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Analyzing Connectivity of Heterogeneous
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Abstract—We analyze connectivity of a heterogeneous secure
sensor network that uses key predistribution to protect commu-
nications between sensors. For this network on a set Vn of n
sensors, suppose there is a pool Pn consisting of Pn distinct keys.
The n sensors in Vn are divided into m groups A1,A2, . . . ,Am.
Each sensor v is independently assigned to exactly a group
according to the probability distribution with P[v ∈ Ai] = ai for
i = 1, 2, . . . ,m, where

∑m

i=1
ai = 1. Afterwards, each sensor in

group Ai independently chooses Ki,n keys uniformly at random
from the key pool Pn, where K1,n ≤ K2,n ≤ . . . ≤ Km,n. Finally,
any two sensors in Vn establish a secure link in between if and
only if they have at least one key in common. We present critical
conditions for connectivity of this heterogeneous secure sensor
network. The result provides useful guidelines for the design of
secure sensor networks.

This paper improves the seminal work [1] (IEEE Transactions
on Information Theory 2016) of Yağan on connectivity in the
following aspects. First, our result is more broadly applicable;
specifically, we consider Km,n/K1,n = o(

√
n), while [1] requires

Km,n/K1,n = o(lnn). Put differently, Km,n/K1,n in our paper
examines the case of Θ(nx) for any x < 1

2
and Θ

(

(lnn)y
)

for
any y > 0, while that of [1] does not cover any Θ(nx), and
covers Θ

(

(lnn)y) for only 0 < y < 1. This improvement is
possible due to a delicate coupling argument. Second, although
both studies show that a critical scaling for connectivity is that

the term bn denoting
∑m

j=1

{

aj

[

1−
(

Pn−K1,n

Kj,n

)/(

Pn

Kj,n

)

]}

equals

lnn
n

, our paper considers any of bn = o
(

lnn
n

)

, bn = Θ
(

lnn
n

)

, and

bn = ω
(

lnn
n

)

, while [1] evaluates only bn = Θ
(

lnn
n

)

. Third, in

terms of characterizing the transitional behavior of connectivity,

our scaling bn = lnn+βn

n
for a sequence βn is more fine-grained

than the scaling bn ∼ c lnn
n

for a constant c 6= 1 of [1]. In a

nutshell, we add the case of c = 1 in bn ∼ c lnn
n

, where the graph

can be connected or disconnected asymptotically, depending on
the limit of βn.

Finally, although a recent study by Eletreby and Yağan
[2] uses the fine-grained scaling discussed above for a more
complex graph model, their result (just like [1]) also demands
Km,n/K1,n = o(lnn), which is less general than Km,n/K1,n =
o(
√
n) addressed in this paper.

Keywords—Secure sensor networks, heterogeneity, connectivity,
key predistribution.

I. INTRODUCTION

A. Modeling secure sensor networks

Securing wireless sensor networks via key predistri-
bution. Wireless sensor networks (WSNs) enable a broad
range of applications including military surveillance, patient
monitoring, and home automation [3], [5], [6]. In many cases,
WSNs are deployed in hostile environments (e.g., battlefields),
making it crucial to use cryptographic protection to secure
sensor communications. To that end, significant efforts have
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been devoted to developing strategies for securing WSNs,
and random key predistribution schemes have been broadly
accepted as promising solutions.

The idea of key predistribution initiated by Eschenauer
and Gligor [6] is that cryptographic keys are assigned to
sensors before deployment to ensure secure communications
after deployment. The Eschenauer–Gligor (EG) scheme [6]
works as follows. For a WSN of n sensors, in the key
predistribution phase, a large key pool Pn consisting of Pn
different cryptographic keys is used to select uniformly at
random Kn distinct keys for each sensor node. These Kn

keys constitute the key ring of a sensor, and are installed in
the sensor’s memory. After deployment, two sensors establish
secure communication over a wireless link if and only if their
key rings have at least one key in common. Common keys
are found in the neighbor discovery phase whereby a random
constant is enciphered in all keys of a node and broadcast
along with the resulting ciphertext block. The key pool size
Pn and the key ring size Kn are both functions of n in order
to consider the scaling behavior. The condition 1 ≤ Kn ≤ Pn
holds naturally.

Random key graphs. A secure sensor network under the
EG scheme described above induces the so-called random
key graph G(n,Kn, Pn) [7]–[10]. In this graph of n nodes,
each node selects Kn keys uniformly at random from a
common key pool Pn of Pn keys, and two nodes establish an
undirected edge in between if and only if they share at least
one key. Random key graphs (also known as uniform random
intersection graph [3], [11]–[13]) have received significant
interest recently with applications beyond secure WSNs; e.g.,
recommendation systems [14], clustering and classification
[13], [15], [16], cryptanalysis of hash functions [12], frequency
hopping [17], and the modeling of epidemics [18].

B. Modeling heterogeneous secure sensor networks

Heterogeneous secure sensor networks. The EG scheme
above assigns the same number of keys to each sensor. Yet,
in practice, sensors may have varying levels of memory and
computational resources. In view of this heterogeneity, we
study a variation [1] of the EG scheme that is more suitable
for heterogeneous secure sensor networks [19]–[21]. In this
scheme [1], the key ring size of each sensor is independently

drawn from
−→
K := [K1,n, . . . ,Km,n] according to a probability

vector −→a := [a1, . . . , am] (i.e., Ki,n is taken with probability
ai for i = 1, 2, . . . ,m), where m is a positive constant integer,
and ai|i=1,2,...,m are positive constants satisfying the natural
condition

∑m
i=1 ai = 1 (note that m and ai|i=1,2,...,m do not

scale with n). The above process can also be understood as
follows: for i = 1, 2, . . . ,m, each sensor first joins a group Ai

with probability ai; after assigning to a particular group Ai,
a sensor independently chooses Ki,n different keys uniformly
at random from a common pool Pn of Pn distinct keys.
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Heterogeneous random key graphs. We let

G(n,−→a n,
−→
Kn, Pn) denote the graph topology of a

heterogeneous secure sensor network employing the above
key predistribution scheme, and refer to this graph as a
heterogeneous random key graph. Formally, it is defined on
a set Vn of n nodes as follows. All nodes are divided into
m different groups A1,A2, . . . ,Am. Each node v ∈ Vn is
independently assigned to exactly one group according to
the following probability distribution1: P [v ∈ Ai] = ai for
i = 1, 2, . . . ,m. The edge set is built as follows. To begin
with, assume that there exists a pool Pn consisting of Pn
distinct keys. Then for i = 1, 2, . . . ,m, each node in group
Ai independently chooses Ki,n different keys uniformly at
random from the key pool Pn, where 1 ≤ Ki,n ≤ Pn. Finally,
any two nodes in Vn have an undirected edge in between if
and only if they share at least one key.

C. Results and Discussions

For a heterogeneous random key graph G(n,−→a ,−→Kn, Pn)
modeling a heterogeneous secure sensor network, we establish
Theorem 1 below, which improves the pioneering result of
Yağan [1].

Theorem 1 Consider a heterogeneous random key graph

G(n,−→a ,−→Kn, Pn) under Pn = Ω(n) and

ω(
√
Pn/n) = K1,n ≤ K2,n ≤ . . . ≤ Km,n = o(

√
Pn). (1)

With a sequence βn for all n defined by

m∑

j=1

{
aj

[
1−

(
Pn−K1,n

Kj,n

)
(
Pn

Kj,n

)
]}

=
lnn+ βn

n
, (2)

it holds that

lim
n→∞

P

[
G(n,−→a ,−→Kn, Pn)

is connected.

