = ρi < 1;

• if i ∈SM+1 but i 6∈NM+1, thenς+
i = ςi : ThereforeF̂+

i = F̂i , µ+
i = µi , andλ+

i = λi . However, sinceM+1∈Ni ,

γi(M+1) > 0. Thereforeρ+
i = ∑M+1

j=1 γ+i j = ρi + γ+i(M+1) > ρi ;

• if i ∈ NM+1 but i 6∈ SM+1, thenγi(M+1) = 0. However,ς+
i = ςi +1 and thereforeF̄+

i =
√

ςi +1(Aii − L̄iCi) =
√

(ςi +1)/ςiF̄i may not be Schur stable. If̄F+
i is stable,µ+

i = µi but, at the same time,λ+
i =

√

(ςi +1)/ςiλi >

λi. In view of thisγ+i j = (1−λ 2
i )/(1−λ+2

i )γi j for all j = 1, . . . ,M. Thereforeρ+
i = (1−λ 2

i )/(1−λ+2
i )ρi > ρi ;

• i ∈ SM+1∩NM+1, the Schur stability ofF̄+
i is not guaranteed. If̄F+

i is Schur stable, we can computeρ+
i =

∑M
j=1γ+i j + γ+i(M+1) = (1−λ 2

i )/(1−λ+2
i )ρi + γ+i(M+1) > ρi , in view of the fact that bothλ+

i > λi andγ+i(M+1) > 0.

The design of̄LM+1, HM+1 can be addressed through the following optimization problem.

min
HM+1,LM+1

ρ+
M+1+ ∑

j∈SM+1

γ+j(M+1) (20a)

subject to:

σ(F̂+
M+1)< 1, ρ+

M+1 < 1 (20b)

γ+j(M+1) < 1−
1−λ 2

j

1−λ+2
j

ρ j for all j ∈ SM+1 (20c)

When a plug-in request is received from subsystemM+1, the following design procedure must be adopted: (i) if

(20) admits a solution and if, for alli ∈ NM+1, ρ+
i < 1 andσ(F̂i) < 1, then allow the plug-in, otherwise deny it;

(ii) properly initialize PM+1(TPnP).

The following corollary of Theorem 1 addresses the step (ii)and guarantees convergence of the system matrices

Pi(k), k= 1, . . . ,M+1 to steady state solutions.

Corollary 1: If Assumption 1 holds also fori =M+1 and if, after the plug-in event, Assumptions 4 (i) and 5 are

verified, then there exist̄P+
i ≥ 0 for all i = 1, . . . ,M such that,Pi(k)→ P̄+

i ask→ ∞ if the following initialization

is used:Pi(TPnP) = P̄i for all i = 1, . . . ,M and (a)PM+1(TPnP) = 0, or (b) if Assumption 2 holds fori = M + 1,

PM+1(TPnP) = P̄N
M+1, or (c) if Assumption 3 holds fori = M+1, PM+1(TPnP) = P̃N

M+1. �

Note that the initializations (b) and (c) limit possible undesirable transients on the state estimates. Note also

that, at the(M +1)-th subsystem level, to solve (20), the required data consist in (i) the local system matrices

(A(M+1)(M+1),CM+1), (ii) the numberςM+1 of successors of subsystemM+1, (iii) A(M+1) j , A j j , H j for all j ∈NM+1,

(iv) (1−λ 2
j )/(1−λ+2

j )ρ j , A j(M+1), H j for all j ∈SM+1. It is therefore clear that this local design problem requires

the transmission of a limited amount of information, i.e., through a neighbor-to-neighbor communication graph.

Also, remark that the optimization problem (20) is a nonlinear one; to simplify it, an efficient strategy amounts,

for example, to defineHM+1 as the matrix such that̂FM+1 is diagonal (i.e., in casêFM+1 is diagonalizable and has

real eigenvalues), makingHM+1 depend upon̄LM+1, or simply settingHM+1 = Ini . In this way we can reduce the

number of free variables of the problem.
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B. Unplug of a subsystem

Assume that, without loss of generality, at stepTPnP, subsystemM is unplugged. Note that,

• if i 6∈ SM ∪NM, thenρ+
i = ∑M−1

j=1 γi j = ∑M
j=1 γi j = ρi < 1;

• if i ∈ SM but i 6∈ NM, thenρ+
i = ∑M−1

j=1 γi j = ρi − γiM < 1;

• if i ∈NM but i 6∈SM, thenς+
i = ςi −1 and thereforēF+

i =
√

(ςi −1)/ςiF̄i . From this it follows thatµ+
i = µi but,

at the same time,λ+
i =

√

(ςi −1)/ςiλi < λi . Also γ+i j = (1−λ 2
i )/(1−λ+2

i )γi j for all j = 1, . . . ,M. Therefore

ρ+
i = (1−λ 2

i )/(1−λ+2
i )ρi < ρi ;

• i ∈SM ∩NM, it follows thatρ+
i = ∑M−1

j=1 γ+i j = (1−λ 2
i )/(1−λ+2

i )(ρi − γiM )< ρi, in view of the fact that both

λ+
i < λi andγ+iM = 0.

