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Abstract—This paper addresses active state estimation with a
team of robotic sensors. The states to be estimated are repre-
sented by spatially distributed, uncorrelated, stationary vectors.
Given a prior belief on the geographic locations of the states,
we cluster the states in moderately sized groups and propose
a new hierarchical Dynamic Programming (DP) framework to
compute optimal sensing policies for each cluster that mitigates
the computational cost of planning optimal policies in the com-
bined belief space. Then, we develop a decentralized assignment
algorithm that dynamically allocates clusters to robots based on
the pre-computed optimal policies at each cluster. The integrated
distributed state estimation framework is optimal at the cluster
level but also scales very well to large numbers of states and robot
sensors. We demonstrate efficiency of the proposed method in
both simulations and real-world experiments using stereoscopic
vision sensors.

Index Terms—Sensor Networks, Decision/Estimation Theory,
Distributed Algorithms/Control, Optimal Control

I. INTRODUCTION

ROBOTIC sensors rely on mobility to gather information.
Information acquisition can be subtask in a more com-

plex robotic mission such as SLAM, or the end goal in, e.g.,
geostatistical surveying, environmental sampling, or mapping
missions. The goal of this paper is to determine how a team
of robots should collect information so that the aggregate
uncertainty in a finite collection of hidden state vectors is
minimized. Specifically, given prior beliefs of the geographic
location of the hidden states, we seek an optimal sequence of
observations which, when fused with the prior beliefs, mini-
mizes the estimation uncertainty. This problem is known in the
mobile robotics literature as distributed state estimation. The
approach presented herein is similar to recent advancements in
linear-Gaussian active sensing that operate in pose-covariance
space [2], [3], except that here we propose a novel belief-
space discretization that admits exact value iteration and can
be readily incorporated in a hierarchical multi-robot controller,
enabling decentralized information acquisition of very large
collections of hidden states by large teams of robots.

A typical approach to active state estimation is to employ
gradient descent methods to generate sensor trajectories and
sequences of associated state observations that minimize an
information theoretic objective of interest, such as the trace of
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the covariance matrix. This is the approach followed, e.g., in
mobile target tracking [4], [5], sparse landmark localization
[1], [6], [7], and active SLAM [3], [8], [9]. Recently, [8]
have shown that information-theoretic objectives may fail even
to be monotonic in many active sensing tasks, removing
performance guarantees for greedy control.

When planning multiple observations, the robot may need to
reason over the combinatorial set of future probability distri-
butions (pdfs), efficiently represent them, and solve Bellman’s
equation. This is known as the “belief representation problem.”
This problem, in the context of information acquisition, has
received a great deal of attention recently, both when the robot
state is observable [2], [10]–[13] and when it is only partially
observable [3], [14]–[21]. The most widely used approach is
to grow a tree with a prior distribution of the hidden states at
the root, sampling in this way several sequences of possible
future observations to obtain the set of reachable belief states
at the leaves. Once the tree has been constructed, one simply
selects the leaf with the lowest cost and traces it back to the
root to obtain the optimal policy. The horizon length can be
set a priori [2], [10], [11], [14] or, e.g., defined implicitly by
a budget [12]. Note that nonmyopic active sensing problems,
such as the problem addressed in this paper, implicitly exploit
a priori knowledge rather than exploring the environment to
discover new features. Exploration can be included as a first
step as in [14], and incorporating this step within our approach
is a subject of further research.

Two approaches that are fundamentally different from
choosing a dynamic programming horizon are (i) to repre-
sent the reachable belief space with a finite set in a clever
way, typically by making an assumption about the family
of distributions of the hidden states [1], [2], [7], [13], [15],
[16], or (ii) to avoid this representation problem altogether by
working in policy space [17]–[19]. With respect to the latter,
[19] defines a generalized policy graph, which nonetheless
relies on belief space sampling. In fact, some kind of sampling
is at the core of all point-based approaches stemming from the
seminal paper [22].

Non-myopic active sensing for teams of decentralized robots
often leads to decentralized Partially Observable Markov
Decision Process POMDPs (dec-POMDPs) [20], [21]. To
our knowledge, decentralization in this context refers to the
execution of the planner, as its computation is always done
offline at a central location due to the non-separable nature of
the value function. Recently, [23] used sequential planning for
decentralized active SLAM.

Common in the vast majority of approaches discussed
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above is that mobile sensor planning relies on sampling-based
strategies, e.g., forward search, for partially [3], [14], [15],
[15]–[21] and fully observable [2], [13] robots, or belief space
sampling in the policy domain [17]–[19]. Sampling-based
approaches will typically run into scalability issues due to one
or more of the following reasons: (i) sparsity of information
in the environment, which forces longer planning horizons,
(ii) high dimensional unknowns, which make observation
sampling inefficient, or (iii) large teams of robots, which
significantly increase the size of the action space. To design an
algorithm that avoids these pitfalls, in this paper we introduce a
hierarchical approach that decomposes the set of M states into
P �M clusters, designs optimal controllers for each cluster,
and then allocates those controllers among the N robots.
Specifically, for every hidden state that needs to be estimated,
we define a local Dynamic Program (DP) in the joint state-
space of robot positions and state uncertainties that determines
robot paths and associated sequences of state observations
that collectively minimize the estimation uncertainty. Then,
we divide the collection of hidden states into clusters based
on a prior belief of their geographic locations, and, for each
cluster, we define a second DP that determines how far along
the local optimal trajectories the robot should travel before
transitioning to estimating the next hidden state within the
cluster. Finally, a distributed assignment algorithm is used
to dynamically allocate controllers to the robot team from
the set of optimal control policies for every cluster. At the
cluster level, the problem that we solve can be considered
a generalization of the TSP in that the robot must observe
high dimensional unknowns over an infinite horizon at each
site. This is important to note because our method incurs the
same computational complexity as the TSP, O(2K), where
K is the number of hidden states in the cluster. Moreover,
the greedy extension of our method to multiple robots and
multiple clusters only contributes constant complexity in the
size of the robot team and in the number of clusters. In this
way, our approach represents an approximation algorithm to
a broad class multi vehicle generalized TSPs for which no
good approximation exists. While we are not able to guar-
antee an optimality gap, we are able to bound computational
complexity by limiting the cluster size, effectively “dividing
and conquering” the hard problem into a number of tractable
subproblems that can be solved exactly. We are not aware of
any other non myopic method in the literature that can handle
as many hidden states and robot sensors. We also illustrate
these claims with experiments on real robots, which are a
contribution in and of themselves as the first to demonstrate
experimental multi-robot active sensing using stereo vision.

The paper is organized as follows: In Section II, we for-
mulate the distributed state estimation problem addressed in
this paper. In Sections III and IV we propose a local and a
cluster DP to obtain controllers that are optimal at the cluster
level. Section V presents the distributed auction mechanism
that can efficiently allocate clusters to the robots in real-time.
In Section VI, we simulate large robot teams carrying stereo
vision rigs that localize hundreds of sparse landmarks. In
Section VII, we report experiments on a team of two robots
localizing eight landmarks.