]
=

{
0, if lim

n→∞
βn = −∞, (3a)

1, if lim
n→∞

βn = ∞. (3b)

A sharp zero–one law of connectivity. Theorem 1 presents
a sharp zero–one law, since the zero-law (3a) shows that
the graph is connected almost surely under certain parameter
conditions while the one-law (3b) shows that the graph is
disconnected almost surely if parameters are slightly changed,
where an event (indexed by n) occurs almost surely if its
probability converges to 1 as n→ ∞.

Improvements over Yağan [1]. This paper improves the
seminal work [1] of Yağan on connectivity in the following
aspects.

(i) More practical conditions. Our result is more broadly ap-
plicable; specifically, from (1), we consider Km,n/K1,n =
o(
√
n), while [1] requires Km,n/K1,n = o(lnn). Put

differently, Km,n/K1,n in our paper examines the case of
Θ(nx) for any x < 1

2 and Θ
(
(lnn)y

)
for any y > 0, while

that of [1] does not cover any Θ(nx), and covers Θ
(
(lnn)y)

1We summarize the notation and convention as follows. Throughout the
paper, P [·] denotes a probability and E [·] stands for the expectation of a
random variable. All limiting statements are understood with n → ∞. We
use the standard asymptotic notation o(·), O(·), ω(·),Ω(·),Θ(·),∼; see [8,
Page 2-Footnote 1] for their meanings. In particular, “∼” represents asymptotic
equivalence and is defined as follows: for two positive sequences fn and gn,
the relation fn ∼ gn means limn→∞(fn/gn) = 1. Also, “ln” stands for
the natural logarithm function, and “| · |” can denote the absolute value as well
as the cardinality of a set.

for only 0 < y < 1. This improvement is possible due to a
delicate coupling argument. See Algorithm 1 on Page 7 as
an illustration for the difficulty of the argument.

(ii) More fine-grained zero–one law. Both this paper and [1]
show that a critical scaling for connectivity is that the
term bn denoting the left hand side of (2) equals lnn

n .
However, in terms of characterizing the transitional behavior

of connectivity, our scaling bn = lnn+βn

n for a sequence

βn is more fine-grained than the scaling bn ∼ c lnn
n for a

constant c 6= 1 of [1]. In a nutshell, we add the case of
c = 1 in bn ∼ c lnn

n , where the graph can be connected or
disconnected asymptotically, depending on the limit of βn.

(iii) More general scaling condition. Our paper considers any
of bn = o

(
lnn
n

)
, bn = Θ

(
lnn
n

)
, and bn = ω

(
lnn
n

)
, while

[1] evaluates only bn = Θ
(
lnn
n

)

Improvements over Eletreby and Yağan [2], [22]. Al-
though a recent research by Eletreby and Yağan [2] uses the
fine-grained scaling discussed above for a more complex graph
model (another work [22] by them uses the weaker scaling),
both studies [2], [22] (just like [1]) also demandKm,n/K1,n =
o(lnn), which is less general than Km,n/K1,n = o(

√
n)

addressed in this paper.
Improvements over Zhao et al. [3]. Recently, Zhao et

al. [3] consider k-connectivity of heterogeneous random key
graphs, where k-connectivity means that connectivity is still
preserved despite the deletion of at most (k − 1) arbitrary
nodes. Although k-connectivity of [3] is stronger than our
connectivity, their result applies to only a narrow range of
parameters since it only permits a very small variance of the
key ring sizes.

Interpreting (2). From [1] as well as the explanation later
in Section IV, the left hand side of the scaling condition (2) is
in fact the mean probability of edge occurrence for a group-1
node (i.e., a node in group A1), where the mean is taken by
considering that the other endpoint of the edge can fall into
each group Aj with probability aj for j = 1, 2, . . . ,m.

D. Organization

We organize the remainder of the paper as follows. Section
II presents related work. Then we introduce experiments in
Section III to confirm our theoretical result (i.e., Theorem 1).
Afterwards, we provide proof details for Theorem 1 in Sections
IV–VI. Finally, we conclude the paper in Section VII.

II. RELATED WORK

Random key graphs have received significant interest re-
cently with applications spanning secure sensor networks [6],
[11], [23]–[25], recommender systems [14], clustering and
classification [13], [15], cryptanalysis [12], and epidemics [18].
Random key graphs are also referred to as uniform random in-
tersection graphs in the literature [3], [12]–[14], where the
word “uniform” is due to the fact that in a random key graph
G(n,Kn, Pn), the number of keys assigned to each node is
fixed as Kn given n. The graph G(n,Kn, Pn) has been studied
in terms of connectivity [9], [11], [24], [26], k-connectivity
[7], [8], k-robustness [3], [28], component evolution [23],
clustering coefficient [13], and diameter [26].

In this paper, we study the heterogeneous random key

graph model G(n,−→a ,−→Kn, Pn) [1], where nodes can have
different numbers of keys. This graph models a heterogeneous
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transmission power/range; i.e., in a local neighborhood. and are both functions of for generality, with the natural

condition

In this paper we study a variation of the EG scheme that is more suitable for heterogeneous WSNs; it is in fact envisioned

that many military and commercial WSN applications will consist of heterogeneous nodes [ ], [ ], [ ]. Namely, we consider

that the network consists of sensors with varying level of resources (e.g., computational, memory, power) and possibly with

varying level of security and connectivity requirements. As a result of this heterogeneity, it may no longer be sensible to

assign the same number of keys to all sensors in the network as prescribed by the EG scheme. Instead, we consider a

scheme [ ], [ ], [ ] where the number of keys that will be assigned to each sensor is independently drawn from the set

−→
,n, . . . ,Km,n according to some probability distribution −→ , . . . , a , for a fixed integer . We can think

of this as each vertex being assigned to a group with probability and then receiving a key ring with the size i,n

associated with this group, where ∈ { , . . . ,m}
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Fig. 1. We plot the connectivity probability of graph G(n,−→a ,
−→
K,P ) when

−→
K = [K1,K2] varies in Figure 1-(a), and when

−→
K = [K1, K2,K3] varies

in Figure 1-(b). In Figure 1-(a) (resp., 1-(b)), each vertical line presents the

minimal K2 (resp., K3) such that b1(
−→a ,

−→
K,P ) in Eq. (4) is at least lnn

n
.
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=1 ,...,m are positive constants satisfying the natural condition
=1

= 1 (note that and =1 ,...,m do not scale

with ). The edge set is built as follows. To begin with, assume that there exists a pool consisting of distinct keys.

Then for = 1 , . . . ,m, each node in group independently chooses i,n keys uniformly at random from the key pool

, where i,n . Finally, any two nodes in have an undirected edge in between if and only if they share at

least one key. We will refer to n,−→a ,
−→

, P as a heterogeneous random key graph.

