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We show that a network can self-organize its structure in a completely distributed manner in
order to optimize its synchronizability whilst satisfying the local constraints: non-negativity of edge
weights, and maximum weighted degree of nodes. A novel multilayer approach is presented which
uses a distributed strategy to estimate two spectral functions of the graph Laplacian, the algebraic
connectivity λ2 and the eigenratio r = λn/λ2. These local estimates are then used to evolve the
edge weights so as to maximize λ2, or minimize r and, hence, achieve an optimal structure.
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Many networked systems that we see in nature adapt
their structure in time to better perform a specific func-
tion. Learning through changing the strength of synapses
[1], or through rewiring of a collection of neurons [2] can
be seen as a paragon of this observation. For such net-
works, the global behaviour emerges from the local inter-
actions of agents and it is these agents which can adapt
according to their local environment to steer the macro-
scopic network behaviour and functionality. Hence, de-
vising microscopic strategies to steer the macroscopic be-
haviour of physical networks in a controlled way can offer
a number of benefits in engineering applications from the
synchronization of power networks [3] to the coordination
of robotic swarms [4]. Adaptive networks can be robust,
coping well with missing or broken parts; they are able to
self-organize, removing the requirement for a dedicated
designer, and adapting to changes in the operating en-
vironment in real time; moreover these systems tend to
scale well with an increasing number of agents [5].

It is the behaviour of self-organization which motivates
this Letter. In particular, we ask, “Can networks adapt
into globally optimal structures, using only determinis-
tic local feedback interactions between agents?”. In our
model, we focus on the problem of finding the weighted
network with globally optimal synchronizability, defined
alternatively as maximizing the algebraic connectivity
λ2, the second smallest eigenvalue of the graph Lapla-
cian, or by minimizing the eigenratio λn/λ2, with λn be-
ing the largest Laplacian eigenvalue. We add some con-
straints to model the realistic case of each agent having a
limited communication bandwidth, with edges only being
physical with positive weight. Specifically, we will upper
bound the weighted degree of each node by a constant
value, and require that edge weights be non-negative. A
real world example of these constraints are the limita-
tions of the shared link bandwidths common in wired
and wireless sensor and actuator networks (e.g., in dis-
itributed robot swarms), where distributed optimization
of the network can be of great benefit; see, for example,
[6].

These two problems, maximizing λ2 and minimizing
λn/λ2, have been well studied previously, with many
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Figure 1. A schematic diagram of the problem where we wish
to adapt edge weights w = [wi,j ]m×1 in time to maximize λ2

of a given graph with n nodes and m edges, in a distributed
manner. For clarity, the horizon of knowledge for edge {1, 2}
(dot-dash) and node 3 (dashed) are shown. Different values
of the edge weights are represented in terms of thickness of
the network links.

techniques proposed, both for weighted and unweighted,
directed and undirected networks. However, previous
methods either require global knowledge of the network
to find the optimal structure, or optimality is not guar-
anteed when local rules are used solely. In the first
case, finding the structure which maximizes algebraic
connectivity can be formulated as a semi-definite pro-
gram (SDP) [7] and extended to the unweighted case us-
ing mixed integer semi-definite programming (MISDP)
[8, 9]; in this case, it is assumed that the solver has com-
plete knowledge of the network. Likewise, methods em-
ploying simulated annealing with edge-rewiring, to find
optimal, or near-optimal, graphs [10–12] also require an
external supervisor of the network with global knowledge
to evolve the network structure. In the second case, only
local information can be used to assign edge weights:
for example, node degree may be used to modify edge
weights as in [13], enhancing λn/λ2, but convergence to-
wards an optimal structure cannot be guaranteed.

