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Abstract

A popular approach to characterizing activity in neuronal networks is the use of statistical models 

that describe neurons in terms of their firing rates (i.e., the number of spikes produced per unit 

time). The output realization of a statistical model is, in essence, an n–dimensional binary time 

series, or pattern. While such models are commonly fit to data, they can also be postulated de 
novo, as a theoretical description of a given spiking network. More generally, they can model any 

network producing binary events as a function of time. In this paper, we rigorously develop a set 

of analyses that may be used to assay the controllability of a particular statistical spiking model, 

the point-process generalized linear model (PPGLM). Our analysis quantifies the ease or difficulty 

of inducing desired spiking patterns via an extrinsic input signal, thus providing a framework for 

basic network analysis, as well as for emerging applications such as neurostimulation design.
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I. Introduction

Understanding the control properties of brain networks at spatial scales commensurate with 

individual neurons has two important implications in neuroscience. First, the advent of 

technologies such as optogenetics [1] allow, in principle, for fine spatial actuation of 

networks at the scale of tens to hundreds of individual neurons. Achieving spatially and 

temporally precise control in such networks would provide a substantial tool in the probing 

of neural function [2]. Second, knowing the control properties of such networks may aid in 

understanding basic issues around how networks of neurons intrinsically self-coordinate 

their activity.
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A direct approach to understanding the control properties of spiking neuronal networks (as 

distinct from macro-scale networks at the level of brain regions) involves the use of 

dynamical-systems models, such as the simple integrate-andfire neuron [3], or more detailed 

biophysical models involving voltage-gated conductance equations [4]. However, while 

basic control characterizations have been obtained in single neurons [5] and pairs of neurons 

[6], the nonlinearity and/or discontinuity associated with the neuronal dynamics in question 

lead to issues of scalability in both control analysis and design. It is important to make a 

distinction here between control at the level of asynchronous timed spiking, versus control at 

the level of population activity such as oscillations or synchronization, where control 

analysis results have been obtained [7], [8].

Statistical models provide a way to approximate underlying neural dynamics, wherein 

nonlinearity and inherent stochasticity are embedded within a time-varying rate function. 

The rate function associated with a neuron governs its probability of producing a spike at 

any moment in time, such as in the Poisson class of random processes. Thus, in a statistical 

model, neuronal spikes are described as binary events in a particular output realization. Such 

models include the popular class of point-process generalized linear models (PPGLMs) [9], 

[10], which have been used to model event-based phenomena in ecology [11], [12], 

telecommunications [13] and, in the present context, the spiking activity in neuronal 

networks. Here, each spike is understood as a timed binary event. Since they are readily fit 

to spiking data, PPGLMs have emerged as a powerful tool in the analysis of neural 

recordings [14]. Absent data, PPGLMs can also be formulated de novo as mathematical 

models of neural activity that can capture some aspects of the network structure and 

dynamics (e.g., delays, refractory).

Recently, the problem of extrinsic neural control has been formulated for this class of 

models by including an extrinsic input as a covariate in the PPGLM [15]. However, as yet, 

no methods for basic control analysis have been developed for such models. Such analysis is 

needed in order to provide baseline characterizations such as establishing whether or not a 

design objective is feasible. For instance, it would be vacuous to attempt a design on a 

system that was not theoretically controllable. The goal of this paper is to bridge this gap by 

providing a set of quantitative metrics, based on dynamic optimization, that assay the control 

properties of a statistical neural model, to enable basic characterizations (e.g., given two 

GLMs, which is ‘more controllable’) and, eventually, the problem of input design. In this 

vein, we provide four main results: (i) a control analysis for PPGLMs that approximates, in 

essence, the reachable set of binary patterns for a given model; (ii) from (i), a relativistic 

notion of control viability that allows comparison between PPGLMs; (iii) a validation of the 

proposed framework, showing its ability to reveal salient control properties of spiking 

networks; and (iv) the instantiation of the developed theory for the purposes of designing 

external neurostimulation. It is important to note that our control analysis is developed 

strictly for PPGLMs, which, as stated above, are approximations of the true dynamics.

The remainder of the paper is organized as follows. In Section II we discuss the PPGLM 

models used in this paper. Next, in Section III, we analyze the likelihood function with 

respect to the extrinsic control and show the role of event count in determining the 

maximum achievable likelihood. We introduce a controllability-like notion based on this 
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count and the likelihood that estimates the pattern subset that can be viably obtained in terms 

of probability from the set of all possible patterns. Section IV provides numerical 

simulations to validate our analysis and demonstrates how the analysis can be used to 

compare two different point process models. Finally, in Section V, we use the analysis 

results to construct a control design framework to induce any desired spike pattern.

II. Preliminaries

In this section we first demonstrate the intuition behind using a PPGLM to model the 

spiking activity in neurons and then proceed to develop the probabilistic descriptions of 

patterns of activity in these neurons.

A. Notation

A point process is an integer-valued stochastic process that models the occurrence of 

isolated events in time and space, e.g., neural spiking. The inhomogeneous Poisson process 

is one such example that can capture temporal dependencies via a time-varying rate/intensity 

function [16]. Generalized Linear Models (GLMs) provide a regression framework to model 

output variables Y with respect to the input/explanatory variables X. GLMs assume that a 

transformation of the conditional mean of Y is a linear function of X, i.e.,

g(𝔼(Y | X)) = Xβ (1)

where g(.) is the link function and β is a set of unknown parameters. Combining point 

processes with GLMs, i.e., modeling the rate function of neurons by a GLM, results in a 

PPGLM, the primary object of study in this paper.

Throughout this paper, events and spikes are used synonymously. Most mathematical 

notation is standard. The continuous time univariate and multivariate point processes are 

indicated by N(t) and N(t), t ∈ ℝ+ respectively, whereas Ntʹ and Ntʹ, tʹ ∈ ℕ denote their 

discrete counterpart. In a univariate discrete process, Ni, the value of discrete process at the 

i-th window, is a scalar. For a multivariate discrete process, Ni is a vector of all variables at 

the i-th window and Nc,i is a scalar that represents the value of the c-th variable in the i-th 

time bin. We follow the same notation for the associated difference processes.