For a graph n,−→a ,
−→

, P modeling a heterogeneous secure sensor network, we establish a zero-one law for connec-

tivity:

For a graph n,−→a ,
−→

, P under = Ω( and (1) = ,n ,n . . . m,n , if there exists a

positive constant such that

=1

,n

j,n

j,n

]}

ln
(1)

hen it holds that

→∞

n,−→a ,
−→

, P

is connected.

if c < (2a)

if c > (2b)

For a heterogeneous random key graph n,−→a ,
−→

, P , (2a) (resp., (2b)) presents a zero-law (resp., one-law) for

connectivity. This zero-one law indicates that a critical scaling for connectivity in a heterogeneous random key graph

n,−→a ,
−→

, P is to have the quantity in the left hand side of (1) being ln

We discuss the application of our analytical result on n,−→a ,
−→

, P to secure wireless sensor networks as well as

social networks. Clearly, our result provides a guideline on how to choose network parameters so that a heterogeneous

secure sensor network is connected with high probability. We further explain that the conditions = Ω( and (1) =

,n ,n . . . m,n are practical in secure sensor networks. First, ,n . . . m,n are

assumed without loss of generality. Second, the key pool size grows at least linearly with the number of sensors and

the number of keys on a sensor increases with becomes larger to have reasonable resiliency against sensor capture attacks

], [ ], [ ], so = Ω( are ,n (1) both practical. Finally, since the number of keys on a sensor is often bounded

above by a polylogarithmic function of since sensors have limited memory to store keys [ ], [ ], [ ] and is Ω( as
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K,P ) when

P varies given different
−→
K in Figure 2-(a), and given different −→a in 2-(b).

Each vertical line presents the maximal P such that b1(
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K,P ) in Eq. (4)

is at least lnn
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=1 ,...,m are positive constants satisfying the natural condition
=1

= 1 (note that and =1 ,...,m do not scale

with ). The edge set is built as follows. To begin with, assume that there exists a pool consisting of distinct keys.

Then for = 1 , . . . ,m, each node in group independently chooses i,n keys uniformly at random from the key pool

, where i,n . Finally, any two nodes in have an undirected edge in between if and only if they share at

least one key. We will refer to n,−→a ,
−→

, P as a heterogeneous random key graph.

For a graph n,−→a ,
−→

, P modeling a heterogeneous secure sensor network, we establish a zero-one law for connec-

tivity:

For a graph n,−→a ,
−→

, P under = Ω( and (1) = ,n ,n . . . m,n , if there exists a

ositive constant such that

=1

,n

j,n

j,n

ln
(1

then it holds that

→∞

n,−→a ,
−→

, P

is connected.

if c < (2a)

if c > (2b)

For a heterogeneous random key graph n,−→a ,
−→

, P , (2a) (resp., (2b)) presents a zero-law (resp., one-law) for
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Fig. 3. We plot the connectivity probability of graph G(n,−→a ,
−→
K,P ) when

n varies in Figure 2-(a), and when −→a = [1− t, t] varies in Figure 2-(b). In
Figure 3-(a) (resp., 3-(b)), each vertical line presents the minimal n (resp., t)

such that b1(
−→a ,

−→
K,P ) in Eq. (4) is at least lnn

n
.

sensor network where sensors have varying level of resources.
Compared with the seminal work [1] of Yağan (and its
conference version [29]) on connectivity, our work has the
following improvements, as already discussed in Section I-C
above (we do not repeat the details here): more practical
conditions by considering Km,n/K1,n = o(

√
n) instead of

just Km,n/K1,n = o(lnn), more fine-grained zero–one law

by considering the scaling lnn+βn

n rather than c lnn
n for a

constant c 6= 1, and more general scaling condition. Although
a recent work by Eletreby and Yağan [2] uses the fine-
grained scaling discussed above for a more complex graph
model (other researches [22], [30] by them uses the weaker
scaling), all these studies [2], [22], [30] (just like [1]) still
demand Km,n/K1,n = o(lnn), which is less general than
Km,n/K1,n = o(

√
n) addressed in this paper. In addition,

Goderhardt et al. [15], [16] and Zhao et al. [3], [28] also

study heterogeneous random key graphs, but their results apply
to only a narrow range of parameters and are not applicable
to practical secure sensor networks. Finally, Bloznelis et al.
[23] investigate component evolution rather than connectivity
and present conditions for the existence of a giant connected
component (i.e., a connected component of Θ(n) nodes).

For heterogeneous secure sensor networks, different key
management schemes [19]–[21] have been proposed, but ex-
isting connectivity analyses for them are informal. In this
paper, we formally analyze connectivity and improve [1] for
heterogeneous secure sensor networks under a simple variant
of the Eschenauer–Gligor key predistribution scheme [6].

III. EXPERIMENTAL RESULTS

We now present experimental results to confirm our theoret-

ical findings of connectivity in graph G(n,−→a ,−→K,P ), where

we write
−→
Kn, Pn as

−→
K,P to suppress the subscript n.

In Figure 1-(a), we plot the connectivity probability of graph

G(n,−→a ,−→K,P ) for
−→
K = [K1,K2], with respect to K2 given

different K1 (all parameters are provided in the figure). In
Figure 1-(a) as well as all other figures, for each data point,

we generate 1000 independent samples of G(n,−→a ,−→K,P ),
record the count that the obtained graph is connected, and then
divide the count by 1000 to obtain the corresponding empirical
probability of network connectivity. From the plot, we see
the evident transitional behavior of connectivity. Furthermore,
in Figure 1-(a) as well as all other figures, based on (2)
of Theorem 1, we illustrate the parameter such that lnn

n
roughly equals the left hand side of (2), which we denote by

b1(
−→a ,−→K,P ) after suppressing the subscript n (we use b1 in

consistence with later notation); i.e.,

b1(
−→a ,−→K,P ) :=

m∑

j=1

{
aj ·

[
1−

(
P−K1

Kj

)
(
P
Kj

)
]}

. (4)

Specifically, in Figure 1-(a), each vertical line presents the

minimal K2 such that b1(
−→a ,−→K,P ) in (4) with

−→
K = [K1,K2]

is at least lnn
n .

In Figure 1-(b), we plot the connectivity probability of graph

G(n,−→a ,−→K,P ) for
−→
K = [K1,K2,K3] with respect to K3

given different K1,K2, and each vertical line presents the

minimal K3 such that b1(
−→a ,−→K,P ) in (4) is at least lnn

n .
In Figure 2-(a) (resp., 2-(b)), we plot the connectivity prob-

ability of graph G(n,−→a ,−→K,P ) for
−→
K = [K1,K2,K3,K4]

with respect to P given different
−→
K (resp., given different−→a ), and each vertical line presents the maximal P such that

b1(
−→a ,−→K,P ) in (4) is at least lnn

n .
In Figure 3-(a), we plot the connectivity probability of

graph G(n,−→a ,−→K,P ) with respect to n given different
−→
K

and −→a , and each vertical line presents the minimal n such

that b1(
−→a ,−→K,P ) in (4) is at least lnn

n . In Figure 3-(b), we

plot the connectivity probability of graph G(n,−→a ,−→K,P ) for
−→a = [1− t, t] with respect to t given different n and

−→
K , and

each vertical line presents the minimal t such that b1(
−→a ,−→K,P )

in (4) is at least lnn
n .

In all figures, we clearly see the transitional behavior of con-

nectivity, and that the transition happens when b1(
−→a ,−→K,P )

in (4) is around lnn
n . Summarizing the above, the experiments

have confirmed our analytical results.



IV. PRELIMINARIES

We notate the n nodes in graph G(n,−→a ,−→Kn, Pn) by
v1, v2, . . . , vn; i.e., Vn = {v1, v2, . . . , vn}. For each x =
1, 2 . . . , n, the set of keys on node vx is denoted by Sx. When
vx belongs to a group Ai for some i ∈ {1, 2, . . . ,m}, the set
Sx is uniformly distributed among all Ki,n-size subsets of the
object pool Pn.

