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Abstract—This paper investigates small-disturbance angle sta- equilibrium point. Later, the normal form methods and modal
bility of power systems with emphasis on the role of power series methods have been applied to include higher ordak loc
network topology, which sheds new light on the instability gynamics so as to obtain more precise modes (see [2-5] and
mechanism. We introduce the concepts of active power flow gpdn . . . .
and critical lines. It is shown that the inertia of the Laplacian references therein). Since the eigenvalue _algonthms Giann
matrix of this graph provides information on the stability and Scale well to bulk power systems, several kinds of dimension
type of an equilibrium point. Then, the instability mechanism reduction approaches have been introduced to calculate the
is elaborated from the impact of critical lines on the inertia of  critical subset of the eigenvalues, such as selective modal

the Laplacian matrix. A stability criterion in terms of a cri tical analysis [6], iterative refinement method [7], and dominant
line-based matrix is established. This criterion is a necesry . S ’
pole iteration method [8].

and sufficient condition to judge the stability and type of an X .
equilibrium point. It includes the existing results in the literature These eigen-based results are much oriented to the nodal

and applies to the unsolved cases where the critical lines isk dynamics, especially the dynamics of generators. On theroth
but do not form cutsets. Moreover, we introduce the concept hand, the nodal dynamics evolve via the underlying power
of equivalent weight between a pair of buses. Another stabty  heyork structure, thus exploring the explicit role of netks
criterion in terms pf the equn./alent.yvelght is deyeloped, fom topoloav in small-disturbance stabilitv is of areat im o
which the small-disturbance instability can be interpreted as pology . Yy .g eoTte;

the “electrical antagonism” between some buses in the power however, it has not drawn as much attention [9]. Only a few
network resulting from the critical lines. The equivalent weight works have investigated the problem from the network-based
can also be used as a stability index and provides guidance perspective. Some researchers adopt the coupled oscillato
for system operation. The obtained results are illustratedby \,5qel for power systems. A fresh viewpoint of power network
numerical simulations. o . . .

N ~synchrony is given in [10] that links the system dynamics to
~ Index Terms—power network, angle stability, unstable equilib- network structure properties. In addition, the impact gfcto
rium point, graph theory, Laplacian matrix. logical changes on stability has been investigated statibt,

such as the integration of new generators [11], decendt#diz
I. INTRODUCTION of generators [12], deletion of 'Fr_ansmission I?ne_s [1_3]d an
) o Braess’s paradox caused by addition of transmission libs [
MALL-disturbance angle stability is a sub-concept of pgegides the whole network structure, the critical line ie th
angle stability, referring to the ability of a power systemq\er network is another issue that raises concern. Theang|
to maintain synchronism under small disturbances [1]. Thgfference across a critical line excee@isad, which is known
analysis of small-disturbance angle stability has two ra&ims.  pjay an important role in small-disturbance instahilighe
One is to identify the critical modes and their sensm\ﬂtte_ _early results on critical lines are obtained by Tavora andtm
system parameters so as, e.g., to locate and tune stahilizgg "1 6] on the classical network reduced model with transfe
The other one is to characterize the local properties of fgngyctance neglected. The authors introduce the conéept o
manifold around an equilibrium point as fundamental infofxe principal region where no critical lines exist, and tsbpw
mation for transient stability analysis. For example, §#8et hat an equilibrium point is stable if it lies in the princlpa-
of an unstable equilibrium point (UEP), i.e., the dimensin ion | ater, researchers manage to include the originalorét
its unstable manifold, is an index of importance. ~topology into the study by adopting the structure preseyvin
So far the analytical methods for small-disturbance stgbil j,gdel. This model has been introduced by Bergen and Hill
are mainly pertinent to modal analysis, which are based pfy7] and further developed by Narasimhamurthi and Musavi
the eigen-decomposition of the system dynamic Jacobin, if18], Tsolas, Arapostathis and Varaiya [19]. An extensive
the Jacobian matrix of system dynamical equations around &8cussion is given in the recent book by Padiyar [20].

_ , Some interesting results are derived based on the structure
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proved by using Lyapunov function in [17]. Further, itis slo  denotes the entry-wise absolute valueAfFor a square ma-
in [22] that an equilibrium point is unstable if the criticaltrix A € RP*?, leti, (A), i_(A), ioc(A) denote the number
lines form cutsets in the underlying power network. Regentbf eigenvalues ofA with positive, negative and zero real parts,
these results are extended to microgrids with inverteethasespectively, i.e., the inertia oA [29]. For simplicity, a vector
generators [23], and a topological criterion for the exis® = = [z1,2,...,2,]7 € RP is denoted asc = [z;] € RP,
of the unique stable equilibrium point within the principahnd a diagonal matrid = diag{ A1, Az, ..., A,,} € RP*P is
region is proposed in [24]. Wu and Liu [25] investigatelenoted asA = diag{ A,} € RP*P, whereA; is thei-th block
the problem with voltage variations considered, and preposiatrix or a number. The notatiosin(x) € RP denotes the
sufficient conditions for small-disturbance stability iermis function vectosin(z) = [sin x;] € R?, I,, € RP*P denotes an
of transmission line parameters. The relationship betwtken identity matrix, andl, € R” denotes a vector with all entries
type of an equilibrium point and the number of cutsets formdaking one.
by critical lines has been studied in [26], but part of thegfiro
employed some approximations so that fully rigorous result Il. PROBLEM FORMULATION
are not achieved. Overall, the previously obtained resiats
be categorized into two classes: 1) sufficient conditions f
small-disturbance stability without critical lines; 2)fcient We introduce some knowledge on graph theory (referring
conditions for small-disturbance instability with cussedf to [27, 28, 30]). LetG(V,E, W) be a weighted undirected
critical lines. graph with the set of nodeg with cardinality n, the set of
The stability of the cases where the critical lines existdmt edgesé C V x V with cardinality/, and the diagonal matrix
not form cutsets can only be checked by numerical calculatiof edge weightsW € R!*!. The notatione, = (i,j) € &,
while the exact mechanism remains unclear. To achieveka= 1,2, ..,1, denotes the edgk that connects nodé and
complete understanding of the impact of critical lines omsm node j, where (i, j) denotes an unordered node pair. The
disturbance stability, a unified study including the unsdlv th main diagonal entry oW, say W}, denotes the weight of
cases needs to be explored. edgeey.. A generic graph is considered in this paper where the
In this paper, we present a network interpretation of smdike weights can be eithgrositiveor negative The edges with
disturbance stability that fills the gap over the state af Hine negative weights correspond to the critical lines in a power
main contributions are threefold. First, we link the stéypénd network, which will be detailed in the following sections T
UEP type to the inertia of the Laplacian matrix of the definedefine the incidence matrix, we suppose each edgé o
active power flow graph, which provides insightful viewptsin assigned an arbitrary but fixed orientation, eeg.~= (i, j) is
on small-disturbance stability. Second, inspired by tteilts interpreted as the edgg originates at node and terminates
on graph theory [27, 28], we reveal the instability mechanisat nodej. Then theincidence matrixE € R™*! of G is
by analyzing the affect of critical lines on the inertia okth defined such thate, = (i,5) € £, Eix = 1, Ej = —1 and
Laplacian matrix. A critical line-based stability criten is FE,,, = 0,m # i, j. Theweighted Laplacian matriis defined
proposed that can be used to judge both the stability of as Lg = EW ET ¢ R"*", Henceforth we callLg as the
equilibrium point and its type if it is a UEP. This criterionLaplacian matrix for simplicity. The number of the connette
includes the existing results as special cases and alseegpptomponents irg is denoted as. A cutset is a group of edges
to the unsolved cases where the critical lines exist but do maith two properties: 1) the number of connected components
form cutsets. Third, we introduce the concept of equivalemmt G increases ta + 1 if these edges are deleted, and 2) the
weight of a bus pair, and establish an equivalent weigmtmber of connected components returns itbwe arbitrarily
based stability criterion. This criterion leads to an itivei choose one edge from these edges and add it bagk to
interpretation of instability, that is, the critical linesause  Next we introduce the concept of spanning trees and span-
“electrical antagonism” between some buses. In additiam, wing forests, which will be used to derive the main results
show that the equivalent weight is an useful stability infax in Section IV. A tree is a graph without any cycle. For a
system operation. connectedg, a tree containing every node ¢f is called a
The rest of the paper is organized as follows. In Section #panning tree. A spanning forest is a more generic concept
some background knowledge on graph theory are given ahét can be applied to the cases whéris not connected. A
a network-based model of power systems is formulated. $panning forestis a subgraph consisting of a spanning tree
Section lll, the definitions of the active power flow graph anih each connected component 6f which containsn — ¢
critical lines are introduced, and the stability analysiésdd edges totally. LetF(V,Ex, Wx) be a spanning forest df,
on the Laplacian matrix of the active power flow graph ithenG can be partitioned intoF and the remaining subgraph
carried out. Section IV proceeds to develop some necessa(y,&:, We), whereEx U & = &, Ex N & = ¢ and
and sufficient stability conditions in terms of the critidales. W = diag{Wz, W.}. We refer to the subgrapd as the
Numerical studies and conclusions are presented in Se¢tiorycle subgraphas it completes cycles i§. Accordingly, the