In this Letter, we present a new optimal strategy to
evolve the edge weights so as to maximize λ2 or mini-
mize λn/λ2 for a given undirected graph. Unlike previ-
ous methods which find the optimal network structure,
we impose the further constraint of only using informa-
tion local to each node to adapt the network, see Fig-
ure 1 for a schematic of the problem and the horizons of
each agent’s knowledge. Namely, nodes may only com-
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municate with their one-hop neighbours. The resulting
strategy employs a multi-layer framework, and drives the
network to the globally optimal structure in a fully de-
centralized manner.

We consider the generic homogeneous networked sys-
tem of n agents:

ẋi = F(xi)− σ
n∑
j=1

li,jH(xj) (1)

where xi = [xj ]d×1 is the d-dimensional state vector of
the ith system, F(xi) : Rd 7→ Rd is the vector field of the
ith isolated system, σ is a scalar global coupling param-
eter, H(xj) : Rd 7→ Rd is the coupling function between
nodes, and L = [li,j ]n×n is the weighted graph Laplacian,
defined as a function of edge weights wi,j as:

li,j =

{∑
j∈Ni

wi,j if i = j

−wi,j if i 6= j
(2)

where Ni is the one-hop neighbourhood of node i, so that
L is a square symmetric matrix with zero row sum. The
eigenvalues of the graph Laplacian are thus real, and can
then be ordered 0 = λ1 < λ2 ≤ · · · ≤ λn.

For populations of such identical, coupled, nonlinear
systems, the predominant technique for determining the
local stability of the synchronous solution is the Mas-
ter Stability Function (MSF) approach [14, 15]. In gen-
eral, for a given MSF Ψ(α), intervals in the scalar ar-
gument α for which its value is negative fall into two
categories: right-unbounded Ψ(α) < 0 for α ∈ (α1,∞),
or proper bounded Ψ(α) < 0 for α ∈ (α1, α2). Using the
classification system of Huang et al. [15], those MSFs
which contain only one negative interval and that inter-
val is right-unbounded are called Γ1, and those for which
their sole negative interval is proper bounded are called
Γ2. For systems with a Γ1 MSF, the synchronous so-
lution is stable if σλ2(L) > α1 (Case 1). That is, net-
works with greater algebraic connectivity λ2 require a
lower global coupling strength, and are thus more eas-
ily synchronized. On the other hand, for systems with a
Γ2 MSF, the synchronous solution can only be stable if
α1 < σλ2 ≤ σλn < α2 (Case 2). Thus, such systems can
only permit a locally transversally stable synchronous so-
lution if λn/λ2 < α2/α1. Graphs with lower eigenratio
r := λn/λ2 are then deemed more synchronizable [16].
Thus, depending on the shape of the specific MSF for the
networked system, one of these two spectral functions of
the graph Laplacian determines its synchronizability.

If we wish to maximize synchronizability, then we must
consider two cases, which can be formulated in the stan-
dard form of the optimization problem

minimize
w

f(w) (3)

subject to w ∈ W

where w = [wi,j ]m×1 is the vector of all edge weights, the
objective function f(w) = −λ2 for Case 1 or f(w) = r

for Case 2, andW is a set of feasible edge weights, which
is both closed and convex. Here, we will use the following
feasible region,

W = {w : w ≥ 0 ∧ li,i ≤ ki,∀i} (4)

so as to allow only non-negative edge weights, and upper
bound the weighted degree of each node by a constant
ki (feasible edge weights lie in a closed polytope in the
positive orthant of Rm).

To optimize the desired objective (maximizing λ2 or
minimizing r) we take advantage of the fact that λ2(L)
is a concave function of the edge weights [7] (−λ2(L) is
then a convex function), and r(L) is a quasiconvex func-
tion of edge weights [17], thus for either function any
local minimizer is a global minimizer. Then as our set
of feasible edge weights is a convex set, we can minimize
−λ2(L) or r(L) by gradient descent in a distributed fash-
ion. This gradient descent method forms the top level in
a hierarchy of distributed processes (see Figure 2) which
is added to an underlying layer designed to estimate the
gradient of the chosen objective. Note that Case 2 is
an example of a single ratio quasi-convex fractional pro-
gram, and thus can be transformed to a parameter-free
convex program, as described in [17] Proposition 8.