In view of this, since Assumptions 5 and 4 (i) hold before the unplug event, then they are guaranteed for the system

deprived of theM-th subsystem. Therefore, any unplug request can be accepted, without hampering the convergence

properties of the estimator.

The following corollary of Theorem 1 guarantees convergence of the system matricesPi(k), k= 1, . . . ,M−1 to new

steady state solutions.

Corollary 2: After the un-plug event, there exist̄P+
i ≥ 0 for all i = 1, . . . ,M such that,Pi(k)→ P̄+

i ask→ ∞ if

the following initialization is used:Pi(TPnP) = P̄i for all i = 1, . . . ,M−1.

C. Plug and play of transducers

In many practical applications, the sensors embedded in a subsystem can be added, removed, or replaced. We

consider that changes occur to theM-th subsystem for simplicity, but without loss of generality. Practically, this case

consists in a change in the matrixCM (and, consequently,̃CM), while the topology of the system and its dynamics

remain unchanged. Therefore, for alli 6= M, ρ+
i = ρi , sinceρi, i 6= M, do not depend onCM, but only on matrices

Ai j and on the number of successors, which remain unchanged.

On the other hand, focusing on subsystemM

• if a transducer is plugged in, this consists of adding a row (here denotedcadd) to matrixCM, i.e.,

C+
M =





CM

cadd





This means that the detectability properties of the pairs(Aii ,Ci) and(Ãii ,C̃i) are not jeopardized by the plug-in

event. Also, if HM remains unchanged and if we takēL+
M =

[

L̄M 0
]

, then ρ+
M = ρM. This means that the

addition of a new transducer does not compromize the convergence properties of the DKF scheme.

• if a sensor is replaced or unplugged, this consists of a substantial variation of the matrixCM. This means that,

before to allow the PnP operation, one must verify the existence of a gainL̄M such that the following are

verified: (I) Schur stability ofF̄i ; (II) ρ+
M < 1. Concerning the latter, note thatHM should remain unchanged,

in order not to affect the values ofρi , i 6= M.

June 14, 2021 DRAFT



12

In the case considered in this section, however, it is not clear how the PnP operation impacts on the values of

the matricesPi(k), i = 1, . . . ,M. In order to guarantee the convergence of the matricesPi(k) to a steady state, the

following practical procedure can be adopted, suggested byCorollaries 1 and 2: (a) fork ≥ TPnP, make Pi(k),

i = 1, . . . ,M − 1 evolve as if subsystemM were unplugged; (b) after convergence is achieved (say, at instant

Tconv) makePi(k), i = 1, . . . ,M, k > Tconv evolve as if subsystemM were plugged-in at timeTconv, i.e., by setting

Pi(Tconv+1) = Pi(Tconv), i = 1, . . . ,M andPM(Tconv+1) = P̃N
M.

V. SIMULATION RESULTS

In this section we provide some simulation results illustrating the application of DKF to two different examples,

an academic one and the Hycon2 benchmark described in [27], respectively.

A. Academic example

In this section we consider a system composed of interconnected subsystems. We set

Aii =





0.9 0.1

0.1 −0.9



 and Ci =
[

1 1
]

and, for all j ∈ Ni , Ai j =diag(α,−α), whereα > 0. Also E
[

wiwT
i

]

= Qi = I2 andE
[

vivT
i

]

= Ri = 1 whereI2 is

the 2-dimensional identity matrix.

1) Dependence on coupling and centralized design:

First considerM = 2, with N1 = N2 = {1,2}. In Figure 1 we show the relationship between the coupling strength

α ∈ [0,6.5] and (i) the spectral radiusσ(Γ) of matrix Γ; (ii ) the spectral radius ofA− L̄C obtained through the

LMI-based design procedure sketched in Section III-A. The latter procedure has given numerically reliable results

for α ≤ 6.5.