b Graph theory preliminaries

and Section VI, respectively. incidence matrixE can be expressed & = [Er E¢]|,
_ where Er ¢ R™ ("9 and E, e R"*(-"t¢) gre the
Notations incidence matrix ofF and(C, respectively. LetNz € R"*¢

We introduce the following notations that will be usede the (normalized) null space &%, i.e., EENz = 0 and
throughout the paper. Led € RP*? be a matrix|A| € RP*¢ N}EN; = I.. The entries of Nx take values as follows.
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Let V;,i = 1,...,c be the set of nodes in thieth connected variables.) By defining the following matrices and vectors
. o L
component ofG with cardlnalltynz,. then (Nz)u; = 7 if 0= (0] cR", Vicy
busu € V; and (Nx),; = 0 otherwise. ]
we = [wi] €RI, Vie Vg

wr = [w] €RY, Vie Vv,

B. Network-based model of power systems M =diag{M;} € R, Vie Vg 3)

Consider a power network connecting synchronous genera- D¢ = diag{Di} € R7*7, Vi € Vg
tors, loads and inverter-based generators that refer tewen Dy =diag{D;} € R¥™ VieV,
able energy sources. A synchronous generator is modeled as  p — [p] e R", Vi eV
an internal bus (constant voltage source) connecting to the . .
terminal bus via (a transient reagtance. Th)e power ne?work is Bi= diag{V;V;|Yi;[} € R™!, Ve, = (i,j) € €
augmented with fictitious buses and lines representingrthe equation (1) can be rewritten as
ternal buses and transient reactances, respectively.\ent@r- Mo D 01 lw
based generator is modeled as a constant voltage source wi{h 0 G] + { OG D } { G] + EB;sin(ET9) =P (4)
frequency droop controller. The loads are frequency degeind Ll wr
The transmission lines are modeled as series reactanas,\@Rere E ¢ R™*! is the incidence matrix of(V, £) with each
the transient reactances and transformers are also regasdeline being arbitrarily assigned an orientation. The owioh
transmission lines. Suppose the (augmented) power netwgghection for each line does not influence the expression in
has totallyn buses and lines. The buses consist gfinternal  (4). The k-th entry of the vectosin(E”0) € R! is equal to
buses and remaining buses that are without synchronous gefin (¢, —6,), i.e., the sinusoidal function of the angle difference
erators and may connect loads and inverter-based gergeragdross linee;, = (i,7) € €. Thus thek-th entry of the vector
We number the internal buses &8 = {1,2,...,g}, and the B;sin(E”0) € R represents the active power flow across
remaining buses ag;, = {g+1,...,n}. Then, according to the |ine ¢,.
derivation in [17, 23], the dynamics of busan be described  Note that system (4) becomes a differential-algebraic equa
by tion (DAE) system if there exists a buse V; such that
D; =0, i.e., a bus with neither load nor inverter-based gener-
M;w; + Diw; + Z ViV;|Yij| sin(6; — 6,) = P; (1) ator. In the stability analysis, the algebraic variablea IDAE
jeadi{i} system are usually reduced, which will impact the structure
preserving property of power network. To address this issue
whered;, V; are the phase angle and voltage magnitude of bijg singularly perturtD; as D; = ¢, wheree is a sufficiently
i, respectivelyw; = 0; is the angular frequency of busthe gma| positive number, so thab;, is nonsingular and we
notation;j € adj(i) means bus and bus; are adjacent and gjj| have a differential equation system as (4). By singula
—Yj; is the susceptance of ling, j); P is the active power pertyrbation theory [31, Lemma 7-3], the perturbed system
injection at busi, P; equals to the active power generationng the original DAE system share the same set of equilibrium
for busi € Vg and P; = Pp; — Pr; for busi € Vi points. In addition, the properties of an equilibrium podit
with Pr;, Pr; being the inverter-based generation and loaghe two systems, such as the stability and type, are idéntica
respectively;M; > 0 is the inertia of synchronous generator Next we introduce a state-space form of (4) for the stability

for busi € Ve and M; = 0 for busi € Vi; D; is the analysis. Without loss of generality, we take busas the
damping coefficient of synchronous generator for basVe  angle reference, i.ef, is fixed to zero, and a new vector
and D; = Dpg; + Dy, for busi € Vp with Dg;, Dr; being s introduced
the frequency coefficient of inverter and load, respectivel