First, let us describe the Weight optimizer layer in Fig-
ure 2. The goal of this layer is to minimize the objective
function f(w) by forcing edge weights in the direction of
steepest descent of a modified objective function g(w),
which enforces the boundary constraints of the feasible
region through the use of logarithmic barriers [18]:

g(w) = f(w)− 1

q(t)

 ∑
{i,j}∈E

log(wi,j) +

n∑
i=1

log(ki − li,i)


(5)

For conciseness of notation we have used E to signify the
edge set, so that the first summation is over all edges in
the network. The strength of these barriers is determined
by the function q(t) which is chosen to be positive mono-
tonic increasing and unbounded. It increases as soon as
the minimal value of f(w) is approached (see the supple-
mentary material for the choice of q(t)). This guarantees
that the bounds of W are kept, while converging to the
(constrained) optimum wopt.

Each edge weight is then adapted in time according to:

ẅi,j = −ka
∂g(w)

∂wi,j
− c1ẇi,j (6)

where the sensitivity of the modified objective with re-
spect to an edge weight can be computed as:

∂g(w)

∂wi,j
=
∂f(w)

∂wi,j
− 1

q(t)

(
1

wi,j
− 1

ki − li,i
− 1

kj − lj,j

)
(7)

It can clearly be seen that the forcing from the loga-
rithmic barrier functions on the adaptive dynamics of a
single edge requires only information local to that edge
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(its own weight wi,j , the weighted degrees of its parents
li,i and lj,j and their maximum allowed weighted degrees
ki and kj). Only the sensitivity of the chosen objective

function, ∂f(w)
∂wi,j

, with respect to the edge remains as a

global parameter, which will be computed locally via a
set of distributed estimators (in Case 1, by the λ2 Es-
timator layer, shown in Figure 2). This will permit the
optimization algorithm to be fully distributed.

In particular, to estimate the sensitivities of the alge-
braic connectivity to variation of the edge weights, we
use the distributed strategy by Yang et al. [19] to eval-
uate the algebraic connectivity of a weighted undirected
network in a distributed fashion. The strategy can be
implemented as two additional layers, the Proportional-
Integral (PI) Consensus layer and the λ2-Estimator layer
shown in Fig. 2. The dynamics of these two layers can
be described by the following set of differential equations
inspired by power iteration (see [19] for further details) :

ȧ = −k1ϕa − k2La− k3(ψa − 1) ◦ a (8)

ϕ̇a = γ(a−ϕa)− kPLϕa − kILχa (9)

χ̇a = kILϕa

ψ̇a = γ(a2 −ψa)− kPLψa − kILωa (10)

ω̇a = kILψa

For concise notation, component-wise product of vec-
tors is signified by ◦, and squaring a vector is taken
component-wise also, so that a2 = a ◦ a. Here a is an
estimate of the eigenvector associated with λ2, which re-
quires two further global variables: the arithmetic mean
of a, 〈a〉 , 1/n

∑
ai, and the mean of the squared com-

ponents, 〈a2〉 , 1/n
∑
a2i .

These global variables are estimated in a distributed
manner using a further layer (see Figure 2) consisting
of two Proportional-Integral (PI) consensus estimators
[20], with ϕa being an estimate of 〈a〉1, and ψa being
an estimate of 〈a2〉1.