II. PROBLEM FORMULATION

Consider a team of N mobile robots tasked with estimating
M hidden state vectors {xi}Mi=1 ⊂ Rn. Let W and U denote
the configuration and action spaces of a single robot, and
let φ : W × U → W denote its (possibly nonholonomic)
dynamical model. In this paper, the set W can be any finite
discretization of the robot’s configuration space, as long as
transitions in that space can be assumed to be deterministic.
Assume that the robots have access to a Normal prior dis-
tribution over the hidden states, with means {x̂i,0}Mi=1 and
covariances {Σi,0}Mi=1. Let yij denote the observation of xi
by robot j that is corrupted by zero mean Gaussian noise,
specifically, yij = xi + νij , where νij ∼ N (0,Qij) . We
assume that we have a model of Qij that depends on both the
state of the robot and the hidden vector. We will thus write
Qij as a (possibly discontinuous) mapping Q : Rn × W →
Sym++(n,R), where Sym(n,R) denotes the set of symmetric
matrices and the subscript denotes the restriction of this set to
the set of positive definite matrices. Collectively, the team
acquires a sequence of observations {yij,k} with measurement
error covariances {Qij,k} from various vantage points along
controlled trajectories {pj,k} ⊂ W , where k denotes a time
index. Hereafter, we will sometimes write Q(xi,pj,k) instead
of Qij,k to emphasize that Q is actually a function of xi and
pj,k.

Our goal is to minimize the variance in all hidden vectors as
well as the distance the robots need to travel over the course
of the controlled trajectories. We denote by ψ : U → R+ a
metric that measures the distance an agent needs to travel as
a result of actions in U . Then, given a parameter ρ ∈ [0, 1],
we find a sequence of control inputs {uj,k} ⊂ U that solve

max
{uj,k}

∑
k∈N

γk
[
(1−ρ)

M∑
i=1

√
tr(Σi,k−Σi,k+1)−ρ

N∑
j=1

ψ(uj,k)

]
(1a)

s.t. pj,k+1 = φ (pj,k,uj,k) ∀j = 1, . . . , N (1b)

Σi,k+1 =


(
Σ−1i,k + Q−1ij,k

)−1
robot j observes xi

Σi,k else
, (1c)

with initial conditions {pj,0}Nj=1 and prior error covariance
{Σi,0}Mi=1. For each stage k, the expression inside the square
brackets in (1a) is a trade off between variance reduction
and distance traveled. The parameter ρ controls this tradeoff.
The square root in this expression is used to compare equal
units. Setting the discount factor γ < 1 ensures that the
value function for the infinite horizon problem remains finite.
Equation (1b) explicitly constrains the robot poses by the
dynamics φ, while equation (1c) constraints the covariance
dynamics by the Kalman Filter (KF) update for stationary
hidden states.

The developments in the remainder of this paper toward
solving problem (1) rely on the following assumptions:

Assumption II.1. In this work we assume that the hidden state
vectors are sparse and so are the observations. This means that
even if the robot passively observes multiple hidden vectors at



once, our plans are only optimal with respect to reducing the
uncertainty of one at a time.

Assumption II.2. We assume that we have access to a noisy
prior distribution N (x̂i,0,Σi,0) for each hidden vector. We
assume that the hidden vector is a stationary process, thus
we use the prior mean (along with the sensor configuration)
to evaluate the observation uncertainty for all time k ≥ 0.
Similar to the formulation in [2], [13], this means that the
dynamics of the error covariance matrices are deterministic,
cf. (1). This also implies that 0 � Σi,k+1 � Σi,k under KF
dynamics.

III. LOCALIZATION OF A SINGLE TARGET

In this section, we propose a method to solve problem (1)
for N = M = 1, thus we drop the references to i and j.
We call this the local DP. To construct the local state-space,
we approximate the space of reachable covariances by a finite
set C. Then, we define the local state space to be the product
space S ,W×C. We discuss the specifics of designing C in
Section III-A. A state sk , (pk,Σk) ∈ S is reachable from
sk−1 ∈ S if there exists a control input u ∈ U that satisfies
the joint dynamical equation Φ : S × U → S , given by

sk=Φ(sk−1,u)=
(
φ (pk−1,u) ,ΠC

[
Σ−1k−1 + Q−1k−1

]−1) , (2)

where ΠC : Sym++(n,R) → C. We give exact details of
this projection in Section III-A and provide an example of
the state-space transitions in Fig. 1 (a). Projection in (2)
is necessary because we require that Σk ∈ C, which is a
finite subset of Sym++(n,R). The function Φ constitutes
the transition function for the local DP. Then, denote by
R : S × U → R the instantaneous reward from problem (1),
given by

R(sk,u) , (1− ρ) (tr [Σk−1 −Σk])
1/2 − ρψ(u). (3)

In the remainder of this section, we will design a state space
that is small enough for exact value leading to a desired
stationary optimal policy µ∗ : S → U . In particular, a
stationary optimal policy is one that depends only on the
current state of the system.

A. The Uncertainty State-Space and Transition Function

In this section, we discretize Sym++(n,R) to design the
finite set C. We emphasize that optimally sampling bounded
subsets of Sym(n,R) is an interesting and deep problem [24],
and we do not provide a general framework. Our method
works well for representing a specific bounded region of
Sym(n,R), which we call the reachable covariance matrices
for the problem described herein.

We begin by the following lemmas; proofs are omitted due
to space limitations.

Lem III.1. Let I denote the n × n identity matrix and let
C ∈ Sym++(n,R). Then, I− (I + C)−1 ∈ Sym++(n,R).

Lem III.2 (Lemma 2.7, [25]). Let n ∈ N. If A,B ∈
Sym++(n,R), then tr

(
A−1 + B−1

)−1
< trA.

Ci

Wi

(a) (b)
Figure 1. (a) An illustration of the state-space and transition for a local DP
where W is a NWSE grid and actions are to take an image and move north,
south, east, west, or remain stationary. Red lines are drawn to represent each
action, showing the transition of the state both in W and in C. The vertical axis
represents the discrete nature three dimensional C using colored regions, which
are each represented by a single matrix in C. (b) A fifty point discretization
of RP2 is represented by allowing 100 simulated charges confined to the 2-
sphere S2 to come to equilibrium and discarding the points below an arbitrary
equator. Charges are red dots, and the net electric force on each is plotted in
blue.

