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Optimal Attack Strategies Subject to Detection
Constraints Against Cyber-Physical Systems

Yuan Chen, Soummya Kar, and José M. F. Moura

Abstract—This paper studies an attacker against a cyber-
physical system (CPS) whose goal is to move the state of a CPS
to a target state while ensuring that his or her probability of
being detected does not exceed a given bound. The attacker’s
probability of being detected is related to the nonnegative bias
induced by his or her attack on the CPS’s detection statistic.
We formulate a linear quadratic cost function that captures the
attacker’s control goal and establish constraints on the induced
bias that reflect the attacker’s detection-avoidance objectives.
When the attacker is constrained to be detected at the false-alarm
rate of the detector, we show that the optimal attack strategy
reduces to a linear feedback of the attacker’s state estimate. In
the case that the attacker’s bias is upper bounded by a positive
constant, we provide two algorithms – an optimal algorithm
and a sub-optimal, less computationally intensive algorithm – to
find suitable attack sequences. Finally, we illustrate our attack
strategies in numerical examples based on a remotely-controlled
helicopter under attack.

I. INTRODUCTION

Security vulnerabilities in cyber-physical systems (CPS),
systems that interface sensing, communication, and control
with an underlying physical process, allow for sophisticated
cyber attacks that cause catastrophic physical harm. In the
past, events such as StuxNet [1] and the Maroochy Sewage
Control Incident [2] have demonstrated the vulnerability of in-
dustrial processes. More recently, cyber-physical attacks have
targeted automobiles [3], military vehicles [4], and commercial
drones [5]. These examples show that CPS remain susceptible
to cyber-attacks, and, in response, there have been significant
efforts to improve the security of CPS.

Part of the effort in improving cyber-physical security has
been devoted to categorizing different types of attacks and
developing security countermeasures for each type [1], [6].
One particular type of attack is the integrity attack, in which
an attacker manipulates the CPS’s sensor readings and alters its
actuator control signals [6], [7]. Prior work has analyzed CPS
security sensor attacks, determining the fundamental limits of
attack detection [8] and developing methods to reconstruct
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sensor attacks [9]–[11]. Existing work has also studied the
capabilities of an integrity attacker, relating the ability of the
attacker to perform undetectable attacks to certain geometric
control-theoretic properties of the CPS [12]–[14]. For systems
affected by process and sensor noise, references [7] and [15]
characterize the state estimation error caused by an attacker
who tries to avoid detection.

In addition to analyzing the ability of an integrity attacker to
cause damage and evade detection, prior work has also studied
how an attacker should behave in order to achieve his or her
objectives. Reference [16] considers a noisy CPS and designs
an attack to optimally disrupt the system’s feedback controller,
while avoiding detection. Instead of attackers who seek to
cause general disruption and damage to a CPS, our previous
work studies attackers with specific control objectives [17],
[18]. In [18], we considered an attacker whose goal is move
the CPS to a target state while evading detection, formulated a
cost function that penalized the deviation from the target state
and the magnitude of the detection statistic, and we determined
the optimal attack for such a cost function reduced to a linear
feedback of the attacker’s state estimate.

This paper studies an attacker who wishes to move the
system to a target state, but, unlike [18], we impose an explicit
bound on the probability of an attack being detected. We
model the CPS as a linear dynamical system subject to sensor
and process noise equipped with a Kalman filter for state
estimation and an LQG controller. The CPS uses a χ2 detector
as an attack detector, which reports an attack if the energy of
the Kalman filter innovation exceeds a certain threshold [19].
This model has been used in the literature to model CPS under
attack (see, e.g., [20], [21]). The attacker’s goal is to design a
sequence of attacks that counters the system’s LQG controller
and minimizes the deviation of the CPS’s state from the target
state subject to a bound on the (non-negative) bias induced on
the χ2 detection statistic.

We define a linear quadratic cost function that captures the
attacker’s control objective by penalizing the distance between
the system’s state and the target state. Then, we formulate the
attack design problem as an optimization problem of finding
a sequence of attacks that minimizes the cost function subject
to an upper bound constraint on the bias induced in the
detection statistic. This differs from our previous work [18]
that studies unconstrained attack design where the attacker’s
detection avoidance goals is an additional term of the overall
cost function. This paper, unlike [18], requires attacks at each
time step to satisfy explicit constraints. Since we compute the
optimal attack sequence in a causal manner, we must ensure
that attacks at each time step are recursively feasible [22]
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to guarantee that it is possible to satisfy the constraints of
future time steps. We use geometric control properties (similar
to those studied in [23]) of the CPS model to express, the
constraint placed on the detection statistic bias as a linear
constraint on the attack at each time step. From a practical
perspective, this paper provides guarantees on the optimal
attacks’ probability of being detected (reference [18] does not
provide such guarantees).

We consider separately two cases: 1) when the induced bias
is constrained to be zero and 2) in which the induced bias
is upper bounded by a positive constant. When the bias is
zero, which restricts the attacker to be detected at the false
alarm rate of the detector, we apply constrained dynamic
programming to show that the optimal attack reduces to a
linear feedback strategy. For bounded bias, we provide two
algorithms to determine a suitable sequence of attacks. The
first algorithm is more computationally intensive but finds an
optimal sequence of attacks. The second, less computationally
intensive, algorithm finds a (sub-optimal) sequence of attacks
that satisfies the detection constraint. A preliminary version of
part of this work appears in [24], designing attacks constrained
to be detected at the false alarm rate, but when the CPS are
not equipped with LQG controllers. When the CPS is equipped
with its own controller, which we consider here, the attacker
must account for system input in designing his or her attack.

The rest of the paper is organized as follows. Section II
provides the model and assumptions for the CPS and attacker,
reviews the χ2 detector and the concept of recursive feasibility,
and formally states the problems we address. In Section III,
we determine the set of all recursively feasible attacks at each
time step. In Section IV, we use dynamic programming to
find an optimal strategy when the attacker’s probability of
being detected is constrained to be the detector’s false alarm
rate. Section V studies the case when the bias induced in the
detection statistic is upper bounded by a positive constant;
we provide two algorithms for computing attack sequences
that achieve the attacker’s objectives. We provide numerical
examples of a remotely-controlled helicopter under attack
(from each of our proposed strategies) in Section VI, and we
conclude in Section VII.

II. BACKGROUND

A. Notation

Let R denote the reals, Rn denote the space of n-
dimensional real (column) vectors, and Rm×n denote the space
of real m by n matrices. The multivariate Gaussian distribution
with mean µ and covariance Σ is denoted as N (µ,Σ). The n
by n identity matrix is denoted as In. For a matrix M , R(M)
denotes the range space of M , N (M) denotes the null space
of M , and M† denotes the Moore-Penrose pseudoinverse. For
a symmetric matrix S = ST , S � 0 denotes that S is positive
semidefinite, and S � 0 denotes that S is positive definite.
For S � 0, let ‖·‖S denote the S-weighted 2-norm. That is,
for S ∈ Rn×n and x ∈ Rn, ‖x‖S =

∥∥∥S 1
2x
∥∥∥

2
=
√
xTSx.

