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On Three-dimensional Formation Control with Mismatched Coordinates

Ziyang Meng, Brian D. O. Anderson and Sandra Hirche

Abstract— A typical formation shape control problem in-
volves point agents sensing relative positions, i.e. orientations
and distances, of their neighbors and then moving so that
these relative positions achieve some prespecified values. Such a
procedure, requiring as it does sensing of orientations, implicitly
presupposes that all agents have a shared understanding of the
common orientations. On the other hand, there may be biases
in sensors, variations in the earth’s magnetic field interfering
with compass-based sensing, or drift in inertial sensors, with
the result that orientations are inconsistently measured or
measured with error. In this paper, we investigate the formation
control problem with mismatched coordinates in the three-
dimensional space, considering the consequences of this error.
First, the situation of a two agent formation is first considered.
We show that the agents converge to a fixed, but distorted
formation exponentially fast. In contrast to the matched case,
the formation is not asymptotically stationary, but rather
instead translates with a certain constant velocity depending on
the mismatches. The formation distortion between the actual
one and the desired one is obtained, as well as the steady
state velocity of the formation for small mismatch orientations.
The case of agents with double integrator dynamics is then
considered and similar phenomena are observed. Based on the
results, an estimation algorithm is given to obtain the mismatch
rotation matrix, which allows a compensation algorithm to be
proposed such that the desired formation is achieved with zero
steady-state velocity for the formation as a whole. The case of
n-agent formations is finally considered, first with a star graph
and then with a general graph. Simulations are provided to
validate the theoretical results.

I. INTRODUCTION

Formation shape control problems are considered an im-
portant issue in the study of multi-agent systems and shape
control has broad applications [1], [2]. There are different
variations for the formation shape control problem. For ex-
ample, problems with or without a leader were considered in
[3], [4]; problems with undirected or directed communication
topology were studied in [5], [6] and problems with velocity
consensus and moving final formation were investigated
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in [7], [8]. Another major distinction rests with problems
where there are both a prescribed shape and a prescribed
orientation, and problems seeking simply to achieve a pre-
scribed shape. A linear consensus-based algorithm can be
used to solve a formation shape control problem with both
a prescribed shape and a prescribed orientation [9], [10]
while the gradient-based approach (which involves nonlinear
control) can be used for shape control without an orientation
objective [11], [12]. In this paper, the consensus-based ap-
proach is considered and we are interested in studying the
consequence of postulating the existence of errors in relative
state measurements. In particular, distance errors have been
considered in the context of formation shape control without
an orientation in [13], [14]. It was shown in [13] that if the
agents have different understandings of either the desired
distance between them, or of the actual distance between
them, the resulting steady state formation will be of fixed
shape but distorted relative to the desired shape (the amount
of distortion depending on the mismatch). Further, instead of
being stationary, the resulting formation shape will converge
to a circular closed orbit in two-dimensional plane. The
radius may be large, but the angular velocity is proportional
to the mismatch. The extension to the case of a three-
dimensional tetrahedron formation shape control problem
was considered in [14] and it was shown that the motion
behavior is typically a helix and attributable to mismatch in
desired or measured distances for a pair of agents.

We focus on a different mismatched quantity in this paper.
It is evident that it will often be unrealistic to claim that all
agents have common error-free knowledge of the orientations
of north, or of the vertical direction. Biases can exist in
instruments; drift can occur in inertial navigation systems;
spatial variation can occur in the earth’s magnetic field;
horizon sensors may have difficulty sensing the horizon, and
so on. We extend our previous work on this topic from a two-
dimensional case [15] to a three dimensional case. A brief
version of this work has been published in [16]. A similar
problem was considered in [17] with an orientation mismatch
of local reference frames of the agents for the formation
shape control problem. A combination algorithm aimed at
both orientation alignment control and formation control
was proposed. However, it is required that the orientation
angles of all the local reference frames with respect to a
global frame are available and can be exchanged among the
neighbors. This somehow violates the spirit of distributed
algorithms.

In this paper, we first consider the coordinate frame
mismatch problem (in a three-dimensional ambient space)
for the two agent case and then study the case with double
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integrator agents. In particular, we show that the agents
converge to a fixed, but (relative to the desired one) distorted
formation exponentially fast for both cases. The shape error
between the actual final formation and the desired formation
is properly defined and obtained. It is shown that the shape
error magnitude is roughly proportional to the square of the
angular mismatch in the coordinate axis orientations of the
two agents. An estimation algorithm for the mismatched
orientation is also proposed. Based on the design of the
estimator, which is incorporated in a more complicated
control, a mismatch compensation algorithm is proposed
such that the desired formation is achieved and in steady
state, it is stationary. We finally include discussions on the
corresponding study of the n-agent case, including the issue
of compensation.

Notation: ‖x‖ denote the 2-norm of a vector x ∈ R
d. Let

f and g be two functions defined on some subset of the
real numbers. One writes f(x) = O(g(x)) as x → 0 if and
only if there exist positive real numbers M and δ such that
|f(x)| ≤ M |g(x)| for |x| < δ.