The first implication of Lemma III.2 is that the trace of
the largest instantaneous covariance bounds the maximum
eigenvalue of the reachable covariance matrices. Define this
bound as

λmax ≤ max
p∈W

tr Q(x̂,p), (4)

where we have written the measurement covariance as a
function of the prior mean of the state estimate x̂ ∈ Rn, which
is fixed during the planning phase, and the configuration of the
sensor p ∈ W. Lemma III.2 also implies that the trace is
decreasing with additional independent measurements. There-
fore, the set of reachable covariances is bounded. Lemma III.2
and the resulting bound can be used to obtain a discretization
of the set of possible maximum eigenvalues for the reachable
covariance matrices. In particular, we define the logspace set
of maximum eigenvalues

L ,
{
λmaxe

κL(i−NL)/NL | i = 1, . . . , NL

}
⊂ R++, (5)

where NL is the cardinality of L and κL is a sampling gain
that controls how clustered the samples are toward zero. Note
that λmax is the maximal element of L. In (5), we sample
in logspace as a heuristic; we have found empirically that
the maximum eigenvalues of the filtered covariance matrices
accumulate near zero.

To obtain a scalable discretization of the space of covariance
matrices Sym++(n,R), we assume that λmax(Σ) and its
corresponding eigenvector are more important than any one
of the other eigenvalues and eigenvectors. In particular, we
assume that, in comparison to λmax, the other eigenvalues are
roughly equal, thus all other eigenvalues can be parameterized
by a number in the half open interval α ∈ (0, 1] ⊂ R such
that λi ≈ αλmax for all i = 2, . . . , n. This choice alleviates
the need to independently consider all possible combinations
of eigenvectors corresponding to the nonprincipal eigenvalues.
Define the set of ratios, which can be thought of as the set of
possible inverse condition numbers, as

A ,
{
eκA(i−NA)/NA | i = 1, . . . , NA

}
⊂ (0, 1]. (6)

In (6), NA is the number of eigenvalue ratios we sample
and κA is a sampling gain that controls the ellipticity of the



confidence region associated with (λ, α) ∈ L×A. Again, the
logspace discretization is a heuristic based on experience; KF
error covariance matrices produced using robotic sensors are
typically cigar-shaped, i.e., dominated by uncertainty in the
direction of the principal eigenvector.

The set of possible principal eigenvectors is equivalent
to the set of lines passing through the origin, known as
the real projective space RPn−1. Let NT be the number
of samples needed to capture these possible directions for
the principal eigenvalue. Because RPn−1can be formed by
identifying antipodal points on any sphere, this problem can
be approximately solved by placing 2NT point charges on
a sphere of radius

√
λmax, allowing them to move until

the “electrostatic forces” among them come to equilibrium,
cutting the sphere along any equator, discarding one of the
hemispheres, and saving the unit directions to each “charge”
location on the other hemisphere. It is straightforward to build
such a simulation, and for brevity we do not provide the
specifics here. The result for 100 charges on the unit 2-sphere
is shown in Fig. 1 (b).

To force the sampling density to be consistent, defined in
terms of the surface area of the sphere used in the simulation,
we create a set of sets {Tλ | λ ∈ L}; each element Tλ is
the set of unit vectors produced by the simulation using

√
λ

as the radius of the sphere. The number of elements in the
largest, i.e., the set with the most elements, of these sets Tλmax

is set to a user-specified number NTλmax
. The remaining sets

{Tλ | λ ∈ L} correspond to the other NL−1 possible principal
eigenvalues and, since λmax is the maximal element of L, the
sets {Tλ | λ 6= λmax} must have fewer elements than Tλmax so
that the sampling density is the same. In particular, for some
λ ∈ L, the set Tλ has

⌈
λ
λmax

NTλmax

⌉
elements, where the ceiling

function is used to ensure that the number of elements in Tλ
is positive.

Using the sets L,A, and {Tλ | λ ∈ L} , we can create a
discretization of Sym++(n,R). The result, interpreted geo-
metrically, is NL concentric sets of cigar-shaped confidence
ellipsoids with a variety of major diameters, defined by
λ ∈ L, ellipticities α ∈ A, and orientations u ∈ Tλ.
The full covariance space can thus be described with a map
f : R2+n → Sym(n,R) given by

f(λ, α,u) = λ
[
u ∗

] [1 0
0 αIn−1

] [
u ∗

]>
, (7)

where ∗ is any basis completion for Rn, and In−1 is the iden-
tity matrix. The function f essentially builds a covariance ma-
trix from the parameters supplied by A and {(λ, Tλ) | λ ∈ L} .
We define the covariance space as

C , {0} ∪ f
(
A×

⋃
λ∈L

({λ} × Tλ)
)
. (8)

The 0 covariance is an artificial state that we include in C to
denote that no more uncertainty remains in the variable being
estimated, i.e., estimation is complete to the user-specified
tolerance, defined as 1

2 min {λ ∈ L} .
The projection operator ΠC guarantees that the fusion of

the current covariance state Σk and the new measurement
covariance Qk is a member of C. In particular, for some

Σ ∈ Sym++(n,R),ΠC first computes the principal eigenvalue
λmax and its corresponding normalized eigenvector umax. Then,
it rounds λmax to the closest element in L ∪ {0} . Call this
map ΠL : Sym(n,R) → L ∪ {0} . If ΠL(Σ) is nonzero,
there will be some λ′ ∈ L that is closest to λmax, and
ΠC then finds the element u′ ∈ Tλ′ that forms the largest
magnitude inner product with umax. Call this map ΠTλ′ :
Sym(n,R) → Sn−1, where Sn−1 = {u ∈ Rn | 〈u,u〉 = 1} .
In particular, u′ = ΠTλ′ (Σ) , maxu∈Tλ′ |〈u,umax〉| . Fi-
nally, ΠC computes the ratio of λmin(Σ) with λmax(Σ) and
finds the closest element α′ ∈ A to that ratio. Call this
map ΠA : Sym++(n,R) → (0, 1]. By this construction,
it holds that (α′, λ′,u′) ∈ A × ⋃λ∈L (λ× Tλ) , so that its
image of this triplet under f from (7) is guaranteed to be
a matrix in C. In particular, the projection map is given by
ΠC(Σ) = f

(
ΠL (Σ) ,ΠA (Σ) ,ΠTΠL(Σ)

(Σ)
)
,

IV. LOCALIZATION OF MULTIPLE TARGETS

Assume the collection of all hidden states discussed in
Section II is divided into clusters. Temporarily let M denote
the number of hidden states in a particular cluster. Denote by
Si =Wi×Ci the state space local to the i-th hidden vector in
the cluster. Each Si has NSi = NWi

(
1 +NAi

∑
λ∈Li NTλ

)
individual states.

Let Ei ⊂ Si denote the set of initial states that the
robot can visit when it first arrives at Wi to observe xi.
We assume that the first observation of xi will occur at
the boundary of the convex hull of local pose space ∂Wi.
Therefore, we define the entry points to the i local state space
as Ei , {(p,Σi,0) | p ∈ ∂Wi} . Let us index the states in the
set Ei using integers j ∈ {1, . . . , |Ei|} such that j 1-to-17−→ sj ∈ Ei.
Since in the neighborhood of every hidden state, the robots
follow the local optimal policy determined in Section III, a
robot that begins observing the i-th hidden state at the entry
point sj ∈ Ei and has spent k steps at that particular state has
a known global location and local covariance matrix. To keep
track, let Φi : Si ×Ui → Si and µ∗i : Si → Ui denote the i-th
local transition function from (2) and optimal policy. Then,
define the k-times recursive local optimal transition function
as Φ∗ki : Ei → Si, given by

Φ∗0i (sj) = sj

Φ∗1i (sj) = Φi (sj ,µ
∗
i (sj))...