B. System Model

We use the same, linearized1 CPS model as [18]:

xt+1 = Axt +But + Γet + wt,

yt = Cxt + Ψet + vt,
(1)

where xt ∈ Rn describes the system’s state, ut ∈ Rm is the
system input, et ∈ Rs is the attacker’s input2, and wt and
vt are the process and sensor noise, respectively. The sensor
and process noise are independently, identically, distributed
(i.i.d.) in time and mutually independent; wt has distribution
N (0,Σw), and vt has distribution N (0,Σv), with Σw,Σv �
0. The system starts running at time t = −∞, and the initial
state of the system x−∞ has distribution N (0,Σx) with Σx �
0 and is independent of the noise processes. The pair (A,C) is
observable, and the pair (A,B) is controllable. The matrices
Γ and Ψ describe the attacker. The model (1) is commonly
adopted in studies of CPS under attack [18], [20], [21].

The system knows the matrices A,B, and C and the
statistics of the noise processes and initial state, but does not
know the matrices Γ and Ψ (since they describe the attacker).
The system causally knows the system input ut and the sensor
output yt, but not the attack et. We assume the system’s
goal is to regulate the system state to the origin. Because the
system cannot directly observe the state xt, it uses its sensor
measurements yt to construct an estimate of the state using a
Kalman filter. Then, the system performs feedback control on
the state estimate to regulate the state to the origin. The system
constructs its Kalman filter and controller assuming nominal
operating conditions (i.e., et = 0 for all t).

Under nominal operating conditions, the system’s Kalman
filter calculates x̂t, the minimum mean square error (MMSE)
estimate of xt given all sensor measurements up to time t and
input up to time t−1. Since the system starts at t = −∞, the
Kalman filter has fixed gain:

K = PCT (CPCT + Σv)
−1, (2)

P = APAT + Σw

−APCT (CPCT + Σv)
−1CPAT ,

(3)

x̂t = x̂t|t−1 +K
(
yt − Cx̂t|t−1

)
, (4)

x̂t+1|t = Ax̂t +But. (5)

To regulate the state xt, the system has a feedback controller
of the form

ut = Lx̂t, (6)

where the feedback matrix L is chosen such that A + BL is
stable. One controller that takes the form of equation (6) is the
infinite horizon LQG controller that minimizes the cost func-
tion JCPS = limT→∞

1
2T+1E

[∑T
t=−T x

T
t Q

′
xt + uTt R

′
ut

]
,

where Q
′ � 0, R

′ � 0, and the pair (A,Q
′
) is observable.

1If the CPS is nonlinear, the model (1) represents its dynamics after
linearization about an operating point.

2The attack et also models the case in which the attacker may separately

attack the CPS’s actuators and sensors. Define et =
[
edt

T
edt

T
]T

,

where edt and est are the actuator and sensor attacks, respectively, and define
Γ =

[
Γ̃ 0

]
and Ψ =

[
0 Ψ̃

]
.
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The CPS is equipped with a χ2 detector to determine if,
for some t, et 6= 0. The χ2 attack detector [19] uses the
innovations sequence of the Kalman filter, νt, defined as
νt = yt − Cx̂t|t−1, to determine whether or not an attack
has occurred. The term x̂t|t−1 is the MMSE estimate of
xt given all sensor measurements and system input up to
time t − 1, assuming nominal operating conditions. When
there is no attack (i.e., et = 0 for all t), the innovations
sequence is i.i.d. N (0,Σν), where Σν = CPCT + Σv , and
νt is orthogonal to x̂t|t−1 [25]. The χ2 reports an attack
if the statistic gt =

∑t
k=t−t′+1 ν

T
k Σ−1

ν νk, where S is the
window size of the detector, exceeds a threshold τ , which is
chosen à priori to balance the false alarm and missed detection
probabilities [19]. In this paper, we consider a χ2 detector with
window size t

′
= 1, so gt = νTt Σ−1

ν νt.
There are attack detectors other than the χ2 attack de-

tector (see, e.g., [9], [12], [26].) These detectors require
noiselessness [9], [12], bounded energy noise [26], or batch
measurements [9], [26]. This paper studies attacks against CPS
under broader conditions on the noise and provides a recursive
solution. We consider an on-line χ2 detector for systems with
process and sensor noise. The linear, state space model with
a Kalman filter, feedback controller, and χ2 attack detector
with window size 1 is a standard model for a CPS subject to
attack [18], [20], [21].

C. Attacker Model

The attacker knows the system model and statistical proper-
ties, the controller feedback matrix L, and which sensors and
actuators he or she can attack (i.e. the matrices Γ and Ψ)3.
Following [18], we assume, without loss of generality, that

the matrix
[

Γ
Ψ

]
is injective. The attacker causally knows the

sensor output yt and the attack et. Additionally, the attacker
causally knows ỹt = Cxt + vt, the value of the sensor output
at time t before it is altered by the attack at time t.

The attacker performs Kalman filtering, separately from
the system, to estimate the state. The attacker also uses his
or her knowledge to compute the estimate produced by the
system’s Kalman filter. The attacker knows L and the system’s
state estimate, so he or she knows ut. We design attack
strategies that depend on the attacker knowing the system’s
input. In general, so long as the attacker knows ut for all
t, the CPS’s control input need not be restricted to the form
of equation (6). For this paper, we only consider the case
of feedback control, but our methodology may be tailored
toward other control laws. The attack begins at time t = 0,
i.e., for t = −∞, . . . ,−1, et = 0. During the time interval
t = −∞, . . . , 0, the attacker observes the system output and
keeps track of the state estimate x̂t.

The attacker’s objective is to design an attack sequence over
the finite time interval t = 0 to t = N that moves the system

3In future work, we will consider defense strategies against such attackers
and study the interaction between the attacker and CPS in a game theoretic
framework. Thus, in this paper, we assume the worst-case, most powerful
attacker who knows the system model perfectly. In addition, future work
will study attack strategies that are robust to imperfections in the attacker’s
knowledge of the system model.

state to a target state x∗ while satisfying a detection-avoidance
constraint. The attacker chooses the sequence

γ(0, N) = {e0, . . . , eN} ,
to accomplish his or her goals such that at time t, the attack et
only depends on the attacker’s available information at time t,
It. Following [18], It is the classical information pattern [25]:
I0 = {ỹ0} , It+1 = {It, ỹt+1, et} . If a nonzero attack occurs,
the attacker’s Kalman filter then produces a different estimate
than the system’s Kalman filter and becomes:

x̃t+1|t = Ax̂t +But + Γet, (7)

x̃t = x̂t|t−1 +K
(
ỹt − Cx̂t|t−1

)
, (8)

The attacker’s Kalman filter produces the MMSE state esti-
mate given It, i.e., x̃t = E [xt|It].

