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Abstract— In this paper, a new model for traffic on roads
with multiple lanes is developed, where the vehicles do not
adhere to a lane discipline. Assuming identical vehicles, the
dynamics is split along two independent directions—the Y -axis
representing the direction of motion and the X-axis representing
the lateral or the direction perpendicular to the direction
of motion. Different influence graphs are used to model the
interaction between the vehicles in these two directions. The
instantaneous accelerations of each car, in both X and Y direc-
tions, are functions of the measurements from the neighbouring
cars according to these influence graphs. The stability and
equilibrium spacings of the car formation is analyzed for usual
traffic situations such as steady flow, obstacles, lane changing
and rogue drivers arbitrarily changing positions inside the
formation. Conditions are derived under which the formation
maintains stability and the desired intercar spacing for each of
these traffic events. Simulations for some of these scenarios are
included.

Index Terms— lane-less traffic model, formation control,
multi-agent system

I. INTRODUCTION

This paper is motivated by the desire to develop models
to analyze traffic when the roads are wide and the lanes
are blurred. Such traffic behavior is not uncommon in many
roads in India where, to misquote J K Galbraith, a ‘func-
tioning anarchy’ prevails. We develop a stylized model to
describe the local interaction among the vehicles on such
roads and use this microscopic description to characterize
the emerging macroscopic behaviour. In effect, we consider
a multilane system except that we assume that there is no
strict demarcation of lanes and that vehicles are affected by
those in a ‘cone’ rather than by the vehicle right ahead. On
such roads, multiple cars drive abreast but do not adhere to
lane discipline. Toward this we adapt the single lane model
of [6] to develop our multilane model. Specifically, a directed
graph is used to model the influence on the acceleration of a
vehicle by others in its neighbourhood, i.e., those that are in
its cone. We seek an equilibrium analysis of the dynamical
system model that we develop. Our notion of stability refers
to the condition that all cars attain the same velocity as the
leader. Since this is a car following model, we also have the
notion of levels and the analysis will also obtain conditions
such that cars in one ‘level’ maintain a fixed spacing from
cars in the next ‘level.’ Our analysis will primarily use the
Laplacian of the directed graph that models the influences,
which in turn will allow us to dissolve the lanes, so to say.

The influence graph can also be a weighted graph to enable
us to model the relative degrees of the influences.

Models for vehicular systems have been widely studied
both from a microscopic [5] [7] as well as from a macro-
scopic [9] [22] perspective. Various forms of stability such
as input-to-state [30], string stability [29] and mesh stability
have been considered. Mesh stability ensures damping of
perturbations in vehicle formations, as they move away from
the source [27][21][28]. Various applications are studied
namely obstacle avoidance in [20] and lane changing in [14]
[8]. In [11] multilane model for vehicular traffic is considered
and a fluid model is developed. Unlike string or mesh
stability theories, where the main concern is magnification
of disturbances down infinite chains of cars, in this paper,
we study finite number of cars. While it is relatively easy
to show stability properties in this case, we are concerned
primarily about equilibrium spacing between the cars. We
show that it is possible, with purely distributed control laws,
to achieve and maintain desired spacing, even in an ad-hoc
laneless traffic situation under a variety of common traffic
conditions and disturbances.

The results presented here, as well as the tools used to
derive those results, are heavily dependent on the theory of
consensus in multiagent systems (see e.g [4] [10][19][24]
and the references therein). While [26] has studied vehicle
consensus, [23][17] derived stability conditions for time
varying topologies. Most of our analysis depend on these
recently developed theories and particularly on [25], where
arbitrary vehicle formations (not necessarily unidirectional as
in roadways) have been studied. We specialize these results
for ad-hoc laneless road traffic, and in the process derive
distributed control laws that preserve inter-vehicle spacing
and stability under time-varying formations, switched in-
fluence graphs and impulse changes in driving objectives.
While these properties are hard to derive for general types
of motion, it becomes relatively simple here due to typical
uni/bi-directional constrained motion possible on roadways.

The rest of the paper is organized as follows. In Section II
we set up the notation and our assumptions on the models
for the X and the Y directions. We then describe the control
laws that are used by the vehicles for each of X and Y
directions. In Section III, we analyze the dynamics of motion
in the Y direction and obtain a stability criterion. We also
characterize the influence graph. A similar analysis is carried
out for the X direction in Section IV. In Section V we present
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the analysis when the influence graph varies with time. In
Section VI we analyze the effects of impulses on the stability
of the formation. Finally, in Section VII we present some
simulation results.