B. Model Description (Exclusive Event Point Process)

We first consider a univariate inhomogeneous Poisson process N(t) with the intensity (event 

rate) function λ(t|H(t)), where H(t) denotes the history of the process along with other 

covariates, i.e.,

λ(t |H(t)) = lim
Δ 0

Pr[N(t + Δ) − N(t) = 1 |H(t)]
Δ . (2)
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We divide the total time window under consideration, [0,T], into I intervals such that Δ = T I

and denote the discrete process as Ni ≡ N(iΔ) and Hi ≡ H(iΔ), i = 1,...,I. This yields the 

difference process

δNi = Ni − Ni − 1 = N(iΔ) − N((i − 1)Δ) . (3)

We make the key assumption that Δ≪1(Δ ≠ 0), resulting in δNi ∈ , where  := {0,1}. We 

separate the conditional intensity (2) into components related to the background activity, 

spiking history over Q lags, and S independent extrinsic control inputs U ∈ ℝS×I, up to P 
previous instances via the log-link model

λi ≡ λ(iΔ|X, Hi) = exp(β0 + ∑
q = 1

Q
βqδNi − q

+ ∑
s = 1

S
∑

p = 0

P
γp

s us, i − p) = exp(θTxi) .

(4)

The parameter set is given by θ = β0…γP
S T ∈ ℝF, F = 1 + Q + (P + 1)S and the co-variate 

matrix X ∈ ℝF×I with the i-th column xi as

xi = [1 δNi − 1…δNi − Qu1, i…uS, i − P]T, (5)

∀i = 1...I.

The joint likelihood of a particular realization of N(t) with k spikes over the I intervals, 

conditioned on X, follows the form detailed in [17]

Pr(N |X) = exp ∑
c = 1

C
∑
i = 1

I
δNc, ilog λc, iΔ − λc, iΔ + o Δk . (6)

where any function f(x) ∈ o(h(x)) implies that limx 0
f (x)
h(x) 0. We extend this model for 

the C-variate process N(t) as in [18] and the log-likelihood for small Δ can be written as

L(N |X) ≡ log (Pr(N |X))

= ∑
c = 1

C
∑
i = 1

I
δNc, ilog λc, iΔ − λc, iΔ ,

(7)

where
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λc, i = exp(β0
c + ∑

c′ = 1

C
∑

q = 1

Q
βq

c′, cδNi − q + ∑
s = 1

S
∑

p = 0

P
γp
s us, i − p) .

In terms of neural spiking, this set of co-variates captures:

1) any baseline activity in the network, via the bias term β0
c

c = 1
C

;

2) refractory periods following a spike in the c-th neuron, via the self process 

history βq
c, c

q = 1
Q

;

3) afferent excitation or inhibition from other neurons, via the network spiking 

history βq
c, c′

c′ = 1, c′ ≠ c
C

;

4) temporal dynamics (e.g., exponentially decaying) of the excitation or inhibition 

from other neurons, via additional history terms βq
c, c′

c′ = 1, q = 1
C, Q

; and

5) effect of any extrinsic stimulation and the integrative nature in which the 

neurons process such information, via the current stimulus and the history terms 

γp
p, s

p = 0, s = 1
P, S

.

However, more detailed biophysical dynamics associated with sub-threshold membrane 

potential and particular ion channels are outside the explanatory power of this model.

C. Model Description (Simultaneous Event Point Process)

The model described in (2)–(7), albeit useful in many contexts, is limited because it excludes 

multiple neurons producing simultaneous spiking events. Thus, we also consider a second 

model, a discrete-time, multinomial generalized linear model of a simultaneous event 

multivariate point process (SEMPP) [19], [20]. The coincidence of spiking events 

(simultaneous events) from different neurons in the interval Δ, is handled by projecting the 

system onto higher dimensions such that only a single kind of event can occur at any 

interval.

Briefly, for a C-dimensional inhomogeneous Poisson process N(t), a new M = 2C − 1 

dimensional marked point process N*(t) is defined such that at any interval, there is at most 

one non-zero bit. The conditional intensity function for this marked point process N*(t) is 

defined as λm* (t |H(t)), m = 1,...,M, similar to (2) where H(t) denotes the history of the process 

along with other covariates.

Once again with Δ = T/I ≪ 1 (Δ ≠ 0) over the time window [0,T], we denote the discrete 

process as Nc,i for c = 1...C which yields the difference process δNc,i (for the multivariate 

point process), δNm, i* ∈ 𝔹 (for the marked point process) similar to (3). In matrix 

representation we can write
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δN = DN, (8)

where D ∈ ℝI×I transforms N to its difference process δN (similarly for the marked process 

N*). Here a logistic-link function is used to relate the co-variates with the rate of the 

process,

log
λm, i* Δ

1 − λi
gΔ

= β0
m + ∑

c = 1

C
∑

q = 1

Q
βq

m, cδNc, i − q

+ ∑
s = 1

S
∑

p = 0

P
γp

m, sus, i − p

= θm
T xi,

(9)

where λi
g = ∑m = 1

M
λm, i*  is the conditional intensity for the discrete ground process [21] Nt′

g

at t′ = i.θm is the m-th row of the parameter matrix Θ ∈ ℝM×F with

F = 1 + QC + P + 1 S (10)

co-variates at each interval. Θ reflects the dependence of the intensity function on the co-

variates X ∈ ℝF×I. The loglikelihood for the marked point process conditioned on the co-

variates X, is given by

L N* |X = log Pr N* |X = ∑
i = 1

I
∑

m = 1

M
δNm, i* θm

T xi

− ∑
i = 1

I
log 1 + ∑

m = 1

M
exp θm

T xi .

(11)

In the analysis that follows, we work with both the likelihood models in (7), (11). Much of 

the analysis that follows will be based on characterizing how the number of events (spikes) 

in a target realization impacts these likelihoods. We specifically consider the spike count ψ : 

ℝ C×I → ℝ,

ψ(δN) = ψ(ND) = bTδN1I = ∑
c = 1

C
∑
i = 1

I
bcδNc, i, (12)

as the number of events in the realization. For the exclusive event process b = 1 ∈ ℝC and 

(12) reduces to
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ψ(δN) = ∑
c = 1

C
∑
i = 1

I
δNc, i . (13)

For SEMPP, b ∈ ℝM contains the number of events associated with each dimension of the 

projected point process, e.g., for C = 3, the projected dimension is M = 7 and

b = [1 1 2 1 2 2 3]T, (14)

corresponding to all possible combinations, i.e., three 1-spike events, three 2-spike events 

and one 3-spike event.

