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Abstract. The last decade has witnessed significant attention on networked control systems (NCS) due to

their ubiquitous presence in industrial applications, and, in the particular case of wireless NCS, because of

their architectural flexibility and low installation and maintenance costs. In wireless NCS the communication
between sensors, controllers, and actuators is supported by a communication channel that is likely to introduce

variable communication delays, packet losses, limited bandwidth, and other practical non-idealities leading to

numerous technical challenges. Although stability properties of NCS have been investigated extensively in the
literature, results for NCS under more complex and general objectives, and in particular results dealing with

verification or controller synthesis for logical specifications, are much more limited. This work investigates how

to address such complex objectives by constructively deriving symbolic models of NCS, while encompassing
the mentioned network non-idealities. The obtained abstracted (symbolic) models can then be employed to

synthesize hybrid controllers enforcing rich logical specifications over the concrete NCS models. Examples

of such general specifications include properties expressed as formulae in linear temporal logic (LTL) or as
automata on infinite strings. We thus provide a general synthesis framework that can be flexibly adapted to

a number of NCS setups. We illustrate the effectiveness of the results over some case studies.

1. Introduction

Over the last decade the analysis and synthesis of networked control systems (NCS) have received significant
attention. NCS are ubiquitous in most industrial applications due to their many advantages over traditional
control systems, such as increased architectural flexibility and reduced installation and maintenance costs,
particularly for wireless NCS. The numerous non-idealities of the network in an NCS introduce new challenges
for the analysis of the behavior (such as the stability) of the plant, and for the synthesis of new control schemes.
The various non-idealities of the network can be broadly categorized as follows: (i) quantization errors; (ii)
packet dropouts; (iii) time-varying sampling/transmission intervals; (iv) time-varying communication delays;
and (v) communication constraints (e.g. scheduling protocols). The limited bandwidth of the network does
not require a separate classification as it is captured by a combination of quantization errors (i) and the
communication delays (iv). As pointed out later in the paper, category (ii) can also be incorporated in category
(iv), as long as the maximum number of subsequent dropouts over the network is bounded [HvdW10].

Recently, there have been many studies focused mostly on the stability properties of NCS: in [BMH12] (iii)-(v)
are simultaneously considered; in [GCL08] (i), (ii), and (iv) are taken into account; [ADJ+11] studies (ii) and
(v); [AHS12] focuses on (ii) and (iii); in [CvdWHN09, vdWNH12] (ii)-(iv) are considered; and finally in [NL09]
(i), (iii), and (v) are taken into account. Despite all the progress on the stability analysis of NCS as reported
in [BMH12, GCL08, ADJ+11, AHS12, CvdWHN09, vdWNH12, NL09], there are no mature results in the
literature dealing with more complex objectives, such as model verification or formal (controller) synthesis for
richer properties expressed as temporal logic specifications [BK08]. Examples of those specifications include
linear temporal logic (LTL) formulae or automata over infinite strings [BK08], which cannot be investigated
with existing approaches for NCS. A promising direction to study these complex properties is the use of
symbolic models [Tab09]. A symbolic model is an abstract description of the original (concrete) dynamical
model, where each abstract state (or symbol) corresponds to an aggregate of continuous states in the concrete
model. When a finite symbolic model is obtained and is formally related to the original model via the notions of
(alternating) approximate (bi)simulations [Tab09] or feedback refinement relations [RWR16], one can leverage
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algorithmic machinery for controller synthesis of symbolic systems [MPS95] to automatically synthesize hybrid
controllers for the original, concrete model [Tab09].

To the best of our knowledge, the first and only results in the literature on the construction of symbolic
models for NCS are [BPD12b, BPD12a]: these results provide symbolic models for NCS obtained via gridding
techniques (discretization of state and control sets); they simultaneously consider the network non-idealities (i),
(ii), and (iv); they address symbolic control design with objectives only expressed in terms of non-deterministic
automata; the possibility of out-of-order packet arrivals is not considered; they exclusively consider static (i.e.
memoryless) symbolic controllers; and, furthermore, in order to apply standard algorithms for verification and
synthesis to the obtained symbolic model often the given specification requires an additional reformulation
over an extended state-space, which can lead to significant computation overheads.

In this article we provide a general construction of symbolic models for NCS, which can directly employ
available and well investigated symbolic models from the literature that are obtained exclusively for the plant
(that is, without the need to encompass the presence of the network explicitly in the construction). As such,
one can directly leverage existing results to obtain symbolic models for the plant, such as grid-based approaches
in [GPT09, ZPMT12, RWR16], recent results in [ZTA14, ZTAng] that do not require state-space discretization
but only input-set discretization, or formula-guided (non-grid-based) approaches in [YTC+13]. In this work we
show that, having a symbolic model of the plant, one can then construct symbolic models for the overall NCS.
As a consequence, as long as there exists some type of symbolic abstraction of the plant, one can always use
the results provided in this article to construct symbolic models for the overall, complex NCS. As a relevant
side result, the techniques discussed in this paper can also be used for models of stochastic plants, in view
of recent literature providing symbolic models for such systems [ZTA14, ZTAng, ZEAL13, ZEM+14]. In this
work, we explicitly consider the network non-idealities (i), (ii), and (iv) acting on the NCS simultaneously. We
further consider possible out-of-order packet arrivals and message rejections, i.e. the effect of older data being
neglected because more recent one is available. Let us also remark that this work is not limited to problems
where the controller is static. As a result, without requiring any specific reformulation, we enable the study
of large classes of logical specifications, such as those expressed as general LTL formulae or as automata on
infinite strings, which are often shown to require dynamic (i.e. with memory) symbolic controllers (cf. the
example section) [BK08].

This paper presents a detailed and mature description of the results announced in [ZMA14], including a
detailed discussion on dealing with the quantized measurements, on the symbolic controller synthesis and
refinement, and on the space complexity, and several case studies. Furthermore, we have added a section on
related work and provided a detailed comparison with the results in [BPD12b, BPD12a].

2. Notations and Basic Concepts

2.1. Notations. The identity map on a set A is denoted by 1A. The symbols N, N0, Z, R, R+, and R+
0 denote

the set of natural, nonnegative integer, integer, real, positive, and nonnegative real numbers, respectively.
Given a set A, define An+1 = A×An for any n ∈ N. Given a vector x ∈ Rn, we denote by xi the i-th element
of x, and by ‖x‖ the infinity norm of x. Given an interval [a, b] ⊆ R with a ≤ b, we denote by [a; b] the set
[a, b] ∩ N. We denote by [Rn]η = {a ∈ Rn | ai = kiη, ki ∈ Z, i = 1, . . . , n}.
Given a measurable function f : R+

0 → Rn, the (essential) supremum of f is denoted by ‖f‖∞, where ‖f‖∞ :=
(ess)sup{‖f(t)‖, t ≥ 0}. A continuous function γ : R+

0 → R+
0 is said to belong to class K if it is strictly

increasing and γ(0) = 0; γ is said to belong to class K∞ if γ ∈ K and γ(r) → ∞ as r → ∞. A continuous
function β : R+

0 × R+
0 → R+

0 is said to belong to class KL if, for each fixed s, the map β(r, s) belongs to class K
with respect to r and, for each fixed nonzero r, the map β(r, s) is decreasing with respect to s and β(r, s)→ 0
as s→∞. We identify a relation R ⊆ A×B with the map R : A→ 2B defined by b ∈ R(a) iff (a, b) ∈ R.
Given a relation R ⊆ A×B, R−1 denotes the inverse relation defined by R−1 = {(b, a) ∈ B ×A : (a, b) ∈ R}.
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When R is an equivalence relation1 on a set A, we denote by [a] the equivalence class corresponding to the
element a ∈ A, by A/R the set of all equivalence classes (quotient set), and by πR : A → A/R the natural
projection map taking a point a ∈ A to its equivalence class π(a) = [a] ∈ A/R.

2.2. Control systems. The class of control systems that we consider in this paper is formalized in the
following definition.

Definition 2.1. A control system Σ is a tuple Σ = (Rn,U,U , f), where:

• Rn is the state space;
• U ⊆ Rm is the bounded input set;
• U is a subset of the set of all measurable functions of time, from intervals of the form ]a, b[⊆ R to U,

with a < 0 and b > 0;
• f : Rn × U→ Rn is a continuous map satisfying the following Lipschitz assumption: for every compact

set Q ⊂ Rn, there exists a constant Z ∈ R+ such that ‖f(x, u)− f(y, u)‖ ≤ Z‖x− y‖ for all x, y ∈ Q
and all u ∈ U.

A locally absolutely continuous curve ξ :]a, b[→ Rn is said to be a trajectory of Σ if there exists υ ∈ U satisfying:

ξ̇(t) = f (ξ(t), υ(t)) ,

for almost all t ∈ ]a, b[. Although we have defined trajectories over open domains, we shall as well refer to
trajectories ξ :[0, t]→ Rn defined on closed domains [0, t], t ∈ R+, with the understanding of the existence
of a trajectory ξ′ :]a, b[→ Rn such that ξ = ξ′|[0,t] with a < 0 and b > t. We also write ξxυ(t) to denote the
point reached at time t under the input υ from the initial condition x = ξxυ(0); the point ξxυ(t) is uniquely
determined due to the assumptions on f [Son98]. A control system Σ is said to be forward complete if every
trajectory is defined on an interval of the form ]a,∞[ [AS99].

2.3. Notions of stability and of completeness. Some of the existing results recalled in this paper require
certain stability properties (or lack thereof) on Σ. First, we recall a stability property, introduced in [Ang02],
as defined next.

Definition 2.2. A control system Σ is incrementally input-to-state stable (δ-ISS) if it is forward complete
and there exists a KL function β and a K∞ function γ such that for any t ∈ R+

0 , any x, x̂ ∈ Rn, and any
υ, υ̂ ∈ U , the following condition is satisfied:

‖ξxυ(t)− ξx̂υ̂(t)‖ ≤ β (‖x− x̂‖ , t) + γ (‖υ − υ̂‖∞) . (2.1)

Next we recall a completeness property, introduced in [ZPMT12], which can be satisfied by larger classes of
(even unstable) control systems.