II. PROBLEM FORMULATION

To illustrate the key concepts, we start from the matched
formation shape control for two agents in a three-dimensional
space,

Ȧ1 = (A2 −A1)−D, (1a)

Ȧ2 = (A1 −A2) +D, (1b)

where A1 = [x1, y1, z1]
T ∈ R

3 and A2 = [x2, y2, z2]
T ∈ R

3

are the positions of agents 1 and 2, V1 = Ȧ1 and V2 =
Ȧ2 represent the velocities of agents 1 and 2, and D =
[dx, dy, dz]

T ∈ R
3 is a given desired relative position and

known for each agent. The objective is to drive agents 1 and
2 to form a stationary formation such that A2 = A1 + D.
Note that the position of the centroid is unspecified, while
the orientation and shape of the formation are specified. It
is straightforward from (1) to show that limt→∞(A2(t) −
A1(t)) = D, limt→∞ Ȧ1(t) = 0, and limt→∞ Ȧ2(t) = 0
exponentially fast. Therefore, agents converge to the desired
formation and the velocities converge to zero exponentially
fast.

The above algorithm assumes that A2 − A1 for agent 1
and A1 −A2 for agent 2 are identical (up to the sign). This
means that a global coordinate system is shared for the two
agents. However, this assumption is unlikely to be satisfied
in real systems. As already indicated, we will focus on the
orientation (as opposed to range) error.

Without any loss of generality, we suppose that the global
coordinates coincide with the coordinate basis of agent
1. We next derive the equation of motion of agent 2 in
global coordinates. We also assume that the rotation from
the coordinate frame of agent 1 to that of agent 1 is
represented by an Euler axis n and an angle φ [18], where

n =




n1

n2

n3



 ∈ R
3 is a unit vector. An illustration is given

Fig. 1. Coordinates of agents 1 and 2.

in Figure 1. Therefore, a line vector in global coordinates
1v = [x, y, z]T can be described in agent 2’s coordinate
basis as 2v = R(n, φ)1v, where R(n, φ) is the rotation
matrix [19], R(n, φ) = I + sinφ[n]× + (1− cosφ)([n]×)

2,

and [n]× =




0 −n3 n2

n3 0 −n1

−n2 n1 0



 denotes the cross product

matrix of n.
Then, in each agent’s own coordinate basis, the actual

kinematics of each agent with mismatched orientations are
given by

1Ȧ1 = A2 −A1 −D, (2a)

2Ȧ2 = R(n, φ)(A1 −A2) +D, (2b)

where A1 −A2 is expressed in global coordinates, 1Ȧ1 and
2Ȧ2 are the velocity vectors of agents 1 and 2 expressed in
each agent’s own coordinate basis.

III. FORMATIONS IN THREE-DIMENSIONAL SPACE

It is not hard to show that (2) can be written as

Ȧ1 = A2 −A1 −D, (3a)

Ȧ2 = A1 −A2 +R(n,−φ)D, (3b)

We next present the following result on the case of three-
dimensional ambient space.

Theorem 1: Consider the mismatched formation shape
control algorithm (2). Suppose φ 6= 0 is constant (the case
of φ = 0 is just a classical formation control problem). It
follows that

[Intra-formation motion]

(I) The agents converge to a fixed formation exponentially
fast. In particular, limt→∞(A2(t) − A1(t)) = 1

2 (I +
R(n,−φ))D.

(II) The relative velocities of the agents converge to zero
exponentially fast, i.e., limt→∞(V2(t)−V1(t)) = 0.

(III) If D 6= 0, the final formation is distorted from the
desired one. The formation distortion between the actual
final one and the desired one is O(|φ|), as φ → 0.
If D = 0, then rendezvous is still achieved, i.e.,
limt→∞(A2(t)−A1(t)) = 0.
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[Whole-formation motion]

(IV) If D 6= 0, the absolute velocities of both agents con-
verge to the same nonzero constant exponentially fast.
In particular, limt→∞ ‖V1(t)‖ = limt→∞ ‖V2(t)‖ =
O(|φ|), as φ → 0. If D = 0, the absolute velocities of
both agents converge to zero exponentially fast.

(V) If D 6= 0, the agent positions A1(t) and A2(t)
are neither convergent nor bounded. If D = 0,
limt→∞ A1(t) = limt→∞ A2(t) =

A1(0)+A2(0)
2 , where

A1(0) and A2(0) are the initial states of agents 1 and
2.

Proof: The proof of this Theorem (which is not especially
difficult) is omitted due to space limitations. The reader is
referred to [16] for more details.

Remark 1: The time-varying mismatches are not dealt
with in any detail in this manuscript due to space limitations.
The general conclusion is that the difference between the
actual final formation and the desired one will converge
to a bounded internal ultimately as long as time-varying
mismatches are bounded.

Remark 2: For practical applications, a leader is often
designated to determine the translation and orientation of the
entire formation. For the case of leader-following formation
control with mismatched coordinates, it turns out that the
formation will become asymptotically stationary and the
velocity error caused by angle measurement mismatch will
be suppressed while the final formation is distorted from the
desired one.

IV. SECOND-ORDER DYNAMICS

Formation control problems have also been studied for
agents consisting of double integrator dynamics [20], [21]
since the dynamics of many motion systems are typically
described by a second-order differential equation. We shall
show that similar results to those for single integrator dy-
namics apply in this case.