III. Control Analysis of Statistical Spiking Models

In this section based on the likelihood models developed above we approach the question of 

controllability in spiking networks from a probabilistic standpoint. In particular we identify 

spike count as a key marker that relates to the probability of achieving any spike pattern as a 

function of extrinsic control.

A. 𝛜 -Controllability for PPGLMs

We first consider an analogue to the classical notion of controllability. As a statistical model, 

any such notion must involve the likelihood of particular realizations, heretofore referred to 

as target patterns. As such, we first consider the following candidate:

Definition 1 (𝛜–Controllability for PPGLMs): A PPGLM is −controllable if, for all > 0, 

there exists an input U such that any realization N(t) of the PPGLM can attain a 

loglikelihood satisfying

−ϵ ≤ L(N |U) ≤ 0. (15)

Despite its intuitive appeal, the following highlights that the notion of −controllability is too 

strong to be of practical utility in the desired context.

Lemma 1: The PPGLM described in (7), (11) is not 𝛜− controllable, even if the energy of 

the input U is unconstrained.

Proof 1: The proof is given in Appendix A, and hinges on the fact that the likelihood 

function is in fact strictly concave in U.

The Lemma establishes that allowing U to assume arbitrarily large energy confers no 

advantage in controlling the PPGLM. This is conceptually different from classical control 

analysis, where allowing progressively larger energy (in general) improves the overall range 

of trajectories that can be induced. Two points should be considered when interpreting this 
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result. First, our analysis focuses on at most one event in each time bin. With increasing 

energy, one may increase the likelihood on an event, but not necessary a single one. Second, 

in a coupled network scenario, applying a large input in order to target a spike in a particular 

neuron will have collateral effects elsewhere in the network. However, clearly some 

minimum energy is required in order to maximize the likelihood of given realizations.

B. Event Count as a Surrogate for Pattern Complexity

As a consequence of Lemma 1, we seek a characterization that examines the complexity of 

the realizations (spike patterns) that can be induced. Below, we establish that the spike 

count, i.e. simply the number of spikes contained in a particular realization (i.e. (12)), can 

serve as an informative marker in this regard.

Lemma 2: For a PPGLM of the form (4)–(7) with infinitesimally small interval (Δ ≪ 1), 

the maximum likelihood of any realization decreases with respect to number of events.

Proof 2: The proof is given in Appendix B.

Lemma 2 is most easily understood in a fully actuated scenario wherein each neuron 

receives its own, independent control input. In this case, it is straightforward to show that the 

control can be designed to negate any effect of process history. Consider the likelihood 

model of (7) with S = C along with P = 0 and γ0
c, s = 0 for c ≠ s, i.e., Γ0, which reflects how 

the current input affects all the processes, is a C-dimensional vector. Since here the 

probability of an event is independent at each time and other input indices, we can analyze 

the likelihood for each i and c separately, i.e.,

max
U ∈ ℝC × I

L(N |U) = ∑
i = 1

I
∑

c = 1

C
max

uc, i ∈ ℝ
L Nc, i |uc, i

= ∑
i = 1

I
∑

c = 1

C
max

uc, i ∈ ℝ
Lc, i,

(16)

where

Lc, i ≡ L Nc, i |ui = δNc, i θc
Txi + log Δ − Δexp θc

Txi . (17)

For δNc,i = 0, (17) reduces to

Lc, i = − Δexp θc
Txi = − Δexp rc, i + γ0

cuc, i . (18)

We observe that given any ϵʹ>0,
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Lc, i δNc, i = 0|u ≥ − ϵ′ when u ≤ uc, i* , (19)

where uc, i* = 1
γ0
c log ϵ′

Δ − rc, i , assuming γ0
c > 0. In other words, for the pattern consisting of 

all zeros, the likelihood indeed can be made arbitrarily close to one (for the fully actuated 

case). We now show that the addition of any spike to the pattern results in likelihood 

degradation.

Specifically, for δNc,i = 1, we can maximize the indexed likelihood as

Lc, i δNc, i = 1|uc, i* = − 1 with uc, i* = − 1
γ0

c log Δ + rc, i . (20)

Since the maximum likelihood of each Lc,i is fully determined by the input uc,i, we can 

design an extrinsic control u* using (19), (20) that maximizes the likelihood for the whole 

realization, i.e. from (16)

L(N |U*) = ∑
δNc, i = 0

Lc, i δNc, i = 0|U* +

∑
δNc, i = 1

Lc, i δNc, i = 1|U*

= − (CI − ψ(δN))ϵ′ − ψ(δN)

(21)

Now for unconstrained inputs we have

lim
ϵ′ 0

L(N |U*) ≈ − ψ(δN), (22)

i.e., the maximum likelihood decreases with the number of events ψ(δN) in any realization 

N of the process N(t).

A similar analysis can be carried out for the fully actuated SEMPP model, wherein we can 

treat marked process independently and use (16) to maximize the likelihood over the whole 

realization. In this case, the likelihood at the c-th process, i-th time index is

Lc, i ≡ L Nc, i |ui = δNc, iγuc, i − log 1 + exp γ′uc, i . (23)

Since the inputs are unconstrained, the total contribution from the co-variates can be 

reformulated in terms of only two parameters γ, γʹ ∀ c, i. Also note that we have removed 

the asterisk indicating the marked point process since analyzing each process independently 
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in one dimension means, δNc, i* = δNc, i. For δNc,i = 0, we can achieve probability 

approximately close to one and can obtain a similar version of (19). When δNc,i = 1, the 

maximum is attained at

Lc, i δNc, i = 1|uc, i* = φ γ, γ′ with uc, i* = 1
γ′ log ( γ

γ′ − γ ), (24)

where

φ γ, γ′ = log γ
γ
γ′

γ′ γ′ − γ
γ
γ′ − 1

< 0. (25)

The likelihood maximization in (24) is independent of each c, i and similar to (21), we have

L(N |u*) ≈ ψ(δN)φ γ, γ′ . (26)

Thus, from our analysis of both the likelihood models (7), (11), we can conclude that in 

terms of likelihood, increasing the number of spikes in a pattern results in likelihood 

degradation, which can be interpreted as greater control difficulty.