Definition 2.3. A control system Σ is incrementally forward complete (δ-FC) if it is forward complete and
there exist continuous functions β : R+

0 × R+
0 → R+

0 and γ : R+
0 × R+

0 → R+
0 such that for each fixed s, the

functions β(r, s) and γ(r, s) belong to class K∞ with respect to r, and for any t ∈ R+
0 , any x, x̂ ∈ Rn, and any

υ, υ̂ ∈ U , the following condition is satisfied:

‖ξxυ(t)− ξx̂υ̂(t)‖ ≤ β (‖x− x̂‖ , t) + γ (‖υ − υ̂‖∞, t) . (2.2)

As explained in [ZPMT12, Remark 2.3], δ-FC implies uniform continuity of the map φt : Rn×U → Rn defined
by φt(x, υ) = ξxυ(t) for any fixed t ∈ R+

0 .

We refer the interested readers to the results in [Ang02] (resp. [ZPMT12]) providing a characterization (resp.
description) of δ-ISS (resp. δ-FC) in terms of the existence of so-called incremental Lyapunov functions.

1An equivalence relation R ⊆ X ×X is a binary relation on a set X if it is reflexive, symmetric, and transitive.
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3. Systems & Approximate Equivalence Notions

We now recall the notion of system, as introduced in [Tab09], that we later use to describe NCS as well as
their symbolic abstractions.

Definition 3.1. A system S is a tuple S = (X,X0, U, - , Y,H) consisting of: a (possibly infinite) set of
states X; a (possibly infinite) set of initial states X0 ⊆ X; a (possibly infinite) set of inputs U ; a transition
relation - ⊆ X × U ×X; a set of outputs Y ; and an output map H : X → Y .

A transition (x, u, x′) ∈ - is also denoted by x
u- x′. If x

u- x′, state x′ is called a u-successor of
state x. We denote by Postu(x) the set of all u-successors of a state x, and by U(x) the set of inputs u ∈ U
for which Postu(x) is nonempty. We denote by T (U, Y ) the set of all systems associated to a set of inputs U
and a set of outputs Y . A system S is said to be:

• metric, if the output set Y is equipped with a metric d : Y × Y → R+
0 ;

• finite (or symbolic), if X and U are finite sets;
• countable, if X and U are countable sets;
• deterministic, if for any state x ∈ X and any input u ∈ U(x), |Postu(x)| = 1;
• nondeterministic, if there exist a state x ∈ X and an input u ∈ U such that |Postu(x)| > 1;

Given a system S = (X,X0, U, - , Y,H), we denote by |S| the size of S, defined as |S| := | - |, which
is equal to the total number of transitions in S. Note that it is more reasonable to consider | - | as the
size of S rather than |X| because in practice it is the transitions of S that are required to be stored rather
than just the states of S.

We recall the notions of (alternating) approximate (bi)simulation relation, introduced in [GP07, PT09], which
are useful to relate properties of NCS to those of their symbolic models. First we recall the notion of approx-
imate (bi)simulation relation, introduced in [GP07].

Definition 3.2. Let Sa = (Xa, Xa0, Ua,
a
- , Ya, Ha) and Sb = (Xb, Xb0, Ub,

b
- , Yb, Hb) be metric sys-

tems with the same output sets Ya = Yb and metric d. For ε ∈ R+
0 , a relation R ⊆ Xa ×Xb is said to be an

ε-approximate simulation relation from Sa to Sb if the following three conditions are satisfied:

(i) for every xa0 ∈ Xa0, there exists xb0 ∈ Xb0 with (xa0, xb0) ∈ R;
(ii) for every (xa, xb) ∈ R, we have d(Ha(xa), Hb(xb)) ≤ ε;

(iii) for every (xa, xb) ∈ R, the existence of xa
ua

a
- x′a in Sa implies the existence of xb

ub

b
- x′b in Sb

satisfying (x′a, x
′
b) ∈ R.

A relation R ⊆ Xa × Xb is said to be an ε-approximate bisimulation relation between Sa and Sb if R is an
ε-approximate simulation relation from Sa to Sb and R−1 is an ε-approximate simulation relation from Sb to
Sa.
System Sa is ε-approximately simulated by Sb, denoted by Sa �εS Sb, if there exists an ε-approximate simulation
relation from Sa to Sb. System Sa is ε-approximately bisimilar to Sb, denoted by Sa ∼=ε

S Sb, if there exists an
ε-approximate bisimulation relation between Sa and Sb.

As explained in [PT09], for nondeterministic systems we need to consider relationships that explicitly capture
the adversarial nature of nondeterminism. Furthermore, these types of relations become crucial to enable the
refinement of symbolic controllers [Tab09].

Definition 3.3. Let Sa = (Xa, Xa0, Ua,
a
- , Ya, Ha) and Sb = (Xb, Xb0, Ub,

b
- , Yb, Hb) be metric sys-

tems with the same output sets Ya = Yb and metric d. For ε ∈ R+
0 , a relation R ⊆ Xa ×Xb is said to be an

alternating ε-approximate simulation relation from Sa to Sb if conditions (i) and (ii) in Definition 3.2, as well
as the following condition, are satisfied:
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(iii) for every (xa, xb) ∈ R and for every ua ∈ Ua (xa) there exists some ub ∈ Ub (xb) such that for every
x′b ∈ Postub(xb) there exists x′a ∈ Postua(xa) satisfying (x′a, x

′
b) ∈ R.

A relation R ⊆ Xa ×Xb is said to be an alternating ε-approximate bisimulation relation between Sa and Sb if
R is an alternating ε-approximate simulation relation from Sa to Sb and R−1 is an alternating ε-approximate
simulation relation from Sb to Sa.
System Sa is alternatingly ε-approximately simulated by Sb, denoted by Sa �εAS Sb, if there exists an alternating
ε-approximate simulation relation from Sa to Sb. System Sa is alternatingly ε-approximately bisimilar to Sb,
denoted by Sa ∼=ε

AS Sb, if there exists an alternating ε-approximate bisimulation relation between Sa and Sb.

It can be readily seen that the notions of approximate (bi)simulation relation and of alternating approximate
(bi)simulation relation coincide when the systems involved are deterministic, in the sense of Definition 3.1.

Let us introduce a metric system Sτ (Σ) := (Xτ , Xτ0, Uτ ,
τ
- , Yτ , Hτ ), which captures all the information

contained in the forward complete control system Σ at sampling times kτ , ∀k ∈ N0: Xτ = Rn, Xτ0 = Rn,
Uτ = U , Yτ = Rn/Q for some given equivalence relation Q ⊆ Xτ ×Xτ , Hτ = πQ, and

• xτ
υτ

τ
- x′τ if there exists a trajectory ξxτυτ : [0, τ ]→ Rn of Σ satisfying ξxτυτ (τ) = x′τ .

Notice that the set of states and inputs of Sτ (Σ) are uncountable and that Sτ (Σ) is a deterministic system
in the sense of Definition 3.1 since (cf. Subsection 2.2) the trajectory of Σ is uniquely determined. We also
assume that the output set Yτ is equipped with a metric dYτ : Yτ × Yτ → R+

0 .

We refer the interested readers to [GPT09, ZPMT12, ZTA14, ZTAng] proposing results on the existence of
symbolic abstractions Sq(Σ) := (Xq, Xq0, Uq,

q
- , Yq, Hq) for Sτ (Σ). In particular, the results in [GPT09,

ZTA14, ZTAng] and [ZPMT12] provide symbolic abstractions Sq(Σ) for δ-ISS and δ-FC control systems Σ,
respectively, such that Sq(Σ) ∼=ε

S Sτ (Σ) (equivalently Sq(Σ) ∼=ε
AS Sτ (Σ))2 and Sq(Σ) �εAS Sτ (Σ) �εS Sq(Σ),

respectively. The results in [GPT09, ZPMT12] assume that Q is the identity relation in the definition of
Sτ (Σ), implying that Yτ = Rn and πQ = 1Rn , U is the set of piecewise constant curves over intervals of length
τ (cf. equation (4.3)), and the metric dYτ is the natural infinity norm metric. While the abstraction results
in [GPT09, ZPMT12] are based on state-space discretization, the ones in [ZTA14, ZTAng] do not require any
state-space discretization, and are potentially more efficient than those in [GPT09, ZPMT12] when dealing
with high-dimensional plants.

Remark 3.4. Consider a metric system Sτ (Σ) admitting an abstraction Sq(Σ). Since the plant Σ is forward
complete, one can readily verify that given any state xτ ∈ Xτ , there always exists a υτ -successor of xτ , for any
υτ ∈ Uτ . Hence, Uτ (xτ ) = Uτ for any xτ ∈ Xτ . Therefore, without loss of generality, one can also assume
that Uq(xq) = Uq for any xq ∈ Xq.

4. Models of Networked Control Systems

Consider an NCS Σ̃ as depicted schematically in Figure 1, and similar to those discussed in [CvdWHN09,

Figure 1], [vdWNH12, Figure 1], and [BPD12b, Figure 1]. The NCS Σ̃ includes a plant Σ, a time-driven
sampler, and an event-driven zero-order-hold (ZOH), all of which are described in more detail later. The
NCS consists of a forward complete plant Σ = (Rn,U,U , f), which is connected to a symbolic controller,
explained in more detail in the next subsection, over a communication network that induces delays (∆sc and
∆ca). The state measurements of the plant are sampled by a time-driven sampler at times sk := kτ , k ∈ N0,
and we denote xk := ξ(sk). The discrete-time control values computed by the symbolic controller at times
sk are denoted by uk. Time-varying network-induced delays, i.e. the sensor-to-controller delay (∆sc

k ) and the
controller-to-actuator delay (∆ca

k ), are included in the model. Moreover, packet dropouts in both channels

2Recall that the notions of alternating approximate (bi)simulation and approximate (bi)simulation relation coincide when the
systems involved are deterministic.
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ZOH Sensor
Plant

⌃ : ⇠̇ = f(⇠, �)

e⌃ ⌧

�(t) ⇠(t)uk

Symbolic 
Controller

�ca
k �sc

k

xk

bxk

y1

y2

Figure 1. Schematics of a networked control system Σ̃.