At an equilibrium point of (1) wherey; = 0, the synchro- a=THecR"* (5)
nized angular frequency is given by = >"" | P,/ >"" | D;. e
It is convenient to assume that” , P, — 0 so that we have WhereT = [Li1 —L._i] € R("=1) is the transforma-
zero frequency and constant phase angles at the equilibriH?r‘i‘ matrix. The vectorx represents the relative angles of bus

point. If this is not true, we use the following transform [171 -7 — 1 with respect to bus.. By taking (a, wg) as the
state variables, system (4) can be transformed into [17]

@) & = Tewe — Ty D' TE [EsB;sin(El ) — Py
/ 0
Fi=h-wD we = —~M'Dgwg — M 'TE[E,B;sin(ETa) — Py]

to shift the equilibrium point to such a status. Hencefortéh w ©)
drop the prime superscripts and assumé_, P, = 0. where T, € R(*=1*9 and T;, € R(~1xd consist of the

We now take a network-based viewpoint on the systeoolumns ofT" indexed by internal bus@g; and the remaining
dynamics. Denotd = Vs UV, as the set of buses artl busesVy, respectively;E, € R(=1xI consists of the first
as the set of transmission lines, then the power network can- 1 rows of E; and P, € R"~! consists of the firsh — 1
be regarded as a gragttV, £). (Henceforth we will use “bus” rows of P. The condition}_;" , P, = 0 is adopted to derive
and “node”, and “line” and “edge” interchangeably for grap(6), we refer to [17] for the detalils.

! 0
w; =w; —w
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Denote(a’,0) as an equilibrium point of system (6), therthe diagonal matrix of line weights
linearizing system (6) in the neighbourhood @£, 0) gives ) .

) Osin(E*0)

the small-disturbance model W0)=B———~
O(ETH)

Aa|  [-TD;'TIF(a®) Tc Aa o
ALZJG - —M_ng;F(aO) _M—IDG AwG whereWk = VlV7|YU| COS(@i — 6‘]-), Ve = (z,]) eé.
By definition, the Laplacian matrix of the active power flow
graphG(V, &, W (0)) can be expressed as

= diag{W;} € R (8)

o]

AwG
(7) Lg(0) = EW(Q)ET € R™*". (9)

where F(a) = ESBI%{L?‘;)EST e R(»—Dx(n=1) js the We recall that the active power flow equations can be expdesse
power flow Jacobian, ands(ao) c Rtg-Dx(nt9-1) jg the aSP = EB;sin(E"8), which leads to9P = Lg ()00, so

system dynamic Jacobian. We adopt the following assumptidfat the active power graph is a description of active power
for the small-disturbance model (7) flow profile over the underlying power network. In addition,

. . the observation in [21] gives an intuitive interpretatidntioe
(A1) The voltage magmtu_de of each bus is constant. active power flow graph. The Laplacian matrix can be regarded
(A2) The power network is connected. . as the admittance matrix of anbus resistive network where
(A3) Th@? _matncesM, D¢ and Dy are all positve o conquctance of ling, j) is equal toV;V;|Y;;| cos(6; —0;).
(A%) '(Ij'ﬁznﬁa{trix F(a®) is nonsingular The concepts of critical lines and critical cutsets areaintr
' duced below.
By assumption (A1), system (6) is restricted to the study of pefinition 2:In the active power graph, a ling = (i, j) €

angle stability, decoupled from reactive power flow andagét ¢ is acritical line if the angle difference across it satisfies
variations. It is a reasonable approximation of real situnst

as the per-unit voltage magnitudes at the angle stab#iigted
UEPs are close to unity and the affect of voltage variations 2
is negligible [32]. Also the increasing use of power elegico A cutset is acritical cutsetif all the lines in the cutset are
voltage controllers can add further justification. Assuig critical lines.
(A2) and (A3) reflect real situations. It will be shown later The critical lines coincide with the lines with negative
that the precise values dbg and Dy, which are difficult weights in the active power flow graph, which will play an
to measure, are not needed to derive our results. Assumpti@iportance role in the following analysis. Also note tha th
(A4) is commonly used in the literature [22, 33, 34]. It falls term critical cutset differs from previous use (e.g., in][17
from (A3) and (A4) that the equilibrium points are hyperleoli where it refers to a cutset of zero-valued lines). A line is a
i.e., io(J(a”)) = 0 [33, Proposition 3]. These assumptionsiero-valued line if the angle differences across it (raadl is
together with the results on stability theory [35, Theoreif{,4 exactly equal tof or 37” so that its line weight is zero. In this
lead to the following lemma to check the stability and type qfaper, assumption (A4) excludes the cutsets of zero-valued
an equilibrium point. lines in the active power flow graph as the existence of such
Lemma 1:The equilibrium point(a?,0) is locally asymp- a cutset leads to the singularity @ (a’) [17]. In addition,
totically stable if and only ifi, (J(a)) = 0. In addition, the we further assume that the active power flow graph has no
equilibrium point is a typen UEP wherem = i (J(a)) if zero-valued lines. For the situation where this is not treeca
it is unstable. we just delete the zero-valued lines as the Laplacian matrix
It can be seen that small-disturbance stability is charactef the active power flow graph remains unchanged after the
ized by the inertia of the system dynamic Jacobian. In tldeletion.
following sections, the relationship between the inerfizhe We give Lemma 2 and Lemma 3 as follows for the proof
system dynamic Jacobian and the network topology will e Theorem 1.
established. Lemma 2:(Sylvester’s law of inertia) [29, Theorem 4.5.8]
Let A, B € RP*P be Hermitian matrices, then there is a
nonsingular matrixS € RP*? such thatA = SBS7 if and
onlyif iy (A) =iy (B),i-(A) =i_(B) andig(A) = io(B),
respectively.
In this section we propose the definitions of active power Lemma 334, Proposition 4-2] If the assumptions (A3) and
flow graph and critical lines. The inertia of the system Jémob (A4) hold, theni (J(a)) =i_(F(a)).
matrix is linked to that of the Laplacian matrix of the defined Let (", 0) be an equilibrium point of system (6) and define
graph. In addition, small-disturbance instability is kwkto 6° = [(a®)” o}T € R™. Then we present the result below.
the indefiniteness of the Laplacian matrix, which is caused b Theorem 1:(Laplacian-based stability criterion) The equi-
the critical lines. librium point (a, 0) of system (6) is locally asymptotically
We first introduce the concept of active power flow graptstable if and only ifLg(68°) is positive semi-definite. Further,
Definition 1: Define G(V, £, W (0)) as theactive power the equilibrium pointis a types UEP wheren = i_(Lg(6°))
flow graphwith the set of bused’, the set of lines€ and if it is unstable.