C. Estimation of Complexity-based Viable Sets

Clearly, there are many factors in addition to spike count that determine the likelihood of a 

particular realization of a considered PPGLM. Indeed, not all patterns with the same spike 

count will generate the same likelihood. Accepting this limitation (see also Section VI), we 

will leverage the result of the previous section to form a tractable, accurate assay for the 

control properties of a PPGLM in terms of spike count. We proceed first by introducing the 

notion of a viable pattern set, which is analogous to the reachable set for a classical control 

system.

Definition 2 (ρ-Viable Pattern Set): Consider an arbitrary M-dimensional PPGLM 

defined over I intervals. Given a likelihood threshold ρ, the ρ-Viable Pattern Set, 

𝒩(ρ; C, I, 𝒰), is the set of patterns defined as

𝒩(ρ; C, I, 𝒰) = N ∈ ℝC × I | ∃U ∈ 𝒰 s.t. Pr(N |U) ≥ ρ , (27)

where 𝒰 denotes the set of admissible inputs.

It follows from Lemma 2 that, in general, 𝒩(ρ; C, I, 𝒰) includes all patterns with a spike 

count less than or equal to some maximally viable count, μ ≤ CI. We can thus formulate a 

relativistic analysis as follows.
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Definition 3 ((μ,ρ)-Viability): For a likelihood threshold ρ and spike count μ, the PPGLM 

(4)–(7), is (μ,ρ)-viable if ∃ u ∈ 𝒰 such that

𝒩(ρ; C, I, 𝒰) ⊃ 𝒩μ(C, I), (28)

where 𝒩μ(C, I) denotes the set of all patterns with spike counts of μ or less, i.e., ∀ N ∈ 

𝒩μ(C, I), we have

ψ(δN) = bTδN 1 ≤ μ (29)

where δN ∈ C×I is the difference process corresponding to N.

The key problem is now to obtain the maximally viable count, μ, for a given ρ. This amounts 

to a joint optimization problem for the spike count, ψ(δN), and control U. Since the 

difference process imposes the constraint

δNc, i = 0, 1 , ∀c, i, (30)

this optimization is a Nonlinear Mixed Integer program. To make this tractable, we relax the 

integer constraint and introduce a new variable χ, such that

χc, i ∈ [0, 1], ∀c, i . (31)

This allows us to define a relaxed viability notion as follows.

Definition 4 (Relaxed maximally viable spike count): The relaxed maximally viable 

spike count μr is defined as

μr = ψ(χ) (32)

and can be calculated from the solution of the following program,

maximize
U, χ

ψ(χ)

subject to L(χ |U) ≥ log (ρ)
us, i ∈ 𝒰, ∀s, i

0 ≤ χc, i ≤ 1 ∀c, i .

(33)

While this optimization is still non-convex, we show below that numerical evaluation of the 

pairs (μr,ρ) leads to accurate, informative characterization of PPGLMs.
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IV. Validation of the Analysis Framework

Here through numerical simulations we verify how relaxed maximally viable spike count 

affects the probability of achieving any pattern.

A. (μr,ρ)-Viability is Accurate

Figure 1 demonstrates the veracity of the relaxation in (33). We consider PPGLMs with 

randomly selected parameters Θ for C = 3 neurons, Q = 6 lags and I = 10 time bins. The 

inputs are constrained via 𝒰 = [ − 5, 5]. We solve (33) numerically1 for the likelihood in (7) 

and find the relaxed maximum spike count μr = 7.08 for ρ = 10−6, Δ = 0.1 and one 

independent input, i.e., S = 1. Then, the maximum likelihood is calculated individually for 

100 random patterns and compared to the results of the (μr,ρ) optimization. Only 8/100 

patterns are misclassified (spike counts that are below μr but nevertheless whose likelihoods 

do not exceed ρ). Patterns whose spike counts exceed μr are always classified correctly in 

this example.

B. (μr,ρ)-Viability Enables Salient Comparison of PPGLMs

Based on our formulation of (μ,ρ)-viability, if μr
1 > μr

2,

|𝒩1(ρ)| > |𝒩2(ρ)| (34)

where |.| denotes the cardinality of a set. We demonstrate the utility of the viability analysis 

via an example, where we show how the analysis can disassociate PPGLMs with symmetric 

and asymmetric connectivity (see Figure 2A). We consider PPGLMs with the same 

structure, input constraint and window length as in the previous example and a fixed 

reference parametrization (essentially, the connectivity between units) Θ = σ×Θr, where Θr 

is the base parameter. Two observations are of note in Figure 2B. First, a small amount of 

connectivity (via the scaling parameter σ ∈ [0,1]) is advantageous for control, beyond which 

viability decreases monotonically. This numerical inference can, in fact, be substantiated via 

a formal analysis:

Lemma 3: For a PPGLM modeling Exclusive or Simultaneous Event Processes with 

likelihoods defined in (7), (11) and connectivity defined via the parameters βq
m, c, ∀ q,m,c (M 

= C for the log-link model), the likelihood of any given pattern is strictly concave with 

respect to the network connectivity parameters.

Proof 3: The proof is contained in Appendix C, and is a variation of the proof of Lemma 1.

The second observation is that an asymmetric topology is, in general, more viable than a 

symmetric topology, consistent with studies of similar 3-neuron motifs using dynamical 

systems models and Lie bracket-based controllability analysis [22].

1We used a random sampling procedure over the initial conditions of our solver to ensure convergence to a robust local maximizer
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V. Control Design of Statistical Spiking Models

The previous section focused on the development of the analytical framework for PPGLMs 

based on optimization. Along with this analysis, it is natural to also consider the overt design 

of an exogenous control input U* to induce a specific target spiking pattern NT with highest 

probability.

A. Control Design with Maximum Likelihood Estimation

Considering a cost function 𝒥 : ℝC × I × ℝC × I ℝ, that accepts two patterns and returns a 

real number denoting how dissimilar they are, we can formulate the following optimization 

problem,

U* = arg min
U ∈ 𝒰

𝒥 N, NT Pr(N |U)

= arg min
U ∈ 𝒰

∑ 𝒥 N, NT Pr(N |U),

(35)

where the sum is over all possible spike patterns N. For a delta cost function 

𝒥 N, NT = − δ N, NT  as proposed in [15] we can rewrite (35) as

U* = arg min
U ∈ 𝒰

− Pr NT |U = arg min
U ∈ 𝒰

− log Pr NT |U
= arg min

U ∈ 𝒰
− L NT |U .