Φ∗ki (sj) = Φi

(
Φ∗k−1i (sj),µ

∗
i

(
Φ∗k−1i (sj)

))
. (9)

The function Φ∗ki denotes the local state in Si in which the
robot will land when starting observing xi at from entry point
sj ∈ Ei and after following the local optimal policy µ∗i for k
time steps.

In the cluster DP, there are M available actions, one for
every hidden state in the cluster. In particular, for a robot
observing xi, action ui is simply to continue observing the
same state along the local optimal policy. Note that, since the
optimal policy is stationary, there is always a local optimal
action to take. The following proposition shows that any
local optimal trajectory reaches an absorbing state so that the
iteration k 7→ k + 1 terminates.



Proposition IV.1. ∀i ∈ {1, . . . ,M} and sj ∈ Ei, there exists
Ki ∈ N such that Φ∗Kii (sj) = Φ∗ki (sj) ∀k ≥ Ki.

Proof: Since each Si is finite and the optimal policy
µ∗i : Si → Ui is fixed, failure to converge is possible only
if the optimal policy drives the robot in a cycle. This is a
contradiction to the optimality of µ∗i . To see why, consider an
optimal local trajectory such as {. . . , s, s′, . . . , s, . . . } ⊂ Si.
If trΣ < trΣ′, then the transition from s to s′ contradicts
Lemma III.2. Similarly, if trΣ > trΣ′, then the transition
from s′ to s is a contradiction. If trΣ = trΣ′, then the robot
must have moved in a loop {. . . , s, s′, . . . , s, . . . } without
changing the uncertainty, i.e., energy was consumed for no
gain in reward, a contradiction to the optimality of µ∗i .
As a result of Proposition IV.1, we do not store local optimal
trajectories longer than maxi∈{1,...,M}Ki.

We can now define the state-space for the cluster DP. The
cluster state must contain the index of the current hidden
vector being estimated i ∈ {1, . . . ,M} , the entry point
j ∈ {1, . . . , |Ei|} , and the amount of time spent observing
the current state k ∈ {0, . . . ,Ki} . The cluster state must also
contain the visitation history a v ∈ {0, 1}M to prevent rewards
from being gained by collecting the same information twice.
The cluster state-space is thus

SC , {0, 1}M × {1, . . . ,M}× (10)
{1, . . . ,maxi |Ei|} × {0, . . . ,maxiKi} ,

where the max functions are needed to account for the largest
local state spaces in the cluster.

Let UC = {1, . . . ,M} denote the set of control inputs
in the cluster DP. Let also ΦC : SC × UC → SC denote
the cluster transition function. When the robot is in state
(v, i, j, k) ∈ SC , then ui ∈ UC transitions the robot to cluster
state (v, i, j, k+1) ∈ SC . Action ui has the same reward with
the corresponding transition in the local DP. The remaining
actions {u` | ` 6= i} set the visitation history of the i-th hidden
vector to zero and transition the robot to the `-th local space,
specifically by selecting the closest entry point in in E` to the
robot’s current location. In particular,

ΦC ((v, i, j, k),u`) =

{
(v, i, j, k + 1) if ` = i

(v′, `, j′, 0) if ` 6= i
,

where v′i = 0 and

j′ = argminj′′
∥∥sj′′ − Φ∗ki (sj)

∥∥ | sj′′ ∈ E`, sj ∈ Ei. (11)

The reward for continuing the local optimal policy is the
same as the reward in the local DP, and the reward for
transitioning to a new hidden state in the cluster is the negative
distance to the next entry point j′ defined in (11). The only
other difference with the local reward is that the robot cannot
gain positive reward for taking action ui when at any state
(v, i, ·, ·) such that vi = 0. In particular, define the reward
function in the cluster DP RC : SC × UC → R as

RC ((v, i, j, k),u`) ={
R
(
Φ∗ki (sj) ,µ

∗
i

(
Φ∗ki (sj)

))
if vi = 1, ` = i

−ρψ(u`) else
.

Remark IV.2. One could directly apply the method developed
in Section III to the task of sensing multiple targets at once.
The state-space in this case would be of the form

(
∪Mi=1Wi

)
×

C1 × · · · × CM , which has(
M∑
i=1

NWi

)
M∏
i=1

(
1 +NAi

∑
λ∈Li

NTλ

)
︸ ︷︷ ︸

NCi

(12)

states, an intractably large number of states for any sufficiently
rich belief space Ci. This is the reason why existing approaches
have typically employ online policy search or point-based
solvers. Our proposed hierarchical approach solves a simple
local DP once to find a local optimal policy for every state,
mitigating the exponential complexity to the cluster DP, where
the state space has size O(2M ). Solving the cluster DP has
similar in complexity to TSP solvers although it solves a
substantially more complicated problem.

V. OPTIMAL PLANNING AND RESOURCE ALLOCATION
FOR MULTIPLE ROBOTS

Given the single-robot optimal control policies developed
in Sections III and IV, in this section we develop a distributed
framework to synthesize them in a multi-robot system that can
efficiently estimate large groups of hidden vectors. To develop
the proposed framework, let T = {1, . . . ,M} denote the index
set of all available hidden states, and for every hidden state
t ∈ T define the discrete set Zt ,

{
z ∈ Rd | (z, θ) ∈

Wt

}
containing those states of the local workspace Wt that

correspond to robot positions in d = 2 or 3 dimensions only
(excluding other configuration information contained in θ). Let
Z = ∪t∈T Zt denote the set of all possible robot positions.
Consider further a partition {Tp}Pp=1 of the hidden state set
T into P ≤ M clusters so that two hidden states belong in
the same cluster if they are sufficiently close to each other
based on the initial belief of their locations. Let Zp ,

{
z ∈

Zt | t ∈ Tp
}

denote the set of all robot positions in cluster
Tp. Using the methods developed in Sections III and IV, we
can determine an optimal sensing policy for every cluster of
hidden states Tp, that is a function from the state-space of
robot positions and hidden state uncertainties to the set of
robot actions. Then, given an entry point from where a robot
can begin sensing cluster Tp this policy can be combined with
the system dynamics (1b) and (1c) to generate an optimal
robot trajectory within that cluster. In particular, we define the
set of entry points of cluster Tp to be the set of states in Zp
lying on the boundary of its convex hull, denoted by ∂Zp. We
also define an optimal trajectory in cluster Tp starting from a
point pjp ∈ ∂Zp by ξp,jp : [0, Lp,jp ]→ Zp, where Lp,jp > 0
denotes the total length of that trajectory from the entry point
until the cluster is completed and jp is an index of the j-th
entry point in ∂Zp.

