
1

Identification of Nonlinear State-Space Systems
from Heterogeneous Datasets

Wei Pan, Ye Yuan, Lennart Ljung, Jorge Gonçalves and Guy-Bart Stan

Abstract—This paper proposes a new method to identify
nonlinear state-space systems from heterogeneous datasets. The
method is described in the context of identifying biochemical/gene
networks (i.e., identifying both reaction dynamics and kinetic
parameters) from experimental data. Simultaneous integration of
various datasets has the potential to yield better performance for
system identification. Data collected experimentally typically vary
depending on the specific experimental setup and conditions. Typ-
ically, heterogeneous data are obtained experimentally through
(a) replicate measurements from the same biological system
or (b) application of different experimental conditions such
as changes/perturbations in biological inductions, temperature,
gene knock-out, gene over-expression, etc. We formulate here
the identification problem using a Bayesian learning framework
that makes use of “sparse group” priors to allow inference of
the sparsest model that can explain the whole set of observed,
heterogeneous data. To enable scale up to large number of
features, the resulting non-convex optimisation problem is relaxed
to a re-weighted Group Lasso problem using a convex-concave
procedure. As an illustrative example of the effectiveness of our
method, we use it to identify a genetic oscillator (generalised
eight species repressilator). Through this example we show that
our algorithm outperforms Group Lasso when the number of
experiments is increased, even when each single time-series
dataset is short. We additionally assess the robustness of our
algorithm against noise by varying the intensity of process noise
and measurement noise.

I. INTRODUCTION

The problem of identifying biological networks from exper-
imental time-series data is of fundamental interest in systems
and synthetic biology [1]–[3]. Tools from system identifica-
tion [4] can be applied for such purposes. However, most
system identification methods produce estimates of model
parameters based on data coming from a single experiment.

The interest in identification methods able to handle several
datasets simultaneously is twofold. Firstly, with the increasing
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availability of “big data” obtained from sophisticated bio-
logical instruments, e.g., large ‘omics’ datasets, attention has
turned to the efficient and effective integration of these data
and to the maximum extraction of information from them.
Such datasets typically contain (a) data from replicates of an
experiment performed on a biological system of interest under
identical experimental conditions, or (b) data measured from
a biochemical network subjected to different experimental
conditions, for example, different biological inducers, temper-
ature, stress factors, gene knock-out or gene over-expression.
The challenges for simultaneously considering heterogeneous
datasets during system identification are: (a) the system itself
is unknown, i.e., neither the structure nor the corresponding
parameters are known; (b) it is unclear how heterogeneous
datasets collected under different experimental conditions in-
fluence the “quality” of the identified system; (c) each single
time-series data may be short. These second and third points
are particularly important as biological experiments become
increasingly costly in time and resources when long time-
series dataset are required. Furthermore, repeat or perturbation
experiments may be conducted over different time ranges, with
different sampling frequencies, under various conditions, and
in different laboratories, which likely affects the success of
identification.

Another important consideration comes from the purpose of
dynamic models. Highly detailed or complex models are typi-
cally difficult to handle using rigorous control design methods.
Therefore, one typically prefers to use simple or sparse models
that capture at best the dynamics expressed in the collected
data. The identification and use of simple or sparse models
inevitably introduces model class uncertainties and parameter
uncertainties [5], [6]. To assess these uncertainties, replicates
of multiple experiments are typically necessary.

In the context of biology, the use of kinetic models to
understand the function of biological systems has already been
successfully illustrated in [7], [8]. Furthermore, the use of
heterogeneous dataset during system identification has been
proposed as a means to improve the accuracy of genetic regula-
tory network reconstruction methods [9]. Typically, biological
experiments are accompanied by a set of corresponding refer-
ence control experiments, whose profiles are used to determine
differential gene expression [10], [11]. Modern techniques try
to harness the “wisdom of crowd” concept by integrating the
predictions from multiple datasets into a single reconstructed
network termed the “consensus gene regulatory network” [12],
[13]. For instance, in [13], the authors grouped the algorithms
by applying the Euclidean distance on the confidence scores of
the links in the inferred networks. They showed that integration
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of diverse algorithms outperformed each individual inference
methods. The consensus network was obtained in three ways:
average of the estimated coefficients over conditions, a priori
biological knowledge, and pre-calculated coefficients obtained
from the application of a Gaussian graphical model [14] on
the combined data sets. However, the problem of accurate
reconstruction of gene regulatory networks is far from fully
resolved. Recent works [15], [16] advanced the state-of-art
by using new type of regularisation techniques. Unfortunately,
the dynamical models considered so far have been mostly
constrained to linear systems, an assumption that is rarely
satisfied by biological systems.

Our approach is based on the concept of sparse Bayesian
learning [2], [17], [18] and on the definition of a unified
optimisation problem allowing model identification from het-
erogeneous datasets, and whose solution is a model consistent
with all datasets available for identification. The ability to
consider various datasets simultaneously can potentially avoid
non-identifiability issues arising when a single dataset is
used [19].