of the network can be incorporated in the delays ∆sc
k and ∆ca

k (increasing them), as long as the maximum
number of subsequent dropouts over the network is bounded [HvdW10]; we refer the interested readers to
[HvdW10] for more detailed information. Finally, the time-varying computation time needed to evaluate
the symbolic controller is incorporated into ∆ca

k [HvdW10]. We assume that the time-varying delays are
bounded and are integer multiples of the sampling time τ , i.e. ∆sc

k := N sc
k τ , where N sc

k ∈ [N sc
min;N sc

max], and
∆ca
k := N ca

k τ , where N ca
k ∈ [N ca

min;N ca
max], for some N sc

min, N
sc
max, N

ca
min, N

ca
max ∈ N0. Note that this assumption

implies perfect clock synchronization in the network. Nonetheless, with current technologies it is possible to
reach synchronization at the micro-second level (even on wireless networks), see e.g. [DH04, EGE02]. Thus, one
can assume that synchronization errors in general have a rather small effect that could be easily incorporated
in the form of bounded sensor noise (due to signals excursion in that time interval). Furthermore, we model
the occurrence of message rejection, i.e. the effect of older data being neglected because more recent data
is available before the older data arrival, as done in [CvdWHN09, vdWNH12]. The zero-order-hold (ZOH)
function (see Figure 1) is placed before the plant Σ to transform the discrete-time control inputs uk, k ∈ N0,
to a continuous-time control input υ(t) = uk∗(t), where k∗(t) := max {k ∈ N0 | sk + ∆ca

k ≤ t}. As argued in
[CvdWHN09, vdWNH12], within the sampling interval [sk, sk+1[, υ(t) can be explicitly described by

υ(t) = uk+jk∗−Nca
max

, for t ∈ [sk, sk+1[ , (4.1)

where jk∗ ∈ [0;N ca
max −N ca

min], the required time-indexing shift needed to determine the control input available
at the ZOH, is defined as:

jk∗ = λ
(
N̂Nca

min
, N̂Nca

min+1, . . . , N̂Nca
max

)
, (4.2)

and where N̂`, for ` ∈ [N ca
min;N ca

max], is the delay suffered by the control packet sent ` samples beforehand,

namely N̂Nca
max−i = N ca

k−Nca
max+i

for any i ∈ [0;N ca
max −N ca

min], and

λ(N̂Nca
min
, . . . , N̂Nca

max
) := max{arg min

j
κ(j, N̂Nca

min
, . . . , N̂Nca

max
)},

where

κ(j, N̂Nca
min
, . . . , N̂Nca

max
) := min

{
max{0, N̂Nca

max−j + j −N ca
max},max{0, N̂Nca

max−1−j + j −N ca
max + 1}, . . . ,

max{0, N̂Nca
min
−N ca

min}, 1
}
,

with j ∈ [0;N ca
max −N ca

min]. Note that the expression for the continuous-time control input in (4.1) and (4.2)
takes into account the possible out-of-order packet arrivals and message rejection. For example, in Figure 2,
the time-delays in the controller-to-actuator branch of the network are allowed to take values in {τ, 2τ, 3τ},
resulting in a message rejection at time sk+2. We refer the interested readers to [CvdWHN09, Lemma 1] to
understand how the proposed choices for jk∗ (4.2), λ, and κ, can take care of the possible out-of-order packet
arrivals and message rejections.
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sk�1 sk sk+1 sk+2 sk+3 sk+4

�ca
k�1

�ca
k

�ca
k+1

�ca
k+2

Message rejected

uk�3

uk�2

uk�1

uk+1

uk+2

Figure 2. Time-delays in the controller-to-actuator branch of the network with ∆ca
k ∈ {τ, 2τ, 3τ}.

4.1. Architecture of the symbolic controller. A symbolic controller is a finite system that takes the
observed states xk ∈ Rn as inputs and produces as outputs the actions uk ∈ U that need to be fed into the
system Σ in order to satisfy a given complex logical specification. We refer the interested readers to [Tab09]
for the formal definition of symbolic controllers. Although for some LTL specifications (e.g. certain safety or
reachability problems) it may be sufficient to consider only static controllers (i.e. without memory) [Gir10],
we do not limit our work by such an assumption and the proposed approach in this paper is indeed applicable
to general LTL specifications [BK08]. Due to the presence of a ZOH, from now on we assume that the set U
contains only curves that are constant over intervals of length τ ∈ R+ and take values in U, i.e.:

U =
{
υ : R+

0 → U|υ(t) = υ((s− 1)τ), t ∈ [(s− 1)τ, sτ [, s ∈ N
}
. (4.3)

Correspondingly, one should update Uτ to U in (4.3) in the definition of Sτ (Σ) (cf. Section 3).

Similar to what was assumed at the connection between controller and plant, we also consider possible occur-
rences of message rejection for the measurement data sent from the sensor to the symbolic controller. The
symbolic controller uses x̂k as an input at the sampling times sk := kτ , where

x̂k = xk+`k∗−Nsc
max

, (4.4)

where `k∗ ∈ [0;N sc
max −N sc

min] is defined as:

`k∗ = λ(ÑNsc
min
, ÑNsc

min+1, . . . , ÑNsc
max

), (4.5)

where Ñ`, for ` ∈ [N sc
min;N sc

max], is the delay suffered by the measurement packet sent ` samples ago, namely

ÑNsc
max−i = N sc

k−Nsc
max+i

for any i ∈ [0;N sc
max −N sc

min], and λ is the function appearing in (4.2). Note that the

expression for the input of the controller in (4.4) and (4.5) takes into account the possible out-of-order packet
arrivals and message rejections. We again refer the interested readers to [CvdWHN09, vdWNH12] for more
details on the proposed choice for `k∗ (4.5). Here, we assume that the symbolic controller applies its previously
computed input value if it does not receive a concrete state measurement from the network, which may be the
case for a small interval of time after s0 due to the initialization of the NCS.

4.2. Describing NCS as metric systems. As emphasized earlier, one of the main objectives of this work
is to provide symbolic models for the overall NCS using symbolic models of their plants component and of the
network characteristics. Specifically, we need to define a map taking an (in)finite system describing the plant
and the minimum and maximum delays suffered in both the controller-to-actuator and the sensor-to-controller
branches of the network as its inputs and providing, correspondingly, an (in)finite system describing the overall
NCS as its output. Consider the map

L : T (U, Y )× N4
0 → T (U, Y ) (4.6)

defined as the following: ∀ Ñmin, Ñmax ∈ N0, where Ñmin ≤ Ñmax, ∀ N̂min, N̂max ∈ N0, where N̂min ≤
N̂max, and ∀ Sa = (Xa, Xa0, Ua,

a
- , Ya, Ha) ∈ T (Ua, Ya), we have L(Sa, Ñmin, Ñmax, N̂min, N̂max) = Sb ∈

T (Ua, Ya), where Sb = (Xb, Xb0, Ua,
b
- , Ya, Hb) and

• Xb = {Xa ∪ q}Ñmax × U N̂max
a × [Ñmin; Ñmax]Ñmax × [N̂min; N̂max]N̂max , where q is a dummy symbol;
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• Xb0 = {(x0, q, . . . , q, u0, . . . , u0, Ñmax, . . . , Ñmax, N̂max, . . . , N̂max) | x0 ∈ Xa0, u0 ∈ Ua};
• (x1, . . . , xÑmax

, u1, . . . , uN̂max
, Ñ1, . . . , ÑÑmax

, N̂1, . . . , N̂N̂max
)

u

b
- (x′, x1, . . . , xÑmax−1, u, u1, . . . ,

uN̂max−1, Ñ , Ñ1, . . . , ÑÑmax−1, N̂ , N̂1, . . . , N̂N̂max−1) for all Ñ ∈ [Ñmin; Ñmax] and all N̂ ∈ [N̂min; N̂max]

if there exists transition x1
u
N̂max−jk∗

a
- x′ in Sa where jk∗ = λ(N̂N̂min

, . . . , N̂N̂max
), as defined in (4.2),

and one of the following holds (due to the initialization of the NCS):

– xÑmax−`k∗ = q, where `k∗ = λ(ÑÑmin
, . . . , ÑÑmax

), defined in (4.5), and u = u1;

– xÑmax−`k∗ 6= q and the choice of u is free;

• Hb(x1, . . . , xÑmax
, u1, . . . , uN̂max

, Ñ1, . . . , ÑÑmax
, N̂1, . . . , N̂N̂max

) = Ha(x1) where with a slight abuse of

notation, we assume that Ha(q) := q.

It can be readily seen that the system Sb is (un)countable or symbolic if the system Sa is (un)countable or
symbolic, respectively. Although Sa may be a deterministic system, Sb is in general a nondeterministic system

(if Ñmin < Ñmax or N̂min < N̂max), since depending on the values of Ñ or N̂ , more than one u-successor of
any state of Sb may exist.

We assume additionally that the output set Yb is equipped with the same metric dYa , which is extended so
that dYa(Ha(x), Ha(q)) = +∞ for any x ∈ Rn and dYa(Ha(q), Ha(q)) = 0.

We have now all the ingredients to describe the NCS Σ̃ as a metric system. Given Sτ (Σ) and the NCS Σ̃,

consider the metric system S(Σ̃) := (X,X0, U, - , Y,H), capturing all the information contained in the

NCS Σ̃, given as S(Σ̃) = L(Sτ (Σ), N sc
min, N

sc
max, N

ca
min, N

ca
max).

Note that the choice of the state space X in S(Σ̃) allows us to keep track of an adequate number of mea-
surements and control packets and the corresponding delays suffered by them, which is necessary and suf-
ficient in order to consider out-of-order packet arrivals and message rejections as explained in detail in
[CvdWHN09, vdWNH12]. The choice of the set of initial state X0 keeps the initial input value u0 in the
ZOH till new control input values arrive. Moreover, assigning the maximum delay suffered by the dummy
symbols ensures that those symbols will not take over an actual packet at the later iterations of the network.

The transition relation of S(Σ̃) captures in a nondeterministic fashion all the possible successors of a given

state of S(Σ̃), based on all the possible ordering of measurements arriving to the controller, and of inputs
arriving to the ZOH and ensures that the controller applies its previously computed input value if it does
not receive any concrete state measurement from the network. Let us also remark that the sets of states and

inputs of S(Σ̃) are uncountable.