The attack γ(0, t) induces a bias εt in the system’s innova-
tion νt. Under an attack γ(0, t), we have νt = ν0

t + εt, where
ν0
t is the value of the system’s innovation in the case that

there had been no attack (i.e., e0 = e1 = · · · = et = 0).
The following state space dynamical system describes the
relationship between γ(0, t) and εt [18]:

θt+1 = Âθt + B̂et,
εt = Ĉθt + D̂et,

(9)

where Â =

 (In −KC)A+BL KC KC
ABL A 0

0 0 A

, B̂T =[
(KΨ)

T
0T ΓT

]
, Ĉ =

[
−CA C C

]
, D̂ = Ψ, and

θ0 = 0.
The Σ−1

ν -weighted 2-norm of εt relates to the probability of
the attack being detected at time t [27]. Let PD,t = P (gt > τ)
be the detection probability at time t. If ‖εt‖2Σ−1

ν
= 0, then, for

any positive detector window size, the probability of detection
at time t is equal to the false alarm probability of the χ2

detector, since there is no induced bias in νt. For nonzero bias
(and detector window size 1), the following lemma relates the
bound on ‖εt‖2Σ−1

ν
to the probability of being detected.

Lemma 1 (Detection Probability Bound [27]). For any δ ∈
(0, τ), if ‖εt‖2Σ−1

ν
≤ δ, then

PD,t ≤ P
(
g0
t >

(√
τ −
√
δ
)2
)
,

where g0
t is the value of the statistic gt when there is no

attack4.

To model the attacker’s control objectives, define the cost
function:

J = E

[
N∑
t=0

‖(xt − x∗)‖2Qt

]
, (10)

with Qt � 0. The cost function J penalizes deviation of the
state from the target state. The attacker’s goal is to design an
attack γ(0, N) that achieves cost

J∗ = min
γ(0,N)

E
[
N∑
t=0
‖(xt − x∗)‖2Qt

]
s.t. ‖εt‖2Σ−1

ν
≤ δ, ∀t = 0, . . . , N

, (11)

4The statistic g0t is i.i.d. (in time) χ2 with p degrees of freedom.
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the minimum cost of J subject to constraints on the Σ−1
ν -

weighted 2-norm of εt. The constraints in the optimization
problem (11) model the attacker’s goals of evading detection.

D. Recursive Feasibility

The attacker designs the attack in real time: at time t, the
attacker chooses the attack et based on his or her information
It. Note that the constraint ‖εt‖2Σ−1

ν
≤ δ in (11) is for all times

t = 0, . . . , N . It is necessary that the attack be recursively fea-
sible [22]: the attack et must be chosen such that ‖εt‖2Σ−1

ν
≤ δ

and, for all future times t + 1, . . . , N , there exist attacks
et+1, . . . , eN such that ‖εt+1‖2Σ−1

ν
≤ δ, . . . , ‖εN‖2Σ−1

ν
≤ δ.

The recursive feasibility of (11) is related to the output
minimization problem presented in [23]:

Lemma 2 ([23]). Consider the system in (9) with arbitrary
initial state θ0. Then, for any k = 1, 2, . . . ,

min
e0,...,ek−1

k−1∑
t=0

‖εt‖2Σ−1
ν

= θT0 P̂kθ0, (12)

where P̂k follows the solution to the Riccati equation

P̂k+1 =ÂT P̂kÂ+ ĈTΣ−1
ν Ĉ −

(
D̂TΣ−1

ν Ĉ + B̂T P̂kÂ
)T

×
(
D̂TΣ−1

ν D̂ + B̂T P̂kB̂
)†(
D̂TΣ−1

ν Ĉ + B̂T P̂kÂ
)
,

(13)

with P̂0 = 0.

Furthermore, the matrix P̂k is positive semidefinite, and
mine0,...,ek−1

∑k−1
t=0 ‖εt‖

2
Σ−1
ν

= 0 if and only if P̂kθ0 = 0 [23].

E. Augmented State Space Notation

For the remainder of this paper, we use the augmented state
space description of the cyber-physical system and attacker
provided in [18]. Define the augmented state

ξTt =
[
x̃Tt θTt

(
x̂0
t

)T
x∗T

]
, (14)

where x̂0
t denotes the system’s state estimate in the case that

e0 = · · · = et = 0. The state ξt follows the dynamics

ξt+1 = Aξt + Bet +Kν̃t+1, (15)

where ν̃t+1 denotes the attacker’s innovation at time

t + 1, A =


A BLΩ BL 0

0 Â 0 0
0 0 A+BL 0
0 0 0 In

, BT =

[
B̃T B̂T 0T 0T

]
,KT =

[
KT 0 KT 0

]T
,

Ω =
[

(In −KC)A+BL KC KC
]
, and

B̃ = Γ +BLKΨ.
Further define C̃ =

[
0 Ĉ 0 0

]
, D̃ = Ψ, and H =[

In 0 0 −In
]
. Then, we have

εt = C̃ξt + D̃et, (16)
x̃t − x∗ = Hξt. (17)

One important property of ξt is that, given It, the attacker
can exactly determine the value of ξt [18]. Accordingly, the
attacker can use ξt to determine his or her attack at time t.

Following [18] and [25], we manipulate the cost function
J by substituting xt = x̃t + nt, where nt is the estimation
error. It is well known [25] that, given It, nt is conditionally
distributed as N

(
0, P̂

)
, where P̂ = P−PCTΣ−1

ν CP, and nt
is conditionally orthogonal to x̂t. Performing this substitution,
the optimal attack design problem becomes.

min
γ(0,N)

N∑
t=0

trace
(
P̂Qt

)
+ E

[
N∑
t=0
‖Hξt‖2Qt

]
s.t. ‖εt‖2Σ−1

ν
≤ δ, ∀t = 0, . . . , N

, (18)

where
∑N
t=0 trace

(
P̂Qt

)
does not depend on γ(0, N).

F. Problem Statement

This paper addresses three main problems. Consider the
optimal attack design problem (18). First, determine, for any
δ ≥ 0 and any time t = 0, . . . , N , the set of recursively feasi-
ble attacks. Second, find an optimal attack sequence γ(0, N)
when δ = 0. This corresponds to finding the optimal attack
under the constraint that the probability of being detected at
any time t is equal to the false alarm probability of the detector.
Third, find an optimal attack sequence γ(0, N) when δ > 0.

III. FEASIBILITY SETS

In this section, we determine which attacks et are re-
cursively feasible at time t. Recursively feasible attacks are
attacks et such that ‖εt‖2Σ−1

ν
≤ δ and there exists et+1, . . . , eN

such that ‖εt+1‖2Σ−1
ν
≤ δ, . . . , ‖εN‖2Σ−1

ν
≤ δ. From equa-

tions (15) and (16), we see that the recursively feasibility
of an attack et depends on the state ξt. Define the sets Ξt,
t = 0, . . . , N as follows:

ΞN =

{
ξN ∈ R6n

∣∣∣∣∃eN ,∥∥∥C̃ξN + D̃eN
∥∥∥2

Σ−1
ν

≤ δ
}
,

Ξt =

{
ξt ∈ R6n

∣∣∣∣∃et,∥∥∥C̃ξt + D̃et
∥∥∥2

Σ−1
ν

≤ δ,

Aξt + Bet ∈ Ξt+1

}
, t = 0, . . . , N − 1.