With double integrator dynamics in each agent’s own
coordinate basis, the dynamics of each agent are given by

1Ä1 = A2 −A1 −D− 1Ȧ1, (4a)

2Ä2 = R(n, φ)(A1 −A2) +D− 2Ȧ2, (4b)

where A1 − A2, 1Ȧ1 and 2Ȧ2 are the velocity vectors of
agents 1 and 2 expressed in each agent’s own coordinate
basis, and 1Ä1 and 2Ä2 are the acceleration vectors of agents
1 and 2 expressed in each agent’s own coordinate basis.

It is not hard to show that (4) can be written as

Ä1 = A2 −A1 −D− Ȧ1, (5a)

Ä2 = A1 −A2 +R(n,−φ)D− Ȧ2, (5b)

We next present the following result on the case of second-
order dynamics.

Theorem 2: Consider the mismatched formation shape
control algorithm (4). Suppose n 6= 0 and φ 6= 0 are
constants. It follows that

[Intra-formation motion]
(I) The agents converge to a fixed formation exponentially

fast. In particular, limt→∞(A2(t) − A1(t)) = 1
2 (I +

R(n,−φ))D.
(II) The relative velocities and accelerations of the

agents converge to zero exponentially fast, i.e.,
limt→∞(V2(t) − V1(t)) = 0 and limt→∞(Ä2(t) −
Ä1(t)) = 0.

(III) If D 6= 0, the final formation is distorted from the
desired one. The formation distortion between the actual
final one and the desired one is O(|φ|), as φ → 0.
If D = 0, then rendezvous is still achieved, i.e.,
limt→∞(A2(t)−A1(t)) = 0.

[Whole-formation motion]
(IV) If D 6= 0, the absolute velocities of both agents con-

verge to the same nonzero constant exponentially fast.
In particular, limt→∞ ‖V1(t)‖ = limt→∞ ‖V2(t)‖ =
O(|φ|), as φ → 0. If D = 0, the absolute velocities of
both agents converge to zero exponentially fast.

(V) If D 6= 0, the agent positions A1(t) and A2(t)
are neither convergent nor bounded. If D = 0,
limt→∞ A1(t) = limt→∞ A2(t) =

A1(0)+A2(0)
2 , where

A1(0) and A2(0) are the initial states of agents 1 and
2.

Proof:
(I) Define Q = A1−A2+

1
2 (I+R(n,−φ))D. It follows

from (5) that

Q̈ = −2Q− Q̇. (6)

It then follows that limt→∞(A2(t)−A1(t)) = D exponen-
tially, where D = 1

2 (I +R(n,−φ))D. This verifies (I).
(II) Since limt→∞(A2(t)−A1(t)−D) = 0 exponentially

fast, it follows from (6) that limt→∞(Ȧ2(t)−Ȧ1(t)) = 0 and
limt→∞(Ä2(t) − Ä1(t)) = 0 exponentially fast. Therefore,
(II) is proven.

(III) The proof of this part is the same as the proof of the
corresponding part of Theorem 1.

(IV) It follows from (5) that

Ä1 = −Ȧ1 +D−D+A2 −A1 −D, (7)

it then follows from the input-to-state stability property (
[22]) that limt→∞ Ȧ1(t) = D−D = 1

2 (R(n,−φ)− I)D =

sin φ

2 (− cos φ

2 [n]× + sin φ

2 ([n]×)
2)D and limt→∞ Ä1(t) =

0. Therefore, we also have limt→∞ Ȧ2(t) =
1
2 (R(n,−φ)−

I)D and limt→∞ Ä2(t) = 0. This further implies when
D 6= 0 that limt→∞ ‖Ȧ1(t)‖ = limt→∞ ‖Ȧ2(t)‖ = O(|φ|),
as φ → 0. Therefore, for the case of D 6= 0, the absolute
velocities of both agents converge to the same nonzero con-
stant exponentially fast. For the case of D = 0, the absolute
velocities of both agents converge to zero exponentially fast.

(V) For the case of D 6= 0, the conclusions are obvious
due to (IV). If D = 0, the problem reduces to a standard
average consensus problem [9].

Remark 3: Another interesting problem is to consider the
case of relative velocity feedback with mismatched coor-
dinates. In such a case, we conjecture that the absolute
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respectively, the actual formation shape and desired
formation shape at t = 80 s.

Fig. 2. Three agent case with D 6= 0.

velocities of agents are not convergent and the accelerations
of the agents converge to a common constant.
We next describe simulations which illustrate the validity of
Theorem 2. We consider the case of D 6= 0. In particular,
D = [0,−5, 0]T, φ = −0.2π, and n1 = [1, 0, 0]T and initial
states of all the agents are chosen randomly. Figures 2 and
3 show the positions and velocities of the agents during the
time interval [0, 50]. The relative velocities converge to zero,
indicating that the agents converge to a fixed formation.
However, due to the existence of mismatched sensors, the
agents keep moving with non-zero constant absolute veloc-
ities and the final formation is distorted from the desired
one.

