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Abstract—Many processes in natural biological systems, such
as chemotaxis in bacteria and osmoregulation in yeast, rely on
control architectures fundamentally equivalent to commonly used
motifs from electrical and control engineering. However, difficul-
ties arise when designing and implementing these architectures in
a biological context due to uncertainties inherent in the behaviour
of biological systems, and physical limitations of the available
parts. In this paper we discuss recent developments in the study
of biological control systems, which are increasingly necessary
for realisation of complex synthetic biological constructs, focusing
on methods for their design and implementation. We establish
a range of desirable properties that ease implementation of
biological constructs, and apply classical control theory to derive
a set of constraints to aid the design of systems that achieve
adaptation or disturbance rejection. We demonstrate how these
constraints can be used in practice, first deriving the necessary
structure for a linear system that achieves adaptation, and then
embedding this in a non-linear model of biological relevance that
could be built in the laboratory.

Index Terms—Biological control, synthetic biology, adaptation,
disturbance rejection, homeostasis, design constraints, feedback
control.

I. INTRODUCTION

SYNTHETIC Biology is an emerging field at the interface
of biology and engineering which aims to design and

build novel biological systems to solve problems in fields
ranging from biomanufacturing to medicine [1]. Over the
past 15 years scientists have successfully used synthetic
biology to re-wire natural genetic components, however,
attaining reliability and consistency of performance remains
challenging [2]. Difficulties arise for reasons including
unforeseen dependencies and interactions between synthetic
constructs and native cellular machinery [3], and the random
fluctuations and noise inherent in cellular processes [4].
In natural systems it has been observed that many such
challenges are overcome by feedback architectures similar to
those commonly used in control engineering [5], [6]. This has
inspired researchers to implement analogous control systems
in biological contexts [7], with these systems now playing
an increasingly important role in the realisation of synthetic
biological designs.

The bacterial chemotaxis system is a model example
of a natural biological control system. In the presence of
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extracellular stimuli it is able to robustly (that is, with
minimal sensitivity to the properties of its constituent
components [8]) return its state to pre-stimulus levels [9],
a process known as adaptation. It has been demonstrated
that the chemotaxis system’s underlying structure relies on
integral feedback control [5], which has encouraged the use
of feedback for development of synthetic signalling pathways
that perform similar functions [10], [11]. In addition to
adaptation, feedback control architectures can provide a range
of favourable capabilities for synthetic biological networks
[12]. For example, in the simple form of negative auto-
regulation, feedback can improve the response time of gene
networks [13], and reduce heterogeneity of gene expression
between cells [14]. Feedback can also be exploited to
implement high dynamic-range gene circuits for computation
[15], and to improve the efficacy of gene regulatory systems
[16]. Networks that utilise feedback control to improve both
performance and robustness will be of increasing interest
to synthetic biologists as they attempt to move synthetic
constructs outside the laboratory [6], where varying and
non-ideal conditions can impact their performance [17].

Though the widespread need for synthetic biological control
systems has been recognised [7], and many architectures have
been proposed, their implementation remains challenging
[18]. This stems from a lack of systematic approaches to
design, as well as methods for optimal (or even feasible)
implementation [19]. To this end it has been recognised
that constraint sets must be developed to limit the space
of viable designs [20]. Past work has established such
constraints for systems with properties such as switch-like
responses [21], disturbance rejection (homeostasis) [22],
and adaptation [18]. This has been done using a range of
techniques including BDC decomposition, which decomposes
system Jacobians into a product of three matrices B, D, and
C that capture the system structure. Such approaches can
be used to determine structural dependencies of variables
upon one another [23] (an approach originally popularised
in the determination of ecological community matrices [24],
[25]), and to reveal adaptive and oscillatory behaviours [26].
State-space approaches have been used in both linear [27]
and non-linear [28] systems to provide necessary conditions
for adaptation. Furthermore, “cofactor conditions,” which
require systems to have attractive steady-state functions
for which changes in the input do not affect the output,
have been employed to determine design principles for
construction of homeostatic systems [29]. However, even
though these constraints can substantially narrow feasible
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design spaces, they are often mathematically abstract, and
do not address many of the physical challenges posed by
biological components that make the implementation of
control structures of any substantial complexity challenging
[18].

Therefore, as planned control architectures become more
complex it will be increasingly advantageous to develop
biological constructs that approximate the fundamental
components of traditional control systems, such as integration,
gain, and summation junctions [15], [30]. This will facilitate
implementation of standard control structures such as Lead-
Lag [19] and Proportional-Integral-Derivative (PID) variant
[31] controllers, whose favourable properties have led to their
ubiquity across engineering disciplines [6].

Prior attempts to develop modularity for biological
components have focused on the standardisation of synthetic
biological “parts” (for example, via the BioBrick standard
[32]) to allow ease and predictability of assembly. However,
as parts libraries have grown it has become clear that the
effective design of biological systems requires accounting for
the context-dependent influence that up- and down-stream
interactions impart upon a given component (though tools
have been developed to “insulate” components from these
effects [33]), making true modularity challenging. Thus,
substantial experimental fine-tuning is often required for
constructs of any appreciable size, even after extensive in
silico testing and development [2]. One approach to minimise
the laborious fine-tuning process is to pursue designs that
build upon (and potentially re-wire) native cellular processes
[34], [35], reducing the network size required to achieve
a given functionality (and providing the secondary benefit
of minimising the metabolic load that the synthetic system
places upon its host cell [31]). However, approaches that build
upon native cellular systems are still in their infancy, and
the limits of their practicality and applicability are yet unclear.