Remark 4.1. Note that the output value of any state of S(Σ̃) is simply the output value of the state of the
plant available at the sensors at times sk := kτ . We should highlight that the main role of output sets (resp.
maps) in the definition of systems (cf. Definition 3.1) is to describe the set of atomic propositions (resp.
state labeling) used in describing the specifications and, hence, used for the symbolic controller synthesis. We
refer the interested readers to [Tab09, Chapter 5] explaining controller synthesis schemes for some classes of
specifications in which the output set plays a role; see in particular the discussion after the proof of Proposition
6.8 in [Tab09]. For the implementation (refinement) of symbolic controllers and their composition, one requires
to deal with the states of systems rather than their outputs [Tab09, Proposition 8.7]. We elaborate more on
the symbolic controller synthesis and refinement in Section 6.

5. Symbolic Models for NCS

This section contains the main contributions of the paper. We show the existence and construction of symbolic
models for NCS by using an existing symbolic model for the plant Σ, namely Sq(Σ) := (Xq, Xq0, Uq,

q
- , Yq, Hq).
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Network 
delay

parameters

Sq(⌃) L

L

S⇤(e⌃)

⇠ ⇠
S⌧ (⌃) S(e⌃)

Figure 3. The symbol ∼ represents any of the following relations: εS�, �εAS , and ∼=ε
AS .

Given the metric system Sq(Σ), define the new metric system S∗(Σ̃) := (X∗, X∗0, U∗, ∗
- , Y∗, H∗) as

S∗(Σ̃) = L(Sq(Σ), N sc
min, N

sc
max, N

ca
min, N

ca
max), where the map L is defined in (4.6). System S∗(Σ̃) is constructed

in the same way as S(Σ̃), but replacing continuous states, inputs, and the transition relation of Sτ (Σ), with
the corresponding ones in Sq(Σ).

We can now state the first pair of major technical results of this work, which are schematically represented in
Figure 3.

Theorem 5.1. Consider an NCS Σ̃ and suppose that there exists an abstraction Sq(Σ) such that Sq(Σ) �εAS
Sτ (Σ) �εS Sq(Σ). Then we have S∗(Σ̃) �εAS S(Σ̃) �εS S∗(Σ̃).

The proof is provided in the Appendix.

Corollary 5.2. Consider an NCS Σ̃ and suppose that there exists an abstraction Sq(Σ) such that Sq(Σ) ∼=ε
AS

Sτ (Σ). Then we have S∗(Σ̃) ∼=ε
AS S(Σ̃).

The proof is provided in the Appendix.

Remark 5.3. As discussed earlier, one of the main advantages of the results proposed here in comparison
with the ones in [BPD12b, BPD12a] is that one can construct symbolic models for NCS using symbolic models
obtained exclusively for the plant. Therefore, one can readily extend the proposed results to other classes of
control systems for the plants, e.g. stochastic control systems, as long as there exist techniques to construct
the corresponding symbolic models. For example, one can leverage the recently developed results in [ZEM+14],
[ZTA14, ZTAng] (not requiring state-space gridding), and [ZEAL13] to construct symbolic models for classes
of stochastic plants embedded in NCS.

5.1. Limited bandwidth. Assume that an abstraction Sq(Σ) exists such that Sq(Σ) �εAS Sτ (Σ) equipped
with the alternating ε-approximate simulation relation R. From the formal definition of symbolic controllers
in [Tab09] constructed based on Sq(Σ), one can readily verify the implicit presence of a static set-valued map
(a.k.a quantizer map) ϕ : Xτ → 2Xq inside the symbolic controllers, associating to each xτ ∈ Xτ a set of
symbols in Xq as the following:

ϕ(xτ ) = {xq ∈ Xq | (xq, xτ ) ∈ R} .
Since the map ϕ is static, one can shift this map towards the sensor in the NCS, as shown in Figure 4, without
affecting any of the presented results. This means that in general a set of symbols, rather than only a quantized
one, needs to be sent over the sensor-to-controller branch of the network. Let us provide a simple example
illustrating the problem that may raise if only one of the multiple possible symbols is sent instead of all of
them.

Example 5.4. Consider the pair of finite systems in Figure 5, where the initial states are shown as targets of
sourceless arrows and the lower part of the states are labeled with their output values. One can readily verify that
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ZOH Sensor
Plant

⌃ : ⇠̇ = f(⇠, �)

e⌃ ⌧

�(t) ⇠(t)uk

�ca
k �sc

k

xk

Main Block ' 
xquq

Symbolic Controller

ZOH Sensor
Plant

⌃ : ⇠̇ = f(⇠, �)

e⌃ ⌧

�(t) ⇠(t)uk

�ca
k �sc

k

xk

Main Block
xquq

Symbolic Controller

 '

Figure 4. Shifting maps ϕ and ψ for the symbolic controller to the other side of the com-
munication network.

R = {(x1, x1), (x2, x2), (x3, x2)} is an alternating 0-approximate simulation relation from S to S. Therefore,
ϕ(x1) = {x1} and ϕ(x2) = {x2, x3} is the associated “quantization” map resulting from the relation R. Let
us consider the new quantization map ϕ̃ providing only one state of S for each state of S: ϕ̃(x1) = {x1} and
ϕ̃(x2) = {x3}. Consider the problem of synthesizing a controller enforcing the output of S to reach and stay at
set {2}, namely a controller for the LTL specification 32{2}. There are infinitely many control sequences over
S satisfying 32{2}, e.g. u1u3u3 · · · , u2u2u1u3u3 · · · , and u2u2u2u2u1u3u3 · · · . A possible “static” controller
enforcing the desired property could thus be obtained by restricting the set of inputs that the controller offers
at each state of the abstracted plant, e.g. a map offering at x̄1 input ū1, at x̄3 input ū2, and at x̄2 input ū3.
Using the new quantizer map ϕ̃, and a controller consisting solely of the map in the previous sentence, however,
does not allow us to distinguish between x̄2 and x̄3 and the refined control sequences over S would result in
u1u2u1u2u1u2 · · · . Such controller would result in the system satisfying infinitely often reaching {2} on S, i.e.
23{2}, rather than satisfying the requested specification 32{2}. While this is a clearly concocted example
for illustrative purposes, situations analogous to the one captured by this example arise in the construction of
abstractions via notions of (alternating) approximate (bi)simulation (e.g. [ZPMT12]) in which some concrete
states may be associated to several abstract states. For more details on this potential problem we refer the
interested readers to [RWR16].

Remark 5.5. Unfortunately, the problem we just illustrated may arise in the constructions of [BPD12b,
BPD12a]. Based on the proposed symbolic abstractions in those works, the set-valued quantizer map ϕ : Rn →
2[R

n]η should be as follows:
ϕ(x) = {xq ∈ [Rn]η | ‖x− xq‖ ≤ ε} ,

for some given state-space quantization parameter η ∈ R+ and some precision ε ∈ R+, where η < ε; see
[BPD12b, equation (18)] and [BPD12a, equation (5)]. However, [BPD12b, BPD12a] use the map ϕ̃ : x→ [x]η,
where [x]η ∈ [Rn]η associates to every x ∈ Rn just one quantized state [x]η ∈ [Rn]η, such that ‖x− [x]η‖ ≤ η/2.

For the case of deterministic quantizers (no measurement error), this problem can be readily avoided if the
proposed alternating approximate simulation relations in those papers were directly defined over quantized states
as proposed in [Gir13]. For the case of nondeterministic quantizers, either one should send a set of symbols
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Figure 5. Finite systems S and S.

to the controllers, as discussed in the beginning of Subsection 5.1, or one should resort to feedback refinement
relations [RWR16] (cf. Remark 5.6) and send only one symbol to the controller.

Similarly, a quantization map ψ : Xq × Xτ × Uq → U is implicitly contained in the symbolic controllers,
associating to each symbol uq ∈ Uq(xq) generated by the controller an input u ∈ Uτ (xτ ) for some (xq, xτ ) ∈
R. Unfortunately, the quantization map ψ requires the knowledge of the state of the plant just before the
controller. Therefore, one cannot easily shift this map towards the actuator (ZOH) in the NCS scheme. In
order to solve this issue, one can simply assume that the set U is finite and Uq = U and adjust condition (iii)
in Definition 3.3 as:

(iii) for every (xq, xτ ) ∈ R, every uq ∈ Uq (xq), and every x′τ ∈ Postuq(xτ ) there exists x′q ∈ Postuq(xq)
satisfying (x′q, x

′
τ ) ∈ R,

so that only abstractions Sq(Σ) satisfying Sq(Σ) �εAS Sτ (Σ) with the new condition (iii) are admitted in our
scheme. These modifications simply imply that for each symbolic input uq in Sq(Σ) one should apply the same
input to Sτ (Σ). Note that we abused notation by identifying uq with the constant input curve with domain
[0, τ [ and value uq. With this adjustments, one has a new quantizer map ψ = 1Uq , which is static and can be
shifted towards the actuator (ZOH) in the NCS, as shown in Figure 4. Note that the proposed abstractions in
[GPT09, ZPMT12, ZTA14, ZTAng, ZEAL13, ZEM+14] satisfy this new condition in Definition 3.3 by simply
taking Uq = U in those results. In general this is a rather natural assumption to be taken as in practice one
usually considers a finite set of inputs available and constructs abstractions accordingly. We emphasize that
the results in Theorem 5.1 and Corollary 5.2 still hold with this modification on condition (iii) in Definition
3.3.

Remark 5.6. Observe that one can use the recently developed notion of feedback refinement relations intro-
duced in [RWR16] in order to establish the relation between the concrete systems and their symbolic models.
This new relation resolves both issues explained in the previous paragraphs: i) the refined controller only re-
quires the quantized state information of the concrete system; ii) the abstraction does not need to be used as
a building block inside the refined controller and, consequently, a smaller amount of memory is required. We
refer the interested readers to [KRZar] showing that the proposed map L in (4.6) also preserves the feedback
refinement relations and that similar results as in Theorem 5.1 hold for this new relation as well.