V. ESTIMATION AND COMPENSATION ALGORITHMS FOR

TWO AGENT CASE

In this section, we first consider the estimation of R(n, φ).
We shall show later how the use of an estimate of R(n, φ)
can eliminate the problem caused by the orientation mis-
match. Without loss of generality, we let agent 2 be respon-
sible for the estimation of R(n, φ). The following compen-
sation control algorithm is proposed

1Ȧ1 = A2 −A1 −D, (8a)
2Ȧ2 = R(n, φ)(A1 −A2) +D+U, (8b)
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Fig. 3. Three agent case with D 6= 0.

where U ∈ R
3 denotes a compensation input. We next spec-

ify how to design the estimation of R(n, φ) and use the es-
timated information to compensate the original mismatched
algorithm such that the desired formation is achieved.

A. Estimation of R(n, φ) using the TRIAD algorithm

In this subsection, we use the measurement for agent 2
(relative position information expressed in the coordinate
basis of agent 2, i.e., 2A2 − 2A1) and the measurement
for agent 1 (relative position information expressed in the
coordinate basis of agent 1, i.e., 1A2 − 1A1) for the TRIAD
algorithm [23], [24] such that R(n, φ) is reconstructed.
The TRIAD algorithm is a classical deterministic algorithm
to estimate an attitude, in which the attitude is directly
calculated based on two pairs of nonparallel vectors. We next
specify the TRIAD algorithm.

Suppose that we have two nonparallel unit vectors V1 and
V2 (measurements of physical quantities obtained by agent
1 at two distinct time instants) and two other unit vectors
W1 and W2 (measurements of the same physical quantities
obtained by agent 2 at the same two distinct time instants).
Clearly, the unknown rotation matrix R(n, φ) defines the
differences between them, where W1 = R(n, φ)V1 and
W2 = R(n, φ)V2. Since V1 and V2 are linearly independent,
we obviously have the following relation:

(W1 ×W2) = R(n, φ)(V1 × V2).

Motivated by the above fact, we can construct two triads of
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unit vectors:

R1 = V1, R2 =
V1 × V2

‖V1 × V2‖
, R3 = R1 ×R2,

S1 = W1, S2 =
W1 ×W2

‖W1 ×W2‖
, S3 = S1 × S2,

We thus know that

MS = R(n, φ)MR,

where

MS
.
= [S1 S2 S3], MR

.
= [R1 R2 R3].

and the right members of the equations denote matrices
labeled by their columns.

Lemma 1 (TRIAD algorithm): [23], [24] The matrices
MS and MR are both orthogonal with determinant 1 and
the solution for R(n, φ) is

R(n, φ) = MSM
−1
R = MSM

T
R .

B. Compensation algorithm

Next, we show how to use the estimate of R(n, φ) to
compensate the original mismatched algorithm such that the
desired formation is achieved. Specifically, the following
compensation control algorithm is proposed

U(t) =

{
0, t ∈ [0, T ]

−D+ R̂D, t ≥ T
(9)

where R̂ will be specified later.
We next show that A2(t)−A1(t) converges to the desired

formation using compensation input (9).
Theorem 3: Choose V1 = A2(0)−A1(0)

‖A2(0)−A1(0)‖
and W1 =

R(n,φ)(A2(0)−A1(0))
‖R(n,φ)(A2(0)−A1(0))‖

. Also choose a T > 0 such that
(A2(0) − A1(0))

T(A2(T ) − A1(T )) 6= 0. Then, choose
V2 = A2(T )−A1(T )

‖A2(T )−A1(T )‖ and W2 = R(n,φ)(A2(T )−A1(T ))
‖R(n,φ)(A2(T )−A1(T ))‖ .

Consider the algorithm (8) with compensation input (9) and
the estimator R̂ = MSM

T
R derived according to the TRIAD

algorithm. Then R̂ = R(n, φ), limt→∞(A2(t) − A1(t)) =
D, and limt→∞ V1(t) = limt→∞ V2(t) = 0.
Proof: It is not hard to show from (8) and (9) A1(t)−A2(t)
is bounded during t ∈ [0, T ], and

Ȧ1−Ȧ2=−2(A1 −A2 +D)+D−RT(n, φ)R̂D, ∀t ≥ T.

Therefore, according to Lemma 1, we know that

Ȧ1 − Ȧ2 = −2(A1 −A2 +D), ∀t ≥ T.

It then follows hat limt→∞(A2(t)−A1(t)) = D. It is there-
fore trivial to show that limt→∞ V1(t) = limt→∞ V2(t) =
0.

We next describe simulations which validate the effec-
tiveness of Theorem 3. We consider D = [0, 5, 0]T. The
initial positions of the two agents are chosen randomly. From
Figure 4, we can see that the absolute velocities of the agents
converge to zero and the desired formation shape is achieved.
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Fig. 4. Convergence of compensation algorithm (8) with compensation
input (9).

Remark 4: We remark that the determination of R(n, φ)
is achieved with just two pairs of measurements. Obviously,
if there is measurement noise, as opposed to bias or a system-
atic error of the type we are estimating, one would expect
to do better with more measurements, or even continuous
measurements. While the details are not developed in this
paper, we note that extensions of the TRIAD algorithm to
address such situations have been developed, see e.g., SVD
method [25], FOAM method, [26], QUEST method [24],
Euler-q method [27], and so on.