(36)

Thus, the delta cost function reduces (35) to a maximum likelihood estimation (MLE) 

problem.

Proposition 1: The maximum likelihood estimation problem of finding the extrinsic 

control U* for the likelihood defined in (7) and (11), under an energy constraint on the 

control, is convex.

Proof 4: In Lemma 1, we have established that the likelihoods presented in (7) and (11) are 

strictly concave with respect to the extrinsic control U, which makes (36) convex.

Note that any constraint on energy (quadratic form) will not alter the convexity of the 

program. Also, any regularization in the cost in terms of energy effectively makes the 

problem a maximum a posteriori (MAP) estimation problem.

B. Analysis and MLE Design Example

1) Verification of the Controllability Analysis: Here we validate our controllability 

analysis results on a randomly parametrized PPGLM model equipped with a log-link 

function (4). First we solve for maximally viable spike count μr, (33) with C = S = 4, ρ = 

10−8, Δ = 0.01 and 𝒰 = [ − 10, 10]. Then for some randomly chosen (μr,ρ)-viable pattern NT 

(using (28) and (29)) shown in Figure 3 (top panel), we calculate U* from the MLE problem 
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in (36). In the middle and bottom panel of Figure 3 we plot the probability of spike in each 

window (λc,iΔ) and the corresponding extrinsic control input us,i ∀ c,s,i from the 

maximization solution. We also observe that indeed the pattern NT is ρ-viable (27). We note 

that in this example, the low probability of spiking in Neuron 1 is due to the presence of 

large excitatory connectivity between Neuron 1 and 2. Thus, the MLE solution biases the 

resultant pattern in order to avoid spurious spiking in Neuron 2.

2) PPGLM Control of Underlying Stochastic Integrate and Fire (INF) 
model: Finally, in this section we illustrate that our design strategy can be used indirectly to 

control dynamical systems models. Here we consider C coupled stochastic integrate and fire 

(INF) neurons of the form [23],

dV(t)
dt = − 1

τv
V(t) + 1

𝒞 bu(t) + Isyn(t) + η e(t)

Isyn(t) = − gsyn(t) V(t) − Esyn

gsyn(t) = g
t − ts

τs
exp −

t − ts
τs

(37)

where τv is the membrane time constant, 𝒞 is the membrane capacitance, e(t) is standard 

Gaussian white noise, η denotes the standard deviation of this noise, u(t) ∈ ℝS is the 

extrinsic control input, b ∈ ℝ1×S denotes the influence of the input on the neuron, Isyn(t) is 

the synaptic current coming from a pre-synaptic neuron firing an action potential at time ts, 
Esyn is the reversal potential of the synapse, g models the constant synaptic conductance and 

τs determines the decay of the synaptic current as time is elapsed from the incoming spike at 

ts. The model parameters for the neurons are given by

𝒞 = 10 nF, τv = 15 ms, Vrest = − 70 mV ,
VThresh = − 50 mV , Esyn = 70 mV , η2 = 2
g ∼ 𝒰[0, 1], τs = 1 ms, b ∼ ℕ(0, 1) .

(38)

Now, we determine the GLM model parameters Θ in a Monte Carlo fashion in KT = 500 

different trials. Exciting stochastic INF network with U(t) drawn from a Gaussian 

distribution such that us,i(t) ∼ ℕ(0,50) ∀ s,i, produces spike patterns Nj for j = 1...KT and 

using these data we fit Θ that best describes the training set. Conceptually, this is akin to a 

system identification step.

In Figure 5 we show the performance of the control U*, obtained from the delta objective, 

on the INF network for different cases of actuation (C neurons, S inputs). The covariate 

matrix X has three process lags (Q = 3) and input history (P = 5), selected based on the 

Akaike information criterion (AIC). Figure 4 shows the Kolmogorov-Smirnov (KS) 

goodness-of-fit test using time-rescaling theorem [24], which indicates that the model 

accurately reflects the data. With the hypothesis that the control inputs calculated from the 
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PPGLM should also emit a spike train close to the target NT (panel A) in the underlying 

dynamical model, we stimulate the INF neurons with the same U* (panel D). In panel B, C 

we show the generated spike pattern (averaged over several realizations) and one sample 

waveform, when the original stochastic INF neurons are excited by U*, and indeed we can 

see that the induced pattern is close to target NT. For validation of optimality of U*, in panel 

E we plot the achieved spike pattern for a randomly selected input. We observe that as 

underactuation becomes more prominent, the performance of U* degrades. The simulation 

results were primarily generated using CVX with MATLAB interface.

3) Control Design for underlying Biophysical Models: To evaluate the utility of 

this design approach on a more complicated biophysical model, we further consider a 

network of diffusively coupled Fitzhugh-Nagumo (FN) neurons of the form [25]. Here the 

dynamics of the c-th neuron is given by

dvc
dt = vc −

vc
3

3 − wc + bu(t) +
σw
C ∑

c′ = 1

C
vc − vc′ + η e(t)

τ
dwc
dt = vc + α − βwc,

(39)

where vc denotes the membrane potential, wc the recovery variable, σw is the coupling 

strength, α, β, τ are system parameters and u(t), e(t) the extrinsic input and standard 

Gaussian white noise respectively as before in (37). In our simulations we have used

τ = 12.5, α = .7, β = 0.8, η2 = 0.5
σw ∼ 𝒰[0, 1], b ∼ ℕ(0, 1) .

(40)

We use a spike detection algorithm that records a spike from simulated voltage for 

amplitudes higher than VThresh ∼ 1 mV [26] and refractory period of 2 ms. In Figure 6 we 

show the average achieved pattern and one voltage waveform (panel B and C respectively) 

for a randomly selected target pattern (panel A) for a fully actuated (C = S = 2) network of 

FN neurons as in (39).