II. TRAFFIC MODEL AND CONTROL LAWS

As discussed in the introduction, we are interested in
analyzing the motion of a finite number of cars along
roads which has no lane demarcations. In other words, cars
can, in principle, occupy arbitrary positions with respect to
other cars as long as they do not collide with each other
or with the side of the road. However, all the cars want
to travel along the road in one direction and would also
like to keep safe a distance from all its neighbours based
on visual feedback about the position and velocity of the
neighbouring cars. We name the direction of travel along
the road as the Y -axis and the direction perpendicular to
the road as the X-axis. Though in reality, a car’s ability to
maneuver in these two directions is coupled, for simplicity
we assume that the dynamics of each car along these two
directions are independent. Moreover, the control laws for
each of these directions consider a different set of influencing
neighbours. This later assumption is realistic since a driver
typically looks to the side before moving sideways, while
he considers only the cars roughly in front of him for
normal forward motion. In effect, the influence graphs for
the X and Y directions are different in our calculations.
In addition, we also assume, again for simplicity, that the
cars in the formation are identical. We state the various
modeling assumptions along these two directions after a brief
description of graph theoretic notation.

A. Notation

The sets of naturals, reals, positive reals and real n tuples
are denoted by N, R, R+ and Rn. An undirected graph
G = (V ,E ,w) is a finite set of nodes V connected by a
set of edges E ⊂ V ×V along with a function w : E →R+.
When two nodes ai ∈ V and a j ∈ V are connected to each
other the graph G said to have an edge between ai and a j,
denoted by (ai,a j) ∈ E . A graph is said to be connected
when there exists a path between any two nodes. A spanning
tree is a connected graph Gtree = (Vtree,Etree) having no
cycles in the graph. If the edges of a graph ~G = (V , ~E )
are directed i.e. (ai,a j) ∈ ~E ; (a j,ai) ∈ ~E , the graph is
called a directed graph (or digraph). A rooted directed tree
is a digraph such that there exists a node (called root) and
a directed path from that node to all other nodes in the
digraph. A digraph ~G is said to contain a directed spanning
tree, if there exists a rooted directed tree ~Gtree = (Vtree, ~Etree)
such that Vtree = V and ~Etree ⊆ ~E . We define the Laplacian
(L) for a directed graph with weights wi j as follows: `i j :=
−1 if j→ i and `ii = ∑

n
j=1 wi j := indegree.

B. Assumptions for Y -direction

A1) For determining the influence in Y direction we
consider each driver to have a fixed viewing angle (aov) of
120° and a car must be within this viewing angle to influence
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(a) Y direction motion: car 3 is
not seen by car 1
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(b) X direction motion: black lines
indicate the underlying graph

Fig. 1: Different influence graphs for X and Y direction
depending on the angle of view (aov) of the car

the driver. This forms the conical section d1d2d3 as shown
in Figure 1a. In this figure cars 2 and 4 lie within the conical
section d1d2d3 formed by car 1 and hence can influence car
1. Car 3 being outside the cone cannot influence car 1.

A2) We assume that the convoy follows a fictitious leader
in the direction of travel. As discussed later, the role of the
leader node is to set a desired velocity for our formation.
This fictitious leader can be considered as a mathematical
representation of velocity limiting rules, regulations or driver
experience in practice. In Figure 3a node 0 is the leader.

A3) The influence graph for Y axis is assumed to have
a directed spanning tree with node 0 as the root. This
assumption is equivalent to connectedness of the influence
graph in this framework.

A4) Cars with same number of hops from the leader node
are referred to as being in the same ‘level’. In Figure 3a cars
1,2, and 3 belong to level one.

A5) We assume that influence of any car extends up to
a maximum of one level for ease of exposition. This is
elaborated on in later sections.

A6) The convention used for numbering cars in the graph
is as follows: (i) Cars are numbered according to their levels
with cars in higher levels having higher numbers. (ii) Cars
in the same level are numbered from left to right with left
most car being the highest number in that level.

A7) We assume that each node can choose the distribution
of weights on its incoming links. This is related to the
driver’s discretion about relative importance of the various
cars in front of him.

C. Distributed Control Laws for Y -direction

Consider a convoy of cars represented by influence graphs
as shown in Figure 3a along Y direction, where node 0 is
assumed to move at an arbitrary velocity v0. We assume that
in the direction of travel, the last car has the lowest nonneg-
ative y coordinate: car 9 will have the lowest nonnegative y
coordinate and car 0 has the highest y coordinate in Figure
3a. Let the velocity and position of car i for motion in Y -
direction be denoted by vyi and yi. The proposed control law
model for car i in Y direction is a modified version of single
lane car following model of [6] and is as follows,

ẏi = vyi

v̇yi := ∑
j=N (i)

b(wi jvy j−wiivyi)+ k(wiiy j−wiiyi−gy) (1)



Here N (i) represents the neighbour set of car i, wi j is
the weight given to link connecting node j → i ∀ j 6= i,
wii = ∑

n
j=1 wi j =: W , b and k are constants, and parameter

gy is a tuning parameter used to adjust the equilibrium
distance between cars in consecutive levels. Consider an n
car formation with node 0 as leader moving along the road.
Let y∈Rn+1 represent the y coordinates or absolute position
of n+1 cars. vy ∈ Rn+1 represent the velocities of the cars.