In graph G(n,−→a ,−→Kn, Pn), let Exy be the event that two
different nodes vx and vy have an edge in between. Clearly,
Exy is equivalent to the event Sx ∩ Sy 6= ∅. To analyze Exy ,
we often condition on the case where vx belongs to group Ai

and vy belongs to group Aj , where i ∈ {1, 2, . . . ,m} and
j ∈ {1, 2, . . . ,m} (note that x and y are different, but i and j
may be the same; i.e., different nodes vx and vy may belong
to the same group).

We define pi,j,n as the probability of edge occurrence
between a group-i node and a group-j node. More formally,
pi,j,n equals the probability that an edge exists between nodes
vx and vy conditioning on that vx belongs to group Ai

and vy belongs to group Aj . We now compute pi,j,n :=
P[Exy | (vx ∈ Ai) ∩ (vy ∈ Aj)]. Let T (Ki,n, Pn) be the
set of all Ki,n-size subsets of the object pool Pn. Under
(vx ∈ Ai) ∩ (vy ∈ Aj), the set Sx (resp., Sy) is uniformly
distributed in T (Ki,n, Pn) (resp., T (Kj,n, Pn)). Let S∗

x be an
arbitrary element in T (Ki,n, Pn). Conditioning on Sx = S∗x ,

the event Exy (i.e., Sx ∩ Sy = ∅) means Sy ⊆ Pn \ S∗x .

Noting that there are
(
Pn

Kj,n

)
ways to select a Kj,n-size set

from Pn and there are
(
Pn−Ki,n

Kj,n

)
ways to select a Kj,n-size set

from Pn\S∗x , we obtain P
[
Exy | (Sx = S∗x ) ∩ (vy ∈ Aj)

]
=(

Pn−Ki,n

Kj,n

)/(
Pn

Kj,n

)
. Given the above, we derive

pi,j,n =
∑

S∗x∈T (Ki,n,Pn){
P
[
Sx =S∗x | vx ∈Ai

]
P
[
Exy | (Sx =S∗x ) ∩ (vy ∈Aj)

]}

= 1−
(
Pn−Ki,n

Kj,n

)
(
Pn

Kj,n

) , (5)

where we use
∑

S∗x∈T (Ki,n,Pn)
P
[
Sx = S∗x | vx ∈ Ai

]
= 1.

We further define bi,n as the mean probability of edge
occurrence for a group-i node. More formally, bi,n is the
probability that an edge exists between nodes vx and vy
conditioning on that vx belongs to group Ai. Since vy belongs
to group Aj with probability aj for j = 1, . . . , n, we have
bi,n =

∑m
j=1

(
ajpi,j,n

)
. From this and (5), we can see that

b1,n (i.e., bi,n with i = 1) equals the left hand side of (2) in
our Theorem 1; namely,

b1,n =

m∑

j=1

{
aj

[
1−

(
Pn−K1,n

Kj,n

)
(
Pn

Kj,n

)
]}

. (6)

Although the above results are also discussed in [1], we present
them clearly here for better understanding.

V. CONFINING |βn| AS o(lnn) IN THEOREM 1

We recall from (2) that βn measures the deviation of the left
hand side of (2) from the critical scaling lnn

n . The desired re-
sults (3a) and (3b) of Theorem 1 consider limn→∞ βn = −∞
and limn→∞ βn = ∞, respectively. In principle, the absolute

value |βn| can be arbitrary as long as it is unbounded. Yet,
we will explain that the extra condition |βn| = o(lnn) can be
introduced in proving Theorem 1. Specifically, we will show

Theorem 1 with the additional condition |βn| = o(lnn)
=⇒ Theorem 1 regardless of |βn| = o(lnn).

(7)

We write b1,n in (6) as b1(
−→a ,−→Kn, Pn). Given −→a ,−→Kn, Pn,

one can determine βn from (2). In order to show (7), we
present Lemma 1 below.

Lemma 1 For a graph G(n,−→a ,−→Kn, Pn) on a probability
space S under

Pn = Ω(n), (8)

and

ω(
√
Pn/n) = K1,n ≤ K2,n ≤ . . . ≤ Km,n = o(

√
Pn), (9)

with a sequence βn defined by

b1(
−→a ,−→Kn, Pn) =

lnn+ βn
n

, (10)

the following results hold:

(i) If

lim
n→∞

βn = −∞ , (11)

there exists a graph G(n,−→a ,
−→
K∗
n , Pn) on the probability

space S such that G(n,−→a ,−→Kn, Pn) is a spanning subgraph

of G(n,−→a ,
−→
K∗
n , Pn), where

ω(
√
Pn/n) = K∗

1,n ≤ K∗
2,n ≤ . . . ≤ K∗

m,n = o(
√
Pn)

and a sequence β∗n defined by

b1(
−→a ,

−→
K∗
n , Pn) =

lnn+ β∗n
n

(12)

satisfies limn→∞ β∗n = −∞ and |β∗n | = o(lnn) .

(ii) If

lim
n→∞

βn = ∞ , (13)

there exists a graph G(n,−→a ,
−−→
K#
n , Pn) on the probability

space S such that G(n,−→a ,−→Kn, Pn) is a spanning super-

graph of G(n,−→a ,
−−→
K#
n , Pn), where

ω(
√
Pn/n) = K#

1,n ≤ K#
2,n ≤ . . . ≤ K#

m,n = o(
√
Pn)

and a sequence β#
n defined by

b1(
−→a ,

−−→
K#
n , Pn) =

lnn+ β#
n

n
(14)

satisfies limn→∞ β#
n = ∞ and |β#

n | = o(lnn) .

Before establishing Lemma 1, we first demonstrate (7) given
Lemma 1.

1) Proving (7) given Lemma 1:
To establish (7) using Lemma 1, we discuss the two cases

in the result of Theorem 1 below: ① limn→∞ βn = −∞, and
② limn→∞ βn = ∞.

① Under limn→∞ βn = −∞, we use the property (i) of

Lemma 1 to have graph G(n,−→a ,
−→
K∗
n , Pn). Then if Theorem 1



holds with the additional condition |βn| = o(lnn), we apply

the zero-law (3a) of Theorem 1 to graph G(n,−→a ,
−→
K∗
n , Pn) and

obtain that this graph is disconnected almost surely, which

implies that its spanning subgraph G(n,−→a ,−→Kn, Pn) is also
disconnected almost surely. This means that the zero-law (3a)
of Theorem 1 holds regardless of |βn| = o(lnn).

② Under limn→∞ βn = ∞, we use the property (ii) of

Lemma 1 to have graph G(n,−→a ,
−−→
K#
n , Pn). Then if Theorem

1 holds with the additional condition |βn| = o(lnn), we apply

the one-law (3b) of Theorem 1 to graph G(n,−→a ,
−−→
K#
n , Pn)

and obtain that this graph is connected almost surely, which

implies that its spanning supergraph G(n,−→a ,−→Kn, Pn) is also
connected almost surely. This means that the one-law (3b) of
Theorem 1 holds regardless of |βn| = o(lnn).

