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Abstract—This paper investigates small-disturbance angle sta-
bility of power systems with emphasis on the role of power
network topology, which sheds new light on the instability
mechanism. We introduce the concepts of active power flow graph
and critical lines. It is shown that the inertia of the Laplacian
matrix of this graph provides information on the stability a nd
type of an equilibrium point. Then, the instability mechanism
is elaborated from the impact of critical lines on the inertia of
the Laplacian matrix. A stability criterion in terms of a cri tical
line-based matrix is established. This criterion is a necessary
and sufficient condition to judge the stability and type of an
equilibrium point. It includes the existing results in the literature
and applies to the unsolved cases where the critical lines exist
but do not form cutsets. Moreover, we introduce the concept
of equivalent weight between a pair of buses. Another stability
criterion in terms of the equivalent weight is developed, from
which the small-disturbance instability can be interpreted as
the “electrical antagonism” between some buses in the power
network resulting from the critical lines. The equivalent weight
can also be used as a stability index and provides guidance
for system operation. The obtained results are illustratedby
numerical simulations.

Index Terms—power network, angle stability, unstable equilib-
rium point, graph theory, Laplacian matrix.

I. I NTRODUCTION

SMALL-disturbance angle stability is a sub-concept of
angle stability, referring to the ability of a power system

to maintain synchronism under small disturbances [1]. The
analysis of small-disturbance angle stability has two mainaims.
One is to identify the critical modes and their sensitivities to
system parameters so as, e.g., to locate and tune stabilizers.
The other one is to characterize the local properties of the
manifold around an equilibrium point as fundamental infor-
mation for transient stability analysis. For example, the type
of an unstable equilibrium point (UEP), i.e., the dimensionof
its unstable manifold, is an index of importance.

So far the analytical methods for small-disturbance stability
are mainly pertinent to modal analysis, which are based on
the eigen-decomposition of the system dynamic Jacobian, i.e.,
the Jacobian matrix of system dynamical equations around an
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equilibrium point. Later, the normal form methods and modal
series methods have been applied to include higher order local
dynamics so as to obtain more precise modes (see [2–5] and
references therein). Since the eigenvalue algorithms cannot
scale well to bulk power systems, several kinds of dimension
reduction approaches have been introduced to calculate the
critical subset of the eigenvalues, such as selective modal
analysis [6], iterative refinement method [7], and dominant
pole iteration method [8].

These eigen-based results are much oriented to the nodal
dynamics, especially the dynamics of generators. On the other
hand, the nodal dynamics evolve via the underlying power
network structure, thus exploring the explicit role of network
topology in small-disturbance stability is of great importance;
however, it has not drawn as much attention [9]. Only a few
works have investigated the problem from the network-based
perspective. Some researchers adopt the coupled oscillator
model for power systems. A fresh viewpoint of power network
synchrony is given in [10] that links the system dynamics to
network structure properties. In addition, the impact of topo-
logical changes on stability has been investigated statistically,
such as the integration of new generators [11], decentralization
of generators [12], deletion of transmission lines [13], and
Braess’s paradox caused by addition of transmission lines [14].

Besides the whole network structure, the critical line in the
power network is another issue that raises concern. The angle
difference across a critical line exceedsπ

2 rad, which is known
to play an important role in small-disturbance instability. The
early results on critical lines are obtained by Tavora and Smith
[15, 16] on the classical network reduced model with transfer
conductance neglected. The authors introduce the concept of
the principal region where no critical lines exist, and theyshow
that an equilibrium point is stable if it lies in the principal re-
gion. Later, researchers manage to include the original network
topology into the study by adopting the structure preserving
model. This model has been introduced by Bergen and Hill
[17] and further developed by Narasimhamurthi and Musavi
[18], Tsolas, Arapostathis and Varaiya [19]. An extensive
discussion is given in the recent book by Padiyar [20].

Some interesting results are derived based on the structure
preserving model with constant bus voltages and lossless
transmission lines. Araposthatis,et al. [21] make an important
observation that small-disturbance stability is linked toa
resistive network whose line conductance is in terms of its
angle difference. The authors show that the admittance matrix
of the resistive network is positive definite and the equilibrium
point is stable within the principal region. Then, the asymptotic
stability of the equilibrium point within the principal region is
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proved by using Lyapunov function in [17]. Further, it is shown
in [22] that an equilibrium point is unstable if the critical
lines form cutsets in the underlying power network. Recently,
these results are extended to microgrids with inverter-based
generators [23], and a topological criterion for the existence
of the unique stable equilibrium point within the principal
region is proposed in [24]. Wu and Liu [25] investigate
the problem with voltage variations considered, and propose
sufficient conditions for small-disturbance stability in terms
of transmission line parameters. The relationship betweenthe
type of an equilibrium point and the number of cutsets formed
by critical lines has been studied in [26], but part of the proof
employed some approximations so that fully rigorous results
are not achieved. Overall, the previously obtained resultscan
be categorized into two classes: 1) sufficient conditions for
small-disturbance stability without critical lines; 2) sufficient
conditions for small-disturbance instability with cutsets of
critical lines.

The stability of the cases where the critical lines exist butdo
not form cutsets can only be checked by numerical calculation,
while the exact mechanism remains unclear. To achieve a
complete understanding of the impact of critical lines on small-
disturbance stability, a unified study including the unsolved
cases needs to be explored.

In this paper, we present a network interpretation of small-
disturbance stability that fills the gap over the state of art. The
main contributions are threefold. First, we link the stability and
UEP type to the inertia of the Laplacian matrix of the defined
active power flow graph, which provides insightful viewpoints
on small-disturbance stability. Second, inspired by the results
on graph theory [27, 28], we reveal the instability mechanism
by analyzing the affect of critical lines on the inertia of the
Laplacian matrix. A critical line-based stability criterion is
proposed that can be used to judge both the stability of an
equilibrium point and its type if it is a UEP. This criterion
includes the existing results as special cases and also applies
to the unsolved cases where the critical lines exist but do not
form cutsets. Third, we introduce the concept of equivalent
weight of a bus pair, and establish an equivalent weight-
based stability criterion. This criterion leads to an intuitive
interpretation of instability, that is, the critical linescause
“electrical antagonism” between some buses. In addition, we
show that the equivalent weight is an useful stability indexfor
system operation.

The rest of the paper is organized as follows. In Section II,
some background knowledge on graph theory are given and
a network-based model of power systems is formulated. In
Section III, the definitions of the active power flow graph and
critical lines are introduced, and the stability analysis based
on the Laplacian matrix of the active power flow graph is
carried out. Section IV proceeds to develop some necessary
and sufficient stability conditions in terms of the criticallines.
Numerical studies and conclusions are presented in SectionV
and Section VI, respectively.