The main contributions of this paper are as follows:
• Formulation of a nonlinear identification problem using

datasets from heterogeneous experiments.
• Derivation of a sparse Bayesian formulation of this iden-

tification problem by introducing “sparse group” priors.
• Relaxation of the resulting non-convex optimisation prob-

lem using a convex-concave procedure and development
of an efficient iterative reweighted Group Lasso algorithm
that allows to solve large problems defined through a
large number of features.

The paper is organised as follows. In section II-A, we
introduce the nonlinear model class considered in the paper.
In section II-C, the identification problem from heterogeneous
datasets is formulated. In section III, the identification problem
from heterogeneous datasets is cast as a non-convex Bayesian
learning problem with structured sparse priors. A convex
reweighted Group Lasso type algorithm is then derived as a
relaxation of its non-convex counterpart. In section IV, results
from identification of a generalised eight species repressilator
system are provided as an example application of our method.
In the end, we conclude the paper and give directions for
further work in section V.

The notation in this paper is standard. Bold symbols are
used to denote vectors and matrices. For a matrix A ∈ RM×N ,
Ai,j ∈ R denotes the element in the ith row and jth column,
Ai,: ∈ R1×N denotes its ith row, A:,j ∈ RM×1 denotes its
jth column. For a column vector α ∈ RN×1, αi denotes
its ith element. In particular, IL denotes the identity matrix
of size L × L. We simply use I when the dimension is
obvious from context. ‖w‖1 and ‖w‖2 denote the `1 and
`2 norm of the vector w, respectively. ‖w‖0 denotes the `0
norm of the vector w, which counts the number of nonzero
elements in the vector w. diag [γ1, . . . , γN ] denotes a diagonal
matrix with principal diagonal elements being γ1, . . . , γN .
E(α) stands for the expectation of the stochastic variable α.
∝ means “proportional to”. blkdiag[A[1], . . . ,A[C]] denotes
a block diagonal matrix with principal diagonal blocks being
A[1], . . . ,A[C] in turn. Tr(A) denotes the trace of A. A matrix

A � 0 means A is positive semidefinite. A vector γ � 0
means each element in γ is non-negative.

II. PROBLEM FORMULATION

A. Model

We consider dynamical systems described by nonlinear
differential/difference equation with additive process noise:

δ(xnt) = fn(xt,ut)vn + ξnt n = 1, . . . , nx

=
∑Nn

s=1
vnsfns(xt,ut) + ξnt,

(1)

where xt is the state variable, ut is the external control
input; xnt represent the n-th state variable at time t (sim-
ilar for unt); δ(xnt) = ẋnt for continuous-time system;
δ(xnt) = xnt or xnt − xn,t−1 or some known transformation
of historical data for discrete-time system; vns ∈ R and
fns(xt,ut) : Rnx+nu → R and vn are basis functions
and corresponding parameters respectively that govern the
dynamics, where nx and nu are the dimension of x and
u respectively. The functions fns(xt,ut) are assumed to be
Lipschitz continuous. ξnt represents additive process noise,
which is assumed to be i.i.d. Gaussian. Note that we do
not assume a priori knowledge of the form of the nonlinear
functions appearing on the right-hand side of the equations
in (1), e.g., whether the degradation obeys first-order or
enzymatic catalysed dynamics or whether the proteins are
repressors or activators.

B. Heterogeneous Time-Series Datasets

In what follows, we will assume data are sampled from a
total number M of time instances, and that the state variables
and their first derivatives/differences are recorded into a set D:

D = {xnt, δ(xnt)}n=1,...,nx;t=1,...,M . (2)

By inputting the dataset D into eq. (1), we get the following
regression problem formulation the for n-th state variable

yn = Ψnvn + ξn, n = 1, . . . , nx, (3)

where
yn , [δ(xn1), . . . , δ(xnM )]

> ∈ RM×1

vn , [vn1, . . . , vnNn ]
> ∈ RNn×1

ξn , [ξn1, . . . , ξnM )]
> ∈ RM×1.

Ψn ∈ RM×Nn is defined as a dictionary matrix whose j-
th column is [fnj(x1,u1), . . . , fnj(xM ,uM )]>. The process
noise or disturbance vector ξn is assumed to be Gaussian
distributed with zero mean and covariance Π ∈ RM×M+

1. The
identification goal is to estimate vn in the linear regression
problem formulated in eq. (3).

If a total number of C (named after the first letter of
word “collection”) datasets are collected from C independent
experiments, we put a subscript [c] to indicate the identification
problem associated with the specific dataset obtained from

1Note that the covariance matrix is not necessarily diagonal.
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experiment [c], with c ∈ {1, . . . , C}. Similar to D in (2), we
define the dataset for experiment [c] as