VI. THE n-AGENT CASE

In this section, we aim to show how the analysis of the
previous section for two agents will carry over to n >

2 agents. For clarity of presentation, we first consider a
special and simpler case of connected graphs, i.e., a star
graph. Note that a star graph is a graph with minimum
connectivity. Therefore, the case can be easily extended
towards a general graph by expressing the desired and actual
vectors corresponding to the edge filling in the network as a
linear combination of those quantities for the star graph. We
can therefore derive a general conclusion that holds for any
connected graph of n agents.
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A. n-agent case with a star graph

We consider that there are n agents, 1, 2, . . . , n in a three-
dimensional space and agent i is connected to agent 1 with
an undirected edge, ∀i = 2, 3, . . . , n. The classical formation
control algorithm for each agent is given by:

Ȧ1 = (A2 −A1)+D12 + (A3 −A1) +D13 + . . .

+ (An −A1) +D1n, (10a)

Ȧ2 = (A1 −A2)−D12, (10b)

...

Ȧn = (A1 −An)−D1n, (10c)

where A1 = [x1, y1]
T ∈ R

2, A2 = [x2, y2]
T ∈ R

2, . . . ,
An = [xn, yn]

T ∈ R
2, D12 = [dx,12, dy,12]

T ∈ R
2, D13 =

[dx,13, dy,13]
T ∈ R

2, . . . and D1n = [dx,1n, dy,1n]
T ∈ R

2

are given constants and known for each agent.
The objective is to ensure asymptotically as t → ∞ that

A1(t) − A2(t) = D12, A1(t) − A3(t) = D13, . . . , and

A1(t)−An(t) = D1n. We define D =




D12

D13

...
D1n


 .

Due to the existence of mismatched compasses, and ex-
pressing measured multi-agent distances using the coordinate
basis associated with agent 1, the actual formation control
algorithm becomes:

1Ȧ1 = (A2 −A1) +D12 + (A3 −A1) +D13 + . . .

+ (An −A1) +D1n, (11a)

2Ȧ2 = R(n2, φ2)(A1 −A2)−D12, (11b)

...

nȦn = R(nn, φn)(A1 −An)−D1n, (11c)

where φ2, φ3, . . . , φn ∈ (−π, π] denote the mismatch be-
tween the axes of agent 1 and agent i, ∀i = 2, 3, . . . , n,
R(nj , φj) = I + sinφj [nj ]× + (1− cosφj)([nj ]×)

2, where

[nj ]× =




0 −nj,3 nj,2

nj,3 0 −nj,1

−nj,2 nj,1 0


 denotes the cross product

matrix of nj , for ∀j = 2, 3, . . . , n.
It is not hard to show that (11) can be written as

Ȧ1 = (A2 −A1) +D12 + (A3 −A1) +D13 + . . .

+ (An −A1) +D1n, (12a)

Ȧ2 = (A1 −A2)−R(n2,−φ2)D12, (12b)

...

Ȧn = (A1 −An)−R(nn,−φn)D1n. (12c)

We next establish the following result.
Theorem 4: Consider the mismatched formation control

algorithm (11). Suppose that φ2, φ3, . . . , φn 6= 0. It follows
that

[Intra-formation motion]

(I) The agents converge to a fixed formation exponentially
fast.

(II) The relative velocity of each agent pair converges to
zero exponentially fast, i.e., limt→∞(Vi(t)−Vj(t)) =
0, for all i, j ∈ {1, 2, . . . , n}.

(III) If D 6= 0, the final formation is distorted from
the desired one and the final formation distortion
is O(maxj=2,3,...,n |φj |), as φ2, φ3, . . . , φn → 0. If
D = 0, limt→∞(Ai(t) − Aj(t)) = 0, for all i, j ∈
{1, 2, . . . , n}.

[Whole-formation motion]

(IV) If D 6= 0, the absolute velocity of each agent converges
to the same nonzero constant exponentially fast. In
particular, limt→∞ ‖Vi(t)‖ = O(maxj=2,3,...,n |φj |),
as φ2, φ3, . . . , φn → 0, for all i ∈ {1, 2, . . . , n}.

(V) If D 6= 0, the agent positions A1(t), A2(t) and
A3(t) are neither convergent nor bounded. If D =
0, limt→∞ A1(t) = · · · = limt→∞ An(t) =
A1(0)+···+An(0)

n
, where A1(0),A2(0), . . . ,An(0) are

the initial states of agents 1, 2, . . . , n.
Proof:

(I) The intra-formation motion is determined by the fol-
lowing equation:

Q̇ = −PQ,

where Q =




A1 −A2

A1 −A3

...
A1 −An


 − P−1W




D12

D13

...
D1n


,

P =




2I I . . . I

I 2I . . . I
... . . .

. . .
...

I I . . . 2I


, and W =



I +R(n2,−φ2) I . . .

. . .
I . . . I +R(nn,−φn)


. It is not

hard to show that P is positive definite for any n

and P−1 =




n−1
n

I − 1
n
I . . . − 1

n
I

− 1
n
I n−1

n
I . . . − 1

n
I

... · · · . . .
...