Though challenges surrounding the modularity and
unpredictability of biological systems persist, thanks to
fundamental biological research there is an ever-increasing
assortment of biological elements that can be used for
synthetic designs. Constructs can be built using systems
operating on a range of molecular biological levels (for
example, using DNA [36], RNA [37] or Protein [14]), as
well as at varying time-scales [38], [39], [40] and species
concentrations [31]. However, working with this disparate
assortment of components requires extensive inter-disciplinary
expertise, and can substantially increase the necessity for
experimental troubleshooting and system fine-tuning. Previous
work has developed tools for automating the component-
selection and tuning process for some classes of synthetic
constructs [41], though as yet they only provide a narrow
(primarily logic function-related) range of capabilities.

Working toward addressing some of these challenges in
implementation, in this paper we derive design constraints
on the structure of networks that provide two common

control capabilities: adaptation and disturbance rejection
(homeostasis). We provide guidelines that can be used to
simplify the design and implementation of systems with
these capabilities, which due to our restrictive constraint set
provide a greater level of specificity than previous work.
We take a state space approach to designing the linearised
control system, to which we apply assumptions to aid
implementation, and then derive constraints on the network
structure and parameters. Some of these results follow from
the Internal Model Principle [42], which in the present
context dictates that should a feedback system adapt to a
class of input signals, then it must contain a subsystem able
to generate signals of that class [43]. Our design constraints
are narrowed to consider the biological systems in question,
and due to the restrictive assumption set proposed yield only
the most readily implementable designs. Once an appropriate
linear system has been designed, we demonstrate methods for
its embedding in a non-linear model of biological relevance.
The final stage of the synthetic biology design process, the
selection of particular biological parts for implementation, is
not addressed herein.

In Section II methods for the modelling of biological
systems are discussed, and the approach taken to linearisation
of a general non-linear system is outlined. Section III describes
the paper’s aim, as well as examples of functional forms for
biological interactions that may be used to implement the
systems described in this work. Section III also outlines two
general constraints that are used in the rest of the paper to
exclude systems with some difficult-to-implement properties.
In Section IV results are derived that govern the equilibrium
behaviour of linear systems, which are then used in Sec-
tions V and VI to derive constraints for networks capable
of adaptation and rejection of disturbances respectively. In
Section VII the results of Section V are employed to derive
a linearised network that can adapt to step-type disturbances.
This network is used to design a non-linear system with these
capabilities, which is simulated using illustrative parameters.
Section VIII discusses the assumptions made in this work and
their implications, and concludes the paper.

II. MODELLING BIOLOGICAL CONTROL SYSTEMS

Modelling frameworks for biological systems range from
stochastic/probabilistic to deterministic differential equation
(DE) models [44]. This paper focuses on a subset of the
later, utilising both linear and non-linear differential equations
to describe the dynamics of individual state variables which
may represent individual species, or larger scale properties,
of biological systems. Each differential equation will be a
(potentially non-linear) function of the system’s state variables,
as well as any external inputs or disturbances to the system.

A general first-order non-linear system describing the dy-
namics of n state variables x(t) = [x1(t), . . . , xn(t)] ∈ Rn as
considered in this paper takes the form

ẋ(t) = f(x(t),u(t)), (1)

in which ẋ(t) = dx(t)
dt ∈ Rn is a vector containing the

time derivative of each state variable, u(t) ∈ Rn is a
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Fig. 1. Schematic representation of systems that achieve (A) adaptation and
(B) disturbance rejection. For an adaptive system the long-term behaviour of
the output node (xn, green) is independent of a time-dependent signal applied
at the input node (x1 , blue). The output variable of a disturbance-rejecting
system (x1, yellow) is in the long-term independent of a time-dependent input
acting upon the same node. The αxi represent basal expression rates of the
system’s state variables xi, and grey clouds represent a yet undefined network
of interactions between the system’s state variables.

vector containing the time-dependent inputs to the non-linear
system’s state variables, and f(x(t),u(t)) ∈ Rn contains
n general non-linear functions of the state variables and inputs.

To simplify analysis it is often advantageous to examine
non-linear systems in a regime where they can be approxi-
mated by a linear system. The system in (1) can be linearised
via a Taylor series expansion of f(x,u) about one of its
equilibrium points xe ∈ Rn (so f(xe, 0) = 0)), which gives
(ignoring higher order terms)

˙̃x ≈ ∂f
∂x

∣∣∣∣
xe,0

x̃+
∂f
∂u

∣∣∣∣
xe,0

u, (2)

where ∂f
∂x

∣∣
xe,0

∈ Rn×n is the Jacobian of f evaluated at
(xe, 0), ∂f

∂u

∣∣
xe,0
∈ Rn×n is a matrix of all partial derivatives

of f with respect to elements of u evaluated at (xe, 0), and
x̃ = (x− xe) is the deviation in x from xe.

III. AIM AND PROBLEM OUTLINE

In this paper we aim to provide constraints for the design
of biological systems of minimal size that achieve adaptation
and disturbance rejection (defined in Fig. 1) for inputs of the
form u(t) = tk−1, t > 0 (where k = 1 would indicate a step,
k = 2 a ramp etc.). Rejection of step inputs is necessary in
many biological systems for re-baselining (for example, in
chemotaxis [8]), and adaptation to higher order inputs (i.e.

k ≥ 2) may be useful for distinguishing biological processes
that create products at a constant rate from those that have
higher order dynamics. Furthermore, disturbance rejecting
systems can better function as modular components of larger
synthetic circuits since they can be designed to have outputs
which (for example) maintain a constant concentration
whilst being consumed by downstream processes. Designing
non-linear systems of biological relevance that achieve these
goals, and are also feasible for implementation, is challenging.
Therefore, we approach this problem by designing a linear
system, which is then used to determine the form of an
appropriate non-linear system. As such our design approach
considers the linearisation process outlined in Section II in
the opposite direction: we first derive the necessary structure
of ∂f

∂x

∣∣
xe,0

from a set of constraints, and then attempt to
find a non-linear biological system as in (1) possessing these
linear dynamics about one of its equilibrium points. For
a given linear system there will be many feasible forms
of f(x,u) depending on the physical components chosen,
and so this choice will be narrowed down by selection of
implementations that are most biologically tractable.