(19)

In the definition of Ξt, t = 0, . . . , N−1, we have the condition
Aξt + Bet ∈ Ξt+1, which ignores the term Kνt+1. From
the structure of A, C, and K, we see that membership in Ξt
depends only on the θt component of ξt, which is unaffected
by Kνt+1. That is, we have Aξt + Bet ∈ Ξt+1 if and only if
Aξt + Bet +Kνt+1 ∈ Ξt+1 for any νt+1 ∈ Rp.

We use the sets Ξt to determine the existence of recursively
feasible attacks at time t.

Lemma 3. There exists a recursively feasible attack et if
and only if ξt ∈ Ξt. That is, there exists a sequence
of attacks γ(t,N) = {et, . . . , eN} such that ‖εt‖2Σ−1

ν
≤

δ, . . . , ‖εN‖2Σ−1
ν
≤ δ if and only if ξt ∈ Ξt.

The proof of Lemma 3 is found in the appendix. The set Ξt
is nonempty for all t = 0, . . . , N – if the θt component of



5

ξt is equal to 0, then ξt ∈ Ξt. This is because, if θt = 0,
then, following system (9), the attack sequence γ(t,N) =
{0, . . . , 0} is one such that ‖εt‖2Σ−1

ν
= · · · = ‖εN‖2Σ−1

ν
= 0.

Recall that system (9) has initial state θ0 = 0, so we have ξ0 ∈
Ξ0. This means that the optimization problem (18) is feasible
for any nonnegative value of δ, i.e., the attacker can always
satisfy the detection constraint by choosing not to attack the
system.

IV. ATTACKS UNDER FALSE ALARM CONSTRAINTS

In this section, we find an attack sequence γ(0, N) that
minimizes the cost function J under the constraint that
‖εt‖2Σ−1

ν
= 0, corresponding to finding the optimal attack

under the restriction that the probability of being detected is
equal to the false alarm probability of the detector. For the case
of δ = 0, we can relate the sets Ξt to the output minimization
problem presented in Lemma 2 and [23]. Define

G =
[

0 I3n 0 0
]
. (20)

The matrix G selects the variable θt from ξt (i.e., Gξt = θt).

Lemma 4. For δ = 0 and for t = 0, . . . , N , the set Ξt is the
null space of P̂N−t+1G. That is, Ξt = N

(
P̂N−t+1G

)
.

The proof of Lemma 4 is found in the appendix.
The following theorem gives the optimal sequence of attacks

when δ = 0.

Theorem 1 (Optimal Attack Strategy with δ = 0 Detection
Constraint). An attack sequence γ(0, N) that solves (18) with
δ = 0 is

et =−Ft
(
FTt BTQt+1BFt

)† FTt BT×
Qt+1

(
A− BD†tCt

)
ξt −D†tCtξt,

(21)

where

CN = C̃, DN = D̃, FN = Is −D†NDN , (22)

and, for t = 0, . . . , N − 1,

Ct =

[
P̂N−tGA
C̃

]
, Dt =

[
P̂N−tB̂
D̃

]
, (23)

Ft = Is −D†tDt. (24)

The matrix Qt is given recursively backward in time by

Qt = HTQtH+
(
A− BD†tCt

)T
Qt+1

(
A− BD†tCt

)
−
(
A− BD†tCt

)T
Qt+1BFt

(
FTt BTQt+1BFt

)†
×FTt BTQt+1

(
A− BD†tCt

)
,

(25)

with terminal condition QN+1 = 0.

Theorem 1 states that the optimal attack under the δ = 0
detection constraint is a linear feedback of the state ξt,
which is exactly determined by the attacker information It.
Equation (21) shows that the optimal attack et depends on
the matrix Ft, which in turn depends on the matrix Dt. If
the matrix Dt has full column rank, then, Ft = 0, since, by

definition, Ft is the orthogonal projector onto N (Dt). If the
matrix Dt has full column rank for all t = 0, . . . , N − 1,
then the optimal attack becomes γ(0, N) = {0, . . . , 0} . This
corresponds to the case in which the attacker is not powerful
enough, and his or her only option to satisfy the δ = 0
detection constraint is to not attack the system.

Before we prove Theorem 1, we provide intermediate results
that show that the optimal attack exists and that the optimal
attack sequence e0, . . . , eN−1 is unique (the attack eN may
not be unique). The proofs are found in the appendix.

Lemma 5. For all t = 0, . . . , N , there exists Ut � 0 such that
Qt = HTQtH+ Ut.

Lemma 6. For all t = 0, . . . , N − 1, R
(
FTt BT

)
=

R
(
FTt BTQt+1BFt

)
.

Define the set

Zt (ψ) =
{
z ∈ Rs|−FTt BTQt+1BFtz = FTt BTψ

}
. (26)

One consequence of Lemma 6 is that Zt (ψ) is nonempty for
all t = 0, . . . , N − 1 and for all ψ ∈ R6n.

Lemma 7. For any t = 0, . . . , N − 1 and for any ψ ∈ R6n,
if z1, z2 ∈ Zt (ψ), then Ftz1 = Ftz2.

Proof (Theorem 1): We resort to dynamic programming
to solve (18) with δ = 0. The term

∑N
t=0 trace

(
P̂Qt

)
in (18)

does not depend on γ(0, N). Define the optimal cost-to-go
function for information It as follows:

J∗N (IN ) = min
eN

E
[
‖HξN‖2QN

∣∣∣IN]
s.t. εN = 0

, (27)

J∗t (It) = min
et

E
[
‖Hξt‖2Qt + J∗t+1 (It+1)

∣∣∣It]
s.t. εt = 0, Aξt + Bet ∈ Ξt+1

. (28)

Equations (27) and (28) restrict the attack at each time t to be
recursively feasible.

We begin with t = N . At time N , the attack eN does not
affect the value of E

[
‖HξN‖2QN

]
, so we choose eN only to

satisfy the constraint εN = CNξN + DNeN = 0. Thus, we
have eN = −D†NCNξN , and J∗N (IN ) = ξTNQNξN + ΠN ,
where QN = HTQNH and ΠN = 0. Proceeding to N − 1,
we first reformulate the constraints. Applying Lemma 4, the
constraint AξN−1 + BeN−1 ∈ ΞN becomes

P̂1G (Aξt + Bet) = 0. (29)

Combining (29) with the constraint εN−1 = 0 and using the
fact that GB = B̂, we have

CN−1ξN−1 +DN−1eN−1 = 0, (30)

where CN−1 and DN−1 are given by (23). To solve (28), we
eliminate the constraint in (30) (following [28]) and consider
attacks eN−1 of the form

eN−1 = FN−1zN−1 −D†N−1CN−1ξN−1, (31)

where FN−1 = Is−D†N−1DN−1. Equation (31) describes all
recursively feasible eN−1 since R (FN−1) = N (DN−1).
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After eliminating constraints and performing algebraic ma-
nipulations, (28) becomes

J∗N−1 (IN−1) = ξTN−1HTQN−1HξN−1 + ΠN+

trace
(
ΣνKTQNK

)
+ min
zN−1

ξ
T

N−1QNξN−1,
(32)

where ξN−1 =
(
A− BD†N−1CN−1

)
ξN−1 + BFN−1zN−1.