To realize the upper plot, two different choices ofHi are adopted: (I) such that̂FM+1 is diagonal; (II)Hi = I2 for

all i = 1,2. As it is apparent, the spectral radius ofΓ does not significantly vary in the latter cases.

In both cases it is apparent that the small-gain procedure sketched in Section III-B is applicable when the coupling

strength is sufficiently small. Also, from the lower panel itis apparent thatσ(Γ)< 1 is just sufficient to guarantee

that σ(A− L̄C)< 1.

2) Plug and play scenario:

Now, assume thatM = 3 andα = 0.1. At time t = 0, N1 = N2 = {1,2} and N3 = {3}, i.e., subsystem 3 is not

connected with the network. In this case

Γ =











0 0.1334 0

0.1334 0 0

0 0 0











Therefore, we have thatρi < 1 for i = 1,2,3.

At t = 100 subsystem 3 plugs in and connects with subsystem 2. More specifically N1 = {1,2}, N2 = {1,2,3},
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Fig. 1. Upper panel: values ofσ(Γ) as a function ofα (settingHi such thatF̂i is diagonal - dots; settingHi = I2 - circles); lower panel: values

of σ(A− L̄C) as a function ofα .

andN3 = {2,3}. In this case

Γ =











0 0.1334 0

0.1535 0 0.1535

0 0.0976 0











The plug-in request is accepted, sinceρi < 1 for i = 1,2,3.

Finally, at t = 200, subsystem 1 unplugs, meaning thatN1 = {1} and N2 = N3 = {2,3}. As discussed in Sec-

tion IV-B, the unplug request is automatically accepted, asit is witnessed by the values taken by the entries onΓ

in this case:

Γ =











0 0 0

0 0 0.1334

0 0.0976 0











In Figure 2 the state trajectories are depicted, showing thedifferent collective dynamical behaviours taken in

correspondence with the different graph configurations.

In Figure 3 the trajectories of the root mean estimation errors rmsei =
√

1/ns∑ns
t=1‖xi(t)− x̂i(t)‖2 for all subsys-

tems’ states are depicted, showing that, in view of the proper matrix initializations, when plug and play operations

occur the estimation error does not suffer from undesirabletransients.

B. Power network benchmark

In this section we consider a power network system includinga number of power generation areas coupled

through tie-lines. This system has been adopted also in [29]where the authors proposed a partition-based distributed

estimation scheme tailored to power networks applicationsand exhibiting promising numerical results (although

without any theoretical guarantees).
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Fig. 2. State trajectories.xi,k denotes thek-th entry ofxi .
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Fig. 3. Root mean estimation error for each subsystem, obtained with DKF - solid line - and centralized KF - dotted line (the lines are

practically overlapping).

Our contributions are two-fold: firstly, in Section V-B1 we compare DKF with the centralized Kalman filter and

the distributed strategy proposed in [29]; secondly, in Section V-B2 we test the PnP features of DKF in case a new

subsystem is plugged in the network during its operation.

The dynamics of each power generation area, equipped with primary control and linearized around the equilibrium

value for all variables, is described by the following continuous time LTI model [27]

ẋi(t) = Ac
ii xi(t)+Bc

i ui +Lc
i ∆PLi + ∑

j∈Ni

Ac
i j x j (21)
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wherexi = (∆θi ,∆ωi ,∆Pmi ,∆Pvi ) is the state,ui = ∆Pre fi is the control input of each area, and∆PLi is the local power

load. Note that the letter∆ is used to denote the deviation from steady-state. The matrices of system (21) are

Ac
ii =

















0 1 0 0

−∑ j∈Ni
Pi j

2Hi
− Di

2Hi

1
2Hi

0

0 0 − 1
Tti

1
Tti

0 − 1
RiTgi

0 − 1
Tgi

















, Bc
i =

















0

0

0

1
Tgi

















Ac
i j =

















0 0 0 0
Pi j
2Hi

0 0 0

0 0 0 0

0 0 0 0

















, Lc
i =

















0

− 1
2Hi

0

0

















where the parameters and their numerical values are defined in [27]. Since both∆Pre fi and∆PLi are assumed to be

constant and known, for the sake of simplicity, we neglect them from our analysis.

We discretize the process (21) with a sampling intervalT according to the technique proposed in [10], leading to

the discrete-time model (1) where the matricesAii , Ai j can be easily constructed from (21). The matrixCi is

Ci =





1 0 0 0

0 1 0 0





For i ∈ {1, . . . ,M}, E
[

wiwT
i

]

= Qi = 3I4 andE
[

vivT
i

]

= Ri = I2 whereIk is thek-dimensional identity matrix.