The parameters k1, k2 and k3 control three actions
which can be summarized as deflation, direction up-
date, and renormalization, respectively [19]. The result
of these actions is that for a, there are two stable sta-
tionary points, which together are global attractors if
k1 > k3 ≥ k2λn:

a∗ = ±v2(L)

√
n(k3 − k2λ2)

k3
(11)

where v2 is the unit eigenvector associated with λ2.
Hence, λ2 can be estimated by node i using Equations (8)
to (11) as:

λ̂2
(i)

=
k3
k2

(1− ψai) (12)

By reversing the sign of the direction update in (8),
this distributed λ2 estimator may be modified to form a
distributed estimator for λn and the estimated eigenvec-
tor b associated with it (see Equation (3), supplementary
material, for details).

ai

kP kI γ

λ2
Estimator

k1 k2 k3

PI
Consensus

ψa,i = 〈̂a2〉

Weight
Optimiser

ai

aj , ∀ j ∈ Ni

w{i,j}, ∀ j ∈ Ni

∂λ2

∂w{i,j}

w{i,j}, ∀ j ∈ Ni

Estimators
ϕa,i = 〈̂a〉

L(w)

ϕa,j , ψa,j ∀ j ∈ Ni

Figure 2. Schematic diagram of the distributed multilayer
approach for λ2 maximisation proposed in the paper, with
faster processes at the bottom, and slower processes built on
top. The processes occurring in a single node are expanded,
and all nodes follow identical rules. For the corresponding
diagram for r minimisation, see the supplementary material.

These methods to make distributed estimates of λ2
and λn can further be used by each node to obtain local
estimates of the sensitivity of each function with respect
to an edge weight wi,j (derivations can be found in the
supplementary material):

∂̂λ2
∂wi,j

(i)

=
(ai − aj)2

nψai
(13)

∂̂λn
∂wi,j

(i)

=
(bi − bj)2

nψbi
(14)

Moreover, it is simply a matter of applying the quotient
rule for differentiation to estimate the sensitivity of r:

∂̂r

∂wi,j

(i)

=
λ̂2

(i)
∂̂λn

∂wi,j

(i)

− λ̂n
(i)

∂̂λ2

∂wi,j

(i)

(
λ̂n

(i)
)2 (15)

It is now possible to estimate the gradient of either
objective function in a distributed manner, and hence the
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Figure 3. Edge weights are adapted in time according to our distributed algorithm. The algebraic connectivity λ2 of the network
increases over time and settles to a maximum value. To see the initial dip in connectivity while the layers of estimators take
time to converge, see the inset. In the diagrams showing the initial and end state of the network, node diameter is proportional
to maximum allowed weighted degree, ki, and edge thickness and colour is proportional to weight, higher weights are redder
and thicker. Case 2, when f(w) = r, can be found in the supplementary material.

edge weights can be adapted by steepest descent, whilst
satisfying the feasibility constraints, also in a distributed
fashion. It is worth noting that we require the estimators
to converge faster than the weights adapt so that the
sensitivities can be estimated with enough accuracy.

In Figure 3, we illustrate a representative application of
our strategy to adapt the edges of a small undirected net-
work for maximizing the algebraic connectivity λ2, Case
1. We have randomly generated a connected graph of
twenty nodes, and set all weights at wi,j(0) = 1 − ε,
where ε is small so that the initial edge weights lie in
the interior of the feasible set. When all weights are
equal to 1, the initial algebraic connectivity is found to be
λ2(0) ≈ 0.3344. Edge weights are then adapted according
to the algorithm in Figure 2, using Equations (8) to (10)
with (13) to estimate the gradient of the objective func-
tion, and (6) to adapt each edge weight according to gra-
dient descent. We choose control parameters so that the
PI consensus estimator layer is approximately 10 times
faster than the algebraic connectivity estimator, which
in turn is chosen to be 10 times faster than the weight
adaptation layer. This gives us sufficient separation in
time scale between the layers. To bound the feasible set
of edge weights, no weight is allowed to be negative, and
the maximum allowed weighted degree of each node ki is
chosen to be the degree of the node. Through this choice
of a feasible set, we can be sure that total weight in the
network may not increase over time, and any improve-
ment in λ2 must be due to better distribution of edge
weight, rather than absolute increase of their total value.