− 1
n
I − 1

n
I . . . n−1

n
I


. Therefore,

limt→∞ Q(t) = 0.

(II) It follows from (I) that limt→∞




Ȧ1(t)− Ȧ2(t)

Ȧ1(t)− Ȧ3(t)
...

Ȧ1(t)− Ȧn(t)


 = 0.
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(III) For the case of D 6= 0, we know that the actual final
formation is determined by

lim
t→∞




A1(t)−A2(t)
A1(t)−A3(t)

...
A1(t)−An(t)


 = P−1W




D12

D13

...
D1n


 .

However, the desired formation is determined by




D12

D13

...
D1n


.

The final formation distortion is defined and given by

δD :=

∥∥∥∥∥∥∥∥∥

P−1W




D12

D13

...
D1n


−




D12

D13

...
D1n




∥∥∥∥∥∥∥∥∥

=

∥∥∥∥∥∥∥∥∥

P−1



R(n2,−φ2)− I . . . 0

. . .
0 . . . R(nn,−φn)− I







D12

D13

...
D1n




∥∥∥∥∥∥∥∥∥
≤ l1 max

j=2,3,...,n
|φj |‖D‖,

where we have used the fact that R(nj ,−φj) − I =

−2 sin
φj

2 (cos
φj

2 [nj ]× − sin
φj

2 ([nj ]×)
2), ∀j = 2, 3, . . . , n,

and l1 is a constant. Therefore, δD = O(maxj=2,3,...,n |φj |),
as φ2, φ3, . . . , φn → 0. In addition, it is trivial to prove the
case of D = 0.

(IV) For the case of D 6= 0, it follows from (11) that

lim
t→∞

Ȧ1(t) =
[
−I −I . . . −I

]




A1(t)−A2(t)
A1(t)−A3(t)

...
A1(t)−An(t)




+
[
I I . . . I

]




D12

D13

...
D1n




=
[
−I −I . . . −I

]
P−1(W − P )




D12

D13

...
D1n




=
[
− 1

n
R(n2,−φ2) +

1
n
I . . . − 1

n
R(nn,−φn) +

1
n
I
]
D.

Therefore, the absolute velocities obey
limt→∞ ‖Ȧ1(t)‖ = · · · = limt→∞ ‖Ȧn(t)‖ =
O(maxj=2,3,...,n |φj |), as φ2, φ3, . . . , φn → 0. In addition,
it is trivial to prove the claim for the case of D = 0.

Based on (IV), (V) is obvious.

B. Estimation and compensation algorithms in the n-agent
case with star graph

Obviously it is of interest to be able to eliminate unwanted
motions in the n-agent case, and this can be in fact be done

by using effectively the same algorithm as proposed in the
two agent case. Through measurements between communi-
cating agent pairs A1 and Aj , j = 2, 3, . . . , n, the necessary
compensation matrices are straightforwardly determined and
the necessary compensation introduced.

C. The n-agent case with a general graph

Notation: an undirected graph G consists of a pair (V , E),
where V = {1, 2, . . . , n} is a finite, nonempty set of nodes
and E ⊆ V×V is a set of unordered pairs of nodes. An edge
{j, i} ∈ E denotes that nodes i, j can obtain each other’s
information mutually. The neighbors of node i are denoted
by Ni := {j : {j, i} ∈ E}. The adjacency matrix A =
[aij ] ∈ R

n×n associated with the graph G is defined such
that aij = 1 if {j, i} ∈ E and aij = 0 otherwise. It is
obvious that aij = aji, for all i, j ∈ V for the undirected
graph.

The classical formation control algorithm for each agent
is given by:

Ȧi =
∑

j∈Ni

(Aj −Ai +Dij), i ∈ V , (13)

where Ai = [xi, yi]
T ∈ R

2, ∀i ∈ V , Dij = [dx,ij , dy,ij ]
T ∈

R
2, ∀i, j ∈ V are given constants defining the specified

relative positions and known for each agent, Ni, i ∈ V
denotes the neighbor set of agent i.

Due to the existence of mismatched compasses, and ex-
pressing measured multi-agent distances using the coordinate
basis associated with agent 1 (without loss of generality), the
actual formation control algorithm becomes:

1Ȧ1 =
∑

j∈N1

(Aj −A1 +D1j), (14a)

2Ȧ2 =
∑

j∈N2

(R(n2, φ2)(Aj −A2) +D2j), (14b)

...
nȦn =

∑

j∈Nn

(R(nn, φn)(Aj −An) +Dnj), (14c)

where φ2, φ3, . . . , φn ∈ (−π, π] denote the angular mis-
match between the coordinate axes of agent 1 and agent
i, ∀i = 2, 3, . . . , n, R(nj , φj) = I + sinφj [nj ]× + (1 −

cosφj)([nj ]×)
2, where [nj ]× =




0 −nj,3 nj,2

nj,3 0 −nj,1

−nj,2 nj,1 0




denotes the cross product matrix of nj , for ∀j = 2, 3, . . . , n.
It is not hard to show that (14) can be written as

Ȧ1 =
∑

j∈N1

(Aj −A1 +D1j), (15a)

Ȧ2 =
∑

j∈N2

(Aj −A2 +R(n2,−φ2)D2j), (15b)

...