A. Potential forms for f(x,u)
Though there is a wide (and growing) range of synthetic

parts from which biological circuits can be built, some
commonly used elements (and their potential mathematical
expressions that could appear in f(x,u) from (1)) are outlined
below. In these equations we have placed the state variables
in square brackets to indicate that in this case they refer to
concentrations.

• Constant Expression: An element of a network for
which the concentration increases at a constant rate, α.

d[x]

dt
∝ α. (3)

• Activated / Repressed Expression: An element for
which the creation rate depends on the concentration
of a secondary species [y]. Activation corresponds to
the case in (4) for which large [y] results in increased
expression, whilst repression removes the factor of [y]
from the equation’s numerator, resulting in a smaller
value of d[x]/dt for large [y]. The Hill coefficient (n)
describes the cooperativity of the activation/repression
process (n = 1 for a non-cooperative process).

d[x]

dt
∝ β[y]n

kn + [y]n
. (4)

• Degradation / Dilution: Reduction in an element’s con-
centration due to its degradation over time, or dilution
(due to cell growth), which is proportional (via a factor
δ) to its own concentration.

d[x]

dt
∝ −δ[x]. (5)

• Michaelis-Menten Enzyme Kinetics: Reactions in
which an enzyme y is used to increase or decrease the
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concentration of a substrate x can be described using
the Michaelis-Menten equation. The rate of this process
depends on the enzyme’s concentration ([y]) and its
catalytic rate (kcat).

d[x]

dt
∝ kcat[y][x]

KM + [x]
. (6)

• Mass Action Kinetics: Chemical reactions that transform
one group of species into another can be described by
mass action kinetics. For example, for a reaction of the
form:

αx+ βy → γc, (7)

we have that
d[x]

dt
,
d[y]

dt
∝ −k[x]α[y]β . (8)

Again, the above list of potential forms found in f(x,u) is
by no means exhaustive; it aims to provide examples of sim-
ple mathematical approximations for the biological systems
considered in this work.

B. System Linearisation and Assumptions for Implementation

We can express the linearisation (2) as a general linear
system of the form

ẋ = Ax+ Bu,
y = Cx,

(9)

where x(t) ∈ Rn represents the system’s state variables and
ẋ(t) their time derivatives (as in Section II). u(t) ∈ Rm is
the system’s input and y(t) ∈ Rp the system output. For
SISO (single input single output) systems as considered in
Sections IV, V and VI of this paper, m = p = 1. A,B,C are
matrices of appropriate dimensions that define the system,
with structure that will be constrained in terms of the sign
or nullity of their elements. For practical implementation
the elements of these matrices will then take values in R
defined by the system’s biological parameters. We focus on
SISO systems due to their ease of analysis in the present
context, though approaches to expanding this framework to
incorporate systems in which inputs affect multiple state
variables are discussed in Section VIII.

In the following sections sub-matrix notation will be as
follows:
• Ai,j refers to the element in the ith row and jth column

of A
• Ai:j,k:l refers to a sub-matrix of A of size j− i by l− k,

which includes elements from the ith to jth row, and
kth to lth column of A.

To provide biologically tractable designs, we make a range
of assumptions that limit the properties of designed linear
systems. First, we require that A matrices are Hurwitz (stable
in the control theory sense). In order to create systems for
which the structure, rather than particular parameter values,
guarantees performance goals are achieved, we make the
assumption of element independence, defined in Assumption

3.2. Due to the leaky nature of biological systems, particularly
at the promoter level [45], we will constrain the constant
term in the differential equation describing each species’
time evolution to be non-negative. This will be referred to
as a basal level of production (Constraint 3.3). Furthermore,
we wish to avoid systems in which individual components
impact other state variables both positively and negatively,
and thus require that the partial derivatives with respect
to x1, . . . , xi−1, xi+1, . . . , xn of the differential equation
governing the dynamics of xi have the same sign for all x
(Constraint 3.4).

Definition 3.1: We define (and denote as SA) a System of
Constraints on a matrix A ∈ Rn×n, to be an n × n array of
functions of elements of A.

For example, we might have that SA
i,j = Aa,b + Ac,dAe,f if

under a given constraint it was required that the element Ai,j
be equal to the combination of other elements, Aa,b+Ac,dAe,f .

Assumption 3.2: Element Independence
We say that a matrix A ∈ Rn×n has the property of element
independence if, for a given system of constraints SA, the
following holds:

∂SA
i,j

∂Al,m
= 0, (10)

for all Al,m ∈ A subject to l 6= i or m 6= j.

Element independence can be thought of as a criterion
that eliminates constraint sets which require elements of the
system matrix A to be equal to the sum, product, or any
arbitrary non-trivial function, of other elements of A. This
criterion must be understood within the context of constraints
applied to a matrix’s elements, which impose functional
relationships between different elements (i.e. the SA

i,j) for
families of systems that achieve given design goals. We desire
element independence in biological contexts in order to aid
the realisation of designed systems, since tuning parameter
relationships for different biological parts of a system is
challenging in many cases. Similar requirements to element
independence have previously been investigated [46], and are
discussed further in Section VIII.

C. Other General Constraints for Implementation

In addition to the mathematical constraints derived above,
there are a number of desirable properties that our designed
system should possess in order to ease its implementation.
These will not be used to prove the results in Sections IV, V
and VI of this work, but are applied during the design of a
specific biological implementation in Section VII.