2) Proving Lemma 1:
Proving Property (i) of Lemma 1:

We define β̃∗n by

β̃∗n = max{βn,− ln lnn}. (15)

Since 1 − (Pn−K1,n
X

)
(Pn

X )
is the probability that a node with key

ring size X and a node with key ring size K1,n have an
edge in between when their key rings are independent selected
uniformly at random from the same pool of Pn keys, it is
increasing as X increases. This can also be formally shown

through
(Pn−K1,n

X+1
)

( Pn
X+1)

/[
(Pn−K1,n

X
)

(Pn
X )

]
= 1− K1,n

Pn−X
< 1. Then we

define K∗
m,n as the maximal non-negative integer X such that

am

[
1−

(
Pn−K1,n

X

)
(
Pn

X

)
]
+

m−1∑

j=1

{
aj

[
1−

(
Pn−K1,n

Kj,n

)
(
Pn

Kj,n

)
]}

, (16)

is no greater than

lnn+ β̃∗n
n

; (17)

i.e.,

K∗
m,n := argmax{X : (16) ≤ (17)}. (18)

Such K∗
m,n always exists because setting X as Km,n induces

(16) ≤ (17), which follows from (6) and (15).
We will prove Property (i) of Lemma 1 by using K∗

m,n

above and setting K∗
j,n as Kj,n for 1 ≤ j ≤ m− 1; i.e.,

K∗
j,n := Kj,n, for 1 ≤ j ≤ m− 1. (19)

To this end, we will show the following results:

(i.1) G(n,−→a ,−→Kn, Pn) is a spanning subgraph of

G(n,−→a ,
−→
K∗
n , Pn).

(i.2) K∗
1,n = ω(

√
Pn/n),

(i.3) K∗
1,n ≤ K∗

2,n ≤ . . . ≤ K∗
m,n,

(i.4) K∗
m,n defined by (18) satisfies K∗

m,n = o(
√
Pn),

(i.5) β∗n defined by (12) (i.e., b1(
−→a ,

−→
K∗
n , Pn) =

lnn+β∗n
n ) satisfies

limn→∞ β∗n = −∞ and |β∗n | = o(lnn).

We now establish the above results (i.1)–(i.5).
Proving result (i.1): We note from (19) that K∗

j,n = Kj,n

for 1 ≤ j ≤ m − 1, and note from (20) that Km,n ≤

K∗
m,n. Then from the construction of G(n,−→a ,−→Kn, Pn) and

G(n,−→a ,
−→
K∗
n , Pn), result (i.1) clearly follows.

Proving results (i.2) and (i.3):
Since (6) and (15) together imply that setting X as Km,n

induces (16) ≤ (17), we obtain from (18) that

Km,n ≤ K∗
m,n. (20)

Combining (19) (20) and the condition (9) (which enforces

ω(
√
Pn/n) = K1,n ≤ K2,n ≤ . . . ≤ Km,n), we clearly obtain

ω(
√
Pn/n) = K∗

1,n ≤ K∗
2,n ≤ . . . ≤ K∗

m,n; i.e., results (i.2)
and (i.3) are proved.

Proving result (i.4):
Applying the condition (11) (i.e., limn→∞ βn = −∞) and

limn→∞(− ln lnn) = −∞ to (15), we obtain

lim
n→∞

β̃∗n = −∞. (21)

From limn→∞ βn = −∞, it holds that βn ≤ 0 for all n
sufficiently large. Then from (15), we have

β̃∗n = −O(ln lnn) = −o(lnn), (22)

Setting X as K∗
m,n in (16), we use (17) (18) and (22) (i.e.,

β̃∗n = −O(ln lnn) ≤ o(lnn)) to obtain

am


1−

(Pn−K1,n

K∗
m,n

)

(
Pn

K∗
m,n

)


+

m−1∑

j=1

{
aj

[
1−

(
Pn−K1,n

Kj,n

)
(
Pn

Kj,n

)
]}

(23)

≤ lnn+ β̃∗n
n

≤ lnn

n
× [1 + o(1)], (24)

which further implies

am


1−

(Pn−K1,n

K∗
m,n

)
(
Pn

K∗
m,n

)


 = O

(
lnn

n

)
. (25)

Since am is a positive constant, (25) induces

1−
(Pn−K1,n

K∗
m,n

)

(
Pn

K∗
m,n

) = O

(
lnn

n

)
. (26)

The left hand side of (26) is the probability that a node
with key ring size K∗

m,n and a node with key ring size K1,n

have an edge in between when their key rings are independent
selected uniformly at random from the same pool of Pn keys.
Then (26) and [1, Lemma 4.2] together imply

K1,nK
∗
m,n

Pn
∼ 1−

(Pn−K1,n

K∗
m,n

)
(
Pn

K∗
m,n

) , (27)

which along with (26) gives

K1,nK
∗
m,n

Pn
= O

(
lnn

n

)
. (28)

Then (28) and K1,n = ω(
√
Pn/n) (from (9)) further induces

K∗
m,n = O

(
lnn

n

)
· Pn
K1,n

= O

(
lnn

n

)
· o
(

Pn√
Pn/n

)
=

√
Pn · lnn√

n
= o(

√
Pn);



i.e., result (i.4) is proved.
Proving result (i.5):

To prove result (i.5), we will bound b1(
−→a ,

−→
K∗
n , Pn). From

(19), the only difference between
−→
K∗
n and

−→
Kn is that the mth

dimension of
−→
K∗
n is K∗

m,n, while the mth dimension of
−→
Kn

is Km,n. Then replacing Km,n by K∗
m,n in the expression of

b1(
−→a ,−→Kn, Pn) in (6), we obtain that b1(

−→a ,
−→
K∗
n , Pn) equals

the term in (23); i.e.,

b1(
−→a ,

−→
K∗
n , Pn)

= am


1−

(Pn−K1,n

K∗
m,n

)

(
Pn

K∗
m,n

)


+

m−1∑

j=1

{
aj

[
1−

(
Pn−K1,n

Kj,n

)
(
Pn

Kj,n

)
]}

(29)

As proved in (24), it holds that

b1(
−→a ,

−→
K∗
n , Pn) ≤

lnn+ β̃∗n
n

≤ lnn

n
· [1 + o(1)]. (30)

(30) gives an upper bound for b1(
−→a ,

−→
K∗
n , Pn). We now further

provide a lower bound for b1(
−→a ,

−→
K∗
n , Pn). To this end, we

observe that we can first evaluate the probability when we

change
−→
K∗
n in b1(

−→a ,
−→
K∗
n , Pn) such that the mth dimension

of
−→
K∗
n := [K∗

1,n, . . . ,K
∗
m,n] increases by 1 (i.e., increases to

K∗
m,n + 1). More specifically, with

−→
L∗n defined by

−→
L∗n := [K∗

1,n, . . . ,K
∗
m−1,n,K

∗
m,n + 1],

we evaluate b1(
−→a ,

−→
L∗n, Pn). From (19), we further have−→

L∗n = [K1,n, . . . ,Km−1,n,K
∗
m,n + 1]. Then replacing Km,n

by K∗
m,n + 1 in the expression of b1(

−→a ,−→Kn, Pn) in (6), we

obtain b1(
−→a ,

−→
L∗n, Pn) via

b1(
−→a ,

−→
L∗n, Pn)

= am


1−

(Pn−K1,n

K∗
m,n+1

)

(
Pn

K∗
m,n+1

)


+

m−1∑

j=1

{
aj

[
1−

(
Pn−K1,n

Kj,n

)
(
Pn

Kj,n

)
]}

.