T 3T

< |91 — 93| mod 27 < 7 (10)

IIl. SMALL -DISTURBANCE STABILITY AND ACTIVE POWER
FLOW GRAPH
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Proof: Let equivalently, the indefiniteness of the Laplacian matrix. |
0 addition, another inspiring viewpoint is given in [39] thfar
K = 0 0 ,S1 = 17 NE (11) a consensus protocol over a graph, the lines with negative
T tn—1

weights in the graph work as the “antagonism” against state
It can be checked that the following two equalities hold  agreement. Thus, we are motivated that the small-distgeban
B - 1T E instability can be interpreted as the antagonistic effeatssed
" n—178 (12) by the critical lines in the active power flow graph. Furtitee
Ela=E"60 exact instability mechanism reflects on how the critica$in
affect the inertia of the Laplacian matrix, where the adeahc
tools in graph theory apply.

which leads to
dsin(ETQY)

T
LQ(OO) = [EsT Erﬂ BIW [ES,T Eﬂ
Dsin(ETa0) 13) IV. CRITICAL LINE-BASED STABILITY ANALYSIS
T sin( £, a . . .
=S, [E! 0 BZW [ET o] s By using graph-theoretic methods, we leverage the results i
S KST s Section Il to elaborate the impact of critical lines on theritia
= 1 1 -

of the Laplacian matrix and small-disturbance stabilitynte

Applying Lemma 2 to (13) gives that (K) = i_(Lg(6°)). stability criteria in terms of critical lines will be deveded.
Furthermore, we havé_(F(a®)) = i_(Lg(8°)) as it is First, we separate the lines in the active power flow graph
trivial that i_(K) = i_(F(a®)). Then applying Lemma 3 into two disjoint sets according to their weight signs. By
we havei, (J(a)) = i_(Lg(6°)). Thus, by Lemma 1 we Definition 1 and Definition 2, the non-critical lines congté
can conclude the statements in Theorem 1. m the set of lines with positive weights, denoted as the&et
The next result is known [17, Theorem 1], while we giv&vith cardinality/. . The corresponding diagonal matrix of line

a new proof from the inertia of the Laplacian matrix to shoWeights isW..(68) = diag{V;V;|Yi;| cos(6; — 0;)} € Rb+*"+,
the impact of critical lines. Ver = (i,j) € &4. In addition, the critical lines constitute

Corollary 1: The critical lines exist in the active powerthe set of lines with negative weights, denoted as thef’set
flow graphG(V, &, W (6°)) if the equilibrium point(a, 0) with cardinality/_. The corresponding diagonal matrix of line
is unstable. weights isW_(6) = diag{V;V;[Yi;| cos(0; — 0;)} € RI->!-,

Proof: We prove it by contradiction. Suppose the equilibtes = (i,j) € €. These notations lead to the following
fium point is unstable and there exists no critical linegnth definition. _ N
G(V,£,W(8°)) has no lines with negative weights. In this Definition 3: Define G,.(V,&,, W,(0)) as the positive
case, the Laplacian matrix has the property thdLg(6°)) = Subgraph, andj_(V,£.,W_(8)) as the negative subgraph
n—1,i_(Lg(6°) =0, io(Lg(6°)) = 1 [36, Lemma 13.1.1]. Of the active power flow graph.

Then, by Theorem 1, the equilibrium point is stable so that a With Definition 3, the active power flow graph can be par-
contradiction yields. m titioned into 7, (V. Ex, , W, (0)), C+(V, &, , We, (9)) and

We make two important remarks below. g-(V,&.,W_(0)), whereF,_ andC, are a spanning forest

Remark 1:By Theorem 1, the inertia of the Laplacian@nd the cycle subgraph ¢f, (V, &, W (6)), respectively. It
matrix of the active power flow graph implies the stabilitfollows thatéx, Ufe, =&, &7, Néc, = ¢, EL UE =€,
of an equilibrium point and the type of a UEP. The Laplaciaﬁgw né- =¢and
matrix containst_he inform:_;ltion of network topology_and\m:t W = diag{ W, W_} = diag{W, , W, , W_}
power flow solution. Thus it follows that the small-distunica E_E. E|—I[E & B
stability is independent of generator inertias and bus diagsp = [Bx -] = [Br. C+ -]
under.the assumption.(A3) that they are all p(_)sitiv_e. It $thouyhere E. ¢ RY, Er ¢ Rnx(n—ci) Ec, ¢
be pointed out that this result does not conflict with the faginx(+—n+c+) gnd E_ € R"*!- denote the incidence matri-

that the generator inertias and bus dampings can signifjcaiag ofG.., Fy,Cy andG_, respectively, and, is the number
affect the stability level, i.e, the eigenvalues of the egst of connected components @y (V, &, W, (6)).

dynamic Jacobian. As inferred from Theorem 1, what the Then we give Lemma 4, Lemma 5 and Lemma 6 as basis
positive inertias and damping coefficients cannot change 3%, Theorem 2.

the signs of the eigenvalues of the system dynamic Jacobiaf.emma 4:Let I ¢ R®+9x(P+9) pe a real symmetric
In other words, if the Laplacian matrix indicates that thg,atrix defined as
equilibrium point is stable, then larger inertias or dangpin

coefficients could further increase the stability leveln@arily,

if the equilibrium point is unstable, then changing inestia o ) 5 y
or damping coefficients does not help to pull it back tyhere A € RP*7 is nonsingular, and3 € R7*?, C' € R7*1.

the stability region as along as they are positive. Simildihe Schurxcomplement of the block of the matrix H is

observations were made in earlier results connecting thvepo H\A € R4

flow and small-disturbance_stal_)ility [37, 38]. H\A=C - BA'B”. (16)
Remark 2:Corollary 1 implies that the appearance of

critical lines is the cause of small-disturbance instabiind Theni_(H) =i_(H\A) +i_(A).