The optimal zN−1 satisfies

0 = FTN−1BQNξN−1. (33)

As a consequence of Lemma 6, such a zN−1 exists. One
particular zN−1 that satisfies (33) is

zN−1 =−
(
FTN−1BTQNBFN−1

)† FTN−1BTQN×(
A− BD†N−1C

)
ξN−1.

(34)

There may be more than one zN−1 that satisfies (34). Manip-
ulating (34), we have that zN−1 satisfies

−
(
FTN−1BTQNBFN−1

)
zN−1 = FTN−1BTψ, (35)

with ψ = QN

(
A− BD†N−1C

)
ξN−1. By definition, all zN−1

that satisfy (35) belong to ZN−1 (ψ). Then, since eN−1 =
FN−1zN−1−D†N−1CN−1ξN−1, we have, from Lemma 7, that
the optimal attack eN−1 is unique.

Substituting (34) into (32) and performing algebraic manip-
ulations, we have

J∗N−1 (IN−1) = ξTN−1HTQN−1HξN−1 + ΠN−1, (36)

where

QN−1 = HTQN−1H+
(
A− BD†N−1CN−1

)T
QN×(

A− BD†N−1CN−1

)
−
(
A− BD†N−1CN−1

)T
×

QNBFN−1

(
FTN−1BTQNBFN−1

)† FTN−1BTQN×(
A− BD†N−1CN−1

)
,

(37)

and ΠN−1 = ΠN + trace
(
ΣνKTQNK

)
. Repeating the

dynamic programming procedure for t = N − 2, . . . , 0, we
find that the optimal attack has the same form as (34), were
we replace N − 1 with t.

V. ATTACKS UNDER GENERAL DETECTION CONSTRAINTS

In this section, we solve (18) with positive δ. We design a
procedure to find the sequence γ(0, N) that minimizes J under
the constraint ‖εt‖2Σ−1

ν
≤ δ for t = 0, . . . , N (the optimal

attack does not have a closed form). This procedure becomes
computationally intensive for large N . Thus. we also design
a less computationally-intensive procedure that finds a sub-
optimal and feasible attack sequence.

A. Optimal Attack with δ > 0

For this section only, we introduce the following nota-
tion: let Eξt [·] denote the expectation taken over ξt, and
let E{ξk}Nt [·] denote the expectation taken over ξt, . . . , ξN .
Further, define the operator πt as πt (γ (t,N)) = et. That is,
πt is an operator that takes an attack sequence over N − t+ 1
time steps and returns the first attack. To solve (18) with δ > 0,
we consider, for t = 0, . . . , N − 1, the problem

γ∗t (t,N) = argmin
γt(t,N)

E{ξk}Nt+1

[
N∑
k=t

‖Hξk‖2Qk

]
s.t. ‖εk‖2Σ−1

ν
≤ δ, k = t, . . . , N

, (38)

where γt(t,N) = {et, . . . , eN} is an attack sequence in
which each attack et, . . . , eN only depends on ξt

5. This
differs from the definition of γ(t,N), in which each attack
et, . . . , eN depends on ξt, . . . , ξN , respectively. Problem (38)
has a convex objective and convex constraints, so it can be
efficiently solved.

Theorem 2 (Optimal Attack Strategy with δ > 0 Detection
Constraint). Algorithm 1 gives an attack sequence γ(0, N)
that solves (18) with δ > 0.

Algorithm 1 Optimal Attack with δ > 0

1: Initialize: I0 ← {ỹ0}
2: for t = 0, 1, . . . , N − 1 do
3: Solve (38), et ← πt (γ∗t (t,N)), It+1 ← {It, ỹt+1, et}
4: end for
5: eN ← γ∗N−1 (N,N)

Algorithm 1 works as follows. At time step t, for t =
0, 1, . . . , N − 1, we find γ∗t (t,N), the sequence of attacks
depending only on ξt that solves problem (38). The attack
et is then set as the first attack in the sequence γ∗t (t,N).
In the last ((N + 1)

th) time step, the attack eN is set as
the last attack component of the sequence γ∗N−1(N − 1, N).
By construction, every attack et produced by Algorithm 1 is
recursively feasible: after attacking the system with et, the
subsequence γ∗t (t+ 1, N) is a feasible attack sequence at time
t+ 1. In order to prove Theorem 2, we require the following
Lemma from [25]:

Lemma 8 ( [25]). Let g(ξ, u) be a function such that, for
any ξ, minu∈U g(ξ, u) exists and U is a class of functions for
which Eξ [g(ξ, u)] exists. Then, minu(ξ)∈U Eξ [g (ξ, u (ξ))] =
Eξ [minu∈U g (ξ, u)] .

Proof (Theorem 2): From problem (18), we have that the
optimal cost-to-go function at time t, J∗t (ξt), is defined as

J∗N (ξN ) = min
eN

‖HξN‖2QN
s.t. ‖εN‖2Σ−1

ν
≤ δ

, (39)

J∗t (ξt) = ‖Hξt‖2Qt +

min
et

Eξt+1

[
J∗t+1 (ξt+1) |ξt

]
s.t. ‖εt‖2Σ−1

ν
≤ δ, Aξt + Bet ∈ Ξt+1

. (40)

5The state ξt is a sufficient statistic for the information set It.
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Let γ̃ (0, N) = {ẽ0, . . . , ẽN} denote the attack sequence
produced by Algorithm 1. The attack sequence has the form

γ̃ (0, N) = {π0 (γ∗0 (0, N)) , . . . , πN (γ∗N (N,N))} . (41)

To show that γ̃ (0, N) is an optimal attack sequence, we show
that each attack ẽt = πt (γ∗t (t,N)) is the optimal attack at
time t, for t = 0, . . . , N − 1 6.