Consider now N mobile robots and let
{
zki
}N
i=1
⊂ Rd

denote their locations at time k ∈ N. While sensing cluster
Tp a robot moves along the optimal trajectory ξp,jp . When
the exploration of Tp has been completed, the robot needs to
transition to a different cluster. For this, it needs to identify
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an entry point in the new cluster and travel to that point.
Therefore, the set of all possible paths that a robot can
follow while sensing different clusters of hidden states can
be represented by graph G = (V, E), where V =

(
∪Pp=1 ∂Zp

)
denotes the set of vertices (embedded in Rd) containing the
depot and all entry points of the P hidden state clusters and
E ⊂ V × V is the set of directed edges so that for any entry
points pjp ∈ ∂Zp and pjq ∈ ∂Zq , the edge (pjp ,pjq ) ∈ E
if p 6= q and pjq = argminp∈∂Zq‖ξp,jp(Lp,jp)− p‖. In other
words, the directed edges in E connect every entry point in
V to the closest entry points of different clusters. With every
edge (pjp ,pjq ) ∈ E in G we associate a distance that the robot
needs to travel in order to get to entry point pjq ∈ ∂Zq having
started form point pjp ∈ ∂Zp. This distance consists of the
distance Lp,jp that the robot needs to travel within cluster Tp
plus the distance ‖ξp,jp(Lp,jp)− pjq‖ that the robot needs to
travel to reach entry point pjq ∈ ∂Zq once it has completed
cluster Tp, i.e., d(pjp ,pjq ) = Lp,jp + ‖ξp,jp(Lp,jp) − pjq‖.
We assume that between clusters, robots travel on straight-line
paths. An illustration of the graph G of possible motion paths
for the running example of sparse landmark localization in two
dimensions, containing the cluster entry points and trajectories
to two possible next clusters, is shown in Figure 2. To avoid
having two robots select the same cluster and fail to resolve
this conflict, we assume that the communication range of the
robots is larger than the largest diameter of any cluster.

In what follows, we develop a distributed framework to
allow the team of N robots to dynamically allocate the
P clusters amongst themselves, as they plan trajectories on
the graph G to visit their assigned hidden state clusters.
Specifically, we assume that at every time k, every robot i can
be in one of three modes mk

i ∈ {‘busy’, ‘transit’, ‘done’}. We
say that a robot is ‘busy’ if it is currently sensing a cluster, it is
in ‘transit’ if it is traveling between clusters, and it is ‘done’ if
it has completed sensing its last cluster. While in mode ‘busy’
robot i moves along the trajectory ξp,jp according to

zk+1
i = busy(`k, p, jp) , ξp,jp(`k + δ`), (13)

where `k = ξ−1p,jp(zki ) ∈ [0, Lp,jp ] denotes the distance that
robot i has already travelled in cluster Tp and δ` > 0 is a
small, user-defined, positive distance increment that the robot
travels between times k and k + 1. While in mode ‘transit’,
robot i moves according to

zk+1
i = transit(zki , q) , zki + δ`

pjq − zki∥∥pjq − zki
∥∥ , (14)

where q denotes the index of the cluster that the robot is
traveling to, pjq ∈ ∂Zq is the selected closest entry point
in that cluster defined as pjq = argminp∈∂Zq‖zki − p‖, and
δ` > 0 is defined as in (13). Assuming that robot i is
in transit to cluster Tq after having completed cluster Tp,
the line segment defined by the end points zki and pjq is
completely contained in the line segment defined by the points
ξp,jp(Lp,jp) and pjq . Therefore, (14) drives the robot along
the path corresponding to the edge (pjp ,pjq ) ∈ E . However,
the controller (14) also allows robot i to diverge from the
predefined paths in the graph G by selecting an alternative
closest cluster while in transit mode, for reasons that we
discuss in Section V-A, e.g., if another robot places a higher
bid. In this case, the motion of robot i temporarily leaves the
predefined motion paths in G and it re-enters G once it has
reached cluster Tq . In the remainder of this section, we will
refer to the current cluster being sensed by the i-th robot as
ci,curr and the next cluster to be sensed by that robot as ci,next.
Then, our goal is to find a set of N distinct paths in G whose
union visits every cluster exactly once and has a minimum
combined travel cost. We achieve this goal by a distributed
auction mechanism that we discuss next.

A. Distributed Auction Mechanism
In this section we propose a distributed auction method to

dynamically and sequentially allocate clusters to robots as they
move to localize the whole scene. A proof of the convergence
of distributed auctions can be found in [26].

Specifically, let s = 1, 2, . . . denote a sequence of time
instants when the robots communicate with each other, that is
in general different from the times k when the robots move,
and let N s

i ,
{
j | ‖zsi − zsj‖ < ∆

}
denote the set of

neighbors of robot i at time s, where ∆ > 0 denotes a given
communication range. Moreover, assume that every robot i
carries two lists: the list of ‘free’ clusters Isi,f and the list
of ‘taken’ clusters Isi,t, so that Isi,f ∪ Isi,t = {1, . . . , P} and
Isi,f ∩ Isi,t = ∅ for all time s. Initially, I0i,f = {1, . . . , P}
and I0i,t = ∅. The list of ‘free’ clusters contains clusters
that are available to robot i, meaning that robot i can select
from those clusters a cluster to visit next. On the other hand,
the list of ‘taken’ clusters contains clusters that have been
selected by other robots and are, therefore, not available
to robot i. During operation, robot i coordinates with its
neighbors j ∈ N s

i to update its list of ‘taken’ and ‘free’
clusters by Is+1

i,t = ∪j∈N si Isj,t and Is+1
i,f = {1, . . . , P}\Is+1

i,t ,
respectively. In other words, with every communication round,
robot i removes from its list of free clusters those clusters that
are considered taken by other robots.

Given the list of ‘free’ clusters Isi,f at time s, robot i can
select any cluster from that list to be the next cluster ci,next to



visit. To minimize the total distance travelled by the robots,
we propose a greedy approach where robots select a cluster
that is the closest to their current location. In particular, we
define

cs+1
i,next =

{
argminc∈Isi,f d

busy
p,jp

(`s, c) if ms
i = ‘busy’

argminc∈Isi,f d
trans(zsi , c) if ms

i = ‘transit’
(15)

dbusy
p,jp

(`s, c) , (Lp,jp−`s) + min
p∈∂Zc

‖ξp,jp(Lp,jp)−p‖ (16)

and dtrans(zsi , c) , min
p∈∂Zc

‖zsi − p‖, (17)

In (16) and (17), dbusy
p,jp

(`s, c) and dtrans(zsi , c) are the distances
that robot i needs to travel in order to reach a new cluster c
from its current location zsi while in modes ‘busy’ and ‘transit’,
respectively, and `s = ξ−1p,jp(zsi ) ∈ [0, Lp,jp ], as in (13). When
robot i selects a new cluster csi,next, then it also updates its lists
of ‘free’ and ‘taken’ clusters by removing csi,next form Isi,f and
adding it to Isi,t.