Notations

We introduce the following notations that will be used
throughout the paper. LetA ∈ R

p×q be a matrix,|A| ∈ R
p×q

denotes the entry-wise absolute value ofA. For a square ma-
trix A ∈ R

p×p, let i+(A), i−(A), i0(A) denote the number
of eigenvalues ofA with positive, negative and zero real parts,
respectively, i.e., the inertia ofA [29]. For simplicity, a vector
x = [x1, x2, ..., xp]

T ∈ R
p is denoted asx = [xi] ∈ R

p,
and a diagonal matrixA = diag{A1,A2, ...,An} ∈ R

p×p is
denoted asA = diag{Ai} ∈ R

p×p, whereAi is thei-th block
matrix or a number. The notationsin(x) ∈ R

p denotes the
function vectorsin(x) = [sinxi] ∈ R

p, Ip ∈ R
p×p denotes an

identity matrix, and1p ∈ R
p denotes a vector with all entries

being one.

II. PROBLEM FORMULATION

A. Graph theory preliminaries

We introduce some knowledge on graph theory (referring
to [27, 28, 30]). LetG(V , E ,W ) be a weighted undirected
graph with the set of nodesV with cardinalityn, the set of
edgesE ⊆ V × V with cardinality l, and the diagonal matrix
of edge weightsW ∈ R

l×l. The notationek = (i, j) ∈ E ,
k = 1, 2, .., l, denotes the edgek that connects nodei and
nodej, where(i, j) denotes an unordered node pair. Thek-
th main diagonal entry ofW , sayWk, denotes the weight of
edgeek. A generic graph is considered in this paper where the
line weights can be eitherpositiveor negative. The edges with
negative weights correspond to the critical lines in a power
network, which will be detailed in the following sections. To
define the incidence matrix, we suppose each edge ofG is
assigned an arbitrary but fixed orientation, e.g.,ek = (i, j) is
interpreted as the edgeek originates at nodei and terminates
at nodej. Then the incidence matrixE ∈ R

n×l of G is
defined such that∀ek = (i, j) ∈ E , Eik = 1, Ejk = −1 and
Emk = 0,m 6= i, j. Theweighted Laplacian matrixis defined
as LG = EWET ∈ R

n×n. Henceforth we callLG as the
Laplacian matrix for simplicity. The number of the connected
components inG is denoted asc. A cutset is a group of edges
with two properties: 1) the number of connected components
in G increases toc+ 1 if these edges are deleted, and 2) the
number of connected components returns toc if we arbitrarily
choose one edge from these edges and add it back toG.

Next we introduce the concept of spanning trees and span-
ning forests, which will be used to derive the main results
in Section IV. A tree is a graph without any cycle. For a
connectedG, a tree containing every node ofG is called a
spanning tree. A spanning forest is a more generic concept
that can be applied to the cases whereG is not connected. A
spanning forestis a subgraph consisting of a spanning tree
in each connected component ofG, which containsn − c
edges totally. LetF(V , EF ,WF) be a spanning forest ofG,
thenG can be partitioned intoF and the remaining subgraph
C(V , EC,WC), where EF ∪ EC = E , EF ∩ EC = φ and
W = diag{WF ,WC}. We refer to the subgraphC as the
cycle subgraphas it completes cycles inG. Accordingly, the
incidence matrixE can be expressed asE =

[

EF EC
]

,
where EF ∈ R

n×(n−c) and EC ∈ R
n×(l−n+c) are the

incidence matrix ofF and C, respectively. LetNF ∈ R
n×c

be the (normalized) null space ofET
F , i.e., ET

FNF = 0 and
NT

FNF = Ic. The entries ofNF take values as follows.
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Let Vi, i = 1, ..., c be the set of nodes in thei-th connected
component ofG with cardinalityni, then (NF )ui =

1√
ni

if
busu ∈ Vi and (NF )ui = 0 otherwise.

B. Network-based model of power systems

Consider a power network connecting synchronous genera-
tors, loads and inverter-based generators that refer to renew-
able energy sources. A synchronous generator is modeled as
an internal bus (constant voltage source) connecting to the
terminal bus via a transient reactance. The power network is
augmented with fictitious buses and lines representing the in-
ternal buses and transient reactances, respectively. An inverter-
based generator is modeled as a constant voltage source with
frequency droop controller. The loads are frequency dependent.
The transmission lines are modeled as series reactances, and
the transient reactances and transformers are also regarded as
transmission lines. Suppose the (augmented) power network
has totallyn buses andl lines. The buses consist ofg internal
buses andd remaining buses that are without synchronous gen-
erators and may connect loads and inverter-based generators.
We number the internal buses asVG = {1, 2, ..., g}, and the
remaining buses asVL = {g+1, ..., n}. Then, according to the
derivation in [17, 23], the dynamics of busi can be described
by

Miω̇i +Diωi +
∑

j∈adj{i}
ViVj |Yij | sin(θi − θj) = Pi (1)

whereθi, Vi are the phase angle and voltage magnitude of bus
i, respectively;ωi = θ̇i is the angular frequency of busi; the
notationj ∈ adj(i) means busi and busj are adjacent and
−Yij is the susceptance of line(i, j); Pi is the active power
injection at busi, Pi equals to the active power generation
for bus i ∈ VG and Pi = PRi − PLi for bus i ∈ VL

with PRi, PLi being the inverter-based generation and load,
respectively;Mi > 0 is the inertia of synchronous generator
for bus i ∈ VG and Mi = 0 for bus i ∈ VL; Di is the
damping coefficient of synchronous generator for busi ∈ VG

andDi = DRi + DLi for bus i ∈ VL with DRi, DLi being
the frequency coefficient of inverter and load, respectively.

At an equilibrium point of (1) wherėωi = 0, the synchro-
nized angular frequency is given byω0 =

∑n

i=1 Pi/
∑n

i=1 Di.
It is convenient to assume that

∑n

i=1 Pi = 0 so that we have
zero frequency and constant phase angles at the equilibrium
point. If this is not true, we use the following transform [17]

ω′
i = ωi − ω0

P ′
i = Pi − ω0Di

(2)

to shift the equilibrium point to such a status. Henceforth we
drop the prime superscripts and assume

∑n

i=1 Pi = 0.
We now take a network-based viewpoint on the system

dynamics. DenoteV = VG ∪ VL as the set of buses andE
as the set of transmission lines, then the power network can
be regarded as a graphG(V , E). (Henceforth we will use “bus”
and “node”, and “line” and “edge” interchangeably for graph

variables.) By defining the following matrices and vectors

θ = [θi] ∈ R
n, ∀i ∈ V

ωG = [ωi] ∈ R
g, ∀i ∈ VG

ωL = [ωi] ∈ R
d, ∀i ∈ VL

M = diag{Mi} ∈ R
g×g, ∀i ∈ VG

DG = diag{Di} ∈ R
g×g, ∀i ∈ VG

DL = diag{Di} ∈ R
d×d, ∀i ∈ VL

P = [Pi] ∈ R
n, ∀i ∈ V

Bl = diag{ViVj |Yij |} ∈ R
l×l, ∀ek = (i, j) ∈ E

(3)

equation (1) can be rewritten as
[

Mω̇G

0

]