Ȧn =
∑

j∈Nn

(Aj −An +R(nn,−φn)Dnj). (15c)
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We next establish the following result for the case of n agents
with a general connected graph.

Theorem 5: Consider the mismatched formation control
algorithm (14). Suppose that φ2, φ3, . . . , φn 6= 0 with all φ
constant for all time. It follows that

[Intra-formation motion]
(I) The agents converge to a fixed formation exponentially

fast.
(II) The relative velocity of each agent pair converges to

zero exponentially fast, i.e., limt→∞(Vi(t)−Vj(t)) =
0, for all i, j ∈ V .

(III) If D 6= 0, the final formation is distorted from
the desired one and the final formation distortion is
O(maxj=2,3,...,n |φj |), as φ2, φ3, . . . , φn → 0. If D =
0, limt→∞(Ai(t)−Aj(t)) = 0, for all i, j ∈ V .

[Whole-formation motion]
(IV) If D 6= 0, the absolute velocity of each agent converges

to the same nonzero constant exponentially fast. In
particular, limt→∞ ‖Vi(t)‖ = O(maxj=2,3,...,n |φj |),
as φ2, φ3, . . . , φn → 0, for all i ∈ V .

(V) If D 6= 0, the agent position Ai(t), ∀i ∈ V is neither
convergent nor bounded. If D = 0, limt→∞ A1(t) =

· · · = limt→∞ An(t) = A1(0)+···+An(0)
n

, where
A1(0),A2(0), . . . ,An(0) are the initial states of agents
1, 2, . . . , n.

Proof: Using the relations that Aj −Ak = (Aj − A1) +
(A1 −Ak) and Dkj = D1j −D1k, ∀j, k ∈ V , (15) can be
written as

Ȧ1 =
∑

j∈N1

(Aj −A1 +D1j),

Ȧ2 = N2(A1 −A2)−N2R(n2,−φ2)D12

+
∑

j∈N2

(Aj −A1 +R(n2,−φ2)D1j),

...

Ȧn = Nn(A1 −An)−NnR(nn,−φn)D1n

+
∑

j∈Nn

(Aj −A1 +R(nn,−φn)D1j),

where Ni denotes the cardinality of set Ni, i ∈ V .
Therefore, the intra-formation motion can be

written in the compact form as: Q̇ = −PQ,

where Q =




A1 −A2

A1 −A3

...
A1 −An


 − P−1W




D12

D13

...
D1n


,

P =




N2 0 . . . 0

0 N3

...
...

. . . 0
0 . . . 0 Nn



⊗ I +




a12 a13 . . .

a12 a13 . . .
...

a12 a13 . . .


 ⊗

I−




0 a23 a24 . . .

a32 0 a34 . . .
...

. . .
...

an2 an3 . . . 0


⊗ I, W =




N2R(n2,−φ2) 0 . . . 0

0 N3R(n3,−φ3)
...

...
. . . 0

0 . . . 0 NnR(nn,−φn)



+




a12 a13 . . .

a12 a13 . . .
...

a12 a13 . . .


 ⊗ I −




0 a23R(n2,−φ2) a24R(n2,−φ2) . . .

a32R(n3,−φ3) 0 a34R(n3,−φ3) . . .
...

. . .
...

an2R(nn,−φn) an3R(nn,−φn) . . . 0


,

and aij denotes (i, j)th entry of the adjacency matrix Ã.
Based on the transformation and Lemma 1 given in (
[28]), it is not hard to show that −P is a Hurwitz stable
matrix when the underlying graph is connected. Therefore,
limt→∞ Q(t) = 0.

(II) It follows from (I) that limt→∞(Ȧ1(t)− Ȧj(t)) = 0,
for all j = 2, 3, . . . , n.

(III) For the case of D 6= 0, we know that the actual final

formation is determined by limt→∞




A1(t)−A2(t)
A1(t)−A3(t)

...
A1(t)−An(t)


 =

P−1WD. However, the desired formation is determined by
D. The final formation distortion is defined and given by
δD :=

∥∥P−1WD−D
∥∥ . It then follows that

δD =
∥∥P−1ΩD

∥∥ ≤ c1‖Ω1‖‖D‖

≤ c1 ×
√
2(n− 1)× 2× max

j=2,3,...,n

{
(Nj +

n∑

k=2

ajk)

∣∣∣∣sin
φj

2

∣∣∣∣× 2

}
‖D‖

≤ 4c1n
√
2(n− 1)‖D‖ max

j=2,3,...,n
|φj |,

where Ω and Ω1 are given in (22) and (23), respec-
tively, Ω1,nn = −Nn sin

φn

2 (cos φn

2 [nn]×−sin φn

2 ([nn]×)
2),

c1 =
∥∥P−1

∥∥ is a positive constant and we have used
the facts that R(nj ,−φj) − I = −2 sin

φj

2 (cos
φj

2 [nj ]× −
sin

φj

2 ([nj ]×)
2), j ∈ {2, 3, . . . , n} for the first inequality,

‖A‖2 ≤ √
m‖A‖∞ =

√
mmax1≤i≤m

∑l

j=1 |aij | for a
matrix R

m×l, | sinα| ≤ 1 and | cosα| ≤ 1, ∀α ∈ R for the
second inequality. Therefore, δD = O(maxj=2,3,...,n |φj |),
as φ2, φ3, . . . , φn → 0. In addition, it is trivial to prove the
case of D = 0.