VI. Conclusions

In this paper, we have introduced a control analysis paradigm for statistical models. We 

show that the number of events in a realization of any PPGLM is a simple indicator of 

pattern viability in terms of likelihood. This enables us to formulate a problem of finding the 

subset of all possible patterns that can be realized with a specified probability – the viable 

pattern set. In turn, we can directly compare two PPGLMs with respect to this likelihood 

viability. Such an analysis provides an important means to compare the extent to which 

different PPGLMs can be controlled, and we demonstrated the accuracy of the proposed 

analysis. Finally, we show how the analysis can naturally pair with a design paradigm to 

compute optimal controls for inducing a desired pattern on the PPGLM.
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It is important to note the limitations in the proposed approach. Most notably, we focus here 

on evaluating the (relaxed) maximally viable spike count μr to investigate the space of 

patterns that can be achieved to within the probability threshold ρ. As mentioned, this 

framework does not distinguish between different patterns with the same count μ, and labels 

all of them to be viable for ρ if μ ≤ μr. For an idealistic scenario, i.e. full actuation and 

unconstrained control inputs, we proved in (21), (26) that the event count solely dictates 

likelihood degradation, but with stringent energy constraints on the input and heavy 

underactuation, the process history and other co-variates also affect the likelihood and so the 

dependence on ψ(δN) is not exclusive. The misclassified patterns in Figure 1 are attributed 

to this fact.

Understanding this limitation, the aforementioned issue of non-convexity of (33) and the 

constraint relaxation (31), we posit that the framework is strong enough to reveal salient 

control properties in spiking networks. Our example highlighting concave dependence on 

connection strength, a fact that is analytically verifiable, demonstrates this utility.
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Appendix A: Proof of Lemma 1

The proof is a direct consequence of the fact that the PPGLM likelihood described in our 

model has a global maximum with respect to its inputs [27]. To prove this, it is enough to 

show that the likelihoods in (7), (11) are concave functions of U. First for the log-link 

model, if we substitute (4) into (7) we have

L(N |X) = ∑
c = 1

C
∑
i = 1

I
δNc, i θc

Txi + log Δ − Δexp θc
Txi . (41)

Stacking the difference process δN and the control input U into column vectors n ∈ ℝCI, u ∈ 
ℝSI respectively and with modified parameter matrix Θ ∈ ℝCI × (P + 1)SI corresponding to the 

extrinsic control part of the covariate matrix, we can write (41) as

L(N |u) = nTΘD′u − Δ1TK exp ΘD′u + ψ(δN)log Δ + r, (42)

where K ∈ ℝCI×CI is a diagonal matrix where the contributions of the process history and 

background activity for each process and time index are placed along the diagonals, r = 

1Tlog(K)n is a constant (logarithm is applied to each element on the diagonal of K) and Dʹ 
∈ ℝ(P+1)SI×SIis a design matrix that extracts the delayed inputs from U into a vector ∈ 
ℝ(P+1)SI. Note that the likelihood is a combination of a linear term along with a negative 

exponential, which clearly makes the Hessian negative definite i.e. L is strictly concave with 

respect to the extrinsic inputs.
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For the SEMPP with the logistic link model, we can similarly write (11)

L N* |u = n * TΘD′u − 1Tlog 1 + Ksexp ΘD′u + r′, (43)

where n* ∈ ℝMI, Ks ∈ ℝI×MI is a block diagonal matrix where each block is a row of 

contributions of the process history and background activity for each marked process and 

time index and rʹ = 1Tlog(diag(Ks))n, diag(Ks) is a diagonal matrix where the blocks of Ks 

constitutes the diagonal. Since we want to show the concavity of the likelihood with respect 

to u, we can ignore the linear term in (43) and concentrate on the second term. Let us denote 

this as l2,

l2(u) = − ∑
i = 1

I
log 1 + ki

T exp ΘD′u (44)

and ki is the i-th row of the matrix Ks. Note that all elements of Ks i.e. ki,j ≥ 0, ∀i = 1,...,I, j 
= 1,...,MI. Taking the gradient we have

∇l2 = − ∑
i = 1

I 1
1 + ki

Texp(U)
ΞTdiag ki exp(U), (45)

where Ξ = ΘD′ and U = Ξu. Now let us denote diag ki = Ki
s and calculate the Hessian for 

each i,

∇2l2
i = − 1

zi
2 (ziΞ

TKi
s diag(exp(U))Ξ

− ΞTKi
sexp(U)exp(U)TKi

sΞ),

(46)

where zi = 1 + ki
T exp (U). For strict concavity we need to show that ∀ y ∈ ℝMI,

yT ∇2l2y < 0. (47)

From (46) and (47),

yT ∇2l2
i y = − 1

zi
2 (Ξy)T ziKi

sdiag(exp(U)) − Ki
sexp(U)exp(U)TKi

s Ξy . (48)

Denoting Ξy = w, Ue = diag(exp(U) and substituting zi
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yT ∇2l2
i y = − 1

zi
2 wTKi

sUew + wT ∑
j = 1

MI
ki, ju j, j

e Ki
sUe

− Ki
sexp(U)exp(U)TKi

s)w

= t1
i + t2

i .

(49)

Now let us analyze the second term separately,

t2
i = − 1

zi
2 ∑

j
ki, ju j, j

e ∑
j

ki, ju j, j
e w j

2 − ∑
j

ki, ju j, j
e w j

2

= − 1
zi
2 ∑

j
vi, j∑

j
vi, jw j

2 − ∑
j

vi, jw j

2
,

where vi, j = ki, ju j, j
e

≤ 0 From Cauchy‐Schwarz inequality .

(50)

Now for the complete Hessian with (49), we have y

yT ∇2l2y = ∑
i

yT ∇2l2
i y = ∑

i
t1
i + t2

i

≤ ∑
i

t1
i = − wT∑

i

1
zi
2Ki

sUew

= − wTKw < 0,

(51)

where K = ∑i
1
zi
2Ki

sUe ∈ ℝMI × MI is a diagonal matrix and the negative definiteness comes 

from the fact that all the entries in matrix K are positive, since the terms come from 

exponential of the co-variates. So the likelihood in (43) is strictly concave as well. Note that 

for any pattern N with at least one spike i.e., ψ(δN) > 0, we can show

∇L N* |u 0, if ∃ j ∈ 1…SI such that u j ± ∞ . (52)

Along with strict concavity, (52) means that the first-order condition for maximum is 

satisfied for a finite U* i.e., the maximum L* = L(N|U*) will be global and unique. Now for 
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any ϵ with ϵ > L*, there is no control that satisfies (15) and thus ϵ- controllability is not 

achieved for unconstrained input.