(14)

wlp ]

B C (15)
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Proof: Let Theorem 2. Further, we establish the critical line-basettima
I 0 M(O) c R(l7+c+)><(l7+c+)
6= 1) (17)
Ba W_(0)|! - ETL}, (0)E- ETNr,
It follows that H = ¢diag{ A, H\ A}¢T. Applying Lemma M(8) = NI E_ 0 (25)
2 givesi_(H) = i_(diag{ A, H\ A}), which directly leads -
to the result. B where Lg, (9) denotes the Laplacian matrix of the positive

Lemma 5:Let G(V,&,W) be a weighted undirectedsubgraphG, (V,€+, W, (0)), and Nz, € R"™ °+ is the
graph withc connected components. L&(V,E7, W) and normalized null space oE%. Then Theorem 2 is presented
C(V,&:,W¢) be a spanning forest and the cycle subgraph af follows.

g, respectively. Then the following statements hold: Theorem 2{Critical line-based stability criterion) The equi-

1) ranKEx) = n — ¢ and rankNz) = ¢ The matrix librium point (a,0) of system (6) is locally asymptotically

E7 has full column rank, andVr is the orthogonal stable if and only if the matrixAM(6°) in (25) is positive

complement ofE~ ([29, 30]). semi-definite. Further, the equilibrium point is a typeUEP
2) E¢ can be re-expressed as [40] wherem = i_(M(6°)) if it is unstable.
Proof: We neglect the itemd°” in the following variables
Ec. = Ex(EXEr) 'ELE.. (18) for simplicity. By (14), we express the incidence matrix as

E = [E, E_] and accordingly the Laplacian matrix can
Lemma 6:Let G(V,E, W) be a weighted undirected graphpe expressed as
with ¢ connected components and all line weights being

positive. LetF(V, Ex, Wx) andC(V, Ec, We) be a spanning Lg=Lg, +Lg =Lg, — E_|W_|ET. (26)
forest and the cycle subgraph 6f respectively. Then the
Moore-Penrose inverse dig can be expressed as Similar to the proof of Lemma 6, we can obtain that
1 1 1 1
L = ExW:T:" (RreREe) 'Tx'WEEL  (19) Lg, = Er WZ Rr.c, Ry . W2 EZ  (27)
where Ry € R"=9x! and T € R(*—¢)x(n=¢) where

1 1 _1 1
Rre = [In*c Wg* (EJTTE]:)ilEgECWCz} Rr.c, = I, WJ—'+2 (EJTT+E7+)71EJTT+EC+WC2J '

. ) (20)
Tr=WZErErW3Z. Note that (27) is an equivalent version of (22) with the
subscripts G, F,C” replaced by G, F.,C.", respectively.

Proof: ExpressE as E = [Er Ec| and accordingly Then substituting (27) into (26) gives

the Laplacian matrix can be expressed as

1 1
Lg = ExWxEZL + EcWEL. 21) L¢=Er Wz Rr.c Ry . WZE; —E |W_|ET.
(28)
Substituting (18) into (21) gives
By (28), Lg can be regarded as the Schur complement

Lo = ErWrEL + ErW2XXT"W2EL ) Ho\|W_ |1, where
— BEW}RscR: - WEEL W[ ET

Hs> = 1 1
1 1 E_ Er W2 R RL . W2 ET
where X = Wfé(EJTTE;)*lE%ECWE. Then, substituting R i e T e S e
(19) and (22) intoLg L{; and L, Lg gives that Since|W_| is positive definite, by Lemma 4 we have
LgL = (LgL})" = Er(EfEr)'Ef (23a) i_(Lg) = i_(H>). (29)
LiLg = (LiLg)" = Er(EXEr)'E7. (23b) _ _
Next, consider the matrix
Moreover, substituting (21) and (23a) inthLng, and .
substituting (19) and (23b) ianngLTg give that 0 Tf_jWiEa ; ;
S, = I 0 c R(n+ _)x(n+l_) (30)
LgLiLg = Lg (24a) 0 NE.
LLLgLl = L. (24b)

whereTr, = WJ%E%EEWJ% € Rn=ex)x(n=es) The

Thus, by [29], theLTg in (19) satisfies the conditions to be thematrix S; is nonsingular since the first statement of Lemma 5

Moore-Penrose inverse dig. B gives thatNx, is the orthogonal complement &#, . Thus
Lemma 6 is an extension of [27, Proposition I11.2]. Thet follows from Lemma 2 that

expression in (19) applies to either connected graphs or

unconnected graphs, which will be used in the proof of i (Hs) =i (Hy) (31)
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where wheren 4, np, nc denote the number of buses in subgraph A,
H — S,H,ST — B and C, respectively; the first row is interpreted as the line
2 — O241202 = . . L
; N ey is oriented from subgraph A to subgraph B, and similar
_ Rrc Ry T;jWiE%E, ______ o interpretations apply to the other rows.
-1 —
E_Ef+W;+TF+ E |W,| 1 l?zﬂj\r]:Jr :
0 ! Ni E_ 0 e
(32) @
€3
Further, by Lemma 6, the Moore-Penrose inverseLgf €
can be expressed as

L. =Er W2 T: (Rr.c. RY . ) 'T;:'W32 ET
Gy — PPV RS f+( F+Co f+c+) Fy Ty F(+3'3)
Observing (32) and (33) gives that the mati in (25) Next we derive two results from Theorem 2, which further
is the Schur complemenH;\R7 c, R . . The matrix shed light on the solved and unsolved cases. First, let us
RJT+C+R32+C+ is positive definite afR#, ¢, has full row rank. consider the solved cases. It is known that an equilibrium

Figure 1. An example of cutsets.

Applying Lemma 4 again gives that point with presence of critical cutsets is unstable [22]reHe
, ) _ we present a new proof that is similar in spirit to [28, Theore
i-(H3) =i_(M). (34) va).

L . B Corollary 2: The equilibrium pointa®, 0) of system (6) is
The inertia equalities (29), (31) and (34) lead to thaltLg) = L*nstable if there exist critical cutsets in the active pofi@w
i—(M). Thus by Theorem 1 we can conclude the statemerblsaphg(v £, W(6°))

in Theorem 2. . — [T 4717 I .
We make some remarks on Theorem 2 below. Consﬁé%?fih:e:oﬁogvin[mex ?es]sio;hat z € Ry e R
Remark 3Theorem 2 is a sufficient and necessary condition g exp

to check the stability and type of an equilibrium point. It ;T Aq> = 2T (w_|7! - ETLL+E_)w + QwTETNﬂy_

applies to the unsolved cases where the critical lines exist

but do not form cutsets. Moreover’ the maW(OO) is low- If there exist critical cutsets, the iteTETNng can be

dimensional a_ andc, are usually small numbers comparedurther expressed as

to the number of buses. - ey
Remark 4.The matrixA1(6°) leads to a clear interpretation e"E'Nry=> Y (E'Nr, )iy
of instability mechanism in terms of critical lines. In (25) k=1 i=1

the sub-matriyW_(6°)|~ _ET_LTQJOO)E_* represents the Thys, for a givenz, we can select a vectoy to make
impact of the weights and locations of critical lines. It e 7 A4, ~ (. |t implies that the matrixM is indefinite, and
that the matrix M(8°) is more likely to have negative by Theorem 2, the equilibrium point is unstable. m
eigenvalues if the critica}l Iin_es with large absolute wésgh ~Note that Corollary 2 only tells the instability of an equi-
locate at where the main diagonals EELT@ (6°)E_ are jinrium point if critical cutsets exist. To judge the type thie
large. Furthermore, the sub-matr” N, represents the equilibrium point, we still need to use the matrix condition
contribution of critical cutsets. The entries E‘ZN]:+ take Theorem 2.

values as follows. If there exist no critical cutsets, i, is e now turn to the equilibrium point where the critical lines
connected, then we hawr, = ﬁln and ETNz, = 0. exist but the critical cutsets may not exist. This case hds no

If there exist critical cutsets, we denol§, i = 1,..,c. been fully addressed in the literature. First, we introdtee
as the set of buses in theth connected component ofconcept of equivalent weight as follows.