In order to show that ẽt is the optimal attack, we prove the
intermediate result that, for t = 0, . . . , N − 1,

J∗t (ξt) = min
γt(t,N)

E{ξk}Nt+1

[
N∑
k=t

‖Hξk‖2Qk

]
s.t. ‖εk‖2Σ−1

ν
≤ δ, k = t, . . . , N

. (42)

We resort to induction. In the base case, we show that (42)
is true for t = N − 1. (J∗N (ξN ) = ‖HξN‖2QN .) Consider the
right hand side of (42) for t = N − 1. Expressed in terms of
ξN−1, (42) becomes

min
γN−1(N−1,N)

EξN

[
N∑

k=N−1

‖Hξk‖2Qk

]
s.t. ‖εk‖2Σ−1

ν
≤ δ, k = N − 1, N

= min
γN−1(N−1,N−1)

‖HξN−1‖2QN−1
+ EξN

[
‖HξN‖2QN

]
s.t. ‖εN−1‖2Σ−1

ν
≤ δ, ξN ∈ ΞN

,

(43)

= min
eN−1

‖HξN−1‖2QN−1
+ EξN [JN (ξN )|ξN−1]

s.t. ‖εN−1‖2Σ−1
ν
≤ δ,

AξN−1 + BeN−1 ∈ ΞN

, (44)

= J∗N−1 (ξN−1) . (45)

Equation (43) follows from the right hand side of (42) because
the term ‖HξN−1‖2QN−1

is not affected by γN−1(N − 1, N)
and because the term γN−1(N,N) does not affect the objec-
tive but only needs to satisfy the constraint ‖εN‖2Σ−1

ν
≤ δ.

Equation (44) follows from (43) because the minimization
in (43) is over γN−1 (N − 1, N − 1), which, by definition,
is a function of ξN−1. Thus, the expectation over ξN in (43)
refers to the conditional expectation over ξN given ξN−1.

In the induction step, we assume that (42) is true for t+ 1
and show that it is true for t. The right hand side of (42) for
t becomes,

min
et

[
‖Hξt‖2Qt + J̃t (ξt)

]
s.t. ‖εt‖2Σ−1

ν
≤ δ,Aξt + Bet ∈ Ξt+1

, (46)

where J̃t (ξt) is defined as

min
γt(t+1,N)

E{ξk}Nt+1

[
N∑

k=t+1

‖Hξk‖2Qk

]
s.t. ‖εk‖2Σ−1

ν
≤ δ, k = t+ 1, . . . , N

. (47)

The expression in (46) follows from the right hand side of (42)
because γt(t,N) can be partitioned as {et, γt (t+ 1, N)}, ξt
does not depend on γt(t+ 1, N), and a feasible γt (t+ 1, N)
in (47) exists if and only if et is recursively feasible.

6We ignore the attack ẽN because it does not affect the cost associated
with γ̃ (0, N).

Further manipulating (47), we have

J̃t (ξt) = Eξt+1

[
Ĵt+1 (ξt+1)

∣∣∣ξt] , (48)

where Ĵt+1 (ξt+1) is defined as

min
γt+1(t+1,N)

E{ξk}Nt+2

[
N∑

k=t+1

‖Hξk‖2Qk

]
s.t. ‖εk‖2Σ−1

ν
≤ δ, k = t+ 1, . . . , N

. (49)

Equation (48) follows from (47) because the minimization
in (47) is over γt (t+ 1, N), which, by definition, is a function
of ξt, so the expectation over ξt+1, . . . , ξN refers to the
conditional expectation given ξt. We also use Lemma 8 to
exchange the minimization operation and expectation over
ξt+1 in (47) to derive (48). By the induction hypothesis, we
have Ĵt+1 (ξt+1) = J∗t+1 (ξt+1) . Substituting back into (48)
and (46) shows that (42) is true for t.

To conclude the proof of Theorem 2, we note that, as a
result of (42), for t = 0, . . . , N − 1,

ẽt = argmin
et

Eξt+1

[
J∗t+1 (ξt+1) |ξt

]
s.t. ‖εt‖2Σ−1

ν
≤ δ, Aξt + Bet ∈ Ξt+1

. (50)

Because ẽt is optimal for t = 0, . . . , t = N − 1 and eN does
not affect the cost, γ̃ (0, N) is an optimal attack sequence.

B. Windowed Attack Algorithm with δ > 0

Although Algorithm 1 gives the optimal attack sequence
with δ > 0, it is also computationally expensive. In the
first time step (t = 0), in order to find the optimal attack,
Algorithm 1 aims to find an optimal N -length attack sequence
subject to N constraints. In each subsequent time step, the
length of the attack sequence over which the optimization
occurs and the number of constraints in the optimization only
decreases by 1. Even though (38) is a convex optimization,
if N is large, then, in order to find the optimal attack,
Algorithm 1 must repeatedly solve large (convex) optimization
problems, each with a large number of constraints.

To find an attack sequence in a less computationally-
intensive manner, we consider the windowed attacker opti-
mization problem:

γ̂t(t, t+W − 1) =

argmin
γt(t,t+W−1)

E{ξk}t+W−1
t+1

[
t+W−1∑
k=t

‖Hξk‖2Qk

]
s.t. ‖εk‖2Σ−1

ν
≤ δ, k = t, . . . , t+W − 1,∥∥∥P̂N−(t+W−1)Gξt+W

∥∥∥2

Σ−1
ν

≤ δ,

(51)

where W ∈ {2, . . . , N + 1} is a predetermined window size
chosen by the attacker7. The goal of problem (51) is to find
a W -length attack sequence that minimizes the attacker’s cost
over W time steps.

We use problem (51) to find a suboptimal attack sequence
in less computationally intensive manner than Algorithm 1.

7We do not consider the case of W = 1 since, for any time t, the current
attack et does not affect the value of ξt.



8

Algorithm 2 Windowed Attack with δ > 0

1: Initialize: I0 ← {ỹ0}
2: for t = 0, 1, . . . , N −W do
3: Solve (51), et ← πN−W+1 (γ̂ (t, t+W − 1)),
It+1 ← {It, ỹt+1, et}

4: end for
5: for t = N −W + 1, . . . , N do
6: Solve (38), et ← πt (γ∗t (t,N)), It+1 ← {It, ỹt+1, et}
7: end for
8: eN ← γ∗N−1 (N,N)

Algorithm 2 works as follows. At each time step t, for
t = 0, . . . , N −W , we find a W -length attack sequence (that
depends only on ξt) that minimizes the attacker’s cost over
W time steps. We set the attack et to be the first component
of the attack sequence γ̂t (t, t+W − 1). At each time step t,
for t = N −W + 1, . . . , N , we determine the attack et in the
same way as in Algorithm 1.

The additional constraint
∥∥∥P̂N−(t+W−1)Gξt+W

∥∥∥2

Σ−1
ν

≤ δ

ensures that the attack et, as determined by Algorithm 2, is
recursively feasible. The attack et is the first component of a
sequence γ̂t (t, t+W − 1) that satisfies all constraints in (51).
The additional constraint requires that, for the state ξt+W ,
which depends on γ̂t (t, t+W − 1), there exists an attack
sequence γ̂t (t+W,N) such that

∑N
k=t+W ‖εk‖

2
Σ−1
ν
≤ δ.

Since the sum of ‖εk‖2Σ−1
ν

from k = t + W to k = N is no
greater than δ, we have ‖εk‖2Σ−1

ν
≤ δ for all k = t+W, . . . , N .