1) Comparison test:

In this section we consider the scenario 1 in [27], whereM = 4 and where the adjacency matrixAd, defining the

neighboring relationships between areas, is

Ad=

















0 1 0 0

1 0 1 0

0 1 0 1

0 0 1 0

















namely,Adi j 6= 0 if and only if
Pi j
2Hi

6= 0. In Figure 4 we depict∆θ1 and its estimate∆θ̂1 generated by the DKF

algorithm.

In Figures 5 and 6 we compare the performance of DKF algorithmwith that of the centralized Kalman predictor

and of the distributed strategy proposed in [29]. In Figure 5we plot the normalized estimation errore(t) defined as

e(t) =
1√
M
‖x(t)− x̂(t)‖

for the first 100 iterations. In Figure 6 we plote(t) from t = 30 up tot = 100 (i.e., in stationary conditions). In

the Table V-B1 we report the average value of the estimation error evaluated between iteration 30 and 100.

Centralized DKF Strategy in [29]

Error Mean 13.74 14.08 17.21
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Fig. 4. Trajectory of∆θ1 (blue line) and its estimate (red line), obtained with DKF
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Fig. 5. Trajectory ofe(t) obtained with DKF (red line), with a centralized Kalman predictor (blue line), and with the method proposed in [29]

(black line), witht ∈ [0,100].

Notice that the performance of DKF algorithm is quite close to the performance of the centralized Kalman filter

and that it outperforms the performance of the strategy in [29]. Additionally Assumption 5 is satisfied withHi = I4.

2) Plug and play scenario:

In this section we consider a PnP scenario. Specifically we assume that at time step 50 a new area (i.e., area 5) is

added to the power network, and that, in particular, it gets connected to area 2. Again the values of the parameters
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Fig. 6. Trajectory ofe(t) obtained with DKF (red line), with a centralized Kalman predictor (blue line), and with the method proposed in [29]

(black line), witht ∈ [20,100].
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Fig. 7. Trajectory ofe(t) obtained with DKF (red line) and with a centralized Kalman predictor (blue line) in the PnP scenario.

defining area 5 can be found in [27]. The adjacency matrix describing the interconnections after step 50 is

Ad=























0 1 0 0 0

1 0 1 0 1

0 1 0 1 0

0 0 1 0 0

0 1 0 0 0























In Figure V-B2 we depict the behavior of the estimation errorfor both the centralized Kalman filtering algorithm

and DKF. Observe that, also in this plug and play scenario theperformance of the DKF algorthm is comparable

with that of the centralized Kalman filter. As expected, whena new area is added to the network the value ofe(t)

increases mainly due to the poor estimation quality concerning the state of the area 5. However, after few iterations

the value ofe(t) settles around a value which is comparable to its value before the addition of the new area.

VI. CONCLUSIONS

In this paper a novel partition-based distributed observerbased Kalman filter, named DKF, is proposed. The main

advantages of the discussed state estimator are: (i) scalability, in terms of both computational and communication

loads required for the online operations; (ii ) the convergence properties can be proved under mild conditions; (iii )

distributed and plug and play design are allowed. In fact, not only centralized (although aggregate) but also distributed

conditions for estimation convergence are given, which confer reconfigurability to the proposed estimation scheme.

Simulation tests are provided to illustrate the effectiveness of DKF. For example, we have considered a well-known

benchmark example, proposed in the framework of the Hycon2 Project. Future work include the application of

DKF to a real test case, e.g. smart grids.

APPENDIX

The following preliminary result is needed for the proofs ofboth Lemma 1 and Proposition 1.

Lemma 2:DefineP(k) = diag(P1(k), . . . ,PM(k)). If Pi(k) i = 1, . . . ,M are updated according to (8), then

P(k+1)≥ R(P(k),A,C,Q,R). (22)
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Proof of Lemma 2

SinceP(k) is block-diagonal define

PF(k) = P(k)−P(k)CT(CP(k)CT +R)−1CP(k)

= diag(PF
1 (k), . . . ,PF

M(k))

where

PF
i (k) = Pi(k)−Pi(k)C

T
i (CiPi(k)C

T
i +Ri)

−1CiPi(k)≥ 0 (23)

for all i = 1, . . . ,M. Furthermore, it holds that

APF(k)AT +Q ≤ diag(P1(k+1), . . . ,PM(k+1)) (24)

where

Pi(k+1) =
M

∑
j=1

ς jAi j P
F
j (k)A

T
i j +Qi (25)

which is equivalent to (8). Inequality (24) can be proved as follows. Define a vectorv = (v1, . . . ,vM), wherevi ∈R
ni

for all i = 1, . . . ,M. We compute thatvTAPF(k)ATv =

=
[

∑M
i=1vT

i Ai1 . . . ∑M
i=1vT

i AiM

]

PF(k)











∑M
i=1AT

i1vi

...