D[c] = {x[c]
nt, δ

[c](xnt)}c=1,...,C;n=1,...,nx;t=1,...,M [C]

= {x[c]
t , δ

[c](xt)}c=1,...,C;t=1,...,M [C] .
(4)

In what follows we gather in a matrix A
[c]
n similar to Ψn

the set of all candidate dictionary functions that we want to
consider during the identification. The identification problem
is then written as:

y[c]
n = A[c]

n w[c]
n + ξ[c]

n , n = 1, . . . , nx, c = 1, . . . , C. (5)

Since the nx linear regression problems in (5) are indepen-
dent, for simplicity of notation, we omit the subscript n used
to index the state variable and simply write:

y[c] = A[c]w[c] + ξ[c], c = 1, . . . , C, (6)

in which

A[c] ,
[
A

[c]
:,1, . . . ,A

[c]
:,N

]

=


f1

(
x

[c]
1 ,u

[c]
1

)
. . . fN

(
x

[c]
1 ,u

[c]
1

)
...

...

f1

(
x

[c]

M [c] ,u
[c]

M [c]

)
. . . fN

(
x

[c]

M [c] ,u
[c]

M [c]

)


∈ RM
[c]×N ,

w[c] ,
[
w

[c]
1 , . . . , w

[c]
N

]>
∈ RN ,

ξ[c] ,
[
ξ

[c]
1 , . . . , ξ

[c]

M [c])
]>
∈ RM

[c]

,

(7)
where x

[c]
t =

[
x

[c]
1t , . . . , x

[c]
nxt

]
∈ Rnx is the state vector at

time instant t. It should be noted that N , the number of
dictionary functions or number of columns of the dictionary
matrix A[c] ∈ RM [c]×N , can be very large. Without loss of
generality, we assume M [1] = · · · = M [C] = M .

C. Identification Setup for Heterogeneous Datasets

To ensure reproducibility, experimentalists repeat their ex-
periments under the same conditions, and the collected data
are then called “replicates”. Typically, only the average value
over these replicates is used for modelling or identification
purposes. In this case, however, only the first moment is used
and information provided by higher order moments is lost.
Moreover, when data is obtained from different experimental
conditions, it is usually very hard to combine the resulting
heterogeneous datasets into a single identification problem.
This section will address these issues by showing how several
datasets can be combined to define a unified optimisation
problem, whose solution is an identified model consistent with
the various datasets available for identification.

To consider heterogeneous datasets in one single formula-
tion, we stack in eq. (8) the various individual equations in
(6).

In eq. (8), Ai = blkdiag[A
[1]
:,i , . . . ,A

[C]
:,i ], and wi =

[w
[1]
i , . . . , w

[C]
i ]>, for i = 1, . . . , N . Based on the stacked

formulation given in eq. (8) we further define

y =

 y[1]

...
y[C]

 ,A =
[

A1 · · · AN

]
,

w =

 w1

...
wN

 , ξ =

 ξ[1]

...
ξ[C]

 ,
(9)

which gives

y = Aw + ξ. (10)

This yields a formulation that is very similar to the previous
linear regression problem for a single dataset in eq. (3).
However, there is a key difference: there is a special block
structure for y, A and w in the multi-experiment formulation
(10).

Remark 1: When w[i] is fixed to be w for all the experi-
ments, i.e., w[1] = · · · = w[C] = w, we can formulate the
identification problem as a single linear regression problem
by concatenation: y[1]

...
y[C]

 =

 A[1]

...
A[C]

w +

 ξ[1]

...
ξ[C]

 . (11)

III. METHODS

To get an estimate of w in (10), we use Bayesian modeling
to treat all unknowns as stochastic variables with certain prob-
ability distributions [29]. For y = Aw + ξ, it is assumed that
the stochastic variables in the vector ξ are Gaussian distributed
with unknown covariance matrix Π, i.e., ξ ∼ N (0,Π).

In what follows we consider the following variable sub-
stitution for the inverse of the unknown covariance matrix:
S , Π−1. In such a case, using the properties of Gaussian
distributions, the likelihood of the output y given the param-
eter w is

P(y|w) = N (y|Aw,Π) (12)

∝ exp

[
−1

2
(Aw − y)>S(Aw − y)

]
. (13)

A. Sparsity Inducing Priors

In Bayesian models, a prior distribution P(w) can be
defined as

P(w) =

N∏
i=1

P(wi)
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 y[1]

...
y[C]

 =


A

[1]
:,1 . . . A

[1]
:,N

. . .
A

[C]
:,1 . . . A

[C]
:,N


︸ ︷︷ ︸

C Blocks

 w[1]

...
w[C]

+

 ξ[1]

...
ξ[C]



=


A

[1]
:,1 A

[1]
:,N

. . . . . . . . .
A

[C]
:,1 A

[C]
:,N


︸ ︷︷ ︸

N Blocks



w
[1]
1
...

w
[C]
1
...

w
[1]
N
...

w
[C]
N


+

 ξ[1]

...
ξ[C]



=
[

A1 · · · AN

]  w1

...
wN

+

 ξ[1]

...
ξ[C]

 .