G (V, &L, W, (0°) with cardinality n;. For the linee, = Definition 4: Let e, — (i, j) € € be an arbitrary line, and
(u,v) € £, if w € Vi, v €V andi # j, ie., the linee, R, (V,Exr,, Wr,(0)) be a subgraph of the active power flow
is oriented fromV; to V;, then (E" Nz, )i = (N7, )ui = graph wherefr, = £\{ex}. AssumeR; is connected, define
ﬁ and (E' Nz, ) = —(Nr )vi = —TLJ_; otherwise

(ETNz )i =0 and(ET Nz, ), = 0. Wij(0) = ViVj[Yig| cos(0: — 0;) + (df; L%, (6)dij) ™" (36)

Take the case in Fig. 1 as an illustration. Suppose there agetheequivalent weighbetween bus and bus; in the active
four critical lines that are marked and assigned orientatiopower flow graph, wherd., denotes the Laplacian matrix
Two cutsets are formed by the four critical linesrez,e3  of R, andd,; € R is a vector with itsi-th entry being 1,
separate subgraph B from the system, andseparates sub-;-th entry being -1 and the other entries being zero.

graph C from the system. Thei” Nz, is As mentioned before, we can regard the Laplacian matrix
1 1 0 Lg(0) as the admittance matrix of a resistive network by
Via Vig interpreting line conductance d§V;|Y;;| cos(6; — 6,), then
E"Ng, = Via Vs 0 35) the item diTjL;zk (6)di; is the effective resistance between
~n n 0 bus i and busj with line (i,5) deleted [41]. Thus, as
fA fB . . . ) R
1 0 -1 illustrated in Fig. 2)V;;(8) can be interpreted as the “effective

vy ne
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conductance” between busnd busj in the resistive network. verified that (E7. Lr, E7,)™' = E;k L;zk (ETTk)T so that
The following criterion is developed with this definition. M = Wy |71 - dz;L;zkdij' If Wi; <0 anddiTjL;rgkdij >0,

then M’ < 0; if W;; < 0 anddf LY di; <0, thenLk is

. (dT_LT (g)d)gl . .. - o e k
Effective (%5 Lp, i indefinite so thatLz,, A3 are also indefinite (the non-zero
~~ “M_e . eigenvalues ofr, are reciprocal of those k). Thus we
(,’[, ! "'iV,Iyij\COS(U,-H,-) .] haVEZ,(Lg) = Zf(Ag) + 'Lf(M/) > O |f W»LJ < O, Wh|Ch
Wi (9) / Effective leads to the first statement. Further Lifz, is positive semi-
iO—I——Oj conductance definite, thenAs is positive definite andig’;L;akdij > 0 as
L;zk is positive semi-definite with only one zero eigenvalue.
Figure 2. An illustration of equivalent weight. Thus we have_(Lg) = i_(M’) = i_(W;;), which leads to
the second statement. [ |

Theorem  3: (Equivalent weight-based stability crite- For the second statement in Theorem 3, the semi-
rion) Suppose the critical lines’. do not form cut- gefiniteness ofLz, guarantees thatls in (38) is positive
sets in the active power flow grapfi(V,&, W (0")). Let gefinite so that the negative eigenvalue b comes from
Ri(V, Er,, Wr,(6")) be the subgraph obtained by deletingy), . only. If Ly, is already indefinite (caused by other critical
line ey, from G. Assume the matrilz, (6°) has only one zero jines), thenLy is also indefinite since the gragh has one
eigenvalue. For any; = (i,j) € £, the equilibrium point more critical linee, than R, that further deteriorates the
(a”,0) of system (6) is unstable iV;;(6°) < 0. Further, gefiniteness. In some practical cases where this precondifi

if Lz, (6°) is positive semi-definite, the equilibrium point iy, , may not be known as a priori, we can still use the easy-to-

unstable if and only i#V;;(6°) < 0-0” _ _ _ check inequalityV;; < 0 as at least a sufficient condition for
Proof: We neglect the item 6" in the following vari- instapility. Further, we make some important remarks below
ables for simplicity. Select any critical line, = (i,j) €  Remark 5:Theorem 3 inspires an intuitive explanation of

¢-, and partition the active power flow graph into a cofpe instability mechanism. When the critical lines do natifo
nected subgrapRy.(V, €r,, Wr, ) and a single-line subgraphetsets and the equilibrium point becomes unstable, we can
Gk (V,{exr}, Wy). Accordingly, the Laplacian matrix af can  conclude that it is a result of the negative equivalent weigh
be expressed abg = Lx, — Ei[Wi|Ey, where E;, € R" n the active power flow graph. Thus, the instability can be
denotes the incidence matrix 6f.. Applying Lemma 4 gives interpreted as the “electrical antagonism” between songe bu
i—(Lg) = i_(H3), where Hy = T'WH Ei | Let pairs caused by the critical lines. When the critical linestf

Ey  Lg,] cutsets, the active
. , power flow graph can be regarded as severa
Te(V, 7, W7, ) be a spanning tree ok such thatWr, .00 subgraphs such that all the lines between any two

Itiep 2rsll[t|2/ae| ﬁﬁé‘g I(tj% r']l' ;ioiﬁséi?sc :t Sﬁsli;%;?:gréeoidv%ggat subgraphs have negative weights. Thus, the instabilithis t
the nonsinaular matrix below ' ' case can be interpreted as the “electrical antagonism” gmon
9 the subgraphs split by the critical lines.