∑M
i=1AT

iMvi











= ∑M
j=1

(

∑M
i=1wT

i j ∑M
i=1wi j

)

(26)

where wi j =
√

PF
j (k)A

T
i j vi . Remark thatwi j = 0 identically iff Ai j = 0, and that the number of nonzero vectors

w· j is equal toς j . We compute that∑M
i=1wT

i j ∑M
i=1wi j = ∑r,s∈S j

wT
r j ws j. Note that, since‖ws j−wr j ‖2 ≥ 0, wT

r j ws j ≤
1
2(w

T
r j wr j +wT

s jws j). Therefore∑r,s∈S j
wT

r j ws j ≤ 1
2 ∑r,s∈S j

(‖wr j ‖2+‖ws j‖2)= ς j ∑i∈S j
‖wi j ‖2=∑i∈S j

‖vi‖2
ς j Ai j PF

j (k)A
T
i j
.

From this, it follows that

∑M
j=1

(

∑M
i=1wT

i j ∑M
i=1wi j

)

≤ ∑M
j=1∑M

i=1‖vi‖2
ς j Ai j PF

j (k)A
T
i j

= ∑M
i=1‖vi‖2

∑M
j=1 ς j Ai j PF

j (k)A
T
i j

= vTdiag(∑M
j=1 ς jA1 jPF

j (k)A
T
1 j , . . . ,∑

M
j=1 ς jAM j PF

j (k)A
T
M j )v

from which (24) readily follows. �

Proof of Lemma 1

From Lemma 2, one has that

P̄ ≥ (A− L̄C)P̄(A− L̄C)T +Q+ L̄RL̄T (27)

where the block entries of̄L are L̄i j = L (P̄j ,Ai j ,Cj ,Rj), which is equivalent toL̄ = L (P̄,A,C,R). The latter

follows from the fact thatL̄ = Adiag(LF
1 , . . . ,L

F
M), where diag(LF

1 , . . . ,L
F
M) = P̄CT(CP̄CT +R)−1, which is block-

diagonal in view of the block-diagonality ofC, P̄, andR. Assume, by contradiction, that(A− L̄C) is not Schur
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stable. Therefore, there is at least an eigenvalue/eigenvector pairλ ,v of (A− L̄C) such that(A− L̄C)Tv= λv and

|λ | ≥ 1. From (27)

vT P̄v≥ vT(A− L̄C)P̄(A− L̄C)Tv+ vTQv+ vTL̄RL̄Tv

from which it follows that(1−|λ |2)vT P̄v≥ vTQv+vTL̄RL̄Tv. Since the right hand side of the latter inequality is

≥ 0 and |λ | ≥ 1, the only possibility is that|λ | = 1, vTQv= 0, andL̄Tv= 0. In view of this,ATv= v and GTv

should hold at the same time which, recalling the PBH test, isin contradiction with the assumption that the pair

(A,G) is stabilizable. This concludes the proof of Lemma 1. �

Proof of Proposition 1

As a preliminary step, we show that, ifΠd(1) ≤ P(1), then Πd(k) ≤ P(k) for all k ≥ 0. This can be proved

using induction arguments. Assume that, at instantk, it holds thatΠd(k)≤ P(k). Recalling Lemma 2, we have that

P(k+ 1) ≥ R(P(k),A,C,Q,R), whereR(P(k),A,C,Q,R) = (A−L(k)C)P(k)(A −L(k)C)T +L(k)RL(k)T +Q.

From this and (10) it results that

P(k+1)−Πd(k+1)≥ (A−L(k)C)(P(k)−Πd(k))(A−L(k)C)T ≥ 0

Therefore,Πd(k+1)≤ P(k+1). By applying induction arguments, we can prove thatΠd(k)≤ P(k) for all k≥ 0.