As edge weights are adapted, the algebraic connectivity
initially decreases until the estimator layers have properly
converged, whereupon it increases rapidly, as the nadir
of the potential well of the objective function for a given

q is reached. Finally, as q increases and the logarithmic
barriers enforcing the feasible set become steeper, the
edge weights slowly converge to their optimal values.

It should be noticed that the algebraic connectivity
converges more rapidly than the slowest converging edges
due to weak sensitivity of λ2 with respect to some edges.
After 5000 seconds of simulated time, the algebraic con-
nectivity has reached a value of λ2(5000) ≈ 0.3707, which
over 99.9% of the result for optimal λ2 found using the
method of [7]: λ∗2 ≈ 0.3708. At this time, some of the
edges have yet to converge, but it is known that three
edges will tend to zero value, and could be removed from
the network at no detriment to the algebraic connectivity.

In Figure S4 of the supplementary material, we show
the edge adaptation for the alternative optimization
problem described in Case 2, minimization of the eigenra-
tio r. For this particular case we highlight that edges do
not converge to a final value if the optimal network has
non-distinct eigenvalues in the objective function f(w).
Indeed, in the optimal network for the given graph and
constraints, λn ≈ λn−1 ≈ λn−2, see Figure S5 in the
supplementary material for the trajectories of the eigen-
values of the weighted graph Laplacian.

In this Letter, we have shown that a network of agents
may cooperate together, exchanging only local knowl-
edge, and come to agreement on a globally optimal net-
work structure, through the use of a multi-layer weight
adaptation algorithm. By means of such a multilayer ap-
proach, we showed that it is possible for nodes in the
network to locally estimate the sensitivities of two global
spectral functions of the graph Laplacian: the algebraic
connectivity λ2 and the eigenratio λn/λ2. This informa-
tion can then be used by the edges to locally adapt their
weights so as to maximize the network synchronizability.
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It is therefore possible for the network to self-organize
in order to steer some macroscopic observables, such the
algebraic connectivity, by using only microscopic infor-
mation. Future work will be aimed at investigating how

to extend this approach to control other emerging prop-
erties of a network of interest and, hence, achieve global
control of the network via local adaptive rules.
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THE RÖSSLER OSCILLATOR & MSF CHARACTERISTIC SHAPES

As a representative example, we consider a network of coupled Rössler oscillators with parameters as in [1]. In the
fashion of Equation (1) in the main document, the isolated system is given by

x , [x, y, z]>

ẋ = F(x) ,

 −y − z
x+ ζy

β + z(x− γ)

 , ζ = 0.2, β = 0.2, γ = 9

and we investigate two different coupling regimes:

x-diffusive coupling:

H(x) , [x, 0, 0]>

y-diffusive coupling:

H(x) , [0, y, 0]>

These two coupling schemes yield Master Stability Functions of class Γ2 and Γ1 respectively:
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FIG. S 1: The MSFs Ψ(α) for the Rössler oscillator with two different couplings are shown, showing class Γ1

(y-diffusive coupling, dashed line) and Γ2 (x-diffusive coupling, solid line) characteristic shapes.

The two characteristic shapes of a negative interval in an MSF can be seen. Under x-diffusive coupling the
corresponding MSF (solid line) crosses the x axis twice, creating a proper-bounded negative interval. In a network
of such x-diffusively coupled Rössler oscillators, all eigenvalues of the graph Laplacian scaled by the global coupling
constant must fall into this negative interval for local stability of the synchronous manifold. This class of MSF leads
to the idea of minimizing the ratio λn/λ2 to improve synchronizability [1, 2]. On the other hand, under y-diffusive
coupling the corresponding MSF (dashed line) is right unbounded. For a connected network of Rössler oscillators
coupled in this manner, the synchronous manifold can always be stabilised with sufficiently high global coupling
parameter. However, the larger the algebraic connectivity λ2 is, the lower the global coupling parameter may be,
whilst still guaranteeing local stability of the synchronous solution. Thus, the network synchronizability can be
improved by increasing λ2.
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CHOICE OF STEEPNESS FUNCTION q(t)

The basic idea of the weight adaption layer, Equation (6) in the main text, is that edge weights will evolve to the
minimum of a potential well g(w). If we consider a constant function q(t) in g(w), this is evident as Equation (6) is
a dissipative dynamical system.