6. Symbolic Controller Synthesis and Refinements

6.1. Symbolic controller synthesis. Although the main contribution of the paper is on the construction of
symbolic models for NCS with some non-idealities, the provided abstractions are amenable to any off the shelf
symbolic controller synthesis toolbox such as SCOTS [RZar] and Slugs [ER16]. To further elaborate on this,
let us consider the following example. Let A ⊂ Rn be a compact set. Consider a safety problem, formulated



12 M. ZAMANI, M. MAZO JR, M. KHALED, AND A. ABATE

as the satisfaction of the LTL formula3 2ϕA, where ϕA is a label (or atomic proposition) characterizing the
set A. The goal is to synthesize a controller enforcing 2ϕA over the output of the plant, available at the
sensors before the network. To do so, we first construct a discrete controller enforcing 2ϕA over the output

of S∗(Σ̃) = (X∗, X∗0, U∗, ∗
- , Y∗, H∗). Whenever Y∗ 6= X∗ and H∗ 6= 1X∗ , it suffices to consider a new safe

set Â ⊆ X∗ defined by Â = {x∗ ∈ X∗ | H∗(x∗) ∈ A}. Now, one can apply Theorem 6.6 in [Tab09] to auxiliary

system Ŝ∗(Σ̃) = (X∗, X∗0, U∗, ∗
- , X∗, 1X∗) and the specification set Â to synthesize a discrete controller

enforcing 2ϕA over the output of S∗(Σ̃). The main subtlety here is in the refinement of the constructed

discrete controller enforcing 2ϕA over the output of the plant which requires the whole state tuple x∗ of S∗(Σ̃)
while only one of the elements of the tuple is available based on the packet arrived before the controller. We
elaborate on the refinement of symbolic controllers in the next subsection and propose a class of NCS in which

the whole state tuple x∗ of S∗(Σ̃) can be recovered inside the controllers.

6.2. Symbolic controller refinement. In order to refine the synthesized symbolic controllers in our setup,
we target a class of NCS where the upper and lower bounds of the delays are equal at each channel. This

implies that all packets suffer the same delay (i.e. Ñk = N sc
min = N sc

max and N̂k = N ca
min = N ca

max for any
k ∈ N0) in each channel. This can be readily achieved by performing extra prolongation (if needed) of the
delays suffered already by the packets. For the sensor-to-controller channel, this can be readily done inside
the controller. The controller needs to have a buffer to hold arriving packets and keep them in the buffer until
their delays reach the maximum. For the controller-to-actuator channel, the same needs to be implemented
inside the ZOH. Therefore, in this setting, state (resp. input) packets are allowed to have any delay (not
necessarily integer multiples of the sampling time) between 0 and N sc

max (resp. N ca
max) where N sc

max and N ca
max

are integer multiples of the sampling time.

In this special class of NCS, the information contained in the NCS Σ̃ is captured by the metric system

S′(Σ̃) := L(Sτ (Σ), N sc
max, N

sc
max, N

ca
max, N

ca
max). We also denote by S′∗(Σ̃) := L(Sq(Σ), N sc

max, N
sc
max, N

ca
max, N

ca
max)

the corresponding symbolic model of S′(Σ̃). Recall that S∗(Σ̃) denotes the symbolic model of NCS without
the prolongation of delays suffered by packets in both channels of the network. Here, we provide a brief

comparison between S′∗(Σ̃) and S∗(Σ̃): 1) S′∗(Σ̃) has no non-determinism caused by different delay possibilities

in comparison with S∗(Σ̃). This results in a smaller transition relation making the controller synthesis less

complex; 2) S′∗(Σ̃) is less conservative in comparison with S∗(Σ̃) in terms of the existence of symbolic controllers
satisfying some given logic specifications. We elaborate more on this in a lemma later; 3) In terms of actual

implementation, the controllers designed for S′(Σ̃) may be more complex than those for S(Σ̃) because they
need to have a buffer to hold arriving packets till they reach the required maximum delay, the same needs to
be implemented for the ZOH.

Lemma 6.1. Consider a symbolic model Sa and Ñmin, Ñmax, N̂min, N̂max ∈ N0, where Ñmin ≤ Ñmax and

N̂min ≤ N̂max. We have S∗ �0
AS S

′
∗, where S∗ := L(Sa, Ñmin, Ñmax, N̂min, N̂max) and S′∗ := L(Sa, Ñmax, Ñmax,

N̂max, N̂max).

The proof is provided in the Appendix. The result in Lemma 6.1 implies that if there exists a symbolic
controller enforcing some complex specifications over S∗, then there exists a symbolic controller enforcing

the same complex specifications over S′∗ which confirms item 2) in the above comparison between S′∗(Σ̃) and

S∗(Σ̃).

Finally, in order to refine the constructed symbolic controllers in closed loop fashion, one needs to have the
symbolic state tuple of the form:

(x∗1, . . . , x∗Nsc
max

, u1, . . . , uNca
max

, N sc
max, . . . , N

sc
max, N

ca
max, . . . , N

ca
max).

3We refer the interested readers to [BK08] for the formal semantics of the temporal formula 2ϕA expressing the safety property
over the set A.
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The controller already knows what control-inputs has generated during the Nmax := N ca
max +N sc

max−1 previous
sampling times (i.e. u1, . . . , uNmax). Hence, it just needs to store them in a buffer. The first N ca

max control
inputs (i.e. u1, . . . , uNca

max
) will be used directly in the symbolic state tuple and the rest for the construction of

states x∗1, . . . , x∗(Nsc
max−1). Now consider two different cases. Case 1: we assume that the symbolic model of the

plant (i.e. Sq(Σ)) is deterministic (cf. the example section). The controller gets states x∗Nsc
max

using the current
measurement packet (i.e. xNsc

max
) and the relation between Sτ (Σ) and Sq(Σ). Using x∗Nsc

max
, previously gener-

ated control-inputs (i.e. uNca
max+1, . . . , uNca

max+N
sc
max−1), and symbolic model Sq(Σ), the controller can construct

other symbolic state information as the following: x∗1 = PostuNca
max+1

(x∗2), x∗2 = PostuNca
max+2

(x∗3), . . ., and

x∗(Nsc
max−1) = PostuNca

max+Nsc
max−1

(x∗Nsc
max

). Case 2: we assume that the controller has access to the current state

measurement of the plant (i.e. xNsc
max

) and the model of the plant. Here, the controller can construct all the
state measurements still traveling inside the sensor-to-controller channel up to the current state of the plant
(i.e. x1, . . . , xNsc

max−1) using the current packet it receives (i.e. xNsc
max

), previously generated control-inputs (i.e.
uNca

max+1, . . . , uNca
max+N

sc
max−1), and the model of the plant: x1 = ξx2uNca

max+1
(τ), x2 = ξx3uNca

max+2
(τ), . . ., and

xNsc
max−1 = ξxNsc

max
uNca

max+Nsc
max−1

(τ) (solving the differential equation, possibly numerically, online). Therefore,

using the relation between Sτ (Σ) and Sq(Σ) and x1, . . . , xNsc
max

, symbolic states x∗1, . . . , x∗Nsc
max

are constructed
inside the controller.

Remark 6.2. One can use a quantized version of xN sc
max

rather than itself in Case 2 above to construct symbolic
states x∗1, . . . , x∗N sc

max
of (not necessarily deterministic) Sq(Σ) inside the controller. We can use a quantizer

with appropriately chosen precision based on the abstraction precision ε, the Lipschitz constant Z in Definition
2.1, and the proposed techniques in [RWR16, Subsection VI-B] to construct symbolic states x∗1, . . . , x∗(N sc

max−1)
using the model of the plant. On the other hand, one can try to synthesize symbolic controllers with partial
information (see e.g. [CDHR06]) (x∗N sc

max
, u1, . . . , uNca

max
, N sc

max, . . . , N
sc
max, N

ca
max, . . . , N

ca
max) which is left as

object of future research. Remark that the computational complexity of synthesis with partial information is
usually much larger than the synthesis with full state information [CDHR06]. Therefore, there is a trade
off between having simpler controller synthesis scheme (cf. Subsection 6.1) amenable to any off the shelf
synthesis toolbox but more complex refinement scheme (cf. Subsection 6.2) or having more complex controller
synthesis scheme (see e.g. [CDHR06]) not necessarily tractable using off the shelf synthesis toolbox but simpler
refinement procedure.

7. Space Complexity Analysis

We compare the results provided here with those in [BPD12b, BPD12a] in terms of the size of the obtained
symbolic models. For the sake of a fair comparison, assume that we use also a grid-based symbolic abstraction
for the plant Σ using the same sampling time and quantization parameters as the ones in [BPD12b, BPD12a].
Note that the provided comparison may not be complete still, because we do not need any requirement on
the symbolic controller while in [BPD12b, BPD12a] it is assumed that the symbolic controllers are static. By
assuming that we are only interested in the dynamics of Σ on a compact set D ⊂ Rn, the cardinality of the
set of states of the symbolic models provided in [BPD12b, BPD12a], is:

|X?| =
∑

i∈{{1}∪[Nmin;Nmax]}

∣∣∣[D]η

∣∣∣
i

,

where Nmin = N sc
min + N ca

min, Nmax = N sc
max + N ca

max, and [D]η = D ∩ [Rn]η for some quantization parameters

η ∈ R+.

Meanwhile, the size of the set of states for the abstractions provided by Theorem 5.1 and Corollary 5.2, is at
most:

|X∗| =
(∣∣∣[D]η

∣∣∣+ 1
)Nsc

max ·
∣∣∣[U]µ

∣∣∣
Nca

max · (N sc
max −N sc

min + 1)
Nsc

max · (N ca
max −N ca

min + 1)
Nca

max ,

where [U]µ = U ∩ [Rm]µ for some quantization parameters µ ∈ R+. Note that there may exist some states
of X∗ that are not reachable from any of the initial states x∗0 ∈ X∗0 due to the combination of the delays
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Figure 6. Upper panel: sizes of S?(Σ̃) and S∗(Σ̃) for different values of | [D]η | and | [U]µ |,
where N ca

max = N sc
max = 6, N ca

min = N sc
min = 1, and S1 = S?(Σ̃) and S2 = S∗(Σ̃). Lower panel:

sizes of S?(Σ̃) and S∗(Σ̃) for different values of | [U]µ | and of N ca
max−N ca

min (or N sc
max−N sc

min),

where | [D]η | = 107.

in both channels of the network and, hence, one can exclude them from the set of states X∗ without loss of
generality. Therefore, the actual size of the state set X∗ may be less than the aforementioned computed ones.