If P(k)→ P̄ ask→∞, thenL(k)→ L̄ such that, in view of Lemma 1,A− L̄C is Schur stable. Consider the evolution

of matrix Πd(k). From the stability ofA− L̄C, thenΠd(k)→ Π̄d, for all initial conditionsΠd(1), whereΠ̄d is the

unique solution to the Lyapunov equation̄Πd = (A− L̄C)Π̄d(A− L̄C)T +Q+ L̄RL̄T . If we setΠd(1) = 0, from the

preliminary result thenΠd(k) ≤ P(k) for all k≥ 0 andΠ̄d ≤ P̄. Noting thatΠ̄d is the unique steady-state attained

for all possible initial conditions the proof is concluded. �

The proof of Theorem 1 heavily relies on classical results onKalman filters, e.g., [4], [2], [6], [8]. Similarly to

well known results on the discrete-time Riccati equation, we need two intermediate results.

Lemma 3: If PA
j (k)≥ PB

j (k) for all j = 1, . . . ,M, thenPA
i (k+1)≥ PB

i (k+1) wherePA
i (k+1) andPB

i (k+1) are

the matrix evolutions, obtained with (8), starting fromPA
j (k) andPB

j (k), respectively.

Proof: Note that we can write (8) as

Pi(k+1) = ∑M
j=1(Ãi j −Li j (k)C̃j )Pj(k)(Ãi j −Li j (k)C̃j )

T

+Li j (k)R̃j Li j (k)T +Qi

(28)

where, according to the classical Kalman filter theory,Li j (k) = L (Pj(k), Ãi j ,C̃j , R̃j) minimizes the term(Ãi j −
Li j (k)C̃j )Pj(k)(Ãi j −Li j (k)C̃j)

T +Li j (k)R̃jLi j (k)T for all i, j = 1, . . . ,M. Therefore, consider the matricesPA
i , PB

i ,

wherePA
i ≥ PB

i for all i = 1, . . . ,M, and optimal the gainsLA
i j and LB

i j corresponding toPA
i and PB

i , respectively,

then for all j, (Ãi j − LB
i jC̃j)PB

j (Ãi j − LB
i jC̃j)

T + LB
i j R̃j(LB

i j )
T ≤ (Ãi j − LA

i jC̃j)PB
j (Ãi j − LA

i jC̃j)
T + LA

i j R̃j(LA
i j )

T ≤ (Ãi j −
LA

i jC̃j)PA
j (Ãi j −LA

i jC̃j)
T +LA

i j R̃j(LA
i j )

T , and the proof is concluded. �

Lemma 4: If Assumptions 1 (for alli = 1, . . . ,M) and 4 hold then, for allPi(1)≥ 0 i = 1, . . . ,M, there existPMAX
i

for all i = 1, . . . ,M such thatPi(k)≤ PMAX
i for all k≥ 0.
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Proof: An alternative formulation of (8) is

Pi(k) = PL
i (k)+∆i(k) (29)

where PL
i (k+ 1) = Ãii PF

i (k)ÃT
ii +Qi = (Ãii − Lii (k)C̃i)Pi(k)(Ãii − Lii (k)C̃i)

T + Lii (k)R̃iLT
ii (k) +Qi and ∆i(k+ 1) =

∑ j 6=i Ãi j PF
j (k)Ã

T
i j , beingPF

j (k) defined in (23). In view of Assumption 1, we can writePF
i (k−1) = Ã−1

ii (PL
i (k)−

Qi)(Ã−1
ii )T . Therefore

∆i(k) = ∑
j 6=i

Ãi j Ã
−1
j j (P

L
j (k)−Q j)(Ã

−1
j j )

T ÃT
i j (30)

SinceF̄i = (Ãii − L̄iC̃i) is Schur stable (thanks to Assumption 4 (i)) andL̄i is a suboptimal gain

PL(k+1)≤ F̄i(P
L
i (k)+∆i(k))F̄

T
i +Qi + L̄iR̃i(L̄i)

T

Solving the latter we obtain:

PL
i (k)≤ F̄k−1

i PL
i (1)(F̄

T
i )k−1 (31)

+
k−1

∑
h=1

F̄h−1
i

(

F̄i∆i(k−h)F̄T
i +Qi + L̄iR̃i(L̄i)

T)(F̄T
i )h−1

Using the transformation matricesHi , we defineP̂L
i (k) = HiPL

i (k)H
T
i , Q̂i = HiQiHT

i
ˆ̂Qi = Hi(Qi + L̄iR̃i(L̄i)

T)HT
i .