+

[

DG 0

0 DL

] [

ωG

ωL

]

+EBl sin(E
Tθ) = P (4)

whereE ∈ R
n×l is the incidence matrix ofG(V , E) with each

line being arbitrarily assigned an orientation. The orientation
selection for each line does not influence the expression in
(4). Thek-th entry of the vectorsin(ETθ) ∈ R

l is equal to
sin(θi−θj), i.e., the sinusoidal function of the angle difference
across lineek = (i, j) ∈ E . Thus thek-th entry of the vector
Bl sin(E

Tθ) ∈ R
l represents the active power flow across

line ek.
Note that system (4) becomes a differential-algebraic equa-

tion (DAE) system if there exists a busi ∈ VL such that
Di = 0, i.e., a bus with neither load nor inverter-based gener-
ator. In the stability analysis, the algebraic variables ina DAE
system are usually reduced, which will impact the structure
preserving property of power network. To address this issue,
we singularly perturbDi asDi = ǫ, whereǫ is a sufficiently
small positive number, so thatDL is nonsingular and we
still have a differential equation system as (4). By singular
perturbation theory [31, Lemma 7-3], the perturbed system
and the original DAE system share the same set of equilibrium
points. In addition, the properties of an equilibrium pointof
the two systems, such as the stability and type, are identical.

Next we introduce a state-space form of (4) for the stability
analysis. Without loss of generality, we take busn as the
angle reference, i.e.,θn is fixed to zero, and a new vector
is introduced

α = Tθ ∈ R
n−1 (5)

whereT =
[

In−1 −1n−1

]

∈ R
(n−1)×n is the transforma-

tion matrix. The vectorα represents the relative angles of bus
1, ..., n − 1 with respect to busn. By taking (α,ωG) as the
state variables, system (4) can be transformed into [17]

α̇ = TGωG − TLD
−1
L T T

L [EsBl sin(E
T
s α)− Ps]

ω̇G = −M−1DGωG −M−1T T
G [EsBl sin(E

T
s α)− Ps]

(6)

whereTG ∈ R
(n−1)×g and TL ∈ R

(n−1)×d consist of the
columns ofT indexed by internal busesVG and the remaining
busesVL, respectively;Es ∈ R

(n−1)×l consists of the first
n− 1 rows of E; andPs ∈ R

n−1 consists of the firstn− 1
rows of P . The condition

∑n
i=1 Pi = 0 is adopted to derive

(6), we refer to [17] for the details.
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Denote(α0,0) as an equilibrium point of system (6), then
linearizing system (6) in the neighbourhood of(α0,0) gives
the small-disturbance model

[

∆α̇

∆ω̇G

]

=

[

−TLD
−1
L T T

L F (α0) TG

−M−1T T
GF (α0) −M−1DG

] [

∆α

∆ωG

]

=J(α0)

[

∆α

∆ωG

]

(7)

whereF (α0) = EsBl
∂ sin(ET

s α
0)

∂(ET
s α0)

ET
s ∈ R

(n−1)×(n−1) is the

power flow Jacobian, andJ(α0) ∈ R
(n+g−1)×(n+g−1) is the

system dynamic Jacobian. We adopt the following assumptions
for the small-disturbance model (7)

(A1) The voltage magnitude of each bus is constant.
(A2) The power network is connected.
(A3) The matricesM , DG and DL are all positive

definite.
(A4) The matrixF (α0) is nonsingular.

By assumption (A1), system (6) is restricted to the study of
angle stability, decoupled from reactive power flow and voltage
variations. It is a reasonable approximation of real situations
as the per-unit voltage magnitudes at the angle stability-related
UEPs are close to unity and the affect of voltage variations
is negligible [32]. Also the increasing use of power electronic
voltage controllers can add further justification. Assumptions
(A2) and (A3) reflect real situations. It will be shown later
that the precise values ofDG and DL, which are difficult
to measure, are not needed to derive our results. Assumption
(A4) is commonly used in the literature [22, 33, 34]. It follows
from (A3) and (A4) that the equilibrium points are hyperbolic,
i.e., i0(J(α0)) = 0 [33, Proposition 3]. These assumptions,
together with the results on stability theory [35, Theorem 4.7],
lead to the following lemma to check the stability and type of
an equilibrium point.

Lemma 1:The equilibrium point(α0,0) is locally asymp-
totically stable if and only ifi+(J(α0)) = 0. In addition, the
equilibrium point is a type-m UEP wherem = i+(J(α

0)) if
it is unstable.

It can be seen that small-disturbance stability is character-
ized by the inertia of the system dynamic Jacobian. In the
following sections, the relationship between the inertia of the
system dynamic Jacobian and the network topology will be
established.

III. SMALL -DISTURBANCE STABILITY AND ACTIVE POWER

FLOW GRAPH

In this section we propose the definitions of active power
flow graph and critical lines. The inertia of the system Jacobian
matrix is linked to that of the Laplacian matrix of the defined
graph. In addition, small-disturbance instability is linked to
the indefiniteness of the Laplacian matrix, which is caused by
the critical lines.

We first introduce the concept of active power flow graph.
Definition 1: Define G(V , E ,W (θ)) as theactive power

flow graph with the set of busesV , the set of linesE and

the diagonal matrix of line weights

W (θ) = Bl

∂ sin(ETθ)

∂(ETθ)
= diag{Wk} ∈ R

l×l (8)

whereWk = ViVj |Yij | cos(θi − θj), ∀ek = (i, j) ∈ E .
By definition, the Laplacian matrix of the active power flow

graphG(V , E ,W (θ)) can be expressed as

LG(θ) = EW (θ)ET ∈ R
n×n. (9)

We recall that the active power flow equations can be expressed
asP = EBl sin(E

Tθ), which leads to∂P = LG(θ)∂θ, so
that the active power graph is a description of active power
flow profile over the underlying power network. In addition,
the observation in [21] gives an intuitive interpretation of the
active power flow graph. The Laplacian matrix can be regarded
as the admittance matrix of ann-bus resistive network where
the conductance of line(i, j) is equal toViVj |Yij | cos(θi−θj).

The concepts of critical lines and critical cutsets are intro-
duced below.