Appendix B: Proof of Lemma 2

Consider an arbitrary realization N containing ψ(δN) events overall and a box constraint on 

each extrinsic input i.e. us, i ∈ 𝒰 = umin umax  ∀ s,i. The likelihood in this case follows from 

(42)

L(N |u) = nTΘD′u − Δ1TK exp ΘD′u + ψ(δN)log Δ + r . (53)

The first-order condition for maximum of L(N | u) is a transcendental equation, thus, the 

solution U* cannot be derived in general and does not necessarily reside in the constrained 

space 𝒰. Ideally we will need L(U*) to analyze any dependence of maximum likelihood on 

spike count. But for U ∈ 𝒰 and bounded parameters Θ, the likelihood in (53) is dominated 

by the term ψ(δN)logΔ, i.e.,

lim
Δ 0

L(N |u) ∝ 1
ψ(δN) (since log Δ < 0), (54)

and a higher event count dictates the degradation of likelihood.

Appendix C: Proof of Lemma 3

Proof 5:

Here the variable of interest is the portion of the parameter vector Θ represented by βq
m, c for 

q = 1...Q, m = 1...M, c = 1...C in (9). For the log link model in (7), M = C. Let us denote 

these set of values by α ∈ ℝC2Q and rewrite the likelihood in (7) as a function of α following 

(42) in Appendix A,

L(N |α) = nTZα − Δ1TKpexp(Zα) + ψ(δN)log Δ + rα, (55)

where rα is the contribution from other co-variates namely inputs and background activity 

independent of α, Z ∈ 𝔹CI × C2Q is a matrix composed of the relevant process history terms 

for each variable, time index and Kp ∈ ℝCI×CI is a diagonal matrix similar to (42).

For the SEMPP model we can rewrite (11) for α ∈ ℝMCQ following (43),

L N* |α = n * TZα − 1Tlog 1 + Kp
s exp(Zα) + rα′ , (56)
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with Kp
s  as the analog to Kp in (55). We note that both (55), (56) follow the same structure as 

their counterparts (42), (43) and thus we can conclude that the likelihoods are strictly 

concave with respect to the connectivity parameters α as well. Now to show that a critical 

amount of connectivity, e.g., αc helps in the controllability of any arbitrary pattern, we 

investigate the first-order condition at α = 0. Computing the gradient of the likelihood in 

(55) we have

∇Lα|
α = 0 = nTZ T − ΔZTKpexp(Zα)|α = 0

= ZT n − ΔKp1 .

(57)

Now, the first-order condition for maximum is satisfied if

n − ΔKp1 ∈ ker ZT , (58)

which does not hold in general for any N, U and the rest of the parameters β0
c, γp

m, s ∀c,m,s 

and this proves that αc≠0. We also claim that αc does not diverge, i.e.,

∇Lα|
α = αc

= nTZ T − ΔZTKpexp Zαc = 0 (59)

has a solution. To see this, consider the case β1
1, 2 ∞. Now since Z ∈ 𝔹, β1

1, 2 ∞ implies a 

spike in the second neuron for previous time bin maximizes the probability of spike in the 

first neuron for the current time bin. But for a spike pattern Nʹ in which such a sequence 

does not occur, the log-likelihood becomes

L N′ |αc − ∞ . (60)

If β1
1, 2 ∞, likewise any pattern with consecutive spike from second and first neuron will 

have zero probability same as (60). This can also be seen from the first-order condition. So 

we can conclude that in general for any arbitrary pattern

αc ≠ 0, |αc
j| ≤ αmax < ∞, ∀ j = 1…C2Q . (61)

Nandi et al. Page 20

IEEE Trans Control Netw Syst. Author manuscript; available in PMC 2019 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Biography

Anirban Nandi (S’14) earned his B.E. from Jadavpur University in Kolkata, India, and is 

completing his Ph.D. in Electrical Engineering at Washington University in St. Louis. His 

primary research interests include control theory, dynamical systems, and computational 

neuroscience.

MohammadMehdi Kafashan (S’14-M’17) received the B.Sc. from Amirkabir University 

of Technology, the M.Sc. from Sharif University of Technology, and the Ph.D. from 

Washington University in St. Louis, all in Electrical Engineering. He currently holds a post-

doctoral position with the Department of Neurobiology at Harvard Medical School. His 

research interests currently include computational neuroscience, statistical signal processing, 

and information processing in large neuronal networks.

ShiNung Ching (S’99-M’03) is currently an Assistant Professor in the Preston M. Green 

Department of Electrical and Systems Engineering at Washington University in St. Louis. 

He received his B. Eng (Hons.), M.A.Sc., and Ph.D., degrees from McGill University, the 

University of Toronto, and the University of Michigan, respectively. He was subsequently a 

postdoctoral associate at the Harvard Medical School. Dr. Ching’s research interests are in 

the intersection of systems and control theory, theoretical neuroscience and neural 

engineering. He is author of over 60 refereed papers and the textbook Quasilinear Control.

References

[1]. Deisseroth K, “Optogenetics,” Nature methods, vol. 8, no. 1, pp. 26–29, 2011. [PubMed: 
21191368] 

[2]. DiLorenzo PM and Victor JD, Spike timing: mechanisms and function. CRC Press, 2013.

[3]. Ching S and Ritt JT, “Control strategies for underactuated neural ensembles driven by optogenetic 
stimulation,” Frontiers in neural circuits, vol. 7, 2013.

[4]. Nabi A, Mirzadeh M, Gibou F, and Moehlis J, “Minimum energy desynchronizing control for 
coupled neurons,” Journal of computational neuroscience, vol. 34, no. 2, pp. 259–271, 2013. 
[PubMed: 22903565] 

Nandi et al. Page 21

IEEE Trans Control Netw Syst. Author manuscript; available in PMC 2019 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



[5]. Iolov A, Ditlevsen S, and Longtin A, “Stochastic optimal control of single neuron spike trains,” 
Journal of neural engineering, vol. 11, no. 4, p. 046004, 2014. [PubMed: 24891497] 

[6]. Nandi A, Ritt JT, and Ching S, “Non-negative inputs for underactuated control of spiking in 
coupled integrate-and-fire neurons,” in Decision and Control (CDC), 2014 IEEE 53rd Annual 
Conference on IEEE, 2014, pp. 3041–3046.