Note also thatHiÃi j Ã−1
j j H−1

j = HiAi j H−1
j H jA−1

j j H−1
j = Âi j Â−1

j j . In view of this and (30), we can rewrite (31) as

follows

P̂L
i (k)≤ F̂k−1

i P̂L
i (1)(F̂

T
i )k−1+

k−1

∑
h=1

F̂h−1
i

ˆ̂Qi(F̂
T
i )h−1

+∑
j 6=i

k−1

∑
h=1

F̂h
i Âi j Â

−1
j j (P̂

L
j (k−h)− Q̂ j)(Â

−1
j j )

T ÂT
i j (F̂

T
i )h (32)

Recalling thatPL
j (k)≥ PL

j (k)−Q j ≥ 0 for all j = 1, . . . ,M, we have that

‖P̂L
i (k)‖ ≤ ‖F̂k−1

i ‖2‖P̂L
i (1)‖+

k−1

∑
h=1

‖F̂h
i ‖2‖ ˆ̂Qi‖

+∑
j 6=i

‖Âi j Â
−1
j j ‖2

k−1

∑
h=1

‖F̂h
i ‖2‖P̂L

j (k−h)‖ (33)

Therefore

‖P̂L
i (k)‖ ≤ µ2

i λ 2k
i ‖P̂L

i (1)‖+
µ2

i

1−λ 2
i

‖ ˆ̂Qi‖

+∑
j 6=i

‖Âi j Â
−1
j j ‖2( max

h∈[0,k]
‖P̂L

j (h)‖)
µ2

i

1−λ 2
i

(34)

Denoting n j(k) = maxh∈[0,k] ‖P̂L
j (h)‖, (34) implies that 0≤ ni(k) ≤ qi + ∑ j 6=i γi j n j(k) where qi = µ2

i ‖P̂L
i (1)‖+

µ2
i

1−λ 2
i
‖ ˆ̂Qi‖ and γi j =

µ2
i

1−λ 2
i
‖Âi j Â

−1
j j ‖2. Finally denote the vectorsn(k) = (n1(k), . . . ,nM(k)) and q = (q1, . . . ,qM).

We obtain that

(IM −Γ)n(k)≤ q (35)
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According to [7], if the spectral radius ofΓ is strictly smaller than one, for every initial condition (see, e.g., Lemma

13 for the general nonlinear case), the solution to the system (29) exists and is uniformly bounded, sinceq does

not depend onk. �

Now we are in the position to provide the proof of Theorem 1.

Proof of Theorem 1

First consider all the initializations a, b, and c.

a. In casePi(1) = 0 for all i = 1, . . . ,M thenPi(2)≥ 0= Pi(1) for all i = 1, . . . ,M.

b. SetPi(1) = P̄N
i for all i = 1, . . . ,M. Note that matrices̄PN

i exist and are unique for alli = 1, . . . ,M in view of

Assumption 2. From (8), for alli = 1, . . . ,M

Pi(2) = ςiR(P̄N
i ,Aii ,Ci ,Qi ,Ri)+∑ j∈Ni\{i} ς jR(P̄N

j ,Ai j ,Cj ,0,Rj)

≥ R(P̄N
i ,Aii ,Ci ,Qi ,Ri) = P̄N

i = Pi(1)

c. SetPi(1) = P̃N
i for all i = 1, . . . ,M. Note that matrices̃PN

i exist and are unique (for alli = 1, . . . ,M) in view

of Assumption 3. SetPi(1) = P̃N
i for all i = 1, . . . ,M. Then, from (8), for alli = 1, . . . ,M

Pi(2) = R(P̃N
i , Ãii ,C̃i ,Qi , R̃i)+∑ j∈Ni\{i}R(P̃N

j , Ãi j ,C̃j ,0, R̃j)

≥ R(P̃N
i , Ãii ,C̃i ,Qi , R̃i) = P̃N

i = Pi(1)

In all cases, applying induction arguments and in view of themonotonicity property (i.e., Lemma 3),Pi(k+1)≥
Pi(k) for all k ≥ 1 and for all i = 1, . . . ,M. Therefore the sequence of matricesP(k) =diag(P1(k), . . . ,PM(k)) is

monotonically increasing, in the sense thatP(k+1) ≥ P(k) for all k. In view of the boundedness property (i.e.,

Lemma 4), there exist̄Pi for all i, such thatPi(k)→ P̄i ask→ ∞. �

Proof of Proposition 2

The proof easily follows from the Gershgorin circle theorem. Indeed, each eigenvalue ofΓ lies in at least one of

the M Gershgorin circles, i.e., sinceγii = 0 for all i, the values ofλ satisfying|λ | ≤ ρi = ∑M
j=1 |γi j |= ∑M

j=1γi j , for

eachi = 1, . . . ,M. Then, if ρi < 1 for all i = 1, . . . ,M, all eigenvalues verify|λ |< 1. �

Proof of Corollary 1

When plug-in events take place, ifj ≤ M is a neighbor (also saidpredecessorin [26]) of M+1, thenς+
j = ς j +1,

otherwiseς+
j = ς j . In view of this,Ã+

i j =
√

ς j+1
ς j

Ãi j (for i ∈S j ), C̃+
j =

√

ς j+1
ς j

C̃j , andR̃+
j =

ς j+1
ς j

R̃j for all j ∈NM+1;

otherwiseÃ+
i j = Ãi j , C̃+

j = C̃j , andR̃+
j = R̃j . Therefore, for all initializations and for alli = 1, . . . ,M

Pi(TPnP+1) = ∑ j∈N
+

i
R(Pj(TPnP), Ã+

i j ,C̃
+
j ,0, R̃

+
j )+Qi

= ∑ j∈Ni

ς+j
ς j

R(Pj(TPnP), Ãi j ,C̃j ,0, R̃j)+Qi

+R(PM+1(TPnP), Ã
+
i(M+1),C̃

+
M+1,0, R̃

+
M+1)

≥ ∑ j∈Ni
R(P̄j , Ãi j ,C̃j ,0, R̃j)+Qi = P̄i = Pi(TPnP)
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a. if PM+1(TPnP) = 0, PM+1(TPnP+1)≥ 0.

b. if PM+1(TPnP) = P̄N
M+1, PM+1(TPnP+1)≥ R(P̄N

M+1,A(M+1)(M+1), CM+1,QM+1,RM+1) = P̄N
M+1 = PM+1(TPnP),

c. if PM+1(TPnP) = P̃N
M+1, PM+1(TPnP+1)≥ R(P̄N

M+1, Ã
+
(M+1)(M+1), C̃+

M+1,QM+1, R̃
+
M+1) = P̃N

M+1 = PM+1(TPnP)

In all cases it follows that, for alli = 1, . . . ,M+1, Pi(TPnP+1)≥ Pi(TPnP). Applying an induction argument and in

view of the monotonicity property,Pi(k+1)≥ Pi(k) for all k≥ TPnP and for all i = 1, . . . ,M. Therefore the sequence

of matricesP(k) =diag(P1(k), . . . ,PM(k)) is monotonically increasing, in the sense thatP(k+ 1) ≥ P(k) for all

k ≥ TPnP. Since Assumption 4 (ii) holds in view of Assumption 5 and Proposition 2, the boundedness property

holds in view of Lemma 4, and therefore there existP̄+
i for all i = 1, . . . ,M+1, such thatPi(k)→ P̄+

i ask→ ∞.�

Proof of Corollary 2

When the unplug event takes place, ifj < M is a neighbor ofM, thenς+
j = ς j −1, otherwiseς+

j = ς j . In view of

this, Ã+
i j =

√

ς j−1
ς j

Ãi j if i ∈S j , andC̃+
j =

√

ς j−1
ς j

C̃j andR̃+
j =

ς j−1
ς j

R̃j for all j ∈NM; otherwiseÃ+
i j = Ãi j , C̃+

j = C̃j ,

and R̃+
j = R̃j . Therefore, for alli = 1, . . . ,M−1

Pi(TPnP+1) = ∑ j∈N
+

i
R(Pj(TPnP), Ã

+
i j ,C̃

+
j ,0, R̃

+
j )+Qi

= ∑ j∈N
+

i

ς+j
ς j

R(Pj(TPnP), Ãi j ,C̃j ,0, R̃j)+Qi

≤ ∑ j∈N
+

i
R(Pj(TPnP), Ãi j ,C̃j ,0, R̃j)+Qi

= ∑ j∈Ni
R(Pj(TPnP), Ãi j ,C̃j ,0, R̃j)+Qi

−R(PM(TPnP), ÃiM ,C̃M,0, R̃M)≤ P̄i = Pi(TPnP)

Then, applying an induction argument and in view of the monotonicity property,Pi(k+1)≤Pi(k) for all k≥TPnP and

for all i = 1, . . . ,M. Therefore the sequence of matricesP(k) =diag(P1(k), . . . ,PM(k)) is monotonically decreasing, in

the sense thatP(k+1)≤P(k) for all k≥TPnP. In view of the fact thatP(k)≥ 0, there exist̄P+
i for all i = 1, . . . ,M+1,

such thatPi(k)→ P̄+
i ask→ ∞. �
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