Definition 2: In the active power graph, a lineek = (i, j) ∈
E is a critical line if the angle difference across it satisfies

π

2
< |θi − θj | mod 2π <

3π

2
. (10)

A cutset is acritical cutset if all the lines in the cutset are
critical lines.

The critical lines coincide with the lines with negative
weights in the active power flow graph, which will play an
importance role in the following analysis. Also note that the
term critical cutset differs from previous use (e.g., in [17]
where it refers to a cutset of zero-valued lines). A line is a
zero-valued line if the angle differences across it (mod2π) is
exactly equal toπ2 or 3π

2 so that its line weight is zero. In this
paper, assumption (A4) excludes the cutsets of zero-valued
lines in the active power flow graph as the existence of such
a cutset leads to the singularity ofF (α0) [17]. In addition,
we further assume that the active power flow graph has no
zero-valued lines. For the situation where this is not the case,
we just delete the zero-valued lines as the Laplacian matrix
of the active power flow graph remains unchanged after the
deletion.

We give Lemma 2 and Lemma 3 as follows for the proof
of Theorem 1.

Lemma 2:(Sylvester’s law of inertia) [29, Theorem 4.5.8]
Let A,B ∈ R

p×p be Hermitian matrices, then there is a
nonsingular matrixS ∈ R

p×p such thatA = SBST if and
only if i+(A) = i+(B), i−(A) = i−(B) andi0(A) = i0(B),
respectively.

Lemma 3:[34, Proposition 4-2] If the assumptions (A3) and
(A4) hold, theni+(J(α0)) = i−(F (α0)).

Let (α0,0) be an equilibrium point of system (6) and define
θ0 =

[

(α0)T 0
]T

∈ R
n. Then we present the result below.

Theorem 1:(Laplacian-based stability criterion) The equi-
librium point (α0,0) of system (6) is locally asymptotically
stable if and only ifLG(θ0) is positive semi-definite. Further,
the equilibrium point is a type-m UEP wherem = i−(LG(θ0))
if it is unstable.
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Proof: Let

K =

[

F (α0) 0

0 0

]

,S1 =

[

In−1 0

−1
T
n−1 1

]

. (11)

It can be checked that the following two equalities hold

En = −1
T
n−1Es

ET
s α = ETθ

(12)

which leads to

LG(θ
0) =

[

ET
s ET

n

]T
Bl

∂ sin(ETθ0)

∂(ETθ0)

[

ET
s ET

n

]

= S1

[

ET
s 0

]T
Bl

∂ sin(ET
s α

0)

∂(ET
s α

0)

[

ET
s 0

]

ST
1

= S1KST
1 .

(13)

Applying Lemma 2 to (13) gives thati−(K) = i−(LG(θ0)).
Furthermore, we havei−(F (α0)) = i−(LG(θ0)) as it is
trivial that i−(K) = i−(F (α0)). Then applying Lemma 3
we havei+(J(α0)) = i−(LG(θ0)). Thus, by Lemma 1 we
can conclude the statements in Theorem 1.

The next result is known [17, Theorem 1], while we give
a new proof from the inertia of the Laplacian matrix to show
the impact of critical lines.

Corollary 1: The critical lines exist in the active power
flow graphG(V , E ,W (θ0)) if the equilibrium point(α0,0)
is unstable.

Proof: We prove it by contradiction. Suppose the equilib-
rium point is unstable and there exists no critical lines, then
G(V , E ,W (θ0)) has no lines with negative weights. In this
case, the Laplacian matrix has the property thati+(LG(θ0)) =
n− 1, i−(LG(θ0)) = 0, i0(LG(θ0)) = 1 [36, Lemma 13.1.1].
Then, by Theorem 1, the equilibrium point is stable so that a
contradiction yields.

We make two important remarks below.
Remark 1: By Theorem 1, the inertia of the Laplacian

matrix of the active power flow graph implies the stability
of an equilibrium point and the type of a UEP. The Laplacian
matrix contains the information of network topology and active
power flow solution. Thus it follows that the small-disturbance
stability is independent of generator inertias and bus dampings
under the assumption (A3) that they are all positive. It should
be pointed out that this result does not conflict with the fact
that the generator inertias and bus dampings can significantly
affect the stability level, i.e, the eigenvalues of the system
dynamic Jacobian. As inferred from Theorem 1, what the
positive inertias and damping coefficients cannot change are
the signs of the eigenvalues of the system dynamic Jacobian.
In other words, if the Laplacian matrix indicates that the
equilibrium point is stable, then larger inertias or damping
coefficients could further increase the stability level. Contrarily,
if the equilibrium point is unstable, then changing inertias
or damping coefficients does not help to pull it back to
the stability region as along as they are positive. Similar
observations were made in earlier results connecting the power
flow and small-disturbance stability [37, 38].

Remark 2: Corollary 1 implies that the appearance of
critical lines is the cause of small-disturbance instability, and

equivalently, the indefiniteness of the Laplacian matrix. In
addition, another inspiring viewpoint is given in [39] thatfor
a consensus protocol over a graph, the lines with negative
weights in the graph work as the “antagonism” against state
agreement. Thus, we are motivated that the small-disturbance
instability can be interpreted as the antagonistic effectscaused
by the critical lines in the active power flow graph. Further,the
exact instability mechanism reflects on how the critical lines
affect the inertia of the Laplacian matrix, where the advanced
tools in graph theory apply.

IV. CRITICAL LINE -BASED STABILITY ANALYSIS

By using graph-theoretic methods, we leverage the results in
Section III to elaborate the impact of critical lines on the inertia
of the Laplacian matrix and small-disturbance stability. Some
stability criteria in terms of critical lines will be developed.

First, we separate the lines in the active power flow graph
into two disjoint sets according to their weight signs. By
Definition 1 and Definition 2, the non-critical lines constitute
the set of lines with positive weights, denoted as the setE+
with cardinalityl+. The corresponding diagonal matrix of line
weights isW+(θ) = diag{ViVj |Yij | cos(θi − θj)} ∈ R

l+×l+ ,
∀ek = (i, j) ∈ E+. In addition, the critical lines constitute
the set of lines with negative weights, denoted as the setE−
with cardinalityl−. The corresponding diagonal matrix of line
weights isW−(θ) = diag{ViVj |Yij | cos(θi − θj)} ∈ R

l
−
×l

− ,
∀ek = (i, j) ∈ E−. These notations lead to the following
definition.

Definition 3: Define G+(V , E+,W+(θ)) as the positive
subgraph, andG−(V , E−,W−(θ)) as the negative subgraph
of the active power flow graph.