However, matters are slightly complicated by the notion that the logarithmic barrier functions of the well are
required to become steeper in time, through the action of q(t). It is sufficient that q(t) be positive, monotonic
increasing, unbounded function, that does not escape to infinity in finite time, for edge weights to converge to the
minimum of the desired objective f(w). However, we choose to increase the steepness of the barrier functions as the
current minimum of the well is approached. Conceptually, the steepness of the logarithmic barriers could be increased
in proportion to the current flatness of the well, using the adaptive law:

q̈ =
kb

||∇g(w)||2 + δ
− c2q̇ (1)

Unfortunately this equation is not fully distributed, violating our requirements. To overcome this problem we assign
assign a local qi,j for each weight, and update according to:

q̈i,j =
kb

||∂g(w)
∂wi,j

||2 + δ
− c2q̇i,j (2)

The positive control parameters kb and c2 can be tuned to determine the aggressiveness of the barrier steepening,
while the control parameter δ (also positive) is used to avoid the singularity as edge weights approach their optimal
values.

0 1000 2000 3000 4000 5000

Time (t)

0.0

0.2

0.4

0.6

0.8

1.0

q
(t

)

×107

FIG. S 2: Here we show how the values of qi,j grow over time in the simulation described in the main text,
maximizing the algebraic connectivity λ2 of the network.
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DISTRIBUTED λn ESTIMATION

The largest Laplacian eigenvalue can be estimated using a similar approach to the method from [3] presented in
the main text to estimate λ2. Specifically, we can use the equations:

ḃ = −k1ϕb + k2Lb− nk3(ψa − 1) · b (3)

ϕ̇b = γ(b−ϕb)− kPLϕb − kILχb

χ̇b = kILϕb

ψ̇b = γ(b2 −ψb)− kPLψb − kILωb

ω̇b = kILψb

so that b will converge to an eigenvector associated with λn. Node i can then compute a local estimate of λn:

λ̂n
(i)

=
nk3
k2

(ψbi − 1) (4)

This process can be seen as the mirror to the algebraic connectivity estimator presented in [3]. Instead of the
term associated with k2 contracting the state towards consensus so that the slowest mode dominates, it now expands
away from consensus so that the fastest mode dominates. Again, k1 ensures that the estimate is perpendicular to the
consensus mode and k3 acts to renormalize and stop the estimate from diverging.
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SENSITIVITY DERIVATION

Here we derive, in a similar manner to [4], the partial derivatives of a generic eigenvalue, say λ, of the weighted
graph Laplacian with respect to the edge weight wi,j . Imagine that we know an associated right eigenvector v so
that we can define the unit eigenvector v̂ = v/||v||2. As L is symmetric, we know that the unit left eigenvector is the
transpose û = v̂>. Then, pre-multiplying the eigenvector relation Lv̂ = λv̂ by the unit left eigenvector yields:

v̂>Lv̂ = λv̂>v̂ = λ (5)

Taking the componentwise derivative with respect to the edge weight wi,j , we find that:

∂λ

∂wi,j
=

∂v̂T

∂wi,j
Lv̂ + v̂T ∂L

∂wi,j
v̂ + v̂TL

∂v̂

∂wi,j

As L is symmetric, it is ensured that

∂v̂T

∂wi,j
Lv̂ + v̂TL

∂v̂

∂wi,j
= λ

∂(v̂Tv̂)

∂wi,j
= 0

Thus,

∂λ

∂wi,j
= v̂T ∂L

∂wi,j
v̂ (6)