A graph G =(V,E ,w) having a node set V and an edge set
E is used to denote the influence diagram between various
cars as per A1. Each node in the graph represents a vehicle
(agent). The directed edges are introduced as follows: If
vehicle j can be sensed by vehicle i (i 6= j), then an edge
from j to i exists with weight wi j and is denoted by j→ i.
Then the control law in (1) can be written as follows:[

ẏ
v̇y

]
=

[
0 I

−k Ly −b Ly

][
y
vy

]
− kgy

[
0
1

]
(2)

where 1 ∈ Rn, 0 ∈ Rn+2, Ly denotes the Laplacian of the
directed weighted influence graph.

D. Assumptions for X-direction
B1) For motion in X-direction the angle of viewing

extends to 180°. This is reasonable since a driver would
usually look sideways before making a sideways deviation.
In Figure 1b car 1 is influenced by cars 2,3, and 4.

B2) For horizontal motion, the boundary of the road
needs to be incorporated into the model. This is achieved
by assuming some fictitious cars are moving along the
boundary of the road at each ‘level’. Levels are still defined
using the Y -direction influence graph and hops from the
pseudo 0-node. In Figure 3b cars 1,5,9, enclosed by the red
block, represent the boundary of the road. These nodes have
same dynamics as the regular cars but move under slightly
specialized laws: (i) these nodes have no horizontal velocity
(ii) they continue to have the same y-coordinate and the
same y velocity as the leftmost car in the corresponding level
(iii) boundary nodes are influenced only by other boundary
nodes from the levels directly above them. In Figure 3b car
5 is assumed to be influenced only by car 1 and car 9 only
by car 5. Although the more general case of roads having
boundaries on both sides can be incorporated in the model,
here we analyze the system with boundary on one side of
the road for simplicity of exposition.

B3) For X axis motion node 1 is assumed to play the role
of the leader node as shown in Figure 3b. This again sets
the x velocity of the formation.

B4) The influence graph for X direction is assumed to
have a directed spanning tree with node 1 as root.

E. Distributed Control Laws for X-direction
Let the velocity and position for car i be denoted by vxi

and xi. The proposed control law for car i in X-direction is

ẋi = vxi

v̇xi := ∑
j=N (i)

bx(wi jvx j−wiivx(i))+ kx(wi jx j−wiixi− zigx)

(3)
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Fig. 2: The convoy of cars for which the influence graphs
are represented below
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(a) Information flow along
Y axis
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(b) Information flow along
X axis

Fig. 3: Figures show the influence graphs for both directions

where N (i) represents the neighbour set of car i, wi j is
the weight given to link connecting node j → i ∀ j 6= i,
wii = ∑

n
j=1 wi j =: W , bx and kx are constants, and parameter

gx is tuned for desired equilibrium distance between cars
in the same level. This law differs from the Y -axis law
in that it requires some extra parameters zi’s to ensure the
desired inter-car spacing. The X axis motion of n cars in
the formation is described below. Let x ∈ Rn denotes the
coordinates and vx ∈ Rn represent the velocities in the X
direction. The control law in (3) is as follows:[

ẋ
v̇x

]
=

[
0 I

−kx Lx −bx Lx

][
x
vx

]
+ kgx

[
0
C

]
(4)

where 1 ∈ Rn and 0 ∈ Rn and 0 ∈ Rn×n, C ∈ Rn.

C :=
[
0 z2 . . . zk 0 zk+1 . . . 0 . . . zn

]
where the nonzero z1, z2, . . . zn are constants locally com-
puted by each car to ensure a spacing of gx between cars
in the same level. The Lx denotes the directed weighted
Laplacian of the X-axis influence graph. The dependence
of zi and gx is elaborated on in later sections.

III. ANALYSIS OF Y -DYNAMICS

In this section we give conditions under which control law
(2) gives the desired spacing with unidirectional communi-
cation for Y axis motion. We rewrite (2) with the position
(y0(t)) and velocity (v0(t)) of leader node 0 as external
inputs:[

ẏ
v̇y

]
=

[
0 I

−k L̃y −b L̃y

][
y
vy

]
− kgy

[
0
1

]
+

[
0
By

][
bv0
ky0

]
(5)



where By ∈ Rn×2, y, vy ∈ Rn. L̃y is the reduced Laplacian
obtained from Ly after removing the row and column corre-
sponding to node 0. By contains the columns from Ly which
denote the links between the leader node 0 and the remaining
cars in the formation. For Figure 3a, assuming unit weights,
By is given by,

By =

[
1 1 1 0 0 . . .0
1 1 1 0 0 . . .0

]T

(6)