(IV) For the case of D 6= 0, it follows from (15) that

Ȧ1(t) =
∑

j∈N1

(Aj −A1 +D1j) =
[
−a12 −a13 . . . −a1n

]

×




A1(t)−A2(t)
A1(t)−A3(t)

...
A1(t)−An(t)


+

[
a12 a13 . . . a1n

]
D.
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Ω =




N2(R(n2,−φ2)− I) a23(I−R(n2,−φ2)) a24(I−R(n2,−φ2)) . . .

a32(I−R(n3,−φ3)) N3(R(n3,−φ3)− I) a34(I−R(n3,−φ3)) . . .
...

. . .
...

an2(I−R(nn,−φn)) an3(I−R(nn,−φn)) . . . Nn(R(nn,−φn)− I)


 (22)

Ω1 = 2




−N2 sin
φ2

2 (cos φ2

2 [n2]× − sin φ2

2 ([n2]×)
2) a23 sin

φ2

2 (cos φ2

2 [n2]× − sin φ2

2 ([n2]×)
2) . . . . . .

a32 sin
φ3

2 (cos φ3

2 [n3]× − sin φ3

2 ([n3]×)
2) −N3 sin

φ3

2 (cos φ3

2 [n3]× − sin φ3

2 ([n3]×)
2) . . . . . .

...
. . .

...
an2 sin

φn

2 (cos φn

2 [nn]× − sin φn

2 ([nn]×)
2) an3 sin

φn

2 (cos φn

2 [nn]× − sin φn

2 ([nn]×)
2) . . . Ω1,nn


 (23)

Therefore, limt→∞ Ȧ1(t) =
[
−a12 −a13 . . . −a1n

]

× P−1(W − P )D =
[
−I . . . −I

]
P−1ΩD. This shows

that

lim
t→∞

‖Ȧ1(t)‖ ≤ c2‖D‖ max
j=2,3,...,n

|φj |,

where c2 is a positive constant.
Therefore, the absolute velocities obey

limt→∞ ‖Ȧ1(t)‖ = · · · = limt→∞ ‖Ȧn(t)‖ =
O(maxj=2,3,...,n |φj |), as φ2, φ3, . . . , φn → 0. In addition,
it is trivial to prove the claim for the case of D = 0.

Based on (IV), (V) is obvious.
Remark 5: Theorem 5 shows that the formation distortion

and steady velocity of the formation are only related to the
maximum of all the mismatch angles, and this fact holds for
arbitrarily finite network size.

We next describe simulations which illustrate the validity
of Theorem 5. We consider the case three agents with a star
graph. In particular, D12 = [0,−8, 0]T, D23 = [20, 0, 0]T,
φ2 = 0.1π and φ3 = 0.2π, n2 = n3 = [1, 0, 0]T and
initial states of all the agents are chosen randomly. Figures 5
and 6 show the positions and velocities of the agents during
the time interval [0, 100]. The relative velocities converge to
zero, indicating that the agents converge to a fixed formation.
However, due to the existence of mismatched coordinate
frame, the agents keep moving with non-zero constant abso-
lute velocities and the final formation is distorted from the
desired one.

D. Estimation and compensation algorithms in the n-agent
case

Compensation is slightly more complicated for a general
graph. The TRIAD algorithm again gives the rotation matrix
linking the coordinate bases of two neighbor agents. By
using a tree contained in the undirected graph G, a unique
path can be found from node 1 to node j, and the rotation
matrix linking the coordinate bases of 1 and j is given by
the product of the rotation matrices associated with each
edge along the path. In this way, the necessary compensation
matrices are straightforwardly determined and the necessary
compensation introduced.

VII. CONCLUDING REMARKS

This paper studied the formation shape control problem
with mismatched orientations in three-dimensional space.
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formation shape at t = 80 s.

Fig. 5. Three agent case with D 6= 0.

Such a mismatch is a consequence of the fact that it is
not physically realistic to claim that all agents have a
common coordinate axis orientations when obtaining relative
position measurement. We examined the consequences of
the mismatched orientations on a standard formation shape
control algorithm. The two agent case was first studied and
we showed that the agents converge to a fixed, but distorted
formation exponentially fast. Unlike the matched case, the
formation is not asymptotically stationary. The shape error
between the actual final formation and the desired formation
was established for small mismatched orientation. We then
proposed estimation and compensation algorithms such that
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Fig. 6. Three agent case with D 6= 0.

the desired formation shape is achieved using the TRIAD
algorithm. Furthermore, the extensions to the n-agent case
and second-order dynamics were investigated. Simulations
are provided to validate the theoretical results. Future works
include giving more noise-robust algorithms for estimation
and compensation, discussing the case of relative velocity
feedback for second-order dynamics, studying the situation
of a rotating body frame, and solving the leader-following
formation control problem with mismatched measurements.
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