One can easily verify that the size of the symbolic models proposed in [BPD12b, BPD12a] is at most:
∣∣∣S?(Σ̃)

∣∣∣ = |X?| · |[U]µ| · (Nmax −Nmin + 1) ·K (7.1)

=
( ∑

i∈{{1}∪[Nmin;Nmax]}

∣∣∣[D]η

∣∣∣
i )
· |[U]µ| · (Nmax −Nmin + 1) ·K,

where K is the maximum number of u-successors of any state of the symbolic model Sq(Σ) for u ∈ [U]µ. Note
that with the results proposed in [GPT09] one has K = 1 because Sq(Σ) is a deterministic system, while with
the ones proposed in [ZPMT12] one has K ≥ 1 because Sq(Σ) is a nondeterministic system and the value of K
depends on the functions β and γ in (2.2) – see [ZPMT12] for more details. The size of the symbolic models
provided in this paper is at most:

∣∣∣S∗(Σ̃)
∣∣∣ = |X∗| · |[U]µ| · (N sc

max −N sc
min + 1) · (N ca

max −N ca
min + 1) .K (7.2)

=
(∣∣∣[D]η

∣∣∣+ 1
)Nsc

max ·
∣∣∣[U]µ

∣∣∣
Nca

max+1

· (N sc
max −N sc

min + 1)
Nsc

max+1 · (N ca
max −N ca

min + 1)
Nca

max+1 ·K,

with the same K as in (7.1). The symbolic model S∗(Σ̃) can have a smaller size for some large values of

Nmax and for
∣∣∣[D]η

∣∣∣ >>
∣∣∣[U]µ

∣∣∣, as depicted in Figure 6 (upper panel) by fixing N ca
max = N sc

max = 6 and

N ca
min = N sc

min = 1. On the other hand, the symbolic model S?(Σ̃) can have a smaller size for some large values

of
∣∣∣[U]µ

∣∣∣ and of N ca
max −N ca

min (or N sc
max −N sc

min), as depicted in Figure 6 (lower panel) by fixing | [D]η | = 107.

Note that in the special case when N sc
max = N sc

min = 1, the dummy symbol q is not necessary in the definition
of X∗, hence:

|X∗| =
∣∣∣[D]η

∣∣∣ ·
∣∣∣[U]µ

∣∣∣
Nca

max · (N ca
max −N ca

min + 1)
Nca

max . (7.3)

Remark 7.1. In [BPD12b, Remark 5.2] the authors suggest a more concise representation for their proposed
finite abstractions of NCS, in order to reduce the space complexity. However, this representation is only
applicable if the plant Σ is δ-ISS. Hence, for general classes of plants Σ in the NCS, the approach proposed
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Table 1. Results for constructing symbolic models of NCS using symbolic models of their plants.

Case Study |Sq(Σ)| (2,2) (2,3) (2,4) (2,5) (3,2) (3,3) (3,4) (3,5) (4,2) (4,3)

SM 26 |S∗(Σ̃)| 214 422 838 1670 430 846 1678 3342 862 1694
Time (sec) < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1
Memory (KB) 1.9 2.9 1.2 1.2 3.5 1.6 1.6 1.6 1.9 1.9

DI 2039 |S∗(Σ̃)| 170272 681088 2.7×106 1.1×107 900384 3.6×106 1.4×107 5.8×107 4.8×106 1.9×107

Time (sec) < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1
Memory (KB) 2.0 2.4 3.1 2.9 3.0 2.9 3.1 3.2 5.2 4.3

Robot 29280 |S∗(Σ̃)| 6.4×107 1.0×109 1.6×1010 2.6×1011 5.6×108 9.0×109 3.4×1011 2.3×1012 4.9×109 7.8×1010

Time (sec) < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 1.4 1.6
Memory (KB) 15 14 17 16 16 21 22 19 35 33

Vehicle1 9.1× 106 |S∗(Σ̃)| 2.4×1012 1.5×1014 9.7×1015 6.2×1017 1.5×1014 9.8×1015 6.3×1017 4.0×1019 1.0×1016 6.4×1017

Time (sec) 70 129 89 107 5587 944 1598 1705 7399 6182
Memory (KB) 734 992 961 881 7577.6 5529.6 8294.4 7782.4 9932.8 9523.2

Vehicle2 9.9× 106 |S∗(Σ̃)| 2.7×1012 1.7×1014 1.1×1016 7.0×1017 1.8×1014 1.2×1016 7.4×1017 4.6×1019 1.2×1016 7.91×1017

Time (sec) 66.8 104.6 107 61.8 833 781 1247 4363 5137 8462
Memory (KB) 826 683 733 709 5222.4 4710.4 4608 11059,2 8396.8 8806.4

Vehicle3 1.89× 107 |S∗(Σ̃)| 4.2×1012 2.7×1014 1.7×1016 1.1×1018 2.3×1014 1.4×1016 9.3×1017 5.9×1019 1.3×1016 7.94×1017

Time (sec) 273.3 285 238.4 173 22344 54919 27667 36467 39065 145390
Memory (KB) 1638.4 1945.6 1843.2 1945.6 23040 40652.8 30208 22425.6 21094.4 36556.3

in this work can be more appropriate in terms of the size of the abstractions, particularly for large values of

Nmax and for
∣∣∣[D]η

∣∣∣ >>
∣∣∣[U]µ

∣∣∣.

Remark 7.2. One can readily see in the example section that the computation time and memory required
for computing symbolic abstractions of NCSs using the proposed method here are several orders of magnitude
smaller than those required using techniques in [BPD12b, BPD12a]. The main reason for this is because
modular construction of abstractions as proposed in this paper is highly favored by the binary decision diagram
(BDD) data structure which compactly represents both sets of states and the transition relation between these
states.

8. Example

In this section, we present some case studies where we construct symbolic models of NCS from the symbolic
models of the plants inside them. We consider the setup presented in Section 6 in order to refine the constructed
symbolic controllers in closed loop fashion. First, we present results for the construction of symbolic models
of the NCS for several systems. Then, we provide an example where a dynamic controller is synthesized using
the derived symbolic model of the NCS. The synthesized controller is simulated in closed loop fashion using

both MATLAB and OMNeT++ [VH08]. The computation of the abstract systems S′∗(Σ̃) (cd. Subsection 6.2) and
the symbolic controllers have been implemented by the software tool SENSE [KZ16].

8.1. Symbolic models of NCS from the ones of plants in them. We use the tool SCOTS [RZar] to
construct symbolic models of the plants which are stored as BDD objects. The BDD objects are fed as inputs
to the tool SENSE along with NCS delay bounds to construct symbolic models of NCS. Notice that the tool
SENSE constructs symbolic models of NCS directly by operating with BDD objects of the symbolic models of the
plants. This results in a large reduction in the computation time in comparison with constructing them from
scratch which is the case using the techniques proposed in [BPD12b, BPD12a] (cf. see later for a comparison
for some of the case studies). Table 1 summarizes the results for different network delay configurations. Six
case studies are considered. For each case study, we show the size of the symbolic model of the plant. For
different network delay configurations (N sc

max, N
ca
max), we show the size of the symbolic models of NCS, the

time in seconds required to construct them, and the memory in KB used to store them. First, we consider an
already given symbolic model of the plant (denoted by SM) consisting of 13 states and 26 transitions. Then,
we consider a plant as a double integrator (denoted by DI) inside an NCS where its dynamic is given by:

Σ :

{
ξ̇ =

[
0 1
0 0

]
ξ +

[
0
1

]
υ,
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with the set of states restricted to [0, 3.2] × [−1.5, 1.5], state quantization parameters as (0.2, 0.3), input set
restricted to [−0.3, 0.3], input quantization parameter of 0.2, and sampling time τ = 0.3. The third case study,
denoted by Robot, correspond to a mobile robot whose dynamics is given by [BK04]:

Σ

{
ξ̇ =

[
υ1
υ1

]
.

The states represent the position of the robot. We consider the state set restricted to [0, 63] × [0, 63] and
state quantization parameter as 1. The input set is restricted to [−1, 1] × [−1, 1] with input quantization
parameter of 1, and sampling time is τ = 1. The last three case studies, denoted by Vehicle1, Vehicle2,
Vehicle3, respectively, correspond to a vehicle whose dynamics is given by:

Σ



ξ̇ =



υ1 cos(α+ ξ3) cos(α)−1

υ1 sin(α+ ξ3) cos(α)−1

υ1 tan(υ2)


 , (8.1)

where α = arctan(tan(υ2)/2). The first and second states represent the position of the vehicle while the third
represents the heading angle. The control inputs represent rear wheel velocity and the steering angle. We
consider state quantization parameter as 0.2, input set restricted to [−1, 1]×[−1, 1], and input set quantization
parameter as 0.3, and a sampling time of τ = 0.3 for the last three case studies. We consider the state
set restricted to [0, 6] × [0, 5] × [−3.54, 3.54] for Vehicle1, Vehicle2 case studies. The state set is restricted
to [0, 10] × [0, 10] × [−3.54, 3.54] for the Vehicle3 case study. Some parts of the state sets of the last four
case studies were removed to represent obstacles that need to be avoided when synthesizing the symbolic
controllers. The symbolic models were constructed using a PC (Intel Core i7 3.6 GHz and 32 GB RAM). The
CUDD library [Som15] was used to operate with BDDs. Note that the inconsistencies in the execution time
and storage memory reported in Table 1 are due to the heuristic algorithms implemented in the CUDD library
for operating with BDDs to automatically reorder binary variables for optimizing BDD operations. We also
implemented the construction of symbolic models of NCS using the schemes proposed in [BPD12b, BPD12a].
The computation time and memory storage for the construction of symbolic model for NCS containing DI with
delay parameters N sc

max = N ca
max = 2 amounted to 1.17 seconds and 42.6 KB respectively. For the Vehicle1 case

with delay parameters N sc
max = N ca

max = 2, the computation time amounted to more than two days and the
memory usage exceeded 32 GB. This shows that the computation times and memory required to construct
symbolic models using the schemes in [BPD12b, BPD12a] are several orders of magnitude more than those
using the proposed scheme in this paper which amounted to 0.019 and 117.4 seconds, respectively (including
the computation time required by the tool SCOTS to construct the symbolic models of the plants inside the
NCS), while the storage memory is already reported in table 1.