Every time ci,next is updated, robot i also places a bid that
indicates how important the selection of the new cluster is. The
bids are inversely proportional to the distance robot i needs
to travel to reach the new cluster, so that nearby clusters have
higher value. Specifically, bids are placed according to

bs+1
i =

maxc∈Isi,f

(
1 + dbusy

p,jp
(`s, c)

)−1
if ms

i = ‘busy’,

maxc∈Isi,f

(
1 + dtrans(zsi , c)

)−1
if ms

i = ‘transit’
.

(18)

If at some point in time there exist neighbors j ∈ N s
i of robot

i so that csj,next = csi,next, then these robots set up a local auction
and compare their bids to resolve the underlying conflict. If
bsi > bsj for all j ∈ N s

i for which csj,next = csi,next, then robot i
wins the auction and maintains the same next cluster and bid,
i.e., cs+1

i,next = csi,next and bs+1
i = bsi . The robots that lose the

auction update their set of ‘free’ clusters by removing cluster
csj,next, i.e., Isj,f = Isj,f \{csj,next}, and select a new next cluster
and bid according to (15) and (18). If Isi,f = ∅, i.e., if there are
no other available clusters for robot i, we set cs+1

i,next = ‘depot’,
effectively controlling the robot to return to a depot after it
has completed its current (final) task.

Fig 3 illustrates the integrated, hybrid, controller. The labels
α and β mark events that need to be synchronized across the
navigation and coordination control blocks. In particular, tran-
sitions labeled by the letter α are triggered by the navigation
block and generate synchronous transitions in the coordination
block aimed to produce new bids or update the next cluster
that the robot needs to visit. Similarly, transitions labeled by
the letter β are triggered by the coordination block when new
bids are computed or the next cluster that the robot needs to
visit is updated and they generate synchronous transitions in
the navigation block aimed to guide the robot its new assigned
cluster. Note that while the k and s time indices used for
the navigation and coordination blocks, respectively, can in
general be different, the transitions labeled by the letters α and
β can generate transitions in these blocks that can be off-clock.
For example, a transition at time k in the navigation block
labeled by α will generate a transition in the coordination
block at a time instant k 6= s.

VI. NUMERICAL SIMULATIONS

In this section, we present simulations of the proposed
distributed state estimation algorithm. In our simulations, we
focus on the problem of sparse landmark localization. As a
sensor model, we use a stereo camera. We refer the reader to
[5], [6] for a discussion of the covariance function Q(x̂i,p)
for stereo vision. We assume that each camera in the simulated
rig has 1024 × 1024 resolution and a 70◦ field of view. The
characteristic length in stereo vision is the baseline. Therefore,
in these simulations, all units are measured in stereo baselines
unless otherwise stated. For a mobile stereo rig, the baseline
could be as large as 1 meter or as small as a few centimeters.

To simplify the exposition, we consider fully actuated
kinematic robots. The local pose spaces and prior error co-
variances are identical for each landmark, i.e., Wi =Wj and
Σi,0 = Σj,0 = βI3 for all i, j ∈ {1, . . . ,M}, where we recall
that the largest eigenvalue in the dimension of the state-space
that represents the possible principal eigenvalues is denoted as
β.

A. Active sensing of a single target

The local pose space W for the single target case is made
up of concentric spherical shells with randomly distributed
viewpoints on each. There were 177 total views in W at
six equally spaced radii between 20 and 40 units from the
landmark. To discretize the covariance space C, we set 1 =
max {λ ∈ L} , β. In total, the number of possible principal
eigenvalues was NL = 6. We also use NA = 3 condition
numbers. We set the number of principal eigenvectors for
covariances with β as the principal eigenvalue to NTλ = 98.
This means Tβ has 98 unit vectors. The number of samples at
other principal eigenvectors {λ ∈ L | λ 6= β} was

⌈
λ
βNTβ

⌉
.

For the logspace discretizations, we set κL = 9, and κA = 3.
Stereo vision is used as the sensing model; see Appendix A.
The discount factor γ was 0.99. The value of the uncertainty
reduction gain ρ is very important, since it controls the tradeoff
between traveling cost and uncertainty reduction due to more
images. Fig. 4 shows the sensitivity of the total reward gained
and the two opposing objectives that comprise it as they
depend on ρ. Fig. 5 shows example an optimal trajectory in
both pose and covariance space with ρ = 0.999.

In these simulations, we approximate error distributions
as state-dependent white noise using the equations given in
Appendix A. White noise is uncorrelated in time, thus, under
standard KF assumptions, two observations from the same
vantage point will reduce variance by Lemma III.2. This is
why, in the figures, there are more intermediate covariance
ellipsoids than steps in the robot trajectories; it is sometimes
optimal to remain stationary and take multiple observations.
In real scenarios, noise is seldom well-approximated as white,
and duplicate observations will exacerbate bias. We account
for such hidden biases in these simulations by using a real
model of stereo vision that is subject to the nonlinear effects
of quantization on the image plane; see Appendix A. Interest-
ingly, the presence of such noise reveals a secondary benefit
of sensor mobility: mobile sensors avoid by default duplicate
observations that would plague a static sensor. Although our
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Figure 4. Showing the effect of the uncertainty gain parameter ρ on the total
reward, uncertainty reduction, and total distance traveled by the sensor in the
single landmark localization simulations. Lines are drawn to guide the eye

Table I
COMPARISON TO HEURISTICS FOR SINGLE LANDMARK

Method optimal closer static circle random
Reward (m) 3.15 2.75 1.31 1.66 2.74

controller does not explicitly encourage motion for this reason,
a basic heuristic adjustment that does would be simple to
implement by, e.g., removing the action “remain stationary.”

Table I compares the total reward gained by a robot starting
from the same initial condition under the optimal policy with
ρ = 0.999 found by our (optimal) local controller with some
heuristic policies. The heuristics we chose for comparison
were a policy that drives closer to the hidden state (closer),
one that circles around the source (circle), one that remains
still (static), and one that acts randomly (random). The fact
that that ‘random’ performs about as well as ‘closer’ suggests

that a sophisticated controller is needed in order to beat
‘random.’ Our ‘optimal’ policy obtains 115% of the reward of
the ‘closer’ and ‘random’ policies. Also note that the ‘static’
and ‘circle’ policies perform very poorly in comparison to
the others. This is because they stay at a constant depth with
respect to the landmark. In triangulation with stereo vision,
there is significant bias in the viewing direction, causing
poor localization performance given multiple observations at
constant depth.

B. Active sensing of Target Clusters

We present simulations of the proposed distributed estima-
tion method for a single robot observing a cluster of sparse
landmarks. For the landmarks, we model a famous group of
sculptures called the Queens of France and Famous Women,
which can be found in the Luxembourg Garden, Paris, France.
The Luxembourg Garden is actually home to hundreds of
sculptures, and the Queens of France and Famous Women
is a cluster that surrounds a large pool (octagon in Fig. 6)
that is adjacent to the Luxembourg Palace (large rectangle
in Fig. 6). We chose a subset of eight queens as individual
sparse landmarks to comprise a cluster of statues. The task
of the robot in this scenario is to exactly localize each statue
to create a precise spatial map of the sculpture garden. For
these simulations, we used a discount factor and gain of
0.999. We use the same hemispherical pose state-spaces as
in Section VI-A for each local DP.