Thus, the attack sequence {γ̂t (t, t+W − 1) , γ̂t (t+W,N)}
satisfies ‖εk‖2Σ−1

ν
≤ δ for all k = t, . . . , N , so the attack et

must be recursively feasible.
In each time step of Algorithm 2, we minimize cost over an

attack sequence of length no greater than W , and subject to
no more than W + 1 constraints. Thus, even if N is large, an
attacker can use Algorithm 2 to find a feasible attack sequence
without the computational expense of Algorithm 1 by choosing
W to be small. One drawback of a small window size W is
that the resulting attack sequence incurs a larger cost J . We
verify the trade off between window size and optimality gap
via numerical simulation in Section VI.

VI. NUMERICAL EXAMPLES

We demonstrate the proposed attack strategies under detec-
tion constraints with separate examples for the δ = 0 and
δ > 0 cases. We consider the linearized state space model
of a helicopter provided by [29]. The model is comprised of
10 states and 4 actuators. Due to space constraints, we refer
the reader to [29] for a detailed explanation of the model
states and the numerical values of the A and B matrices.
The helicopter has sensors for each of the state variables
(C = I10). In our examples, we consider the following sta-
tistical properties: xt0 = 0,Σx = 5I10,Σv = 10−3I10,Σw =
10−4diag (6, .1, 2, 2, .1, 6, 2, 2, 2, .1) .

For all numerical examples, the attacker has target state

x∗ =
[

0 4 0 0 0 8.2 0 0 0 0
]T
.

The attacker has the following Qt matrix for all t:

Qt = diag( .1, 3, .1, .1, .1, 4, .1, .1, .1, .1 ),

which means that the attacker only cares about manipulating
the x(2) and x(6) components of the helicopter’s state, cor-
responding to vertical and lateral velocity, respectively. The
system starts running at t = −75, and the attacker attacks the
system from t = 0 to t = 75 (i.e., N = 75).

First, we consider an attacker, denoted as “A1”, that can
attack all of the actuators and eight of the sensors – the
attacker cannot alter the sensors measuring x(8) (yaw rate)
and x(9) (roll angle). Figure 1 shows the effect of the optimal
attack (A1) with the δ = 0 constraint, and Figure 2 provides
a component-wise description of the optimal attack over time.

From time t = 0 to t = 75, the attack computed using

Fig. 1: Effect of the optimal attack (A1) under δ = 0 constraint. Top:
system states versus time. The black dotted line is the target state.
Bottom: detection statistic versus time

Fig. 2: Component-wise description of the optimal attack (A1) under
the δ = 0 constraint.

Theorem 1 moves the system to the target state while satisfying
the ‖εt‖2Σ−1

ν
= 0 constraint.

Second, we consider an attacker, denoted as “A2”, that can
attack inputs u(3) and u(4) and manipulate the sensor values
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measuring x(2), x(6), x(7), and x(10). Figure 3 shows that, for

Fig. 3: Effect of the optimal attack (A2) under δ = 0 constraint. Top:
system states versus time. The black dotted line is the target state.
Bottom: detection statistic versus time

Fig. 4: Component-wise description of the optimal attack (A2) under
the δ = 0 constraint. The only feasible attack for (A2) is to not attack
the system.

the attacker (A2), the optimal attack with δ = 0 constraint does
not successfully move the system to the target state. This is
because the attacker is not powerful enough and cannot attack
enough sensors and actuators. Indeed, as Figure 4 shows, the
optimal strategy for (A2) under the δ = 0 constraint is to not
attack the system.

For demonstrating the attack strategies with δ > 0, we con-
sider the attacker (A2). In the implementation of Algorithms 1
and 2, we solve the optimization problems (38) and (51)
using MOSEK [30]. First, we consider the optimal attack from
Algorithm 1 under the constraint δ = 1. Figure 5 shows that,
by following Algorithm 1, the attacker (A2) is able to move
the system to the target state while satisfying the ‖εt‖2Σ−1

ν
≤ 1

constraint. Figure 6 provides a component-wise description of
the optimal attack under the inequality constraint.

We then consider the attacker (A2) using the windowed
attack algorithm (Algorithm 2) with window size W = 5.

Fig. 5: Effect of the optimal attack (A2) under δ > 0 constraint. Top:
system states versus time. The black dotted line is the target state.
Bottom: detection statistic versus time. The black dotted line is δ.

Fig. 6: Component-wise description of the optimal attack (A2) under
the δ > 0 constraint.

Figure 7 shows that, like the optimal attack, the subopti-
mal attack computed using Algorithm 2 also successfully
brings the system state to the target state while satisfying the
‖εt‖2Σ−1

ν
≤ 1 constraint. Moreover, Figure 8 shows that the

windowed attack resembles the optimal inequality constrained
attack. Both the optimal and windowed attack satisfy the
‖εt‖2Σ−1

ν
≤ 1 constraint with inequality, which shows that

the optimal cost is achieved at the boundary of the constraint
set. The optimal attack strategy induces as large a bias εt as
allowed by the explicit detection avoidance constraints.

The performance of Algorithm 2 depends on the window
size W . We evaluate the cost attained by Algorithm 2 (by
attacker (A2)) as a function of the window size W and the
value of the constraint bound δ. For each W and each value
of δ, we compute the optimality gap of Algorithm 2 as the
average cost of 10000 simulations. The optimal cost is the one
obtained by Algorithm 1, which we compute as the average
of 10000 simulations. In general, for a fixed target state x∗,
the optimality gap between the optimal attack and windowed
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Fig. 7: Effect of the windowed attack (A2) under δ > 0 constraint.
Top: system states versus time. The black dotted line is the target
state. Bottom: detection statistic versus time. The black dotted line
is δ.

Fig. 8: Component-wise description of the windowed attack (A2)
under the δ > 0 constraint.

Fig. 9: Performance of Algorithm 2 as a function of window size.

attack depends on the window size W and the bound δ.
Figure 9 shows that, as window size W increases, the cost
achieved by Algorithm 2 approaches the optimal cost. For the
smallest window size W = 2, which corresponds to the greedy
attack strategy of minimizing the one-step-ahead cost under
recursive feasibility constraints, tighter detection avoidance
constraints (i.e., lower values of δ) incur a noticeably larger
optimality gap. One possible explanation is that, for tighter
constraints, there is a limited set of feasible attacks at any
time step, and the greedy strategy further limits the set of

feasible attacks at future time-steps, resulting in a larger
overall optimality gap. That is, the impact of the greedy
strategy on the optimality gap is greater for tighter constraints.

VII. CONCLUSION

In this paper we studied attackers with control objectives
and detection constraints against CPS. We formulated a cost
function that captures the attacker’s control objectives and
defined constraints that relate to the probability of the attack
being detected. In the case that the attacker’s probability of
being detected is constrained to be the false alarm rate of
the detector, we showed that the optimal attack strategy is a
linear feedback of an augmented system state calculated from
the attacker’s information set. Under more general constraints
to the attacker’s effect on the CPS’s detection statistic, we
provided an algorithm to find the optimal attack sequence and
a second, less computationally intensive, algorithm to find a
feasible, sub-optimal attack. Finally, we illustrated our attack
strategies through numerical examples involving a remotely-
controlled helicopter under attack.