With Definition 3, the active power flow graph can be par-
titioned intoF+(V , EF+

,WF+
(θ)), C+(V , EC+

,WC+
(θ)) and

G−(V , E−,W−(θ)), whereF+ andC+ are a spanning forest
and the cycle subgraph ofG+(V , E+,W+(θ)), respectively. It
follows thatEF+

∪ EC+
= E+, EF+

∩ EC+
= φ, E+ ∪ E− = E ,

E+ ∩ E− = φ and

W = diag{W+,W−} = diag{WF+
,WC+

,W−}

E =
[

E+ E−
]

=
[

EF+
EC+

E−
] (14)

where E+ ∈ R
n×l+ , EF+

∈ R
n×(n−c+), EC+

∈
R

n×(l+−n+c+) andE− ∈ R
n×l

− denote the incidence matri-
ces ofG+, F+, C+ andG−, respectively, andc+ is the number
of connected components inG+(V , E+,W+(θ)).

Then, we give Lemma 4, Lemma 5 and Lemma 6 as basis
for Theorem 2.

Lemma 4:Let H ∈ R
(p+q)×(p+q) be a real symmetric

matrix defined as

H =

[

A BT

B C

]

(15)

whereA ∈ R
p×p is nonsingular, andB ∈ R

q×p, C ∈ R
q×q.

The Schur complement of the blockA of the matrixH is
H\A ∈ R

q×q

H\A = C −BA−1BT . (16)

Then i−(H) = i−(H\A) + i−(A).
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Proof: Let

φ =

[

Ip 0

BA−1 Iq

]

. (17)

It follows that H = φdiag{A,H\A}φT . Applying Lemma
2 gives i−(H) = i−(diag{A,H\A}), which directly leads
to the result.

Lemma 5: Let G(V , E ,W ) be a weighted undirected
graph withc connected components. LetF(V , EF ,WF) and
C(V , EC,WC) be a spanning forest and the cycle subgraph of
G, respectively. Then the following statements hold:

1) rank(EF ) = n − c and rank(NF ) = c. The matrix
EF has full column rank, andNF is the orthogonal
complement ofEF ([29, 30]).

2) EC can be re-expressed as [40]

EC = EF (E
T
FEF )

−1ET
FEC . (18)

Lemma 6:Let G(V , E ,W ) be a weighted undirected graph
with c connected components and all line weights being
positive. LetF(V , EF ,WF) andC(V , EC,WC) be a spanning
forest and the cycle subgraph ofG, respectively. Then the
Moore-Penrose inverse ofLG can be expressed as

L
†
G = EFW

1
2

F T−1
F (RFCR

T
FC)

−1T−1
F W

1
2

F ET
F (19)

whereRFC ∈ R
(n−c)×l andTF ∈ R

(n−c)×(n−c)

RFC =
[

In−c W
− 1

2

F (ET
FEF)−1ET

FECW
1
2

C

]

TF = W
1
2

FET
FEFW

1
2

F .
(20)

Proof: ExpressE as E =
[

EF EC
]

and accordingly
the Laplacian matrix can be expressed as

LG = EFWFE
T
F +ECWCE

T
C . (21)

Substituting (18) into (21) gives

LG = EFWFE
T
F +EFW

1
2

FXXTW
1
2

F ET
F

= EFW
1
2

F RFCR
T
FCW

1
2

F ET
F

(22)

whereX = W
− 1

2

F (ET
FEF)−1ET

FECW
1
2

C . Then, substituting
(19) and (22) intoLGL

†
G andL†

GLG gives that

LGL
†
G = (LGL

†
G)

T = EF(E
T
FEF)

−1ET
F (23a)

L
†
GLG = (L†

GLG)
T = EF(E

T
FEF)

−1ET
F . (23b)

Moreover, substituting (21) and (23a) intoLGL
†
GLG , and

substituting (19) and (23b) intoL†
GLGL

†
G give that

LGL
†
GLG = LG (24a)

L
†
GLGL

†
G = L

†
G . (24b)

Thus, by [29], theL†
G in (19) satisfies the conditions to be the

Moore-Penrose inverse ofLG .
Lemma 6 is an extension of [27, Proposition III.2]. The

expression in (19) applies to either connected graphs or
unconnected graphs, which will be used in the proof of

Theorem 2. Further, we establish the critical line-based matrix
M(θ) ∈ R

(l
−
+c+)×(l

−
+c+)

M(θ) =

[

|W−(θ)|−1 −ET
−L

†
G+

(θ)E− ET
−NF+

NT
F+

E− 0

]

(25)

whereLG+
(θ) denotes the Laplacian matrix of the positive

subgraphG+(V , E+,W+(θ)), and NF+
∈ R

n×c+ is the
normalized null space ofET

F+
. Then Theorem 2 is presented

as follows.
Theorem 2:(Critical line-based stability criterion) The equi-

librium point (α0,0) of system (6) is locally asymptotically
stable if and only if the matrixM(θ0) in (25) is positive
semi-definite. Further, the equilibrium point is a type-m UEP
wherem = i−(M(θ0)) if it is unstable.

Proof: We neglect the item “θ0” in the following variables
for simplicity. By (14), we express the incidence matrix as
E =

[

E+ E−
]

and accordingly the Laplacian matrix can
be expressed as

LG = LG+
+LG

−

= LG+
−E−|W−|E

T
−. (26)

Similar to the proof of Lemma 6, we can obtain that

LG+
= EF+

W
1
2

F+
RF+C+

RT
F+C+

W
1
2

F+
ET

F+
(27)

where

RF+C+
=

[

In−c+ W
− 1

2

F+
(ET

F+
EF+

)−1ET
F+

EC+
W

1
2

C+

]

.

Note that (27) is an equivalent version of (22) with the
subscripts “G,F , C” replaced by “G+,F+, C+”, respectively.
Then substituting (27) into (26) gives

LG =EF+
W

1
2

F+
RF+C+

RT
F+C+

W
1
2

F+
ET

F+
−E−|W−|E

T
−.

(28)

By (28), LG can be regarded as the Schur complement
H2\|W−|−1, where

H2 =

[

|W−|−1 ET
−

E− EF+
W

1
2

F+
RF+C+

RT
F+C+

W
1
2

F+
ET

F+

]

.

Since|W−| is positive definite, by Lemma 4 we have

i−(LG) = i−(H2). (29)

Next, consider the matrix

S2 =







0 T−1
F+

W
1
2

F+
ET

F+

Il
−

0

0 NT
F+






∈ R

(n+l
−
)×(n+l

−
) (30)

whereTF+
= W

1
2

F+
ET

F+
EF+

W
1
2

F+
∈ R

(n−c+)×(n−c+). The
matrixS2 is nonsingular since the first statement of Lemma 5
gives thatNF+

is the orthogonal complement ofEF+
. Thus

it follows from Lemma 2 that

i−(H2) = i−(H
′
2) (31)
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where

H ′
2 = S2H2S

T
2 =







RF+C+
RT

F+C+
T−1
F+

W
1
2

F+
ET

F+
E− 0

ET
−EF+

W
1
2

F+
T−1
F+

|W−|−1 ET
−NF+

0 NT
F+

E− 0






.