(8)

where

P(wi) ∝ exp

−1

2

C∑
j=1

g(w
[j]
i )


=

C∏
j=1

exp

[
−1

2
g(w

[j]
i )

]

=

C∏
j=1

P(w
[j]
i ),

with g(w
[j]
i ) being a given function of w[j]

i . Generally, w
in (10) is sparse, and therefore certain sparsity properties
should be enforced on w. To this effect, the function g(·)
is usually chosen to be a concave, non-decreasing function of∣∣∣w[j]
i

∣∣∣ [18]. Examples of such functions g(·) include Gener-
alised Gaussian priors and Student’s t priors (see [18], [30]
for details).

Computing the posterior mean E(w|y) is typically in-
tractable because the posterior P(w|y) is highly coupled and
non-Gaussian. To alleviate this problem, ideally one would like
to approximate P(w|y) as a Gaussian distribution for which
efficient algorithms to compute the posterior exist [29]. For
this, the introduction of lower bounding super-Gaussian priors
P(w

[j]
i ), i.e., P(w

[j]
i ) = maxγi>0N (w

[j]
i |0, γi)ϕ(γi), can be

used to obtain an analytical approximation of P(w|y) [30].
Note that current problem (10) has a block structure as

pointed out in the previous section, i.e., the solution w is ex-
pected to be block-wise sparse. Therefore, sparsity promoting
priors should be specified for P(wi), ∀i. To do this, for each
block wi, we define a hyper-parameter γi such that

P(wi) = max
γi>0
N (wi|0, γiIC)ϕ(γi) (14)

= max
γi>0

C∏
j=1

N (w
[j]
i |0, γi)ϕ(γi), (15)

where ϕ(γi) is a nonnegative function, which is treated as
a hyperprior with γi being its associated hyperparameter.

Throughout, we call ϕ(γi) the “potential function”. This
Gaussian relaxation is possible if and only if logP(

√
wi) is

concave on (0,∞). Defining

γi = [γi, . . . , γi] ∈ RC , Γi = diag [γi] ,

γ = [γ1, . . . ,γN ] ∈ RNC , Γ = diag [γ] ,
(16)

we have

P(w) =

N∏
i=1

P(wi) = max
γ>0
N (w|0,Γ)ϕ(γ). (17)

B. Cost Function

Using the Gaussian likelihood introduced in eq. (13) and
the variational prior in eq. (17), we can define the following
optimisation problem jointly on w, γ and S.

Proposition 1: The unknowns w,γ,S can be obtained by
solving the following optimisation problem

L(w,γ,S)

= min
w,γ,S

{− log |S|+ log |Γ|+ log |Γ−1 + A>SA|

+ (y −Aw)
>

S (y −Aw) + w>Γ−1w +

N∑
j=1

p(γj)},

(18)
where Γ is given in eq. (16).

Proof: To derive the cost function in eq. (18), we first
introduce the posterior mean and covariance:

mw = ΣwA>Sy, (19)

Σw = (A>SA + Γ−1)−1. (20)

Since the data likelihood P(y|w) is Gaussian,

N (y|Aw,S−1)

=
1

(2π)
M/2 |S|−1/2

exp

[
−1

2
(y −Aw)

>
S (y −Aw)

]
,

(21)
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and we can write the marginal likelihood as∫
N (y|Aw,Π)N (w|0,Γ)

N∏
j=1

ϕ(γj)dw

=
1

(2π)
M/2 |S|−1/2

1

(2π)
N

∫
exp{−E(w)}dw

N∏
j=1

ϕ(γj),

(22)
where

E(w) =
1

2
(y −Aw)

>
S (y −Aw) +

1

2
w>Γ−1w. (23)

Equivalently, we get

E(w) =
1

2
(w −mw)>Σ−1

w (w −mw) + E(y), (24)

where mw and Σw are given by eq. (19) and (20).
We first show the data-dependent term E(y) is jointly

convex in w and γ. From eq. (19) and (20), the data-dependent
term can be re-expressed as

E(y) =
1

2

(
y>Sy − y>SAΣwA>Sy

)
=

1

2

(
y>Sy − y>SAΣwΣ−1

w ΣwA>Sy
)

=
1

2
(y −Amw)

>
S (y −Amw) +

1

2
m>wΓ−1mw

= min
w

[
1

2
(y −Aw)

>
S (y −Aw) +

1

2
w>Γ−1w

]
.

(25)
Using (24), we can evaluate the integral in (22) and get∫

exp{−E(w)}dw = exp{−E(y)}(2π)N |Σw|1/2. (26)

Applying a −2 log(·) transformation to eq. (22), we obtain
eq. (27). Therefore we get the cost function in eq. (18) to be
minimised over w,γ,S.