Previously we assumed that in a biological system each
state variable could have a non-negative basal expression
level. If a given state variable xi is to reach an equilibrium,
there must be a balance between positive and negative rate
contributions to its non-linear dynamics. Since we assume
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each state variable will have a non-negative basal expression
rate αxi , there must be at least one negative element in each
row of A. This requirement yields the following constraint:

Constraint 3.3: Ai,j < 0 for at least one j = 1, . . . , n, for
all i = 1, . . . , n

To aid implementation we would like to avoid situations in
which one element of a network has influences of differing
signs on other elements. Either it should have a positive
influence (e.g. a transcriptional activator), or a negative
influence (e.g. a transcriptional repressor), but not both. Thus,
the off diagonal terms in each column of A should all be
strictly non-negative, or non-positive. This requirement yields
the following constraint:

Constraint 3.4: Either Ai,j ≤ 0 ∀ i = 1, . . . , j − 1, j +
1, . . . , n, ∀ j = 1, . . . , n or Ai,j ≥ 0 ∀ i = 1, . . . , j − 1, j +
1, . . . , n, ∀ j = 1, . . . , n

IV. GENERAL LINEARISED NETWORK STRUCTURE

Proposition 4.1: Consider a SISO system in the form of
(9) with n state variables, and in which A is Hurwitz. The
following statements are equivalent:

1. The system rejects inputs of the form u(t) = tk−1 with
k ∈ N+, i.e. limt→∞ y(t) is constant.

2.
lim
s→0

det

[
sI− A −B
C/sk−1 0

]
= 0, (11)

where s is the frequency domain (Laplace) parameter,
A ∈ Rn×n, B ∈ Rn×1, and C ∈ R1×n, and I is the
n× n identity matrix.

Proof Under the stability assumptions of the proposition, from
the final value theorem [47] we have that

y(∞) = lim
s→0

sY (s). (12)

For this system to be unperturbed (in the t→∞ limit) by the
input/disturbance u(t) we thus require limt→∞ y(t) = 0. For
our system we can express the transfer function from input to
output in terms of its Rosenbrock system matrix as [48], [49]:

G(s) =
1

det(sI− A)
det

[
sI− A −B

C 0

]
, (13)

which, taking Y (s) = G(s)U(s) and a general input of the
form u(t) = tk−1, equivalent to U(s) = (k − 1)!/sk in the
Laplace domain, gives

lim
s→0

(k − 1)!

det(sI− A)× sk−1
det

[
sI− A -B

C 0

]
= 0. (14)

Here det

[
sI− A −B

C 0

]
will yield a polynomial in s of

maximal order n−1, whilst the lowest order s term in det(sI−
A)×sk−1 will be of order k−1, and equal to det(−A)×sk−1.
By placing k−1 zeros at the origin this term causes cancelling
of inputs of the form the system aims to reject, as required by
the internal model principle. Thus, since we require this limit

to approach zero, as s → 0 the denominator’s value will be
dominated by its lowest order term, and we can replace the
condition in (14) with one which is equivalent in the s → 0
limit

0 = lim
s→0

(k − 1)!

det(−A)× sk−1
det

[
sI− A −B

C 0

]
. (15)

Condensing the 1/sk−1 pre-factor into the bottom row of
the determinant and and eliminating constant terms gives the
desired result. �

V. NETWORK CONSTRAINTS FOR ADAPTATION

For a system to achieve adaptation (Fig. 1 A), the long-
term behaviour of one of its state variables (the output) must
be independent of a time-dependent input applied to a different
state variable (the input). We will arbitrarily define the input
state variable as the first element in the system, and the output
state variable as the last, giving

B =


1
0
...
0

 ,C =
[
0 · · · 0 1

]
. (16)

Recall that the relative degree (Dg) of a system is defined
as the number of times the system’s output (y) must be
differentiated before the input (u) appears explicitly in its
expression. Equivalently, it is equal to the difference in the
order of the polynomials (in s) found in the numerator and
denominator of a system’s state space transfer function (G(s)).
Described in a network context, Dg is the shortest path (in the
graph theory sense) between the system’s input/output state
variables. For a system with relative degree Dg this path will
thus include Dg state variables, two of these being the input
and output (1st and nth state variables respectively). If we
arbitrarily label the state variables corresponding to the rows of
A such that the first 1, . . . , Dg− 1 state variables sequentially
form the shortest path to the output (nth) state variable, then
requiring connectivity between the input and output elements
of a network for a given Dg = 1, . . . , n is equivalent to the
following

An,Dg−1

Dg−1∏
j=2

Aj,j−1 6= 0,

An,1:Dg−2 = 0.

(17)

For example, if Dg = 2, the input state variable connects
directly to the output (An,1 6= 0), or if Dg = 3 the input
state variable connects to the second state variable (A2,1 6= 0)
which connects to the output (An,2 6= 0).

Proposition 5.1: Consider a linear system (9) that satisfies
the assumptions of Proposition 4.1, with B,C as in (16). Sup-
pose that for this system element independence (Assumption
3.2) of A holds, and that there exists a solution to (17) for some
Dg , so that the input and output of the network are connected.
If such a system has the minimal number of state variables (n),
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and is able to reject an input of the form u(t) = tk−1, then it
has the following properties:

1. n = k + 2
2. Ai,i = 0, and the product Ai,1An,i = 0, for all i =

2, . . . , n− 1
3. Ai,n 6= 0 for at least one i = 2, . . . , n, and A1,j 6= 0 for

at least one j = 1, . . . , n− 1.
4. Dg = 2, and thus An,1 6= 0.

Proof From (11) this system must satisfy

lim
s→0

det

 sI− A1:n,1:n

1
0
...