Without loss of generality we can relabel nodes i and j to 1 and 2, revealing

∂λ

∂w1,2
=

1

||v||22
vT

 +1 −1

−1 +1
0

0 0

v

=
1

||v||22
(v1 − v2)

2
(7)

where v = [v1, v2, . . . , vn]>.
From the distributed estimation procedure outlined in Equations (8) to (10) in the main text, and the set of

Equations (3) in the supplementary text, we can compute estimates for the eigenvectors associated with λ2 and λn,
respectively a and b, and estimates of the mean of their squared components, respectively ψa and ψb. Using the
relabelling argument that any two nodes could be labelled 1 and 2, along with Equation (7), we arrive at node i’s
distributed estimates for the sensitivities:

∂̂λ2
∂wi,j

(i)

=
(ai − aj)2
nψai

∂̂λn
∂wi,j

(i)

=
(bi − bj)2
nψbi

A schematic diagram of the distributed multi-layer approach for r minimization is shown in Figure S3.
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FIG. S 3: Schematic diagram of our distributed method for r minimization. The flow diagram structure is a
schematic of how variables interact in the different estimation layers within a single node i. On the left of the
diagram, the algebraic connectivity is being estimated (green block) which requires two PI average consensus

estimators (blue block). From these blocks, distributed estimates are made for λ2 and ∂λ2/∂wi,j for each edge that
connects to node i. In a similar fashion, on the right hand side of the diagram, distributed estimates of λn and
∂λn/∂wi,j are being made. Combining these estimates, a local estimate of ∂r/∂wi,j is formed, and this is fed into

the weight optimizer (yellow block), which uses this estimate and the local boundary constraints to inform the
adaptation of each of the weights.

EIGENRATIO OPTIMIZATION SIMULATION

We use the same example graph to demonstrate Case 2: the minimization of the eigenratio λn/λ2. The correspond-
ing schematic for the distributed algorithm can be seen in Figure S3.

The eigenratio decreases rapidly below the threshold for the local stability of the synchronized state for x-diffusively
coupled Rössler oscillators (dashed line). However, it can be seen that edge weights continue to exhibit small amplitude
oscillations at steady state. These oscillations are due to the optimal Laplacian possessing non-distinct extremal
eigenvalues.

Specifically, due to the limitation of the distributed estimator for λn only being able to estimate an associated
eigenvector, rather than the eigenspace, weights will adapt to reduce λn so that it now becomes λn−1, and the
distributed estimator takes time to converge on the new λn. In this time where the estimator provides an incorrect
value, edge weights may overshoot, and set up a persistent oscillation around the optimal value. As the speed of
the distributed estimator layers is increased relative to the weight adaptation layers, oscillations become smaller in
amplitude and higher in frequency.



7

r(
t)

Time (t)

w
(t

)

w(t = 0) = 1 w(t→ ∞) → w∗

0 500 1000 1500 2000 2500 3000 3500 400020

21

22

23

24

25

26
27

1.6

1.4

1.2

1.0

0.8

0.6

0.4

FIG. S 4: Edge weights are adapted in time according to our distributed algorithm for the minimization of
r := λn/λ2. It can be seen that the eigenratio r decreases over time settling into a persistent oscillation. Again, in

the network diagrams, edge thickness and redness is proportional to edge weight, and node diameter is proportional
to the maximum allowed weighted degree at each node.

The presence of these oscillations does not affect in any case convergence towards an optimal value. In practice
each edge weight can be “locked” to its average steady-state value as is typically done in the practical implementation
of adaptive controllers, e.g.,[5].
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FIG. S 5: Evolution of the eigenvalues of the Laplacian as weights are adapted. It can be seen that as the largest
eigenvalue diminishes, it converges on the second and third largest eigenvalues, and in the steady-state, the three

largest eigenvalues are non-distinct.
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