C. Algorithm

It is easy to check that the cost function in eq. (18) is convex
in w and S but concave in Γ. This non-convex optimisation
problem can be formulated as a convex-concave procedure
(CCCP). It can be shown that solving this CCCP is equivalent
to solving a series of iterative convex optimisation programs,
which is guaranteed to converge to a stationary point [31]. Let

u(w,γ,S) , (y −Aw)
>

S (y −Aw)

+ w>Γ−1w − log det S,

v(γ,S) ,−

log |Γ|+ log |Γ−1 + A>SA|+
N∑
j=1

p(γj)

 .
(28)

It is easy to check that v(γ,S) is a convex function with
respect to γ. Furthermore, log | · | is concave in the space
of positive semi-definite matrices. Since we adopt a super-
Gaussian prior with potential function ϕ(γj),∀j, as described
in (15), a direct consequence is that p(γj) = − logϕ(γj) is
concave, and, therefore, −p(γj) is convex [17] (if the prior
is chosen as a Student’s t prior, then p(γj) = 1). Note that

u(w,γ,S) is jointly convex in w, γ and S, while v(γ,S) is
jointly convex in γ and S. As a consequence, the minimisation
of the objective function can be formulated as a concave-
convex procedure:

min
γ�0,S�0,w

u(w,γ,S)− v(γ,S). (29)

Since v(γ,S) is differentiable over γ, the problem in eq. (29)
can be transformed into the following iterative convex optimi-
sation problem

wk+1 = argmin
w

u(w,γk,Sk) (30)

γk+1 = argmin
γ�0

u(wk,γ,Sk)−∇γv(γk,Sk)>γ (31)

Sk+1 = argmin
S�0

u(wk,γk,S)−∇Sv(γk,Sk)>S. (32)

Using basic principles in convex analysis, we then obtain
the following analytic form for the negative gradient of v(γ)
at γ (using the chain rule):

αk ,−∇γv(γ,Sk)>|γ=γk

=∇γ

[
log |Γ−1 + A>SkA|+ log |Γ|

]
= diag{

[
(Γk)−1 + A>SkA

]−1} · diag{−(Γk)−2}
+ diag−1{Γk}

=
[
αk11 · · · αk1N

]︸ ︷︷ ︸
N Blocks

=
[
αk11, . . . , α

k
11︸ ︷︷ ︸

C Elements

· · · αk1N , . . . , α
k
1N︸ ︷︷ ︸

C Elements

]
.

(33)
Therefore, the iterative procedures in eq. (30) and (31) for

wk+1 and γk+1, respectively, can be formulated as[
wk+1,γk+1

]
= argmin

γ�0,w
(y −Aw)

>
Sk (y −Aw)

+

N∑
i=1

(
w>i wi

γi
+ Cγiα

k
i

)
.

(34)

The optimal γ components can be computed analytically as
γi = ‖wi‖2√

Cαk
i

. Once γ is fixed, we can compute wk+1 by

solving the following optimisation problem:

min
w

(y −Aw)
>

Sk (y −Aw) + 2

N∑
i=1

‖θki ·wi‖2, (35)

where θki = Cαki . We can then inject this into the expression
of γi, which yields

γk+1
i =

‖wk+1
i ‖2√
Cαki

. (36)

After we get wk+1 and γk+1, we can proceed with the
optimisation iteration in (32):

Λk = −∇Sv(γk,Sk)

= ∇S

(
log det

(
Γ−k + A>SkA

))
= A(Γ−k + A>SkA)−1A>.

(37)
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− 2 log

 1

(2π)
M/2 |S|−1/2

1

(2π)
N

∫
exp{−E(w)}dw

N∏
j=1

ϕ(γj)


= (M + 2N) log 2π − log |S|+ log |Γ|+ log |Γ−1 + A>SA|+

N∑
j=1

p(γj) + (y −Aw)
>

S (y −Aw) + w>Γ−1w.

(27)

Letting Yk+1 = (Awk+1 − y) · (Awk+1 − y)>, we can get
an estimate of the inverse of covariance matrix S as:

Sk+1 = argmin
S�0

Tr
(
SYk+1

)
− log det S + Tr

(
ΛkS

)
. (38)

Given γk+1 in (36) and Sk+1 in (38), we can then go back
to (33) to update α for the next iteration.

The iterative identification procedure described above is
summarised in Algorithm 1.