(32)

Further, by Lemma 6, the Moore-Penrose inverse ofLG+

can be expressed as

L
†
G+

= EF+
W

1
2

F+
T−1
F+

(RF+C+
RT

F+C+
)−1T−1

F+
W

1
2

F+
ET

F+
.

(33)
Observing (32) and (33) gives that the matrixM in (25)
is the Schur complementH ′

2\RF+C+
RT

F+C+
. The matrix

RF+C+
RT

F+C+
is positive definite asRF+C+

has full row rank.
Applying Lemma 4 again gives that

i−(H
′
2) = i−(M). (34)

The inertia equalities (29), (31) and (34) lead to thati−(LG) =
i−(M). Thus by Theorem 1 we can conclude the statements
in Theorem 2.

We make some remarks on Theorem 2 below.
Remark 3:Theorem 2 is a sufficient and necessary condition

to check the stability and type of an equilibrium point. It
applies to the unsolved cases where the critical lines exist
but do not form cutsets. Moreover, the matrixM(θ0) is low-
dimensional asl− andc+ are usually small numbers compared
to the number of busesn.

Remark 4:The matrixM(θ0) leads to a clear interpretation
of instability mechanism in terms of critical lines. In (25),
the sub-matrix|W−(θ0)|−1 −ET

−L
†
G+

(θ0)E− represents the
impact of the weights and locations of critical lines. It implies
that the matrixM(θ0) is more likely to have negative
eigenvalues if the critical lines with large absolute weights
locate at where the main diagonals ofET

−L
†
G+

(θ0)E− are
large. Furthermore, the sub-matrixET

−NF+
represents the

contribution of critical cutsets. The entries ofET
−NF+

take
values as follows. If there exist no critical cutsets, i.e.,G+ is
connected, then we haveNF+

= 1√
n
1n and ET

−NF+
= 0.

If there exist critical cutsets, we denoteVi, i = 1, ..., c+
as the set of buses in thei-th connected component of
G+(V , E+,W+(θ

0)) with cardinality ni. For the lineek =
(u, v) ∈ E−, if u ∈ Vi, v ∈ Vj and i 6= j, i.e., the lineek
is oriented fromVi to Vj , then (ET

−NF+
)ki = (NF+

)ui =
1√
ni

and (ET
−NF+

)kj = −(NF+
)vi = − 1√

nj

; otherwise

(ET
−NF+

)ki = 0 and (ET
−NF+

)kj = 0.
Take the case in Fig. 1 as an illustration. Suppose there are

four critical lines that are marked and assigned orientations.
Two cutsets are formed by the four critical lines—e1, e2, e3
separate subgraph B from the system, ande4 separates sub-
graph C from the system. ThenET

−NF+
is

ET
−NF+

=











1√
nA

− 1√
nB

0
1√
nA

− 1√
nB

0

− 1√
nA

1√
nB

0
1√
nA

0 − 1√
nC











(35)

wherenA, nB, nC denote the number of buses in subgraph A,
B and C, respectively; the first row is interpreted as the line
e1 is oriented from subgraph A to subgraph B, and similar
interpretations apply to the other rows.

Figure 1. An example of cutsets.

Next we derive two results from Theorem 2, which further
shed light on the solved and unsolved cases. First, let us
consider the solved cases. It is known that an equilibrium
point with presence of critical cutsets is unstable [22]. Here
we present a new proof that is similar in spirit to [28, Theorem
IV.3].

Corollary 2: The equilibrium point(α0,0) of system (6) is
unstable if there exist critical cutsets in the active powerflow
graphG(V , E ,W (θ0)).

Proof: Let z =
[

xT yT
]T

that x ∈ R
l
− , y ∈ R

c+ .
Consider the following expression

zT
Mz = xT (|W−|

−1 −ET
−L

†
G+

E−)x+ 2xTET
−NF+

y.

If there exist critical cutsets, the itemxTET
−NF+

y can be
further expressed as

xTET
−NF+

y =

l
−

∑

k=1

c+
∑

i=1

(ET
−NF+

)kixkyi.

Thus, for a givenx, we can select a vectory to make
zTMz < 0. It implies that the matrixM is indefinite, and
by Theorem 2, the equilibrium point is unstable.

Note that Corollary 2 only tells the instability of an equi-
librium point if critical cutsets exist. To judge the type ofthe
equilibrium point, we still need to use the matrix conditionin
Theorem 2.

We now turn to the equilibrium point where the critical lines
exist but the critical cutsets may not exist. This case has not
been fully addressed in the literature. First, we introducethe
concept of equivalent weight as follows.

Definition 4: Let ek = (i, j) ∈ E be an arbitrary line, and
Rk(V , ERk

,WRk
(θ)) be a subgraph of the active power flow

graph whereERk
= E\{ek}. AssumeRk is connected, define

Wij(θ) = ViVj |Yij | cos(θi − θj) + (dT
ijL

†
Rk

(θ)dij)
−1 (36)

as theequivalent weightbetween busi and busj in the active
power flow graph, whereLRk

denotes the Laplacian matrix
of Rk anddij ∈ R

n is a vector with itsi-th entry being 1,
j-th entry being -1 and the other entries being zero.

As mentioned before, we can regard the Laplacian matrix
LG(θ) as the admittance matrix of a resistive network by
interpreting line conductance asViVj |Yij | cos(θi − θj), then
the item dT

ijL
†
Rk

(θ)dij is the effective resistance between
bus i and bus j with line (i, j) deleted [41]. Thus, as
illustrated in Fig. 2,Wij(θ) can be interpreted as the “effective
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conductance” between busi and busj in the resistive network.
The following criterion is developed with this definition.

Figure 2. An illustration of equivalent weight.