· · · 0 1
sk−1 0

 = 0. (18)

Using Laplace’s formula, this determinant can be expanded
along the bottom row and up the right column to give

lim
s→0

1

sk−1
× det(Ar) = 0, (19)

where

Ar =
[

A2:n−1,1 A2:n−1,2:n−1 − sI
An,1 An,2:n−1

]
. (20)

Let λ̃i(s), i = 1, . . . , n−1 denote the eigenvalues of the matrix
Ar, then for (19) to be satisfied we require

lim
s→0

1

sk−1

n−1∏
i=1

λ̃i(s) = 0. (21)

We will now examine two cases, the first where one of the
λ̃i(s) = 0 when s is arbitrary, and the second where this
does not hold, thus requiring that a term of order sk can
be factorised out of the product of eigenvalues in (21) (so
that (19) is satisfied). We will rule out the first case due to
its inability to satisfy (17) for any value of Dg , and thus
conclude the second case must be true.

Case 1: If one of the λ̃i(s) = 0 when s is arbitrary then
A2:n,1:n−1 is degenerate. Expanding det(Ar) along the bottom
row and separating out the first term we have:

An,1 × det(A2:n−1,2:n−1 − sI)+
n−1∑
j=2

(−1)j+1An,jMn,j = 0,
(22)

where Mi,j is the standard matrix minor equal to the
determinant of the (n− 2)× (n− 2) matrix that results from
removing the ith row and jth column from Ar. The first term
in (22) is the only one proportional to sn−2, and therefore for
this expression to be equal to zero for arbitrary s we require
An,1 = 0, ruling out the Dg = 2 case of (17).

Expanding det(Ar) down the left column, the first term is
given by

A2,1 × det

[
A3:n−1,2 A3:n−1,3:n−1 − sI

An,2 An,3:n−1

]
. (23)

Due to the assumption of element independence for A, (23)
must equal zero for all s. As the Dg = 2 case of (17) has

already been excluded, A2,1 6= 0, and so expanding this
determinant along the bottom row requires An,2 = 0, it being
the coefficient of the only sn−3 term. Therefore, the Dg = 3
case of (17) is likewise excluded. Continuing to expand (23)
in a similar manner (for example, in the next stage expanding
the determinant in (23) about A3,2) rules out all possible
values of Dg , thereby proving Case 1 to be impossible.

Case 2: With Case 1 excluded, it is necessary that a
factor of sk is shared between the n − 1 eigenvalues in (21)
for the limit to hold. This implies the matrix A2:n,1:n−1
is one-fold degenerate (that is, it contains one linearly
dependent row/column), which follows from the fact that A
is not degenerate. This also requires that at least one of the
values A2,n, . . . ,An,n 6= 0, and one of A1,1, . . . ,A1,n−1 6= 0,
to avoid row- and column-wise degeneracy of A respectively,
which gives property 3 of Proposition 5.1.

In order for a factor of sk to appear in the eigenvalues λ̃i it
is necessary that there are at least k terms including s in Ar.
Since Ar contains n − 2 terms linear in s we can constrain
the minimal size of the complete network (n) as n = k + 2,
which gives property 1 of Proposition 5.1. If we express the
determinant of Ar as a polynomial in s

βn−2s
n−2 + βn−3s

n−3 + . . .+ β1s
1 + β0. (24)

Then β0, . . . , βk−1 = 0 in order for an sk term to be
factored out. By breaking down this determinant to calculate
coefficients of the highest order s terms we find βn−2 = An,1
and

βn−3 =

n−1∑
i=2

Ai,1An,i + An,1
n−1∑
i=2

Ai,i. (25)

Since n = k + 2 the only non-zero term in (24) is the one
with coefficient βk = An,1, and thus the network’s input must
be connected to its output (i.e. Dg = 2, yielding property 4
of Proposition 5.1). The requirement that βk−1 = 0 in (25)
dictates that Ai,i = 0 and Ai,1An,i = 0 for all i = 2, . . . , n−1,
which gives property 2 of Proposition 5.1. �

From a biological standpoint, the first constraint in
property 2 of Proposition 5.1 corresponds to a requirement
that each non-input/output species has a constant rate
of degradation/dilution (i.e. zeroth-order degradation),
independent of its concentration. This requirement, which has
previously been established for perfectly adapting systems
[50], can be realised (for example) by saturation of proteolysis
- forcing the protease responsible for degradation of a given
species to work at saturation [51]. The second constraint in
property 2 of Proposition 5.1 means that a species i (except
for the input species) is either directly influenced by the
input node, or it directly influences the output node, but both
conditions are never simultaneously true. This is equivalent
to requiring that there are no paths from input to output that
go through precisely one other node. For the minimal relative
degree (Dg = 2), the minimum size of a network that can
reject inputs of order k − 1 can be equivalently calculated by
recalling that rejecting disturbances of the form tk−1 requires
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the system’s transfer function to have k zeros at the origin,
and therefore by the definition of relative degree the system
must be of minimal order k + 2.

Although the minimally sized network for adaptation to a
given input has Dg = 2 via Proposition 5.1, in some situations
it may be advantageous to select a larger network in order to
relax some constraints on the constituent component dynamics.
With each increase in Dg we must include an additional term
in (24), and thus the minimal size of an adaptive network for
a given Dg is n = Dg + k.

VI. NETWORK CONSTRAINTS FOR DISTURBANCE
REJECTION

To formulate a network that can reject a disturbance in one
of its state variables (Fig. 1 B) we will consider a system in
which the input and output are (arbitrarily) applied to the first
state variable, giving

B =


1
0
...
0

 ,C =
[
1 0 · · · 0

]
. (26)

In a biological sense, such a network would be able
to stabilise the concentration of an output species (whose
equilibrium concentration may be a function of inputs
elsewhere in the network) as it is being consumed by
secondary processes. This system is therefore able to function
as a load-driver [3]. Such systems have been implemented in
a synthetic biological context in recent years, and have been
shown to provide much-needed modularity for the interfacing
of biological constructs [33].