APPENDIX

A. Proof of Lemma 3

Proof: We resort to induction. The base case of t = N
is true by the definition of ΞN . In the induction step, we
assume there exists a sequence of attacks γ(t+1, N) such that
‖εt+1‖2Σ−1

ν
≤ δ, . . . , ‖εN‖2Σ−1

ν
≤ δ if and only if ξt+1 ∈ Ξt+1,

and we show that there exists a recursively feasible et if and
only if ξt ∈ Ξt.

(If) Let ξt ∈ Ξt. Then there exists et such that∥∥∥C̃ξt + D̃et
∥∥∥2

Σ−1
ν

≤ δ and ξt+1 = Aξt + Bet + Kνt+1 ∈
Ξt+1. Since ξt+1 ∈ Ξt+1, by the induction hypoth-
esis, there exists γ(t + 1, N) such that ‖εt+1‖2Σ−1

ν
≤

δ, . . . , ‖εN‖2Σ−1
ν
≤ δ. Concatenating et and γ(t + 1, N), we

have that γ(t,N) = {et, γ(t + 1, N)} is an attack such that
‖εt‖2Σ−1

ν
≤ δ, . . . , ‖εN‖2Σ−1

ν
≤ δ, which means that et is

recursively feasible.
(Only If) Let et be a recursively feasible attack. Then,

there exists γ(t,N) = {et, γ(t+ 1, N)} such that ‖εt‖2Σ−1
ν
≤

δ, . . . , ‖εN‖2Σ−1
ν
≤ δ. Since the subsequence γ(t + 1, N)

satisfies ‖εt+1‖2Σ−1
ν
≤ δ, . . . , ‖εN‖2Σ−1

ν
≤ δ, we have, by the

induction hypothesis, that ξt+1 = Aξt+Bet+Kνt+1 ∈ Ξt+1.

Since ‖εt‖2Σ−1
ν
≤ δ, we have

∥∥∥C̃ξt + D̃et
∥∥∥2

Σ−1
ν

≤ δ. This
means that ξt ∈ Ξt.

B. Proof of Lemma 4

Proof: We resort to induction. In the base case, we
show that ΞN = N

(
P̂1G

)
. By definition of ΞN , we

have ξN ∈ ΞN if and only if there exists eN such that∥∥∥C̃ξN + D̃eN
∥∥∥2

Σ−1
ν

= 0. Applying the result of Lemma 2 and

noting that GξN = θN , we have that
∥∥∥ĈGξN + D̃eN

∥∥∥2

Σ−1
ν

= 0

if and only if P̂1GξN = 0. Thus, we have ξN ∈ ΞN if and
only if P̂1GξN = 0, which shows that ΞN = N

(
P̂1G

)
.
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In the induction step, we assume that Ξt+1 =

N
(
P̂N−tG

)
, and we show that Ξt = N

(
P̂N−t+1G

)
.

By definition of Ξt, we have ξt ∈ Ξt if and only if

there exists et such that
∥∥∥C̃ξt + D̃et

∥∥∥2

Σ−1
ν

= 0 and ξt+1 =

Aξt + Bet + Kνt+1 ∈ Ξt+1. By the induction hypothesis
Ξt+1 = N

(
P̂N−tG

)
. Thus, we have ξt+1 ∈ Ξt+1 if and

only if P̂N−tGξt+1 = 0. Applying the results of Lemma 3,
we then have that ξt+1 ∈ Ξt+1 if and only if there exists an
attack sequence γ(t+1, N) such that, starting from state ξt+1,
we have ‖εt+1‖2Σ−1

ν
= · · · = ‖εN‖2Σ−1

ν
= 0. Concatenating et

and γ(t+ 1, N), we have that γ(t,N) = {et, γ(t+ 1, N)} is
an attack sequence such that, starting from state ξt, we have
‖εt‖2Σ−1

ν
= · · · = ‖εN‖2Σ−1

ν
= 0. Since there exists such an

attack sequence γ(t,N), we have minγ(t,N)

∑N
k=t ‖εk‖

2
Σ−1
ν

=
0. Applying the results of Lemma 2, we have ξt ∈ Ξt
if and only if P̂N−t+1Gξt = 0, which shows that Ξt =

N
(
P̂N−t+1G

)
.

C. Proof of Lemma 5

Proof: We resort to induction. In the base case t = N ,
we have QN = HTQNH by definition. In the induction step,
we assume that Qt+1 = HTQt+1H+ Ut+1 for some Ut+1 �
0, and we show that there exists Ut � 0 such that Qt =
HTQtH + Ut. From the induction hypothesis, we have that
Qt+1 � 0 since Qt+1 � 0 and Ut+1 � 0. Then, by algebraic
manipulation of equation (25), we have

Qt = HTQtH+ X Tt Qt+1Xt, (52)

where Xt =
(
A− BD†tCt

)
− BFt

(
FTt BTQt+1BFt

)† ×
FTt BTQt+1

(
A− BD†tCt

)
. Thus, Ut = X Tt Qt+1Xt � 0,

since Qt+1 � 0.

D. Proof of Lemma 6

Proof: Trivially, we have R
(
FTt BTQt+1BFt

)
⊆

R
(
FTt BT

)
. We now show that R

(
FTt BT

)
⊆

R
(
FTt BTQt+1BFt

)
by showing that

N
(
FTt BTQt+1BFt

)
⊆ N (BFt).

Let µ ∈ N
(
FTt BTQt+1BFt

)
, and, by contradiction,

suppose that µ /∈ N (BFt). Then, we have Ftµ 6= 0. By
definition of Ft, we have DtFtµ = 0, which means that

ΨFtµ = 0. Since the matrix
[

Γ
Ψ

]
is injective, ΨFtµ = 0

means that µ̃ = ΓFµ 6= 0. Using the results of Lemma 5 and
the structure of H and B, we have

µTFTt BTQt+1BFtµ =µTFTt BTUt+1BFtµ+

µ̃TQt+1µ̃.
(53)

The first term on the right hand side of (53) is nonnegative
since Ut+1 � 0, and the second term on the right hand side
of (53) is positive since µ̃ 6= 0 and Qt+1 � 0. Thus, we
have µTFTt BTQt+1BFtµ > 0, which contradicts the fact that
µ ∈ N

(
FTt BTQt+1BFt

)
. Thus, we have µ ∈ N (BFt)

and N
(
FTt BTQt+1BFt

)
⊆ N (BFt). This means that

R
(
FTt BT

)
⊆ R

(
FTt BTQt+1BFt

)
.

E. Proof of Lemma 7
Proof: Let z1, z2 ∈ Zt(ψ), and suppose, by contradiction,

that Ftz1 6= Ftz2. Let µ = z1 − z2, which means Ftµ 6=
0. Since z1, z2 ∈ Zt (ψ), we have FTt BTQt+1BFtµ = 0.
Following the proof of Lemma 6, we have that if Ftµ 6= 0,
then µTFTt BTQt+1BFtµ > 0, which contradicts the fact that
FTt BTQt+1BFtµ = 0. Thus, we have Ftz1 = Ftz2.
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