(31)

Given the above expression (31) of b1(
−→a ,

−→
L∗n, Pn), we obtain

from the definition of K∗
m,n in (18) that

b1(
−→a ,

−→
L∗n, Pn) >

lnn+ β̃∗n
n

. (32)

Given (32), to bound b1(
−→a ,

−→
K∗
n , Pn), we evaluate

b1(
−→a ,

−→
L∗n, Pn) − b1(

−→a ,
−→
K∗
n , Pn). From (29) and (31), it

follows that

b1(
−→a ,

−→
L∗n, Pn)− b1(

−→a ,
−→
K∗
n , Pn)

= am






1−

(Pn−K1,n

K∗
m,n+1

)
(

Pn

K∗
m,n+1

)


−


1−

(Pn−K1,n

K∗
m,n

)
(
Pn

K∗
m,n

)





 . (33)

To further analyze (33), we now evaluate 1−
(
Pn−K1,n

K∗
m,n

)

( Pn

K∗
m,n

)
and

1−
(
Pn−K1,n

K∗
m,n+1

)

( Pn

K∗
m,n+1)

, respectively.

First, (28) and [1, Lemma 4.2] together imply

1−
(Pn−K1,n

K∗
m,n

)
(
Pn

K∗
m,n

) =
K1,nK

∗
m,n

Pn
· [1 + x∗n]

for some x∗n = ±o(1).
(34)

Second, we now analyze
K1,n(K

∗
m,n+1)

Pn
, which is useful to

evaluate 1 −
(
Pn−K1,n

K∗
m,n+1

)

( Pn

K∗
m,n+1)

, as will become clear soon. To this

end, we first use (28) and K1,n ≤ Km,n ≤ K∗
m,n (which

holds from K1,n ≤ Km,n of (9), and Km,n ≤ K∗
m,n of (20))

to obtain

K1,n
2

Pn
≤ K1,nK

∗
m,n

Pn
= O

(
lnn

n

)
, (35)

so that (35) along with K1,n = ω(1) (which holds from Pn =
Ω(n) of (8), and K1,n = ω(

√
Pn/n) of (9)) further implies

K1,n

Pn
=
K1,n

2

Pn

/
K1,n ≤ O

(
lnn

n

)/
ω(1) = o

(
lnn

n

)
.

(36)

From (28) and (36), it follows that

K1,n(K
∗
m,n + 1)

Pn
= O

(
lnn

n

)
. (37)

Then (37) and [1, Lemma 4.2] together imply

1−
(Pn−K1,n

K∗
m,n+1

)
(

Pn

K∗
m,n+1

) =
K1,n(K

∗
m,n + 1)

Pn
· [1 + y∗n ]

for some y∗n = ±o(1).
(38)

The combination of (34) and (38) yields

1−

(Pn−K1,n

K∗
m,n+1

)

(
Pn

K∗
m,n+1

)


−


1−

(Pn−K1,n

K∗
m,n

)

(
Pn

K∗
m,n

)


 (39)

=
K1,n(K

∗
m,n + 1)

Pn
· [1 + y∗n ]−

K1,nK
∗
m,n

Pn
· [1 + x∗n]

=
K1,nK

∗
m,n

Pn
· [y∗n − x∗n] +

K1,n

Pn
· [1 + y∗n ]. (40)

From
K1,nK

∗
m,n

Pn
= O

(
lnn
n

)
in (28),

K1,n

Pn
≤ o

(
lnn
n

)
in (36),

x∗n = ±o(1) in (34), y∗n = ±o(1) in (38), we obtain that the
right hand side of (40) can be written as ±o

(
lnn
n

)
. This result

along with the obvious fact that (39) is non-negative, implies
that (39) can be written as o

(
lnn
n

)
. Then using (39) = o

(
lnn
n

)

and 0 < am ≤ 1 in (33), we obtain

b1(
−→a ,

−→
L∗n, Pn)− b1(

−→a ,
−→
K∗
n , Pn) = o

(
lnn

n

)
. (41)



From (32) and (41), it follows that

b1(
−→a ,

−→
K∗
n , Pn) = b1(

−→a ,
−→
L∗n, Pn)− o

(
lnn

n

)

>
lnn+ β̃∗n − o(lnn)

n
. (42)

Then from (30) and (42), β∗n defined by (12) (i.e.,

b1(
−→a ,

−→
K∗
n , Pn) =

lnn+β∗n
n ) satisfies

β̃∗n − o(lnn) < βn
∗ ≤ β̃∗n , (43)

Finally, we use (21) and (43) to derive limn→∞ β∗n = −∞,
and use (22) and (43) to derive β∗n = −o(lnn) so that |β∗n | =
o(lnn). Hence, result (i.5) is proved.

To summarize, we have established the above results (i.1)–
(i.5), respectively. Then Property (i) of Lemma 1 follows
immediately.

Proving Property (ii) of Lemma 1:

We construct
−−→
K#
n := [K#

1,n,K
#
2,n, . . . ,K

#
m,n] using Algo-

rithm 1. Our goal here is to prove that such vector
−−→
K#
n satisfies

Property (ii) of Lemma 1. More specifically, we will show the
following results:

(ii.1) G(n,−→a ,−→Kn, Pn) is a spanning supergraph of

G(n,−→a ,
−−→
K#
n , Pn).

(ii.2) K#
1,n = ω(

√
Pn/n),

(ii.3) K#
1,n ≤ K#

2,n ≤ . . . ≤ K#
m,n,

(ii.4) K#
m,n = o(

√
Pn),

(ii.5) β#
n defined by (14) (i.e., b1(

−→a ,
−−→
K#
n , Pn) =

lnn+β#
n

n ) satis-

fies limn→∞ β#
n = ∞ and |β#

n | = o(lnn).
We need to prove the above results (ii.1)–(ii.5). Afterwards,

Property (ii) of Lemma 1 will follow. Due to space limitation,
we will detail only the proof of (ii.1), while (ii.2)–(ii.5) can
be established in a way similar to those of (i.2)–(i.5).

Proving result (ii.1):
To show result (ii.1), we will prove

Kj,n ≥ K#
j,n, for j = 1, 2, . . . ,m. (44)

In Algorithm 1, if the “if” statement in Line 3 is true, we
obtain (44) from Lines 4–6 and K1,n ≤ K2,n ≤ . . . ≤ Km,n

of the condition (9). Hence, below we only need to consider
the case where the “else” statement in Line 7 is executed. To
this end, (44) will be proved once the following results hold
with ℓ defined in Line 8 of Algorithm 1:

Kj,n = K#
j,n, for j = 1, 2, . . . , ℓ; (45)

Kℓ+1,n ≥ K#
ℓ+1,n, (46)

KJ,n ≥ K#
J,n, for J = ℓ+ 2, ℓ+ 3, . . . ,m. (47)

Clearly, (45) holds from Lines 9–11 of Algorithm 1. Below
we prove (47) first and (46) afterwards.

Establishing (47). Given an arbitrary J ∈ {ℓ + 2, ℓ +
3, . . . ,m}, we explain the desired result KJ,n ≥ K#

J,n by
discussing below different cases of Algorithm 1.