0(n_1)x1 WT—%(E$ Er) 'ET Remark 6:The equivalent weight can also be used as
Sy = 1 " 0k1Xn " (37) a stability index for system operation. A greater equivalen
0 17 weight between bus and bus; indicates a stronger electrical

" o _ coupling between these two buses. In contrast, a nearly zero
where E7;, € R™*("~1) is the incidence matrix of. Then equivalent weight indicates weak coupling and near prayimi

it follows from Lemma 2 that_(H3) = i (Hj) where to instability, which appeals for system re-dispatch toaemte
A; ' Bs 0 stability. Further, the equivalent weight can be extendeaity

H) = S3H;ST = "Bg“:'[W,;H“'O" bus pair(i, j) whether bus and busj are adjacent or not. We
0' 0 0 can consider a fictitious zero-susceptance lpeconnecting

I . ’ . . N busi andj, i.e., we substitut&;; = 0 andLg(6) = Lz, (0)
Az =W, *(Ey E7,) (BT, LrE7,)(E7, E7,)” Wr? into (36), then we obtain a unified definition of equivalent

_1 H . .
By =W_> (EL Er,) 'EL E, weight between any bus pait, j) as

(38) Wii(0) = (dELL(0)diy) " (40)
The matrix A3 is nonsingular sincey; has full column .
rank andEr.x # 1, and Lz, # 1,, Vo € R (1, is By graph theory [41], the above expression represents the

orthogonal toE, andLx, ). Then applying Lemma 4 to (38) effective conductance between buand bus;j in the resistive

gives thati_(Lg) = i_(As) +i_(M’) where network whose admittance matrix is interpreted by (0),
) . - so that the physical meaning of equivalent weight keeps
M =|Wi|™" — B3 A; Bj (39) Unchanged. With the expression (40), the equivalent weight

= |Wi|"' - EFEr, (E;f_k LRkETk)_lE%Ek. between any bus paifi,j) and the relevant stability issues
) ; ; can be evaluated. An example of using equivalent weight
By using the propertyLg, Ly, = Lg Lz, = I. — (o guide generation dispatch for stability improvementl wil
11,17 as Ry is connected [42] andE} Ex, = I,_1, be given in Section V. In addition, with the installation of
ET,CETTk =1, — %1n1£ as 7, is a tree [43], it can be advanced measuring devices, the equivalent weight could be
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an online index and calculated distributively as it just dsee

the information of a bus pair 369 10 s 2
: us pair. O | L 1 1R
It is also worth pointing out that although the above the- [ l—l 1
orems are developed in the context of power systems, they
are applicable to multi-rate Kuramoto oscillators [24] he t 3 12
corresponding mathematical model is highly similar.
7
V. CASE STUDY :

Take the IEEE 9-bus test system (augmented with the
internal buses of synchronous generators) as an exampge. Th
system diagram is depicted in Fig. 3, where the lines (1,2), (
5) and (3, 6) are transient reactances to connect the imterna
buses (bus 1, bus 2 and bus 3)’ and we Haye= {172’3} _Figure 3. Diagram of the IEEE 9-bus test system (augmentéd geinerator
andV;, = {4,5,6,7,8,9,10, 11, 12}. The bus parameters argnternal buses).
listed in Table I. The line parameters are listed in the sdcon

column of Table II. Table |
BUS PARAMETERS OF THEEEE 9-BUS TEST SYSTEM

A. Analysis of UEPs Bus Pi(p.u.)  Vi(p.u) Mi(p.u) Dy(p.u.)
We select two UEPs to analyze, namely equilibrium point A L 0.67 10 10 L
and B. The information of equilibrium point A is listed in the 2 1.63 10 20 !
third column of Table Il. At point A, the critical lines (7, 8) 3 085 10 30 }3
and (12, 7) form a cutset. Direct calculation gives tétx*) 4 0 Lo B 1073
has two eigenvalues with positive real pats, (J(a?)) = : 8 1'8 - 1873
9233.6841 and Ay, (J(a?)) = 6.4941. On the other hand, ; o 10 } 103
the Laplacian matrixLg(04) has two negative eigenvalues, 8 -0.90 1'0 B 1
A_(Lg(64)) = —24.4261 and My (Lg(04)) = —6.4478; ° 0 1o B 10-3
the matrix 10 1.00 1.0 _ 1
—0.1248 —0.0413 0.5774 —0.3333 11 0 1.0 - 10—3
A —0.0413 —0.1219 —0.5774 0.3333 12 -1.25 1.0 - 1
M(97) = 0.5774 —0.5774 0 0
—0.3333  0.3333 0 0
Table Il
also has two negative eigenvaluesh (M(@A)) — —0.9847 LINE PARAMETERS AND INFORMATION OF POINTA AND B

and Ay (M(64)) = —0.1647; and the equivalent weights
Wy g(04) = —8.49 < 0, Wi 7(04) = —9.34 < 0, which are

Line  |vi;| 6r—064 6B —08  wi;(04)  wi,(07)

3

consistent with obtained theorems. @n  17.36 2.21 2.2 17.35 17.35
The information of equilibrium point B is listed in the fotrt g;g; 150;7 31:317? 'is':g iz'ige 1;ff
column of Table II. There is only one critical line (10, 11) at (6’9) 17’ 06 256 ) ée@ 17'04 17‘ 04
point B, which does not form any cutsets. Direct calculation © ’10) 9 '92 1'18 -2§ g 14'29 9 '51
gives thatJ(a”) has one eigenvalue with positive real part, (1(; 1) 13' 89 3 8 205' 13 17'75 _1'1 a3
A1+ (J(aP)) = 49.6555. On the other hand, the Laplacian (11' 5) 16'00 _5'85 5 éso 15'92 15 '92
matrix Lg (07) has one negative eigenvalue,- (Lg(0P)) = (11”12) 621 35208 4340 1215 5 48
—15.4717; the matrix (12,7) 1176 182.02  -27.97 9.34 11.25
M(OB) _ [_1,2549 0] (1,4  50.00 0.77 0.77P 50.00 50.00

0 0 (25) 5000  1.87 1.87 49.97 49.97

(36) 50.00  0.97 0.97 49.99 49.99

has one negative eigenvalue; and the equivalent weight
Wloyu(OB) = —11.83 < 0. All the results are consistent
with the obtained theorems. This case also indicates that an ) ) )
equilibrium point can be unstable even if the critical linedifferent penetration level, we gradually increase thesiter-

do not form cutsets. Theorem 2 and Theorem 3 can proviAgsed generation from 0.20 p.u. to 1.80 p.u., and find the
correct answer in this situation. normal operating point at each value. Meanwhile, the power