Algorithm 1 Nonlinear Identification Algorithm using Het-
erogeneous Datasets

1: Collect C heterogeneous groups of time-series data from
the system of interest (assuming the system can be de-
scribed by (1));

2: Select the candidate dictionary functions that will be
used to construct the dictionary matrix described in Sec-
tion II-C;

3: Initialise θ0
i = 1, ∀i, α0

i =
θ0i
C , S0 = I, Λ0 = I;

4: for k = 0, . . . , kmax do
5: wk+1 can be obtained by solving the following

weighted minimisation problem over w

min
w

1

2
(y −Aw)

>
Sk (y −Aw) +

N∑
i=1

‖θki ·wi‖2;

(39)

6: Update γk+1
i using eq. (36);

7: Let Yk+1 = (Awk+1 − y) · (Awk+1 − y)>;
8: Sk+1 can be obtained by solving the following weighted

minimisation problem over the inverse of the covariace
matrix:

min
S�0

Tr
(
Yk+1 + Λk

)
S− log det S; (40)

9: Update αk+1 using eq. (33);
10: Update θk+1

i = Cαk+1
i ;

11: Update Λk+1 using eq. (37);
12: if a stopping criterion is satisfied then
13: Break;
14: end if
15: end for

Remark 2: 1) It should be noted that when noise is
Gaussian i.i.d. with known variance, sparse Bayesian
learning algorithms are provably better than classic
Group Lasso algorithms in terms of mean square error
[32].

2) The initialisation step is important (line 3 of in Algo-
rithm 1). In special cases where the process noise in (1)
is Gaussian i.i.d and there is no measurement noise, S
can be fixed to λ−1I for all k, where λ is a positive real
number, i.e., no update through eq. (40) is carried out.
In such situations, λ can be treated as the equivalent of
the regularisation/trade-off parameter in the Group Lasso
algorithm described by eq. (40) and cross validation can
be implemented through variations of the initialisation
values.

3) When the model obtained is used for prediction pur-
poses, the inverse covariance estimation procedure in
eq. (40) can be used to quantify the prediction uncer-
tainty or “risk”.

4) Essentially, Algorithm (1) consists of a reweighted
Group Lasso algorithm (39) and a reweighted inverse
covariance estimation algorithm (40). Both problems are
convex and can be implemented using many numerical
optimisation algorithms [37] such as the Alternating
Direction Method of Multipliers (ADMM) [33], [38].

D. Connection to Semidefinite Programming Formulations
and the Sparse Multiple Kernel Method

The iteration in eq. (34) can be rewritten in the following
compact form[

wk+1,γk+1
]

= argmin
γ�0,w

(y −Aw)
>

Sk (y −Aw)

+ w>Γ−1w −∇γv(γk,Sk)>γ.
(41)

Using the standard procedure in [34], this is equivalent to the
following Semidefinite Programming optimisation problem:

min
z,w,γ

z−∇γv(γk,Sk)>γ

subject to

 z (y −Aw)> w>

y −Aw (Sk)−1 0
w 0 Γ

 � 0

γ � 0

Solving this Semidefinite Programming optimisation is too
costly for all but problems with a small number of variables.
This means that the number of samples and the dimension
of the system cannot be too large simultaneously. In this
Semidefinite Programming formulation, Γ is closely related to
the sparse multiple kernel presented in [35]. Certain choices
of kernels may introduce some good properties or help reduce
algorithmic complexity. In our case, we choose Γ to have a
diagonal or a DC kernel structure.
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IV. SIMULATIONS

In this section, we use numerical simulations to show the
effectiveness of the proposed algorithm. To compare the identi-
fication accuracy of the algorithms considered for comparison,
we use the root of normalised mean square error (RNMSE)
as a performance index, i.e.,

RNMSE =
‖westimate −wtrue‖2

‖wtrue‖2
.

Several factors affect the RNMSE, e.g., number of experiments
C, measurement noise intensity, dynamic noise intensity,
length of single time-series data M , and number of candidate
dictionary functions N . In what follows, we shall focus on
showing results pertaining to RNMSE when the number of
experiment, C, and the length of single time-series, M , for
each experiment are varied.

As an illustrative example, we consider a model of an
eight species generalised repressilator [36], which is a system
where each of the species represses another species in a
ring topology. The corresponding dynamic equations are as
follows:

ẋ1t =
p11

pp1312 + xp138t

+ p14 − p15x1t,

ẋit =
pi1

ppi3i2 + xpi3i−1,t

+ pi4 − pi5xit, ∀i = 2, . . . 8, (42)

where pij , i = 1, . . . , 8, j = 1, . . . , 5. We assume the mean
value for these parameters across different species and exper-
iments are p̄i1 = 40, p̄i2 = 1, p̄i3 = 3, p̄i4 = 0.5, p̄i5 = 1,
∀i. We simulate the ODEs in (42) to generate the time-
series data. In each “experiment” or simulation of (42), the
initial conditions are randomly drawn from a standard uniform
distribution on the open interval (0, 1). The parameters in each
experiment vary no more than 20% from the mean values.2

Following the procedure described in the previous sections,
candidate nonlinear dictionary functions need to be considered
from the set of nonlinear functions typically used in ODE
models of Gene Regulatory Networks. As an illustrative exam-
ple, we will hereafter only consider Hill functions as potential
nonlinear candidate functions. The set of Hill functions with
Hill coefficient h, both in activating and repressing form, for
the ith state variables at time instant t are:

hill(xit,K, hnum, hden) ,
xhnum
it

Khden + xhden
it

(43)

where hnum and hden represent the Hill coefficients. When
hnum = 0, the Hill function has a repression form, whereas an
activation form is obtained for hnum = hden 6= 0.