Proposition 6.1: Consider a linear system (9) that satisfies
the assumptions of Proposition 4.1, with B,C as in (26). Sup-
pose that for this system element independence (Assumption
3.2) of A holds. If such a system has the minimal number of
state variables (n), and is able to reject an input of the form
u(t) = tk−1, then it has the following properties:

1. n = k + 1
2. A1,1 < 0, Ai,i = 0 for all i = 2, . . . , n, and Aj,iAi,j = 0

for all combinations of i, j = 2, . . . , n.
3. Ai,1 6= 0 and A1,i 6= 0 for at least one i = 2, . . . , n.

Proof Analogously to the process following from (18), it is
necessary that

lim
s→0

1

sk−1
× det(At) = 0, (27)

where

At = [sI− A2:n,2:n] . (28)

If we express the determinant of At as a polynomial in s, we
get

sn−1 + βn−2s
n−2 + . . .+ β1s+ β0 = 0. (29)

To satisfy (27) an sk term must be factored out of (29), which
sets a minimal network size of n = k + 1 (property 1 of
Proposition 6.1). Setting n = k + 1 in (29) we have

sk + βk−1s
k−1 + . . .+ β1s+ β0 = 0, (30)

which requires βk−1, . . . , β0 = 0 in order to leave sk as the
lowest order term. Since β0 = det(−A2:n,2:n) we have that
A2:n,2:n is degenerate. However, since A is invertible, A2:n,2:n

has at most one degenerate row/column, and so at least one
of A2,1, . . . ,An,1 6= 0 and one of A1,2, . . . ,A1,n 6= 0 to avoid
row- and column-wise degeneracy of A respectively (property
3 of Proposition 6.1). In (30) the term βk−1 is given by:

βk−1 = (−1)k−1
k+1∑
i=2

Ai,i, (31)

which if βk−1 = 0, given the assumption of element in-
dependence for A, gives the second part of property 2 in
Proposition 6.1. Biologically, this constraint requires that all
state variables bar the input/output must have zeroth-order
degradation dynamics [50]. Since all eigenvalues of A have
negative real part, Trace(A) < 0, and thus A1,1 < 0, giving
the first part of property 2 in Proposition 6.1. Since Ai,i = 0
for i = 2, . . . , n, we have

βk−2 = (−1)k
k+1∑
j=2

k+1∑
i=j+1

Aj,iAi,j , (32)

which if βk−2 = 0, given again the assumption of element
independence for A, constrains every pair of non-output state
variables to be joined only by a single link. This gives the
final part of property 2 in Proposition 6.1. �

Considering a non-minimal network with n = k + 2, we
still require sk to be the lowest order term in det(At), which
is now given by

sk+1 + βks
k + . . .+ β1s+ β0 = 0. (33)

The term βk has the same form as in (31), but with the sum
index going to k+2. This sum can now be non-zero, and thus
diagonal elements may be non-zero. The next coefficient in
(33) is

βk−1 = (−1)k
k+2∑
j=2

k+2∑
i=j+1

Aj,iAi,j +
k+2∑
j=2

k+2∑
i=2,i6=j

Ai,iAj,j

 ,

(34)
which if n = k + 2, must equal zero. The right hand sum in
(34) indicates that all pairwise products of diagonal terms are
zero. Since the non-zero βk allowed these to be individually
non-zero, precisely one of the diagonal terms can be non-zero.
The left hand sum in (34) constrains every pair of non-output
nodes to be joined only by a single link, as was the case before.

VII. APPLICATION TO BIOLOGICAL SYSTEM DESIGN

A. Implementation of parameter constraints

We now apply the derived constraints to design a synthetic
biological system capable of adapting to a step (k = 1)
disturbance. For a minimal realisation of this system, following
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Proposition 5.1 we require a network of size n = 3, which in
linearised form will be expressed as

A =

 A1,1 A1,2 A1,3

A2,1 A2,2 A2,3

A3,1 A3,2 A3,3

 . (35)

From Proposition 5.1 we have A3,1 6= 0 and A2,2 = 0.
Since all eigenvalues of A have negative real part we know
A1,1 + A3,3 < 0, and so we will set both A1,1,A3,3 < 0 to
avoid constraining the relative magnitudes of these parameters
(if one were positive it would need to be lesser in magnitude
than the other). In doing this we have also satisfied property 3
of Proposition 5.1. From property 2 of Proposition 5.1 we have
A2,1A3,2 = 0, and will set A3,2 = 0 as this choice allows us to
set A2,1 6= 0 so that there is a non-zero element in the matrix’s
second row. Expanding the determinant of A down its middle
column now gives −A1,2(−|A3,3|A2,1 − A2,3A3,1), which
must be less than zero for A to be stable (since this determinant
is equal to the product of three negative eigenvalues), and so
we set A2,3 = 0 and A1,2A2,1 < 0. At this point we can set
A1,3 = A2,3 = 0 to simplify the system, since these elements
are not required to satisfy other constraints. By Constraint 3.3
we then have that A2,1 < 0, and therefore by Constraint 3.4
A3,1 < 0. Thus we are left with

A =

 −|A1,1| |A1,2| 0
−|A2,1| 0 0
−|A3,1| 0 −|A3,3|

 , (36)

which forms part of a single-input multiple-output linear
system as in (9) given by

˙̃x = Ax̃+

 ux1
(t)
0
0

 ,
y = x̃,

(37)

where as before x̃ = x−xe, and ux1
(t) is the time-dependent

disturbance to species x1 to which we hope x3 will adapt. We
now seek a non-linear system which can be approximated near
to an equilibrium by the constrained linear system in (37).