We also compare the trajectories generated by our cluster
DP with a state-of-the-art algorithm [2]. The method in [2],
called ε-δ Reduced Value Iteration (ε-δRVI), grows a tree in
belief space that computes an optimal sensor trajectory, i.e., it
applies the most widely used approach to the same problem
that we solve under similar assumptions. In our implemen-
tation of ε-δRVI, planning horizons greater than 12 caused
our simulation, run on Macbook AirTMwith 4 GB of RAM,



Figure 5. Showing an optimal trajectory through both pose (top panel) and
covariance (bottom six panels) space for ρ = 0.999. The indices in the top
panel correspond to the time indices in the bottom panel. Covariance states
are shown as 50% confidence regions. Robot starts at � and ends at 4. All
units in stereo baselines and axis directions equally scaled

to run out of memory. Because of the sparsity of the scene,
12 step lookahead was sometimes not enough to plan future
landmarks to visit. Therefore, if the robot following ε-δRVI
finishes observing a landmark to the threshold, it greedily
selects a new landmark. The top panel in Fig. 6 displays four
snapshots of two different trajectories: one produced by the
cluster DP optimal policy and one produced using ε-δRVI. The
bottom panel of Fig. 6 shows the result of the KF output of 100
simulations of observations taken along the trajectories in the
top panel. The empirical standard deviations for each error
vector are also drawn on the figure. Both methods perform
similarly, with our method requiring slightly less observations.
The important distinction, however, is that for every new initial
condition, any tree-based planner, including ε-δRVI, needs to
be run again, whereas we can reuse our optimal policy for
any initial condition. This is important in the next section,
as it allows allocation of clusters dynamically in the multi-
robot team from a variety of initial conditions along the cluster
boundaries. In other words, our method allows us to compute
an optimal policy, rather than a single optimal trajectory.

C. Multiple Robots and Multiple Clusters

We present simulations of the proposed distributed estima-
tion framework for multi-robot multi-target active localization
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Figure 6. Top panel: Showing trajectories generated by our hierarchical
controller and by the method in [2]. The trajectories start at the � and end at
the 4. The number k indicates the number of observations taken. Bottom
Panel: plotting the sum of errors in all landmarks versus the number of
observations required found over 100 simulations of observations taken along
the trajectories in the top panel. The midlines represent the empirical mean
and error bars represent the standard deviation of the sum of error vectors
over the 100 simulations. All units in meters

in Fig. 7. For these simulations, we uniformly randomly
generated targets in a rectangle in R2. The communication
range of the robots was set to 1500 m. In this simulation, first
we divide the targets into two sets of roughly equal size based
on the prior location estimates {x̂i}Mi=1 . Then, we iteratively
split the sets based on relative distance until the largest cluster
has less than nine targets. In our testing, we have found that
a simple clustering strategy can be effectively generated using
the prior over the target locations. We leave the clustering
strategy as a design choice in this algorithm that should be
made once the location prior is available. For example, in our
example in Section VI-A, the sculpture garden can be naturally
clustered with a priori available tourist maps.

VII. EXPERIMENTS

In this section, we present experiments using a team of
two ground robots (iRobot Creates), r1 and r2, that localize
a set of stationary targets. The robots each carry a stereo
rig mounted atop a servo that can rotate the rig ±180◦.
Each rig uses Point Grey Flea3TM cameras with resolution
1280×1024. To simulate long distance localization, all images
are downsampled by rate 24 so that the effective resolution is
54 × 43. Each robot is equipped with an on-board computer
with 8GB RAM, an Intel Core i5-3450S processor and a
802.11n wireless network card for communication. All imple-
mentation is done in C++ and run on Robot Operating System
(ROS). We calibrate the intrinsic and the extrinsic parameters
of the stereo rig offline using the Bouget MatlabTM camera



m
0 1000 2000 3000

m

0

500

1000

1500

2000

2500

3000

3500

Time
0 100 200 300 400 500

C
lu
st
er

A
ss
ig
n
m
en
t

2

4

6

8

10

12

14

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Figure 7. Cooperative active sensing for 100 sparse landmarks and 15
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calibration toolbox [27]. For self-localization of the robots, our
laboratory is equipped with an OptiTrackTM array of infrared
cameras that act as a motion capture system. The OptiTrackTM

system tracks reflective markers that are rigidly attached to
the robots. Each robot can thus retrieve its own (and only
its own) position and orientation by reading a ROS topic
that is broadcast over wifi by a centralized computer. Each
robot also broadcasts auction bids and states to public ROS
topics that are readable by the other robots for collaboration.
Additionally, the OptiTrackTMsystem provides us with the
ground truth locations of the targets, which are colored ping
pong balls, enabling us to directly check the accuracy of
the landmark localization errors after the experiment. The
information function Q was derived using a statistical model
of stereo vision, which we defer to Appendix A.

Fig. 8 shows the experimental setup for the multi robot,
multi landmark localization experiment. We place eight col-
ored ping pong balls in a square workspace of about 2 m

Figure 8. Overhead photograph of the experimental setup
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Figure 9. Plotting the filtered target localization error in meters for r1 (a)
and r2 (b). The horizontal axis is the number of observations for each. This
means that each robot took 28 observations total, localizing four targets each.

side length for the multi robot, multi landmark localization
experiment. We use three types of local workspaces: section,
semicircle, and full circular polar grids. To avoid collisions
between robots and ping pong balls and avoid overlapping
local workspaces, the minimum and maximum radii were set
to 30 and 50 cm for all local workspaces, respectively. The
available poses within each local workspace were located at
five equally spaced radii between these two extrema. The polar
grids were also divided into increments of 15◦. We set the
covariance space parameters to NL = 10, NA = 3, κL = 10,
and κA = 7. We set NT to be twice the number of viewing
angles in the local workspaces For these experiments, we set
ρ = 10−2 and γ = 0.9.

In ‘transit’ mode, a potential field algorithm guides the
robots to the next local workspace and avoids collisions with
landmarks. All navigation and waypoint tracking relies on a
PID controller using the next waypoint as the set point. In
the experiment, robots generally came within 2 cm of their
target waypoints. The servo guided the stereo cameras toward
the estimate of the target locations with accuracy of ±1◦.
Cooperation of r1 and r2 relies on robots updating individual
ROS topics and checking neighbors’ ROS topics. The ROS
topic for a given robot contains that robot’s current bid value
and the subtask at which the bid is directed.