[7]. Dasanayake I and Li J-S, “Optimal design of minimum-power stimuli for phase models of neuron 
oscillators,” Physical Review E, vol. 83, no. 6, p. 061916, 2011.

[8]. Boergers C and Kopell N, “Synchronization in networks of excitatory and inhibitory neurons with 
sparse, random connectivity,” Neural Computation, vol. 15, no. 3, pp. 509–538, 2003. [PubMed: 
12620157] 

[9]. Snyder DL and Miller MI, Random point processes in time and space. Springer Science & 
Business Media, 2012.

[10]. McCullagh P and Nelder JA, Generalized linear models. CRC press, 1989, vol. 37.

[11]. Ogata Y, “Space-time point-process models for earthquake occurrences,” Annals of the Institute 
of Statistical Mathematics, vol. 50, no. 2, pp. 379–402, 1998.

[12]. Rodriguez-Iturbe I, Cox D, and Isham V, “Some models for rainfall based on stochastic point 
processes,” in Proceedings of the Royal Society of London A: Mathematical, Physical and 
Engineering Sciences, vol. 410, no. 1839. The Royal Society, 1987, pp. 269–288.

[13]. Frost VS and Melamed B, “Traffic modeling for telecommunications networks,” 
Communications Magazine, IEEE, vol. 32, no. 3, pp. 70–81, 1994.

[14]. Paninski L, Pillow J, and Lewi J, “Statistical models for neural encoding, decoding, and optimal 
stimulus design,” Progress in brain research, vol. 165, pp. 493–507, 2007. [PubMed: 17925266] 

[15]. Ahmadian Y, Packer AM, Yuste R, and Paninski L, “Designing optimal stimuli to control 
neuronal spike timing,” Journal of neurophysiology, vol. 106, no. 2, pp. 1038–1053, 2011. 
[PubMed: 21511704] 

[16]. Dayan P and Abbott L, “Theoretical neuroscience: computational and mathematical modeling of 
neural systems,” Journal of Cognitive Neuroscience, vol. 15, no. 1, pp. 154–155, 2003.

[17]. Truccolo W, Eden UT, Fellows MR, Donoghue JP, and Brown EN, “A point process framework 
for relating neural spiking activity to spiking history, neural ensemble, and extrinsic covariate 
effects,” Journal of neurophysiology, vol. 93, no. 2, pp. 1074–1089, 2005. [PubMed: 15356183] 

[18]. Okatan M, Wilson MA, and Brown EN, “Analyzing functional connectivity using a network 
likelihood model of ensemble neural spiking activity,” Neural computation, vol. 17, no. 9, pp. 
1927–1961, 2005. [PubMed: 15992486] 

[19]. Solo V, “Likelihood functions for multivariate point processes with coincidences.” in Decision 
and Control, 2007 46th IEEE Conference on IEEE, 2007, pp. 4245–4250.

[20]. Ba D, Temereanca S, and Brown EN, “Algorithms for the analysis of ensemble neural spiking 
activity using simultaneous-event multivariate point-process models,” Frontiers in computational 
neuroscience, vol. 8, 2014.

[21]. Daley DJ and Vere-Jones D, An introduction to the theory of point processes. Springer, 1988, vol. 
2.

[22]. Whalen AJ, Brennan SN, Sauer TD, and Schiff SJ, “Observability and controllability of nonlinear 
networks: The role of symmetry,” Phys. Rev. X, vol. 5, p. 011005, 1 2015. [PubMed: 30443436] 

[23]. Gerstner W and Kistler WM, Spiking neuron models: Single neurons, populations, plasticity. 
Cambridge university press, 2002.

[24]. Brown EN, Barbieri R, Ventura V, Kass RE, and Frank LM, “The time-rescaling theorem and its 
application to neural spike train data analysis,” Neural computation, vol. 14, no. 2, pp. 325–346, 
2002. [PubMed: 11802915] 

[25]. Kanamaru T, Horita T, and Okabe Y, “Theoretical analysis of arrayenhanced stochastic resonance 
in the diffusively coupled fitzhughnagumo equation,” Physical Review E, vol. 64, no. 3, p. 
031908, 2001.

[26]. Izhikevich EM and FitzHugh R, “Fitzhugh-nagumo model,” Scholarpedia, vol. 1, no. 9, p. 1349, 
2006.

Nandi et al. Page 22

IEEE Trans Control Netw Syst. Author manuscript; available in PMC 2019 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



[27]. Paninski L, “Maximum likelihood estimation of cascade point-process neural encoding models,” 
Network: Computation in Neural Systems, vol. 15, no. 4, pp. 243–262, 2004.

Nandi et al. Page 23

IEEE Trans Control Netw Syst. Author manuscript; available in PMC 2019 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 1. 
Accuracy of the relaxed maximally viable spike count (μr). The maximum likelihood is 

computed for 100 random realizations and compared to the predicted thresholds from the 

(μr,ρ)-controllability calculation (ρ = 10−6).
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Fig. 2. 
(A) Symmetric and Asymmetric 3-neuron motifs. (B) μr vs. Connectivity weight σ for ρ = 

10−10.
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Fig. 3. 
Validation of (μ, ρ)- viability. Top panel : A random pattern NT with ψ(δNT ) < μr where μr 
is the solution of (33) for randomly chosen Θ. Middle panel : Achieved pattern in terms of 

probability of spiking in each window, with U* from (36) and Bottom Panel : The optimized 

control U*from the MLE problem.
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Fig. 4. 
KS plots with 95% confidence bounds for goodness of fit assessment for a fully actuated two 

neuron INF network (C = S = 2) fitted using Q = 3 process history and P = 5 input history 

terms.
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Fig. 5. 
Control design for a C neuron coupled stochastic integrate and fire network. A : The target 

pattern for simulation study. B : The mean pattern over different realization for the INF 

neurons with the control U*. C: One realization of voltage traces for the two INF neurons 

under U*. D: The optimized input U*. E : The mean spiking pattern generated for a 

randomly selected U to validate optimality of U*.
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Fig. 6. 
Control design for diffusively coupled FN neurons (C = 2). A: The target pattern NT for the 

simulation. B: The average pattern over different realizations for the 2 neurons under U*. C: 

One realization of voltage traces for the 2 FN neurons under U*. The circled lines denote the 

detected spikes from the spike detection program. D: The optimized input U*.
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