8.2. Controller synthesis and refinement: the Robot case. We consider the third case study from
Table 1 with the network delays (N sc

max = 2, N ca
max = 2). The control objective is to enforce the robot to

infinitely-often visit two target sets of states described by propositions Target1 and Target1 which are defined
by the hyper-intervals [5, 15] × [45, 55] and [45, 55] × [5, 15], respectively. Moreover, the robot needs to avoid
a set of nine obstacles defined by the propositions Obstaclei, i ∈ {1, . . . , 9}, which are defined by the hyper-
intervals [5, 15]× [20, 22], [15, 17]× [5, 22], [48, 50]× [45, 60], [51, 58]× [45, 47], [27, 36]× [20, 45], [44, 49]× [27, 36],
[27, 36]× [52, 57], [27, 36]× [5, 10], and [14, 19]× [27, 36], respectively. This control objective can be described
by the following LTL formula:

ψ =
( 9∧

i=1

�(¬Obstaclei)
)
∧�3(Target1) ∧�3(Target2).

The controller was synthesized using fixed-point computations as implemented in SENSE. Remark that the
resulting controller is a dynamic controller with two discrete states. The computation of the symbolic controller
amounted to 4.7 seconds. Figure 7 shows the closed loop simulation of the NCS. For a more realistic simulation
environment, we consider OMNeT++ [VH08], a common simulation framework for networks. Communication
channels are modeled using a random propagation-delay communication channels in OMNeT++. Figure 8 shows
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Figure 7. Closed loop simulation of the NCS with the robot system in MATLAB. The target
sets are indicated with the red boxes and obstacles with the blue boxes.

Figure 8. Closed loop simulation of the NCS with the robot system in OMNeT++. On the
left, we illustrate how the packets move between different parts of the network. On the right,
the movement of the robot over the state set is illustrated.

the closed loop simulation results in OMNeT++. We make use of the animation capabilities of OMNeT++ to
visualize both packet transfers over the network as well as the movement of the robot through the state set as
illustrated in [KZ16]. Controller synthesis and refinement for the vehicle dynamic in (8.1), for a configuration
of network delays, and for an LTL specification are provided in [KZ16].

9. Relationship to Adjacent Work

Both our work and the ones in [BPD12b, BPD12a] explicitly consider the network non-idealities (i), (ii), and
(iv) acting on the NCS simultaneously. The results in [BPD12b, BPD12a] provide symbolic models obtained
via gridding techniques (discretization of state and control sets), which practically are likely to severely suffer
from the curse of dimensionality. However, in our proposed framework one can directly employ available
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and well investigated symbolic models obtained exclusively for the plant, including full grid-based approaches
[GPT09, ZPMT12], or newer partial grid-based ones [ZTA14], and non-grid-based ones [YTC+13], and then
construct symbolic models for the overall NCS. While the results in [BPD12b, BPD12a] do not consider the
possibility of out-of-order packet arrivals and message rejections, i.e. the effect of older data being neglected
because more recent data is available, we consider them in this work. The results in [BPD12b, BPD12a] only
consider static (i.e. memoryless) symbolic controllers, whereas general temporal logic specifications often are
shown to require dynamic (i.e. with memory) symbolic controllers [BK08], which are indeed allowed in our
framework (cf. the example section). While the results in [BPD12b, BPD12a] can only address specifications
expressed in terms of specific types of nondeterministic automata, our results enable the study of larger
classes of logical specifications, such as those expressed as general LTL formulae (cf. the example section) or
as automata on infinite strings.

Besides these differences, the fundamental distinguishing feature of our work with respect to the recent
contributions in [BPD12b, BPD12a] is the nature of the triggering mechanism for message transmission:
[BPD12b, BPD12a] consider an event-triggered mechanism, in which new sensor measurements are transmit-
ted only once the actuator is updated with the control input computed using the last transmitted measurement.
While preventing measurements from arriving out of order, this restricts the applicability to systems in which
sensors and actuators are co-located. In our approach, on the other hand, the sensors and controllers send
new measurements/control updates in a periodic fashion. This forces dealing explicitly with out-of-order
messages, but in exchange it removes any restriction on the location of sensors, controllers, or actuators.
Note that additionally, our formulation still allows to capture implementations with transmissions of mea-
surements/control updates triggered by the satisfaction of certain conditions (i.e. event-based control), by
encoding such restrictions in the plant model.

10. Discussion and Conclusions

In this paper we have provided a construction of symbolic models for NCS, subject to the following non-
idealities: variable communication delays, quantization errors, packet losses, and limited bandwidth. This
novel approach is practically relevant since it can leverage any existing symbolic model for the plant, and
in particular is not limited to grid-based ones and extendible to work over stochastic plants – both features
are current focus of active investigation elsewhere. Furthermore, this approach can be applied to treat any
specification expressed as a formula in LTL (cf. the example section) or as an automaton on infinite strings,
without requiring any additional re-formulation.

Future work will concentrate on the following goals: 1) the construction of symbolic models for NCS with
explicit probabilistic structure over the transmission intervals, communication delays, and packet dropouts;
2) the construction of symbolic models for still more general NCS, by considering additional network non-
idealities, in particular time-varying sampling and transmission intervals; and 3) the study of interconnections
and synthesis employing the different outputs enabled by our abstractions at the sensor and controller side.
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12. Appendix

Proof of Theorem 5.1. We start by proving S∗(Σ̃) �εAS S(Σ̃). Since Sq(Σ) �εAS Sτ (Σ), there exists an al-

ternating ε-approximate simulation relation R from Sq(Σ) to Sτ (Σ). Consider the relation R̃ ⊆ X∗ × X

defined by (x∗, x) ∈ R̃, where x∗ =
(
x∗1, . . . , x∗Nsc

max
, u∗1, . . . , u∗Nca

max
, Ñ∗1, . . . , Ñ∗Nsc

max
, N̂∗1, . . . , N̂∗Nca

max

)
and

x =
(
x1, . . . , xNsc

max
, υ1, . . . , υNca

max
, Ñ1, . . . , ÑNsc

max
, N̂1, . . . , N̂Nca

max

)
, if and only if Ñ∗i = Ñi, ∀i ∈ [1;N sc

max],

N̂∗j = N̂j , ∀j ∈ [1;N ca
max], (x∗k, xk) ∈ R, ∀k ∈ [1;N sc

max], and for each u∗i and the corresponding υi there exists
x′∗ ∈ Postu∗i(x∗) such that (x′∗, ξxυi(τ)) ∈ R for any i ∈ [1;N ca

max] and any (x∗, x) ∈ R. Note that if Uτ = Uq

and they are finite then the last condition of the relation R̃ is nothing more than requiring u∗i = υi for any
i ∈ [1;N ca

max].

Consider x∗0 :=
(
x∗0, q, . . . , q, u∗0, . . . , u∗0, N sc

max, . . . , N
sc
max, N

ca
max, . . . , N

ca
max

)
∈ X∗0. Due to the relation R,

there exist x0 ∈ Xτ0 such that (x∗0, x0) ∈ R and υ0 ∈ Uτ such that there exists x′∗ ∈ Postu∗0 (x∗) satisfying
(x′∗, ξxυ0(τ)) ∈ R for any (x∗, x) ∈ R. Hence, by choosing x0 := (x0, q, . . . , q, υ0, . . . , υ0, N

sc
max, . . . , N

sc
max, N

ca
max,

. . . , N ca
max) ∈ X0, one gets (x∗0, x0) ∈ R̃ and condition (i) in Definition 3.3 is satisfied.

Now consider any (x∗, x) ∈ R̃, where x∗ =
(
x∗1, . . . , x∗Nsc

max
, u∗1, . . . , u∗Nca

max
, Ñ∗1, . . . , Ñ∗Nsc

max
, N̂∗1, . . . , N̂∗Nca

max

)

and x =
(
x1, . . . , xNsc

max
, υ1, . . . , υNca

max
, Ñ1, . . . , ÑNsc

max
, N̂1, . . . , N̂Nca

max

)
. Using definitions of S∗(Σ̃) and S(Σ̃),

one obtains H∗ (x∗) = Hq(x∗1) and H (x) = Hτ (x1). Since (x∗1, x1) ∈ R, one gets dYτ (Hq (x∗1) , Hτ (x1)) ≤ ε
and, hence, condition (ii) in Definition 3.3 is satisfied.

Let us now show that condition (iii) in Definition 3.3 holds. Consider any (x∗, x) ∈ R̃, where x∗ =
(
x∗1, . . . ,

x∗Nsc
max

, u∗1, . . . , u∗Nca
max

, Ñ∗1, . . . , Ñ∗Nsc
max

, N̂∗1, . . . , N̂∗Nca
max

)
, x =

(
x1, . . . , xNsc

max
, υ1, . . . , υNca

max
, Ñ1, . . . , ÑNsc

max
,

N̂1, . . . , N̂Nca
max

)
. Consider any u∗ ∈ U∗(x∗). Using the relation R, there exist υ ∈ U(x) and x̀∗ ∈ Postu∗(x∗)

such that (x̀∗, ξxυ(τ)) ∈ R for any (x∗, x) ∈ R. Now consider any x′ =
(
x′, x1, . . . , xNsc

max−1, υ, υ1, . . . , υNca
max−1,

Ñ , Ñ1, . . . , ÑNsc
max−1, N̂ , N̂1, . . . , N̂Nca

max−1
)
∈ Postυ(x) ⊆ X for some Ñ ∈ [N sc

min;N sc
max] and N̂ ∈ [N ca

min;N ca
max]

where x′ = ξx1υk (τ) for some given k ∈ [N ca
min;N ca

max] (cf. Definition S(Σ̃)). Because of the relation R,

there exists x′∗ ∈ Postu∗k(x∗1) in Sq(Σ) such that (x′∗, x
′) ∈ R. Hence, due to the definition S∗(Σ̃), one

can choose x′∗ =
(
x′∗, x∗1, . . . , x∗(Nsc

max−1), u∗, u∗1, . . . , u∗(Nca
max−1), Ñ , Ñ1, . . . , ÑNsc

max−1, N̂ , N̂1, . . . , N̂Nca
max−1

)
∈
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Postu∗(x∗) ⊆ X∗. Due to the relation R, one can readily verify that dYτ (Hq(x
′
∗), Hτ (x′)) ≤ ε. Hence, one

gets dY (H∗ (x′∗) , H (x′)) = dYτ (Hq (x′∗) , Hτ (x′)) ≤ ε. Hence, (x′∗, x
′) ∈ R̃ implying that condition (iii) in

Definition 3.3 holds.