The filtered estimates generated by observations along the
paths followed by the robots in one run of the experiments
are compared with the ground truth locations of the ping
pong balls in Fig. 9. The filtered errors are computed as the
Euclidean distances between filtered estimates and the ground
truth locations of the ping pong balls. We note that any non-



decreasing aspects of these plots are attributed to stochasticity
in the dataset, and the fact that we are only approximating the
true noise distribution with a data-driven Gaussian. Note that,
due to the relatively constrained space in our lab, the robots
are not able to move as freely as in the simulations, which,
in addition to unmodeled noise, is responsible for the smaller
error reduction in Fig. 9 compared to the simulations.

VIII. CONCLUSION

In this paper, we addressed the task of estimating a finite
set of hidden state vectors that have Gaussian priors using a
mobile robotic sensor network. We framed the problem using
tools from optimal control, ultimately proposing a hierarchical
Dynamic Programming solution. By including the covariance
matrix in the local state-spaces then discretizing these spaces,
we bound the computational complexity for a given error
tolerance. This is a desirable property compared to tree-based
methods that actively explore the covariance space until the
tolerance is reached . Then, we combined the local optimal
trajectories in a cluster DP that balances between reducing the
uncertainty in the hidden states and traveling among configura-
tion spaces. Our approach is still exponential in the number of
hidden states per cluster, but the proposed hierarchical scheme
reduces the base of the exponential to two without sacrificing
the explicit dependence on the error covariance matrices of
the objective function. Then, we proposed distributed auction
algorithm to divide the tasks of sensing each cluster among
multiple robots. Simulations and experiments on real robots
show that the integrated multi-robot system can efficiently
localize large groups of landmarks while remaining scalable, a
novel pair of characteristics that POMDP and TSP approaches
do not have.
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APPENDIX A
NOISE MODEL

In this paper, we assume that individual measurements
are subject to a known zero mean Normal noise distribution
ν ∼ N (0,Q). In what follows, we estimate Q so that this
assumption holds for the stereo rigs used in our laboratory
experiments. This is critical for a variety of reasons:



• If the mean of ν is biased, then the KF will not converge
to the ground truth.

• If Q is an under approximation to the actual covariance
of ν, then the KF will become inconsistent and will not
converge to the ground truth, if it converges at all.

• If our choice of Q is too conservative, it may not be
informative enough to be useful in the decision process
at the core of the controller.

Making things even more difficult, we want to test the system
in relatively extreme conditions, particularly at long ranges,
when triangulation error distributions are known to be heavy
tailed, biased away from zero, and highly asymmetric [28].

In our experiments we make use of the physics of stereo
vision [29]. In particular, following [30] we assume that pixel
error are Gaussian, and we propagate them to the localization
estimates via triangulation equations, which we can use to
give us an accurate distribution for ν. Specifically, if the robot
registers a correspondence in the left (L) and right (R) cameras
at pixel coordinates [xL, xR, y]>, then the coordinates of the
3-D point that generated the match areXY

Z

 =
b

d

 1
2 (xL + xR)

y
f

 , (19)

where f is the focal distance, b is the stereo baseline, d = xL−
xR is the disparity. Let J denote the Jacobian of (19). If the
error in [xL, xR, y]> has covariance matrix P, then the error
covariance of [X,Y, Z]> is JPJ>. Moreover, if t and T are
the translation vector and rotation matrix from the coordinate
frame of the camera to a fixed coordinate frame, then the
covariance of ν is TJPJ>T>.

With this noise propagation formula in mind, we now study
errors in the observed pixels. For this we follow a data-driven
approach that we have recently developed in [31]. Using a
set of n = 600 pairs of training images for each robot at
various ranges and viewing angles, we obtain a regression that
maps pixel observations [xL, xR, y]> to a corrected tuple of
pixels [xcL, x

c
R, y

c]> such that the error in the corrected tuple is
zero mean. For every image pair, we project the ground truth
landmark onto the image planes using the inverse mapping
of (19), giving us ` = 1, . . . , n individual output vectors Y`,
which we stack into an n×3 matrix of outputs Y. The ground
truth data for this training set includes a marker placed on top
of the ping pong ball, and the pose information of the stereo
rig, captured by a t and T. We then compute five features
and, because the data are not centered, include one constant,
for each raw pixel tuple according to the model

X` =

[
1, y`, d`, xL,` + xR,`, yd`,

xL,` + xR,`
d`

]
. (20)

These features are taken from the constituent terms in the
nonlinear equation (19) Stacking the X` into an n×6 matrix,
we have a linear model Y = Xβ+ε, where β is a 6×3 matrix
of coefficients and ε is an n× 3 matrix of zero-mean Normal
errors. We experimentally verified that the rows of ε are
roughly Gaussian, as can be seen in the right panel of Fig. 10.
We refer to the raw pixels as uncorrected. The associated error
vectors (computed with respect to the uncorrected pixels and
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Figure 10. Scatter plots of the residual errors εuc
` (left panel) and ε` (right

panel) for the training data for r1 The plots for r2 are similar.

the projected ground truth) εuc
` for ` = 1, . . . , n are plotted

in the left panel of Fig 10. In the scatter plot it can be seen
that the mean error is nonzero, contributing average bias to
individual measurements. Also note the apparent skew of the
error distribution in the vertical (y) direction.

Applying the ordinary least squares estimator, the maxi-
mum likelihood estimate of the coefficient matrix is β̂ =
(X>X)−1X>Y. Using β̂, the residual covariance in the pixel
measurements for the two robots, named r1 and r2, we
obtained are

Pr1 =

0.13 0.09 0.02
0.09 0.13 −0.03
0.02 −0.03 0.28

,Pr2 =

0.22 0.16 0.04
0.16 0.23 0.03
0.04 0.03 0.74

 .
Note that the standard deviation of the y pixel value, corre-
sponding to the variances in the lower right entries of the
above matrices, is 0.53 and 0.86 pixels, respectively. This
corresponds to errors in the height of the ping pong ball center
in vertical coordinates. The right panel of Fig. 10 shows the
residual errors in the training set ε` for ` = 1, . . . , n for the
corrected vector Xβ̂ on r1.

For prediction, if r1 makes a new observation (x∗L, x
∗
R, y

∗),
it forms a 1× 6 vector X∗. Then, r1 calculates the corrected
pixels [xcL, x

c
R, y

c]> = X∗β̂, which are subject to zero mean
Normal errors. Using the corrected pixels, r1 triangulates the
relative location of the target via (19), propagates Pr1 via
the Jacobian J, rotates and translates the estimates to global
coordinates, and thus the assumptions that the error terms
ν are zero mean with covariance Q = TJPr1J

>T> are
approximately satisfied. The case for r2 is analogous.

Finally, note that the regression takes place in three di-
mensions, whereas the algorithm is designed only for two
dimensions. For planning purposes, we consider only the
components of Q that lie on the plane of the workspace,
i.e., we do not use the third row and column for planning.
Of course, the experiments take place in three dimensions, so
we need to use the full covariance matrices in the Kalman
Filters. Note that the algorithm proposed in this paper could
be implemented in 3D at the expense of increasing the pose
and covariance spaces accordingly.
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