B. Non-linear system selection and correspondance with lin-
ear system

To design a non-linear system (of the form of (1)) that can
be approximated by (37) we begin by selecting biological
mechanisms to account for each of the elements of (36).
There are many ways in which this can be done depending
on the biological components selected. We will discuss one
such implementation.

The elements −|A1,1| and −|A3,3| can be implemented by
attaching fast degradation tags to x1 and x3, or by introducing
a protease external to this system which acts in saturation
upon x2, giving x2 zeroth-order degradation [50]. The element
|A1,2| can be provided by having species x2 non-cooperatively
activate the expression of species x1 in the regime in which
the concentration of x2 is small compared to the activator
binding equilibrium constant. Elements −|A2,1| and −|A3,1|
can be implemented by choosing species x1 to be a protease

enzyme operating in the saturation regime (where enzyme
concentration is small compared to substrate concentration).

x1

x2 x3

kcat2kcat1

βx2/k1

αx1
φ

δx1
φ

ux1(t)

αx2 αx3

δx3

φ

φ φ

Fig. 2. Network diagram for linear system in (37) with parameter values
from the non-linear approximation in (40). Pointed (blunt) arrows indicate a
positive (negative) affect of one species’ concentration on that of another.

Using the standard Hill equation (for non-cooperative acti-
vation) and Michaels-Menten equation (for enzyme activity)
[52] the system’s non-linear dynamics can be expressed as

f(x,u) =


αx1 − δx1 [x1] +

βx2 [x2]/k1
1+[x2]/k1

+ ux1(t)

αx2
− kcat1

[x1][x2]

KM1
+[x2]

αx3
− δx3

[x3]−
kcat2

[x1][x3]

KM2
+[x3]

 , (38)

where we have placed the state variables in square brackets to
indicate that they represent concentrations. The αxi represent
basal expression rates of each species, βxi

represent the
maximal rate increase due to activation, and δxi

represent the
first-order degradation rates. The KM are Michaelis constants,
and the kcat the corresponding maximal enzyme catalytic
rates. The structure of this system’s Jacobian is given by

∂f
∂x

∣∣∣∣
xe,0

=

 ∗ ∗ 0
∗ ∗ 0
∗ 0 ∗

 . (39)

To set A2,2 = 0 we need the activator x2 to operate in
the regime where its concentration is small compared to its
binding equilibrium constant (so that k1 � [x2]), making the
magnitude of this partial derivative small. Furthermore, forcing
the protease enzyme x1 to operate in its saturation regime
gives KM1

� [x2] and KM2
� [x3]. With these constraints

enforced the Jacobian can be approximated by

∂f
∂x

∣∣∣∣
xe,0
≈

 −δx1
βx2

/k1 0
−kcat1 0 0
−kcat2 0 −δx3

 . (40)

We are now able to use (2) to construct a system in the form
of (37) by setting

∂f
∂u

∣∣∣∣
xe,0

=

 1 0 0
0 0 0
0 0 0

 , ∂f
∂x

∣∣∣∣
xe,0

= A,

− ∂f
∂x

∣∣∣∣
xe,0

xe =

 αx1

αx2

αx2

 .
(41)
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C. Parameter selection and implementation

With the equivalences in (41) set, the non-linear system
described by (38) is approximated by the linear system as in
Fig. 2. To model this system, values for the parameters and
ratios in (40) (which then define the elements of the linear
system (36)) are selected in order to ease implementation,
subject to two constraints. First, that the eigenvalues of this
matrix all lie in the open left half plane as per Proposition
5.1. Second, that there exists an equilibrium solution to
f(xe, 0) = 0 with f as in (38), with all elements of xe and
each αxi

term strictly positive.

Based on the equilibrium concentrations [xe] the activation
binding constant is selected to satisfy k1 � [xe2 ], and the
Michaelis-Menten constants to satisfy KM1 � [xe2 ] and
KM2

� [xe3 ]. Values for βx2
and βx3

are then fully defined
by the ratios in (40).

The above process was followed to yield an illustrative set
of satisfactory parameters, summarised in Table I.

TABLE I
SAMPLE MODEL PARAMETERS (UNITLESS)

Parameter Value Parameter Value
[xe1 ] 2.0 kcat1 1.5
[xe2 ] 2.5 kcat2 1.0
[xe3 ] 1.5 k1 80
αx1 1.5 KM1

0.01
αx2 3.0 KM2

0.01
αx3 5.0 δx1 2.0
βx2 80 δx3 2.0

Using these values we simulated the linear (37) and
non-linear (38) systems using MATLAB, for which results
are presented in Fig. 3. With all state variable concentrations
[x] initially zero, designed equilibrium values (Table I) are
quickly reached. The time-dependent input ux1

(t) applies
a negative unit step at t = 10. Though [x3] departs from
equilibrium at this discontinuity in ux1(t), it quickly returns to
the desired value [xe3 ], achieving the system’s design purpose.
Agreement between the linear and non-linear systems is good,
particularly in terms of the controlled variable x3, which
was found to be robust to variation of model parameters,
though these variations can shift the system’s equilibrium
position. Substantial (e.g. order of magnitude) changes in
k1,KM1

,KM2
can reduce the applicability of assumptions

made when linearising our non-linear implementation. This
results in departure between the linear and non-linear models,
particularly in x2, with x1 and the controlled variable x3
affected to a lesser extent. However, since the assumptions
made in the derivation of (40) still loosely hold, the structure
of the system is maintained and so adaptation by x3 is still
achieved.