Now we prove S(Σ̃) �εS S∗(Σ̃). Since Sτ (Σ) �εS Sq(Σ), there exists an ε-approximate simulation rela-

tion R from Sτ (Σ) to Sq(Σ). Consider the relation R̃ ⊆ X × X∗ defined by (x, x∗) ∈ R̃, where x =(
x1, . . . , xNsc

max
, υ1, . . . , υNca

max
, Ñ1, . . . , ÑNsc

max
, N̂1, . . . , N̂Nca

max

)
and x∗ =

(
x∗1, . . . , x∗Nsc

max
, u∗1, . . . , u∗Nca

max
, Ñ∗1,

. . . , Ñ∗Nsc
max

, N̂∗1, . . . , N̂∗Nca
max

)
, if and only if Ñi = Ñ∗i, ∀i ∈ [1;N sc

max], N̂j = N̂∗j , ∀j ∈ [1;N ca
max], (xk, x∗k) ∈ R,

∀k ∈ [1;N sc
max], and for each υi and the corresponding u∗i there exists a x′∗ ∈ Postu∗i(x∗) such that

(ξxυi(τ), x′∗) ∈ R for any i ∈ [1;N ca
max] and any (x, x∗) ∈ R. Note that if Uτ = Uq and they are finite

then the last condition of the relation R̃ is nothing more than requiring u∗i = υi for any i ∈ [1;N ca
max].

Consider x0 :=
(
x0, q, . . . , q, υ0, . . . , υ0, N

sc
max, . . . , N

sc
max, N

ca
max, . . . , N

ca
max

)
∈ X0. Due to the relation R, there

exist x∗0 ∈ X∗0 such that (x0, x∗0) ∈ R and u∗0 ∈ Uq such that there exists x′∗ ∈ Postu∗0 (x∗) satisfying
(ξxυ0(τ), x′∗) ∈ R for any (x, x∗) ∈ R. Hence, by choosing x∗0 :=

(
x∗0, q, . . . , q, u∗0, . . . , u∗0, N sc

max, . . . , N
sc
max,

N ca
max, . . . , N

ca
max

)
∈ X∗0, one gets (x0, x∗0) ∈ R̃ and condition (i) in Definition 3.2 is satisfied.

Now consider any (x, x∗) ∈ R̃, where x =
(
x1, . . . , xNsc

max
, υ1, . . . , υNca

max
, Ñ1, . . . , ÑNsc

max
, N̂1, . . . , N̂Nca

max

)
and

x∗ =
(
x∗1, . . . , x∗Nsc

max
, u∗1, . . . , u∗Nca

max
, Ñ∗1, . . . , Ñ∗Nsc

max
, N̂∗1, . . . , N̂∗Nca

max

)
. Using definitions of S(Σ̃) and

S∗(Σ̃), one obtainsH (x) = Hτ (x1) andH∗ (x) = Hq(x∗1). Since (x1, x∗1) ∈ R, one gets dYτ (Hτ (x1) , Hq (x∗1))
≤ ε and, hence, condition (ii) in Definition 3.2 is satisfied.

Let us now show that condition (iii) in Definition 3.2 holds. Consider any (x, x∗) ∈ R̃, where x =
(
x1, . . . , xNsc

max
,

υ1, . . . , υNca
max

, Ñ1, . . . , ÑNsc
max

, N̂1, . . . , N̂Nca
max

)
, x∗ =

(
x∗1, . . . , x∗Nsc

max
, u∗1, . . . , u∗Nca

max
, Ñ∗1, . . . , Ñ∗Nsc

max
, N̂∗1,

. . . , N̂∗Nca
max

)
. Consider any υ ∈ U(x). Using the relation R, there exist u∗ ∈ U∗(x∗) and x̀∗ ∈ Postu∗(x∗) such

that (ξxυ(τ), x̀∗) ∈ R for any (x, x∗) ∈ R. Now consider any x′ =
(
x′, x1, . . . , xNsc

max−1, υ, υ1, . . . , υNca
max−1, Ñ , Ñ1,

. . . , ÑNsc
max−1, N̂ , N̂1 . . . , N̂Nca

max−1
)
∈ Postυ(x) ⊆ X for some Ñ ∈ [N sc

min;N sc
max] and N̂ ∈ [N ca

min;N ca
max]

where x′ = ξxυk (τ) for some given k ∈ [N ca
min;N ca

max] (cf. Definition S(Σ̃)). Because of the relation R,

there exists x′∗ ∈ Postu∗k(x∗1) in Sq(Σ) such that (x′, x′∗) ∈ R. Hence, due to the definition S∗(Σ̃), one

can choose x′∗ =
(
x′∗, x∗1, . . . , x∗(Nsc

max−1), u∗, u∗1, . . . , u∗(Nca
max−1), Ñ , Ñ1, . . . , ÑNsc

max−1, N̂ , N̂1, . . . , N̂Nca
max−1

)
∈

Postu∗(x∗) ⊆ X∗. Due to the relation R, one can readily verify that dYτ (Hτ (x′), Hq(x
′
∗)) ≤ ε. Hence, one

gets dY (H (x′) , H∗ (x′∗)) = dYτ (Hτ (x′) , Hq (x′∗)) ≤ ε. Hence, (x′, x′∗) ∈ R̃ implying that condition (iii) in
Definition 3.2 holds, which completes the proof. �

Proof of Corollary 5.2. Using Theorem 5.1 one gets that Sq(Σ) �εAS Sτ (Σ) implies S∗(Σ̃) �εAS S(Σ̃) equipped

with the alternating ε-approximate simulation relation R̃ as defined in the proof of Theorem 5.1. In a sim-

ilar way, one can show that Sτ (Σ) �εAS Sq(Σ) implies S(Σ̃) �εAS S∗(Σ̃) equipped with the alternating ε-

approximate simulation relation R̃−1 which completes the proof. �

Proof of Lemma 6.1. Let S∗ = (X∗, X∗0, U∗, ∗
- , Y∗, H∗) and S′∗ = (X ′∗, X

′
∗0, U

′
∗, ∗

- ′, Y ′∗ , H
′
∗). Consider

the relation R̃ ⊆ X∗×X ′∗ defined by (x∗, x′∗) ∈ R̃, where x∗ =
(
x∗1, . . . , x∗Nsc

max
, u∗1, . . . , u∗Nca

max
, Ñ∗1, . . . , Ñ∗Nsc

max
,

N̂∗1, . . . , N̂∗Nca
max

)
and x′∗ =

(
x′∗1, . . . , x

′
∗Nsc

max
, u′∗1, . . . , u

′
∗Nca

max
, N sc

max, . . . , N
sc
max, N

ca
max, . . . , N

ca
max

)
, if and only

if Ñ∗i = N sc
max, ∀i ∈ [1;N sc

max], N̂∗j = N ca
max, ∀j ∈ [1;N ca

max], x∗k = x′∗k, ∀k ∈ [1;N sc
max], and u∗k = u′∗k,

∀k ∈ [1;N ca
max].
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Consider x∗0 :=
(
x∗0, q, . . . , q, u∗0, . . . , u∗0, N sc

max, . . . , N
sc
max, N

ca
max, . . . , N

ca
max

)
∈ X∗0. One can readily verify

that x∗0 ∈ X ′∗0 and, hence, (x∗0, x∗0) ∈ R̃. Therefore, condition (i) in Definition 3.3 is satisfied.

Now consider any (x∗, x′∗) ∈ R̃, where x∗ =
(
x∗1, . . . , x∗Nsc

max
, u∗1, . . . , u∗Nca

max
, Ñ∗1, . . . , Ñ∗Nsc

max
, N̂∗1, . . . , N̂∗Nca

max

)

and x′∗ =
(
x′∗1, . . . , x

′
∗Nsc

max
, u′∗1, . . . , u

′
∗Nca

max
, N sc

max, . . . , N
sc
max, N

ca
max, . . . , N

ca
max

)
. Using definitions of S∗ and S′∗,

one obtains H∗ (x∗) = Ha(x∗1) and H ′∗ (x′∗) = Ha(x′∗1). Based on the definition of R̃, one obtains x∗1 = x′∗1
and, hence, dYa (Ha (x∗1) , Ha (x′∗1)) = 0. Therefore, condition (ii) in Definition 3.3 is satisfied.

Let us now show that condition (iii) in Definition 3.3 holds. Consider any (x∗, x′∗) ∈ R̃, where x∗ =(
x∗1, . . . , x∗Nsc

max
, u∗1, . . . , u∗Nca

max
, Ñ∗1, . . . , Ñ∗Nsc

max
, N̂∗1, . . . , N̂∗Nca

max

)
and x′∗ =

(
x′∗1, . . . , x

′
∗Nsc

max
, u′∗1, . . . , u

′
∗Nca

max
,

N sc
max, . . . , N

sc
max, N

ca
max, . . . , N

ca
max

)
. Consider any u∗ ∈ U∗(x∗). Using the relation R̃, one can readily verify

that u∗ ∈ U ′∗(x′∗). Now consider any x̂′∗ =
(
x̂′, x′∗1, . . . , x

′
∗(Nsc

max−1), u
′
∗, u
′
∗1, . . . , u

′
∗(Nca

max−1), N
sc
max, . . . , N

sc
max,

N ca
max, . . . , N

ca
max

)
∈ Postu∗(x′∗) ⊆ X ′∗ where x̂′ ∈ Postu∗Nca

max
(x′∗1) in Sa. Because of the relation R̃, one

gets u∗(Nca
max−jk∗ ) = u∗Nca

max
and x′∗1 = x∗1 and, hence, x̂′ ∈ Postu∗Nca

max
(x∗1) in Sa. Hence, one can choose

x̂∗ =
(
x̂′∗, x∗1, . . . , x∗(Nsc

max−1), u∗, u∗1, . . . , u∗(Nca
max−1), N

sc
max, Ñ1, . . . , ÑNsc

max−1, N
ca
max, N̂1, . . . , N̂Nca

max−1
)

, where

x̂∗ ∈ Postu∗(x∗) ⊆ X∗. Since (x∗, x′∗) ∈ R̃, one already has Ñ∗i = N sc
max, ∀i ∈ [1;N sc

max − 1], N̂∗j = N ca
max,

∀j ∈ [1;N ca
max−1], x∗k = x′∗k, ∀k ∈ [1;N sc

max − 1], and u∗k = u′∗k, ∀k ∈ [1;N ca
max − 1]. Therefore, one can readily

verify that (x̂∗, x̂′∗) ∈ R̃ implying that condition (iii) in Definition 3.3 holds which completes the proof. �
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