(A) Here we consider the case where the “for” loop in Line 12 of
Algorithm 1 terminates before j reaches J−1. For example,
suppose that Line 12 of Algorithm 1 is executed for only
j = ℓ+1, ℓ+2, . . . , h with some integer h satisfying ℓ+1 ≤
h < J−1. Then we know that the “break” statement in Line

Algorithm 1 An algorithm to find
−−→
K#
n :=

[K#
1,n,K

#
2,n, . . . ,K

#
m,n] for property (ii) of Lemma 1.

Input: n, βn,
−→
Kn := [K1,n,K2,n, . . . ,Km,n]

Output:
−−→
K#
n := [K#

1,n,K
#
2,n, . . . ,K

#
m,n]

1: let β̃#
n := min{βn, ln lnn};

2: let Tn := argmax

{
Y : 1− (Pn−Y

Y )
(Pn

Y )
≤ lnn+

˜
β#
n

n

}
;

3: if K1,n ≥ Tn then

{Note that we have K1,n ≤ K2,n ≤ . . . ≤ Km,n from the

condition (9).}
4: for each j ∈ {1, 2, . . . ,m} do

5: let K#
j,n := Tn;

6: end for

7: else

8: let ℓ := argmax{j : 1 ≤ j ≤ m and Kj,n ≤ Tn};

9: for each j ∈ {1, 2, . . . , ℓ} do

10: let K#
j,n := Kj,n;

11: end for

12: for each j ∈ {ℓ+ 1, ℓ+ 2, . . . ,m} do

13: let Qj,n :=argmin





Z :





{
aj

[
1− (

Pn−K
#
1,n

Z
)

(Pn
Z )

]}

+
∑j−1
t=1




at


1−

(
Pn−K

#
1,n

K
#
t,n

)

(
Pn

K
#
t,n

)








+
∑m
t=j+1



at


1−

(
Pn−K

#
1,n

Kt,n
)

( Pn
Kt,n

)











≥ lnn+ β̃#
n

n





;

14: if Qj,n > Tn then

15: let K#
j,n := Qj,n;

16: for each r ∈ {j + 1, j + 2, . . . ,m} do

17: let K#
r,n := Kr,n;

18: end for

19: break; {Comment: After this break statement,

the execution will jump to Line 25 to output
−−→
K#
n .}

20: else

21: let K#
j,n := Tn;

22: end if

23: end for

24: end if

25: output
−−→
K#
n := [K#

1,n,K
#
2,n, . . . ,K

#
m,n];



19 of Algorithm 1 is executed for j being h, and further
know from Lines 16 and 17 of Algorithm 1 that

K#
t,n = Kt,n, for t = h+ 1, h+ 2, . . . ,m,

which with h < J − 1 and J ≤ m clearly includes

K#
J,n = KJ,n. (48)

(B) If the “for” loop in Line 12 of Algorithm 1 is now executing
for j being J − 1, we divide this case to the following two
cases (B1) and (B2) according to Algorithm 1:

(B1) If QJ−1,n > Tn, then Line 14 of Algorithm 1 is satisfied
when j equals J − 1. Thus, we obtain from Lines 14–19
of Algorithm 1 that

K#
t,n = Kt,n, for t = J, J + 1, . . . ,m, (49)

which clearly includes

K#
J,n = KJ,n. (50)

(B2) If QJ−1,n ≤ Tn, then Line 20 of Algorithm 1 is satisfied
when j equals J − 1. From Line 21 of Algorithm 1 for
j being J − 1, it holds that

K#
J−1,n = Tn. (51)

We now use the assumed condition QJ−1,n ≤ Tn in
case (B2) here. From QJ−1,n ≤ Tn and the definition
of QJ−1,n in Line 13 of Algorithm 1 when j is set as
J − 1, we obtain that the expression inside “argmin” in
Line 13 of Algorithm 1 with j set as J − 1 and with Z
set as Tn is satisfied; i.e.,




{
aJ−1

[
1− (

Pn−K
#
1,n

Tn
)

(Pn
Tn
)

]}

+
∑J−2
t=1




at


1−

(
Pn−K

#
1,n

K
#
t,n

)

(
Pn

K
#
t,n
)








+
∑m
t=J



at


1−

(
Pn−K

#
1,n

Kt,n
)

( Pn
Kt,n

)











≥ lnn+ β̃#
n

n
,

(52)

where β̃#
n is defined in Line 1 of Algorithm 1.

From (51), the left hand side of (52) can be written as






aJ


1−

(
Pn−K

#
1,n

KJ,n
)

( Pn
KJ,n

)







+
∑J−1
t=1




at


1−

(
Pn−K

#
1,n

K
#
t,n

)

(
Pn

K
#
t,n

)








+
∑m
t=J+1



at


1−

(
Pn−K

#
1,n

Kt,n
)

( Pn
Kt,n

)











. (53)

In case (B2) here, we have already explained that when
j equals J−1, Line 21 of Algorithm 1 is executed. Then
for j being J , Line 12 of Algorithm 1 is also executed.
Afterwards, for j being J , Line 13 of Algorithm 1 is

executed, so we define QJ,n. From (52) and the fact that
the left hand side of (52) equals (53), it follows that

(53) ≥ lnn+ β̃#
n

n
. (54)

From (54) and the expression in (53), the expression
inside “argmin” in Line 13 of Algorithm 1 with j set
as J and with Z set as KJ,n is satisfied. This means

KJ,n ≥ QJ,n, (55)

As explained above, for j being J , Line 12 of Algorithm 1
is executed. Then from Lines 12–23 for j = J , it holds
that

K#
J,n = max{QJ,n, Tn}. (56)

From J > ℓ, the definition of ℓ in Line 8 of Algorithm 1,
and the condition K1,n ≤ K2,n ≤ . . . ≤ Km,n from (9),
it holds that

KJ,n ≥ Tn, (57)

Substituting (55) and (57) into (56), we know for case
(B2) here,

KJ,n ≥ K#
J,n. (58)

Summarizing (50) for case (A), (51) for case (B1), and (58)
for case (B2), in any case, we always have

KJ,n ≥ K#
J,n. (59)

For the above analysis, we can consider any J in {ℓ+2, ℓ+
3, . . . ,m}, so we use (59) to have (47); i.e., KJ,n ≥ K#

J,n for
J = ℓ+ 2, ℓ+ 3, . . . ,m.

Establishing (46). From Lines 12–23 for j = ℓ+1, it holds
that

K#
ℓ+1,n = max{Qℓ+1,n, Tn}. (60)

From the definition of ℓ in Line 8 of Algorithm 1, and the
condition K1,n ≤ K2,n ≤ . . . ≤ Km,n from (9), it holds that

Kℓ+1,n ≥ Tn, (61)

Given (60) and (61), we will have (46) (i.e., Kℓ+1,n ≥ K#
ℓ+1,n)

once proving

Kℓ+1,n ≥ Qℓ+1,n. (62)

Setting j as ℓ+1 in Line 13 of Algorithm 1, we obtain the
definition of Qℓ+1,n. To prove (62), it suffices to show that the
expression inside “argmin” in Line 13 of Algorithm 1 with j
set as ℓ+ 1 and with Z set as Kℓ+1,n is satisfied; i.e.,







aℓ+1


1−

(
Pn−K

#
1,n

Kℓ+1,n
)

( Pn
Kℓ+1,n

)







+
∑ℓ
t=1




at


1−

(
Pn−K

#
1,n

K
#
t,n

)

(
Pn

K
#
t,n
)








+
∑m
t=ℓ+2



at


1−

(
Pn−K

#
1,n

Kt,n
)

( Pn
Kt,n

)











≥ lnn+ β̃#
n

n
.

(63)



Applying Line 10 of Algorithm 1 (i.e., K#
j,n := Kj,n for

j = 1, 2, . . . , ℓ to (63), we know the left hand side of

(63) equals
∑m
t=1

{
at

[
1− (Pn−K1,n

Kt,n
)

( Pn
Kt,n

)

]}
and hence equals

b1(
−→a ,−→Kn, Pn) from (6). From the condition (10) (i.e.,

b1(
−→a ,−→Kn, Pn) =

lnn+βn

n ), it further follows that the left hand

side of (63) equals lnn+βn

n . Then we clearly establish (63)

from βn ≥ β̃#
n , which holds from the definition of β̃#

n in Line

1 of Algorithm 1 (i.e., β̃#
n = min{βn, ln lnn}).