Theorem 3: (Equivalent weight-based stability crite-
rion) Suppose the critical linesE− do not form cut-
sets in the active power flow graphG(V , E ,W (θ0)). Let
Rk(V , ERk

,WRk
(θ0)) be the subgraph obtained by deleting

line ek fromG. Assume the matrixLRk
(θ0) has only one zero

eigenvalue. For anyek = (i, j) ∈ E−, the equilibrium point
(α0,0) of system (6) is unstable ifWij(θ

0) < 0. Further,
if LRk

(θ0) is positive semi-definite, the equilibrium point is
unstable if and only ifWij(θ

0) < 0.
Proof: We neglect the item “θ0” in the following vari-

ables for simplicity. Select any critical lineek = (i, j) ∈
E−, and partition the active power flow graph into a con-
nected subgraphRk(V , ERk

,WRk
) and a single-line subgraph

Gk(V , {ek},Wk). Accordingly, the Laplacian matrix ofG can
be expressed asLG = LRk

− Ek|Wk|E
T
k , whereEk ∈ R

n

denotes the incidence matrix ofGk. Applying Lemma 4 gives

i−(LG) = i−(H3), where H3 =

[

|Wk|
−1 ET

k

Ek LRk

]

. Let

Tk(V , ETk
,WTk

) be a spanning tree ofRk such thatWTk

is positive definite. The existence ofTk is guaranteed by that
the critical lines do not form cutsets. Similar to (30), we define
the nonsingular matrix below

S3 =





0(n−1)×1 W
− 1

2

Tk
(ET

Tk
ETk

)−1ET
Tk

1 01×n

0 1
T
n



 (37)

whereETk
∈ R

n×(n−1) is the incidence matrix ofTk. Then
it follows from Lemma 2 thati−(H3) = i−(H ′

3) where

H ′
3 = S3H3S

T
3 =





A3 B3 0

BT
3 |Wk|

−1 0
0 0 0





A3 = W
− 1

2

Tk
(ET

Tk
ETk

)−1(ET
Tk
LRk

ETk
)(ET

Tk
ETk

)−1W
− 1

2

Tk

B3 = W
− 1

2

Tk
(ET

Tk
ETk

)−1ET
Tk
Ek

(38)

The matrixA3 is nonsingular sinceETk
has full column

rank andETk
x 6= 1n andLRk

x 6= 1n, ∀x ∈ R
n−1 (1n is

orthogonal toETk
andLRk

). Then applying Lemma 4 to (38)
gives thati−(LG) = i−(A3) + i−(M′) where

M′ = |Wk|
−1 −BT

3 A
−1
3 B3

= |Wk|
−1 −ET

k ETk
(ET

Tk
LRk

ETk
)−1ET

Tk
Ek.

(39)

By using the propertyLRk
L

†
Rk

= L
†
Rk

LRk
= In −

1
n
1n1

T
n as Rk is connected [42] andE†

Tk
ETk

= In−1,
ETk

E
†
Tk

= In − 1
n
1n1

T
n as Tk is a tree [43], it can be

verified that (ET
Tk
LRk

ETk
)−1 = E

†
Tk
L

†
Rk

(E†
Tk
)T so that

M′ = |Wk|
−1−dT

ijL
†
Rk

dij . If Wij < 0 anddT
ijL

†
Rk

dij > 0,
thenM′ < 0; if Wij < 0 anddT

ijL
†
Rk

dij < 0, thenL†
Rk

is
indefinite so thatLRk

, A3 are also indefinite (the non-zero
eigenvalues ofLRk

are reciprocal of those ofL†
Rk

). Thus we
have i−(LG) = i−(A3) + i−(M′) > 0 if Wij < 0, which
leads to the first statement. Further, ifLRk

is positive semi-
definite, thenA3 is positive definite anddT

ijL
†
Rk

dij > 0 as
L

†
Rk

is positive semi-definite with only one zero eigenvalue.
Thus we havei−(LG) = i−(M′) = i−(Wij), which leads to
the second statement.

For the second statement in Theorem 3, the semi-
definiteness ofLRk

guarantees thatA3 in (38) is positive
definite so that the negative eigenvalue ofLG comes from
Wij only. If LRk

is already indefinite (caused by other critical
lines), thenLG is also indefinite since the graphG has one
more critical line ek than Rk that further deteriorates the
definiteness. In some practical cases where this precondition of
LRk

may not be known as a priori, we can still use the easy-to-
check inequalityWij < 0 as at least a sufficient condition for
instability. Further, we make some important remarks below.

Remark 5:Theorem 3 inspires an intuitive explanation of
the instability mechanism. When the critical lines do not form
cutsets and the equilibrium point becomes unstable, we can
conclude that it is a result of the negative equivalent weight
in the active power flow graph. Thus, the instability can be
interpreted as the “electrical antagonism” between some bus
pairs caused by the critical lines. When the critical lines form
cutsets, the active power flow graph can be regarded as several
isolated subgraphs such that all the lines between any two
subgraphs have negative weights. Thus, the instability in this
case can be interpreted as the “electrical antagonism” among
the subgraphs split by the critical lines.

Remark 6: The equivalent weight can also be used as
a stability index for system operation. A greater equivalent
weight between busi and busj indicates a stronger electrical
coupling between these two buses. In contrast, a nearly zero
equivalent weight indicates weak coupling and near proximity
to instability, which appeals for system re-dispatch to enhance
stability. Further, the equivalent weight can be extended to any
bus pair(i, j) whether busi and busj are adjacent or not. We
can consider a fictitious zero-susceptance lineek connecting
bus i andj, i.e., we substituteYij = 0 andLG(θ) = LRk

(θ)
into (36), then we obtain a unified definition of equivalent
weight between any bus pair(i, j) as

Wij(θ) = (dT
ijL

†
G(θ)dij)

−1. (40)

By graph theory [41], the above expression represents the
effective conductance between busi and busj in the resistive
network whose admittance matrix is interpreted byLG(θ),
so that the physical meaning of equivalent weight keeps
unchanged. With the expression (40), the equivalent weight
between any bus pair(i, j) and the relevant stability issues
can be evaluated. An example of using equivalent weight
to guide generation dispatch for stability improvement will
be given in Section V. In addition, with the installation of
advanced measuring devices, the equivalent weight could be
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an online index and calculated distributively as it just needs
the information of a bus pair.

It is also worth pointing out that although the above the-
orems are developed in the context of power systems, they
are applicable to multi-rate Kuramoto oscillators [24] as the
corresponding mathematical model is highly similar.

V. CASE STUDY

Take the IEEE 9-bus test system (augmented with the
internal buses of synchronous generators) as an example. The
system diagram is depicted in Fig. 3, where the lines (1, 4), (2,
5) and (3, 6) are transient reactances to connect the internal
buses (bus 1, bus 2 and bus 3), and we haveVG = {1, 2, 3}
andVL = {4, 5, 6, 7, 8, 9, 10, 11, 12}. The bus parameters are
listed in Table I. The line parameters are listed in the second
column of Table II.