In our identification experiment, we assume hnum, hden and
K to be known. We are interested in identifying the regulation
type (linear or Hill type, repression or activation) and its
corresponding multiplying parameter pi1, the basal expression
rate pi4, and the degradation rate constant pi5, ∀i. Since there
are 8 state variables, we can construct the dictionary matrix
A with 8 (dictionary functions for linear terms) +(2 ∗ 8)
(dictionary functions for Hill functions, both repression and

2In MATLAB, one can use p̄ij*(0.8 + 0.4*rand(1)) to generate
easily the corresponding parameters for each experiment.

activation form) +1 (constant unit vector) = 25 columns. The
corresponding matrix A ∈ RM×25 is given in eq. (45).

Typically in a state-space representation, a measurement
equation is often considered to take into account the measure-
ment dynamics and how noise enters it. For the purpose of
our simulations, we have consider the simple case of additive
measurement noise on the state variables:

znt = xnt + εnt (44)

where εnt is the measurement noise assumed to be i.i.d.
Gaussian with zero mean and bounded standard deviation.

The numerical simulation procedure that we used to pro-
duce time-series data for the purpose of identification can be
summarised as follows:

1) The deterministic system of ODEs (42) is discretised
using an Euler method with sampling time 0.1;

2) We consider two scenarios: the first noiseless, while the
second noisy, for which we vary the standard deviation
of process noise (i.e., ξnt in eq. (1)) and measurement
noise (i.e., εnt in eq. (44));

3) A dictionary matrix is constructed as explained above;
4) We run both Group Lasso and Algorithm 1 with the

maximal iteration number defined as kmax = 5 (see step
4 in Algorithm 1) to identify the model then compare
the identification performance in terms of RNMSE.

For the noiseless case, we varied the number of experiments
C and length of single time-series M . For a fixed C and
M , we computed the RNMSE over 50 simulations by varying
initial conditions and parameters pij . The RNMSE for various
values of C and M are shown in Fig. 1(a) and Fig. 1(b).
Expectedly, identification using single short time-series data
is challenging for both approaches. However, integration of
multiple (even shorter) time-series data using our algorithm
offers significantly improved identification performance as can
be seen when higher values of C are used. As observed in
Fig. 1, the RNMSE decreases when either the number of
experiments C or the length of single time-series M increases.
When both C and M are high enough, e.g., C = 10, M = 100,
the RNMSE approaches zero.

For the noisy case, we varied the standard deviation of
process noise, ξnt in (1), and measurement noise, εnt in (44),
while fixing the number of experiments C to 10 and length of
single experiment M to 100. For a fixed intensity of process
and measurement noises, we compute the RNMSE over 50
simulations by varying initial conditions and parameters pij .
The RNMSE for various noise combinations are shown in
Fig. 2(a) and Fig. 2(b). As can be seen, our algorithm clearly
outperforms Group Lasso in terms of RNMSE.

V. CONCLUSION AND DISCUSSION

System identification for nonlinear state-space systems is
not a trivial task. In our previous work [2], this problem
has been considered using single time-series data. Using our
method, it was observed that, as the number of considered
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A =

 x11 . . . x81 hill(x11, 1, 0, 3) . . . hill(x81, 1, 3, 3) 1
...

...
...

...
...

x1M . . . x8M hill(x1M , 1, 0, 3) . . . hill(x8M , 1, 3, 3) 1

 . (45)

Length of single time series: M

Number of experiemnts: C
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Fig. 1. Algorithm comparison in terms of RNMSE averaged over 50
independent experiments by varying number of experiments and length of
single experiment.

dictionary functions is increased, more data samples are
needed for identification. However, even when long time-series
data are used, the information contained in the corresponding
dataset may not be rich enough for successful identification,
e.g., no additional information is provided through longer
time series data when steady state is reached. Meanwhile,
obtaining long time-series data is typically difficult or costly
experimentally as it requires setups allowing to following the
time evolution of the system under consideration for long,
uninterrupted periods of time.
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Fig. 2. Algorithm comparison in terms of RNMSE averaged over 50
independent experiments by varying the standard deviation of process noise
and measurement noise while fixing the number of experiments to 10 and
length of single experiment to 100.