generation of the synchronous generator at bus 2 is redyced b
the same amount as the inverter-based generation, so that th
B. The equivalent weight and generation dispatch power generations of the other synchronous generatorsmema
Assume an inverter-based generator widly;, = 1.0 p.u. unchanged.
is added to bus 12. To investigate the system stability undeMe take Ré\,,.x(J))—the maximum real part of the spec-
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trum of system dynamic Jacobian to characterize the syst@mindicating system stability level for operational pusgo
stability level. And we focus on the equivalent weight bedwe The obtained results provide new insights into the small-
bus 2 and bus 12 as these two buses participate into tlisturbance stability problem. Future work may include the
generation dispatch. The equivalent weights and\Re«(J)) exact impact of voltage variations, more detailed modeling
under different inverter-based generation at bus 12 aredlisof system devices and uncertainties of renewables into the
in Table Ill. The data of REe\...(J)) indicates that the analysis.
system stability level monotonically grows till the invert
based generation reaches ;.20 p.u. _and declines afterwards REFERENCES
On the _Other hanq' the _equwalent We'ght between bus 2 a@ﬂ P. Kundur, J. Paserba, V. Ajjarapu, G. Andersson, A. B&eCanizares,
bus 12 increases till the inverter-based generation reati2® N. Hatziargyriou, D. Hill, A. Stankovic, C. Taylor, T. Van @&em,
p.u. and decreases afterwards. Such a tendency indicattes th and V. Vittal, “Definition and classification of power systestability
th t tability | li t first d th d IEEE/CIGRE Joint Task Force on stability terms and defingid IEEE
e system sta ' ity _eve Increases at frs f"m en deesza Trans. Power Systvol. 19, no. 3, pp. 1387-1401, Aug 2004.
and the appropriate inverter-based generation at bus 120s 1[2] C.-M. Lin, V. Vittal, W. Kliemann, and A. Fouad, “Invegfation of
p.u. which matches up well with the judgement given by modal interaction and its effects on control performancestiressed
R )'\ J Thi It lidates th ivalent ight power systems using normal forms of vector fieldEEE Trans. Power
&Amax(J)). This result validates the equivalent weight as  gys; vol. 11, no. 2, pp. 781-787, May 1996.
an effective stability index, which can be used to determing] Y. N;i, V. Vittal, and W. Kleimann, “System separation nfiemism in
the suitable amount of renewable generation and guidersyste  the neighbourhood of a relevant type-n UEP using the nororah fof
di tch for stability enhancement vector fields,” inlEE Proc. Gener. Transm. Distribvol. 145, no. 2. IET,
Ispatc y : Mar 1998, pp. 139-144.

[4] J.J. Sanchez-Gasca, V. Vittal, M. J. Gibbard, A. MessbaJ. Vowles,
S. Liu, and U. D. Annakkage, “Inclusion of higher order terffossmall-
signal (modal) analysis: committee report-task force osessing the
need to include higher order terms for small-signal (modaialysis,”
IEEE Trans. Power Systvol. 20, no. 4, pp. 1886-1904, Nov 2005.

- = - [5] H. M. Shanechi, N. Pariz, and E. Vaahedi, “General nadinmodal

Generation at Equivalent weight between R Amax (J)) representation of large scale power systerfSEE Trans. Power Syst.

max

Table I
STABILITY LEVEL AND EQUIVALENT WEIGHT WITH VARIOUS
INVERTER-BASED GENERATION AT BUS12

bus 12 (p.u.) bus 2 and bus 12 vol. 18, no. 3, pp. 1103-1109, Aug 2003. ‘
0.20 1.8456 9.58397 % 10-2 [6] I. J. Pérez-Arriaga, G. C. Verghese, and F. C. Schweffelective
' ’ ' modal analysis with applications to electric power systemart I:
0.40 4.8530 —2.58535 x 1072 Heuristic introduction,”IEEE Trans. Power App. Sysivol. PAS-101,
0.60 4.8588 —2.58644 x 10~2 no. 9, pp. 3117-3125, Sept 1982.
0.80 4.8630 _9.58725 x 10—2 [7] G. Angelidis and A. Semlyen, “Efficient calculation ofitizal eigen-
9 value clusters in the small signal stability analysis ofgérpower
1.00 4.8656 —2.58778 x 10 systems,”IEEE Trans. Power Systvol. 10, no. 1, pp. 427-432, Feb
1.20 4.8666 —2.58802 x 1072 1995.
1.40 4.8659 _9.58798 x 10—2 [8] N. Martins, “The dominant pole spectrum eigensolver gower system
160 4.8637 9 58766 x 10-2 stals)ility analysis,"[EEE Trans. Power Systvol. 12, no. 1, pp. 245-254,
' ’ ’ Feb 1997.
1.80 4.8598 —2.58705 x 1072 [9] D. J. Hill and G. Chen, “Power systems as dynamic netwbrks

Circuits and Systems, 2006. ISCAS 2006. Proceedings. 2B |
International Symposium on IEEE, May 2006, pp. 722—725.
[10] A. E. Motter, S. A. Myers, M. Anghel, and T. Nishikawa, f8ntaneous

synchrony in power-grid networksNature Physicsvol. 9, no. 3, pp.
VI. CONCLUSION 101-197, 2013.

The small-disturbance angle stability of power systems hg] P. J. Menck, J. Heitzig, J. Kurths, and H. J. Schellniibidow dead
ends undermine power grid stabilityNature Communicationsvol. 5,

been investigated from a network-based perspective. We bui ;3969 pp. 1-8, 2014,
up a power system model in terms of graph-based matricgg] M. Rohden, A. Sorge, M. Timme, and D. Witthaut, “Selfganized

and introduce the definitions of the active power flow graph synchronization in decentralized power gridBfiysical Review Letters
d critical li Wi h h b f ei | vol. 109, no. 6, p. 064101, 2012.
and critical lines. We prove that the number of eigenvalu ] S. Lozano, L. Buzna, and A. Diaz-Guilera, “Role of netwtopology in

of the system dynamic Jacobian with positive real parts is the synchronization of power system3he European Physical Journal
equal to the number of negative eigenvalues of the Laplacian B-Condensed Matter and Complex Systero 85, no. 7, pp. 1-8, 2012.

. . 14] D. Witthaut and M. Timme, “Braess’s paradox in oscilatnetworks,
matrix of the active power flow graph (Theorem 1)' We furthér desynchronization and power outaghbléw Journal of Physicsvol. 14,

show that the small-disturbance instability is equivalémt no. 8, p. 083036, 2012.
the indefiniteness of the Laplacian matrix, which resultsrfr [15] C. J. Tavora and O. J. Smith, “Stability analysis of povsgstems,’

., . IEEE Trans. Power App. Systiol. PAS-91, no. 3, pp. 1138-1144, Ma)
the critical lines (Corollary 1). Then, we propose a necgssa 1975 Pp-=ys PP Y

and sufficient stability condition in terms of a critical éin [16] C. J. Tavora and O. J. Smith, “Equilibrium analysis ofyeo systems,”
based matrix, which can be used to check the stability of an EEE Trans. Power App. Sysno. 3, pp. 1131-1137, 1972.

e . . L 17] A. R. Bergen and D. J. Hill, “A structure preserving modier power
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