As explained, substituting (61) and (62) into (60), we

establish the desired result (46) (i.e., Kℓ+1,n ≥ K#
ℓ+1,n).

Finally, combining (47) (46) and (45) which we

have established, we have Kj,n ≥ K#
j,n for j =

1, 2, . . . ,m. Then G(n,−→a ,−→Kn, Pn) is a spanning supergraph

of G(n,−→a ,
−−→
K#
n , Pn). Hence, result (ii.1) is proved.

VI. PROVING THEOREM 1 FOR G(n,−→a ,−→Kn, Pn)
UNDER |βn| = o(lnn)

From Section V, we can introduce |βn| = o(lnn) for
proving Theorem 1. For convenience, we let a condition set C
denote the conditions of Theorem 1 with |βn| = o(lnn); i.e.,

C :=
{
Pn = Ω(n), (1), (2) and |βn| = o(lnn)

}
. (64)

Our goal is to prove (3a) and (3b) under the condition set C.

A. Connectivity versus the absence of isolated node

In proving Theorem 1, we use the relationship between
connectivity and the absence of isolated node. Clearly, if a
graph is connected, then it contains no isolated node [8].
Therefore, we will obtain the zero-law (3a) for connectivity
once showing (65a) below, and obtain the one-law (3b) for
connectivity once showing (65b) and (66) below:

lim
n→∞

P

[
G(n,−→a ,−→Kn, Pn) has

no isolated node.

]
=

{
0, if lim

n→∞
βn=−∞, (65a)

1, if lim
n→∞

βn=∞. (65b)

and

lim
n→∞

P

[
G(n,−→a ,−→Kn, Pn) has no isolated node,

but is not connected.

]
= 0. (66)

We formally present the above result as two lemmas below.

Lemma 2 For a graph G(n,−→a ,−→Kn, Pn) under the condition
set C of (64), we have (65a) and (65b).

Lemma 3 For a graph G(n,−→a ,−→Kn, Pn) under the condition
set C of (64), we have (66).

Lemma 2 presents a zero–one law for the absence of isolated
node via (65a) and (65b). In the rest of this section, we discuss
the proofs of Lemmas 2 and 3, respectively. We will often write

G(n,−→a ,−→Kn, Pn) as G for brevity.

B. Proof of Lemma 2

To prove Lemma 2 on the existence/absence of isolated
node, we use the method of moments [8] to evaluate the
number of of isolated nodes. The proof idea is similar to those
by Yağan [1] and Zhao et al. [8].

First, we will prove (65a) by showing that In, denoting the
number of nodes that belong to group A1 and are isolated in

G (i.e., G(n,−→a ,−→Kn, Pn)), is positive almost surely, where an
event (indexed by n) occurs almost surely if its probability
converges to 1 as n → ∞. Formally, limn→∞ P [In > 0] = 1
or equivalently limn→∞ P [In = 0] = 0. The inequality

P [In = 0] ≤ 1 − E [In]
2/

E
[
In

2
]

holds from the
method of second moment [8], so proving (65a)

reduces to showing limn→∞ E [In]
2/

E
[
In

2
]

= 1. With
indicator variables ψn,i for i = 1, . . . , n denoting
1 [Node vi belongs to group A1 and is isolated in G.] ,
we have In =

∑n
i=1 ψn,i. Noting that the random variables

ψn,1, . . . , ψn,n are exchangeable due to symmetry, we find

E [In] = nE [ψn,1] and E
[
In

2
]

= nE
[
ψn,1

2
]
+ n(n −

1)E [ψn,1ψn,2] = nE [ψn,1] + n(n − 1)E [ψn,1ψn,2] ,
where the last step uses E

[
ψn,1

2
]

= E [ψn,1] as
ψn,1 is a binary random variable. It then follows that
E[In2]
E[In]2

= 1
nE[ψn,1]

+ n−1
n · E[ψn,1ψn,2]

(E[ψn,1])
2 . Given this and the

standard inequality E
[
In

2
]

≥ E [In]
2
, we will obtain

limn→∞ E [In]
2/

E
[
In

2
]

= 1 and thus the desired result
(65a) once proving

lim
n→∞

(
nE [ψn,1]

)
= ∞ if lim

n→∞
βn = −∞, and (67)

E [ψn,1ψn,2]
/
(E [ψn,1])

2 ≤ 1 + o(1) if lim
n→∞

βn = −∞. (68)

Second, we will prove (65b) by showing that Jn, denoting
the number of isolated nodes in G, is zero almost surely;
i.e., limn→∞ P [Jn = 0] = 1. The inequality 1 − E [Jn] ≤
P [Jn = 0] holds from the method of first moment [8], so
proving (65a) reduces to showing limn→∞ E [Jn] = 0.
With indicator variables φn,i for i = 1, . . . , n denoting
1 [Node vi is isolated in G.] , we have Jn =

∑n
i=1 φn,i. Not-

ing that the random variables φn,1, . . . , φn,n are exchangeable
due to symmetry, we find E [Jn] = nE [φn,1]. Given the above,
we will obtain the desired result (65b) once proving

lim
n→∞

(
nE [φn,1]

)
= 0 if lim

n→∞
βn = ∞. (69)

As explained above, proving Lemma 2 reduces to showing
(67) (68) and (69). Their proofs have been discussed in the
conference version [4] and are similar to those by Yağan [1]
and Zhao et al. [8] (still we tackle a more general set of
parameter conditions and a more fine-grained scaling than [1]).
Due to space limitation, the details are provided in [27].

C. Proof of Lemma 3

The goal is to show a negligible (i.e., o(1)) probability for

Fn denoting the event that graph G (i.e., G(n,−→a ,−→Kn, Pn)) has
no isolated node, but is not connected. The idea is to analyze
the topological feature of G under Fn [1], [8]: if Fn occurs,
there exists a subset T of nodes with 2 ≤ |T | ≤ ⌊n2 ⌋ such that
Cr,n and Dr,n both happen, where

CT,n :
The event that G(T ) (i.e., the subgraph of G with
the vertex set restricted to T ) is connected,

(70)

DT,n :
The event that there is no edge between any node
in T and any node in {v1, v2 . . . , vn} \ T .

(71)



To get P [Fn] = o(1), by a union bound, it suffices to show
∑

T⊆{v1,v2...,vn}:
2≤|T |≤⌊n

2
⌋

P [CT,n ∩DT,n] = o(1). (72)

We find that given n, for any T with fixed |T | = r, CT,n (resp.,
DT,n) is the same stochastically with C{v1,...,vr},n (resp.,
D{v1,...,vr},n) (denoted by Cr,n and Dr,n with a little abuse
of notation), so by a union bound, it suffices to establish

∑⌊n/2⌋
r=2

(
n
r

)
P [Cr,n ∩ Dr,n] = o(1), (73)

(this is not we will prove precisely, but it gives the intuition).
The rest of the proof is similar to those by Yağan [1] and

Zhao et al. [8] (still our proof addresses a more general set
of parameter conditions and a more fine-grained scaling than
[1]). Due to space limitation, we present the details in [27].

VII. CONCLUSION

We derive a sharp zero–one law for connectivity in a
heterogeneous secure sensor network. The paper improves the
seminal work [1] of Yağan since our zero–one law applies to a
more general set of parameters and is more fine-grained. Our
work provides useful guidelines for designing secure sensor
networks under a heterogeneous key predistribution scheme.
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