A. Analysis of UEPs

We select two UEPs to analyze, namely equilibrium point A
and B. The information of equilibrium point A is listed in the
third column of Table II. At point A, the critical lines (7, 8)
and (12, 7) form a cutset. Direct calculation gives thatJ(αA)
has two eigenvalues with positive real parts,λ1+(J(α

A)) =
9233.6841 and λ2+(J(α

A)) = 6.4941. On the other hand,
the Laplacian matrixLG(θA) has two negative eigenvalues,
λ1−(LG(θA)) = −24.4261 and λ2−(LG(θA)) = −6.4478;
the matrix

M(θA) =









−0.1248 −0.0413 0.5774 −0.3333
−0.0413 −0.1219 −0.5774 0.3333
0.5774 −0.5774 0 0
−0.3333 0.3333 0 0









also has two negative eigenvalues,λ1−(M(θA)) = −0.9847
and λ2−(M(θA)) = −0.1647; and the equivalent weights
W7,8(θ

A) = −8.49 < 0, W12,7(θ
A) = −9.34 < 0, which are

consistent with obtained theorems.
The information of equilibrium point B is listed in the fourth

column of Table II. There is only one critical line (10, 11) at
point B, which does not form any cutsets. Direct calculation
gives thatJ(αB) has one eigenvalue with positive real part,
λ1+(J(α

B)) = 49.6555. On the other hand, the Laplacian
matrixLG(θB) has one negative eigenvalue,λ1−(LG(θB)) =
−15.4717; the matrix

M(θB) =

[

−1.2549 0
0 0

]

has one negative eigenvalue; and the equivalent weight
W10,11(θ

B) = −11.83 < 0. All the results are consistent
with the obtained theorems. This case also indicates that an
equilibrium point can be unstable even if the critical lines
do not form cutsets. Theorem 2 and Theorem 3 can provide
correct answer in this situation.

B. The equivalent weight and generation dispatch

Assume an inverter-based generator withDR12 = 1.0 p.u.
is added to bus 12. To investigate the system stability under

Figure 3. Diagram of the IEEE 9-bus test system (augmented with generator
internal buses).

Table I
BUS PARAMETERS OF THEIEEE 9-BUS TEST SYSTEM

Bus Pi(p.u.) Vi(p.u.) Mi(p.u.) Di(p.u.)

1 0.67 1.0 10 1

2 1.63 1.0 20 1

3 0.85 1.0 30 1

4 0 1.0 – 10−3

5 0 1.0 – 10−3

6 0 1.0 – 10−3

7 0 1.0 – 10−3

8 -0.90 1.0 – 1

9 0 1.0 – 10−3

10 -1.00 1.0 – 1

11 0 1.0 – 10−3

12 -1.25 1.0 – 1

Table II
L INE PARAMETERS AND INFORMATION OF POINTA AND B

Line |Yij | θAi − θAj θBi − θBj Wij(θ
A) Wij(θ

B)

(4,7) 17.36 2.21◦ 2.21◦ 17.35 17.35

(7,8) 10.87 -181.34◦ -26.48◦ -8.49 10.60

(8,9) 5.88 353.70◦ -77.70◦ 12.16 3.44

(6,9) 17.06 2.86◦ 2.86◦ 17.04 17.04

(9,10) 9.92 1.18◦ -29.58◦ 14.29 9.51

(10,11) 13.89 -3.28◦ 205.13◦ 17.75 -11.83

(11,5) 16.00 -5.85◦ -5.85◦ 15.92 15.92

(11,12) 6.21 -352.28◦ -43.40◦ 12.15 5.48

(12,7) 11.76 182.02◦ -27.97◦ -9.34 11.25

(1,4) 50.00 0.77◦ 0.77◦ 50.00 50.00

(2,5) 50.00 1.87◦ 1.87◦ 49.97 49.97

(3,6) 50.00 0.97◦ 0.97◦ 49.99 49.99

different penetration level, we gradually increase the inverter-
based generation from 0.20 p.u. to 1.80 p.u., and find the
normal operating point at each value. Meanwhile, the power
generation of the synchronous generator at bus 2 is reduced by
the same amount as the inverter-based generation, so that the
power generations of the other synchronous generators remain
unchanged.

We take Re(λmax(J))—the maximum real part of the spec-



10 IEEE TRANSACTIONS ON CONTROL OF NETWORK SYSTEMS (ACCEPTED)

trum of system dynamic Jacobian to characterize the system
stability level. And we focus on the equivalent weight between
bus 2 and bus 12 as these two buses participate into the
generation dispatch. The equivalent weights and Re(λmax(J))
under different inverter-based generation at bus 12 are listed
in Table III. The data of Re(λmax(J)) indicates that the
system stability level monotonically grows till the inverter-
based generation reaches 1.20 p.u. and declines afterwards.
On the other hand, the equivalent weight between bus 2 and
bus 12 increases till the inverter-based generation reaches 1.20
p.u. and decreases afterwards. Such a tendency indicates that
the system stability level increases at first and then decreases,
and the appropriate inverter-based generation at bus 12 is 1.20
p.u., which matches up well with the judgement given by
Re(λmax(J)). This result validates the equivalent weight as
an effective stability index, which can be used to determine
the suitable amount of renewable generation and guide system
dispatch for stability enhancement.

Table III
STABILITY LEVEL AND EQUIVALENT WEIGHT WITH VARIOUS

INVERTER-BASED GENERATION AT BUS12

Generation at

bus 12 (p.u.)

Equivalent weight between

bus 2 and bus 12
Re(λmax(J))

0.20 4.8456 −2.58397× 10−2

0.40 4.8530 −2.58535× 10−2

0.60 4.8588 −2.58644× 10−2

0.80 4.8630 −2.58725× 10−2

1.00 4.8656 −2.58778× 10−2

1.20 4.8666 −2.58802× 10−2

1.40 4.8659 −2.58798× 10−2

1.60 4.8637 −2.58766× 10−2

1.80 4.8598 −2.58705× 10−2

VI. CONCLUSION

The small-disturbance angle stability of power systems has
been investigated from a network-based perspective. We build
up a power system model in terms of graph-based matrices,
and introduce the definitions of the active power flow graph
and critical lines. We prove that the number of eigenvalues
of the system dynamic Jacobian with positive real parts is
equal to the number of negative eigenvalues of the Laplacian
matrix of the active power flow graph (Theorem 1). We further
show that the small-disturbance instability is equivalentto
the indefiniteness of the Laplacian matrix, which results from
the critical lines (Corollary 1). Then, we propose a necessary
and sufficient stability condition in terms of a critical line-
based matrix, which can be used to check the stability of an
equilibrium point and its type when it is unstable (Theorem 2).
Furthermore, two easy-to-check stability criteria are derived.
The first one applies to the case with critical cutsets (Corollary
2). The second one applies to the case without critical cutsets,
which is based on the proposed concept of equivalent weight
(Theorem 3). It reveals that the instability can be interpreted
as the electrical antagonistic effects induced by the critical
lines. We also discuss the application of equivalent weight

in indicating system stability level for operational purpose.
The obtained results provide new insights into the small-
disturbance stability problem. Future work may include the
exact impact of voltage variations, more detailed modeling
of system devices and uncertainties of renewables into the
analysis.
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