Whilst the example illustrated in this section demonstrates
the application of constraints to design a minimal system for
step-disturbance rejection, the result is not unique. Rather
than specifying particular parameter values, the constraints
outlined in this paper define the structure of A in terms of

Fig. 3. Comparison of linear (37) and non-linear (38) realisations of a system
designed such that x3 is able to adapt to step disturbances of x1. Close
agreement is found between the value of x3 in both models and its desired
equilibrium value xe3. Model parameters used are as in Table I. The negative
of the time-dependent input ux1 (t) is plot as a rate, and state variables (x)
are plot as concentrations. All values in arbitrary units (a.u.).

the sign (or existence) of its individual elements. When these
constraints (and the assumptions that underlie them, such as
the stability of A) are satisfied, our results then guarantee that
(due to its structural properties) the linear system is able to
reject a given class of inputs. After all structural constraints
are satisfied, unconstrained elements of A can then be set
based on any other design goals; in our case, we set any
uncertain elements to zero in order to minimise the number of
required interactions within the system (thereby simplifying
implementation). For networks that are designed to reject
higher order disturbances (k > 2) the structure imposed by our
design constraints will be increasingly sparse, leaving many
more elements undetermined (though generally setting these
to zero to reduce the complexity of the designed system will
be desirable).

VIII. DISCUSSION AND CONCLUSIONS

The constraints derived in this paper provide a general
guideline for designing systems capable of adaptation and dis-
turbance rejection, but do so under a limited set of assumptions
which may, in practice, be violated. For example, the element
independence requirement (that elements of A be independent
of one-another) was investigated by Drengstig et al. [46],
who classified adaptive networks as robust (those in which
perfect adaptation is a property of the network’s topology)
or non-robust (those in which fine-tuning of rate constants is
necessary to achieve adaptation). Our assumptions ruled out
all such non-robust systems, however, their coarseness also
eliminated a number of robust strategies. For example, the
element independence assumption for A could be violated in
practice by reversible reactions such as

x1
k1−⇀↽−
k2

x2, (42)
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which when linearised gives a matrix of the form

A =

[
−k1 k2
k1 −k2

]
. (43)

Despite this, we elected to avoid any form of parameter
dependency since systems which violate these assumptions
(in the non-robust case) only function within a limited
parameter space, or (in the robust case) can be challenging
to implement. For example, for reversible reactions as in
(42) it may be difficult to tune the relative rate values k1
and k2, or to find a biological component with this property
that is also able to interact with other species in the system
as required. Other derived constraints can also be violated
in practice (for example, the λ repressor protein CI can act
as both an activator and repressor [53], violating Constraint
3.4), but were included since our goal is to limit the design
space to include only the most readily implementable systems.

The present analysis can be extended to consider systems of
more than one input by careful selection of node identities and
layout. For example, feed-forward architectures often found
in natural biological systems [54] (illustrated in Fig. 4) can
be constructed by having the first node (x1) act as proxy
for the system input. By enforcing fast dynamics of this
node it can track the input signal, though it will be subject
to consumption/disturbance by downstream processes (as are
inputs such as chemical inducers [55]).

x2

x1 x3
ux1(t)

Fig. 4. Simple feed-forward network structure, in which an inducer drives
the steady-state concentration of x1. By treating x1 as a direct proxy for the
input to this network it can be thought of as an input interacting with both
x2 and x3.

The linearised approach to design described in this paper
simplifies the process of defining network structures and
guiding implementation, but does so at the expense of ruling
out a class of non-linear systems for which the system matrix
(as in (40)) would have non-constant terms. Such systems
can be designed to adapt to a wide range of signals whilst
requiring fewer components than those described by our
linear design approach. For example, an n = 2 dimensional
non-linear system can adapt to all sub-exponential inputs
(including u(t) = tk for all k) [56], [57]. However, such
systems can be challenging to implement using biological
components [56], and in fact for many applications we
desire adaptation or disturbance rejection for certain classes
of signals but not others [58]. For example, many natural
systems (including bacterial chemotaxis [59]) utilise negative
feedback architectures which adapt to step inputs, but
not to ramps, in order to sense nutrient gradients in their
environment. This contrasts with other natural regulatory

architectures, such as incoherent feed-forward loops, which
adapt to a wider range of signals in order to reduce a system’s
sensitivity on environmental fluctuations [58].

As with all mathematical descriptions of biological systems,
it is important to note that our approach involves making
a range of approximations which in reality, depending on
circumstance, may be violated. For example, our seemingly
simple assumption that it is possible to build a network in
which one species does not influence another (i.e. there is
an off-diagonal zero in A) may not hold: Limited ribosomal
resources mean that if one gene is translationally activated this
may have a repressive influence on the translation of others
[60]. Deliberate utilisation of these secondary effects may
provide design approaches which could (for example) violate
Constraint 3.4. Furthermore, zeroth-order degradation (zero
terms on the diagonal of A) is difficult to achieve in practice,
since there will always be some rate of protein dilution
and passive degradation. Another approximation arises when
linearising the more biologically-relevant non-linear system,
as this approximation is only applicable within a given range
of parameter values, thus constraining the regime in which
our system can achieve its design specification. Combined,
these and other second-order effects (which are prevalent
throughout biological systems) mean that biological networks
can almost never be perfectly adapting or rejecting of
disturbances, though they can approximate these capabilities
[29].

In this paper we have described a set of constraints that can
be employed to simplify the design and implementation of
biological networks that achieve adaptation and disturbance
rejection. Using this framework an engineer can quickly
narrow the design space to a set of viable linear network
topologies, which can then be embedded in a non-linear
system of biological relevance. Though biologically feasible
designs are possible outside of the assumption set we have
outlined, our assumptions ensure that our method provides
only the most readily-implementable architectures. These can
then be built in the laboratory from the ever-growing array
of components available to synthetic biologists. In this way
we hope that our work will aid in the realisation of the
robust control systems that are increasingly necessary for the
regulation of complex synthetic biological constructs.
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