These issues motivate the simultaneous integration of
datasets from various experiments. Data collected experimen-
tally typically vary depending on the specific experimental
setup and conditions. Typically, heterogeneous data are ob-
tained experimentally through (a) replicate measurements from
the same biological system or (b) application of different
experimental conditions such as changes/perturbations in bi-
ological inductions, temperature, gene knock-out, gene over-
expression, etc. Another important issue is the quantification



9

of the uncertainty of the identified model for the purpose of
further prediction, control or decision making. To tackle these
issues, we have formulated here the identification problem
using a Bayesian learning framework that makes use of
“sparse group” priors to allow inference of the sparsest model
that can explain the whole set of observed, heterogeneous
data. In the simulated example, our algorithm demonstrably
outperforms Group Lasso when the number of experiments is
increased, even when each single time-series dataset is short.
Additionally, our algorithm is more robust to both process
noise and measurement noise compared with Group Lasso
methods.

In what follows, we briefly discuss important aspects that
need to be considered and further extensions of the method
we have presented here. The first important aspect concerns
measurement noise. The problem formulation presented in
section II-A can be modified to allow consideration of mea-
surement dynamics and associated measurement noise. For
the sake of simplicity of exposition, we discuss hereafter the
case of a scalar system, i.e., n = 1 in (1), where additive
i.i.d. Gaussian noise is also considered. In this case, we
measurement equation amounts to: zt = xt + εt, where
the measurement noise εt is assumed i.i.d. Gaussian. In the
continuous time scalar case, the system in eq. (1) can be
equivalently written as ẋt = g(xt) + ξt. We can simply
use Taylor series expansion to expand g(xt) noting that by
definition xt = yt − εt:

g(xt) = g(zt − εt)
= g(zt)− g′(z)|z=ztεt +O(ε2t )︸ ︷︷ ︸

Correlated Gaussian noise

= g(zt) + ξ̄t.

If we can estimate ẋt from yt properly, e.g., using a Gaussian
Process estimation procedure [22], we can then write the
following

ẋestimate
t = g(zt) + ξ̄t + ξt = g(zt) + ηt.

In this case, the new noise ηt is multiplicative and thus
not i.i.d. anymore. Taking inspiration from the Generalised
Method of Moment (GMM) [23], [24], we can use the
approach described here to determine the form of g, and then
estimate the empirical covariance of ηt

The second aspect of importance concerns the selection
of the dictionary functions fi(., .) in (6). Adequate selection
of the dictionary function set is key to the success of the
identification. Some prior knowledge of the field for which the
models are developed can be helpful here. Indeed, depending
on the field for which the dynamical model needs to be
built, only a few typical nonlinearities specific to this field
need to be considered. For example, the class of models
that arise from biochemical reaction networks typically in-
volves nonlinearities that capture fundamental biochemical
kinetic laws, e.g., first-order functions f([S]) = [S], mass
action functions f([S1] , [S2]) = [S1] · [S2], Michaelis-Menten
functions f([S]) = Vmax [S] /(K + [S]), or Hill functions
f([S]) = Vmax [S]

h
/(Kh + [S]h).

The third aspect of importance concerns the estimation of
the first derivative of the state variables (see Eq. (2) and
Eq. (4)), which is not trivial. Estimating time derivatives
in continuous-time systems can either be achieved using a
measurement equipment with a sufficiently high sampling
rate, or using state-of-the-art mathematical approaches [20].
Proper estimation of derivatives is key to the identification
procedure [20]. As pointed out in [21], the identification
problem is generally solved through discretisation of the pro-
posed model. Assuming that samples are taken at sufficiently
short time intervals, various discretisation methods can be
applied. Typically, a forward Euler discretisation is used to
approximate first order derivatives, i.e., yi can be defined as

yi ,
[
xi2−xi1

∆t , . . . ,
xi,M+1−xiM

∆t

]>
∈ RM×1. In this paper,

the local polynomial regression framework in [20] is applied
to estimate time derivatives.3

VI. FUTURE WORK

There are several extension of this work that we plan to
explore as part of future works.

First, assuming all states and their derivatives in continuous
time can be measured or approximated, many identification
problems can be formulated as linear regressions. As future
work, we plan to extend our framework to partially observable
systems and to establish the minimal sampling rate necessary
to yield adequate numerical estimates of the first order deriva-
tive (see eq. (2) and eq. (4)).

A second aspect we are considering for future work is
to better understand the impact of length of observations on
identification performance. How can we bound the length of
observations to obtain an expected performance? How can we
bound the performance given a fixed length of observations? In
a linear model, these questions can be answered by analysing
the observability of the system. Numerous studies are tackling
the question of observability of nonlinear systems (see for
example [39]), which can be used to provide theoretical
methods and algorithms for determining bounds on the number
of observations or the identification performance. Performance
guarantees are typically given under the assumption of “non-
correlation” or “ near-orthogonality” between the columns
of the dictionary matrix. This is however hardly satisfied in
practice as the dictionary matrix is constructed from data and
the variability and randomness in the corresponding dataset
cannot guarantee such condition a priori.

Finally, we so far only tested our method using simulated
data to allow for a fair comparison with the “ground truth” of
the system to be identified. In the future, we plan to apply our
method to real datasets from biological experiments.
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