In (6), the 1’s in By represents information flow from node
0 to cars 1,2,3. We give our first main result for Y direction
motion of a convoy having node 0 as leader. Let

ŷ :=
[
y vy

]T and Γ
y :=

[
0 I

−k L̃y −b L̃y

]
(7)

Theorem 3.1: Consider a weighted directed graph such
that the total weight (W ) across all incoming edges is the
same for each node. Then the autonomous system ˙̂y = Γyŷ
achieves an asymptotically stable equilibrium point at the
origin (0 ∈ R2n). Moreover if the leader velocity vy0 is
constant, then:

1) vyi→ vy0 as t→ ∞ ∀ i ∈ {1, . . .n}
2) |yi(t)−y j(t)|→ 0 as t→∞ for all i, j in the same level.
3) At equilibrium, the relative spacing between cars in

two consecutive levels is gy/W .
Before proving the theorems we note that the weighted

Laplacian has a zero row corresponding to the phantom
leader, has non-negative real eigenvalues and 0 is a sim-
ple eigenvalue, with

[
1 0 . . . 0

]
as its left eigenvector,

and the Laplacian right nullspace consists of the vector
[1 1 . . . 1]T . Additionally the following result holds.

Lemma 3.2: Under the numbering scheme in Assumption
II-B, the influence graph has no cycles and the Laplacian
(Ly) has a lower triangular structure. Moreover, the diagonal
entries of Ly will be same for all rows excluding the rows
representing level one and node 0.
Proof of Theorem 3.1:

We first analyze the asymptotic stability of the autonomous
part of the system in (5). From [25] we get Re(λi(Γ)) <
0 ∀ i, ∀ b, k > 0, if λ j(−L̃y)< 0 ∀ j and λ j(L̃y) ∈ R ∀ j,
where Re(.) denotes the real part. The equilibrium point
for the autonomous part of the system in (5) is vy = 0 and
−L̃yy = gy.

Next we analyze the system in (5) at equilibrium with
fixed velocity v0 of node 0 as input. The required spacing
can be computed from.

−Lyy = gy

[
0
1

]
(8)

where 1 ∈ Rn for n+1 nodes. Now we use induction. Cars
in the first level will have one link connecting to the node
0 by A2. For any car i in the first level from (8) we get,
y0 = yi + gy/W . This will ensure that all cars in the first
level have the same y coordinate.

Consider some car i in level I . Let cars in the level
above be denoted by j1, j2, . . . , jn. Let y coordinates
of the cars j1, . . . , jn be same. Let the weights on the

links from car j1 to car i be denoted by wi j1 and so
on. The ith row in (8) can be expressed as follows:
wi j1y j1 + wi j2y j2 . . . + wi jny jn = gy + Wyi. From induction
hypothesis, y j = yi +gy/W . This completes the proof. 2

Clearly, for unweighted influence graphs, the conditions
for Theorem 3.1 reduces to each car having the same
indegree (say M), thereby guaranteeing the relative spacing
between two consecutive levels to be gy/M.

IV. ANALYSIS OF X -DYNAMICS

In this section we analyze the vehicle motions in X-
direction under the assumptions stated in Section II-D. The
analysis, while being similar to the Y -dynamics, differs in
some crucial features. One of the main differences arise since
the influence graph can be bidirectional (see Figure 3b): in
other words, two drivers can simultaneously look towards
each other and decide on their X-control. Secondly, recall
that the X-velocities of the pseudo (road boundary) cars
(e.g. cars 1, 5, 9) are zero by assumption (e.g. vx1 = vx5 =
vx9 = 0), and hence their X-positions are always constant
(x1 = x5 = x9 = constant). Hence when we rewrite (4) with
node 1 velocity and position as external input,[

ẋ
v̇x

]
=

[
0 I

−kx L̃x −bx L̃x

][
x
vx

]
+ kxgx

[
0
C

]
+

[
0
Bx

][
0

kxx1

]
(9)

where x,vx ∈ Rn−1, Bx contains the columns from Lx which
denote the links between the leader node 1 and the remaining
cars in the formation. We assume that every car wants to
position themselves at a distance gx from both adjoining cars
in the same ’level’. Let,

x̂ :=
[
x vx

]T and Γ
x :=

[
0 I

−kx L̃x −bx L̃x

]
(10)

Theorem 4.1: Under the above assumptions, there exists
b, k such that the autonomous system ˙̂x = Γxx̂ asymptotically
achieves equilibrium at the origin (0 ∈ R2n). Moreover,

1) vxi(t)→ 0 as t→ ∞ ∀ i ∈ {1, . . . ,n}.
2) There exist C such that |xi− xi+1| → gx as t → ∞ for

i, i+1 in same level.
3) The C achieving (2) can be computed locally.
For obtaining a spacing of gx between cars in the same

level, we impose the additional constraints for cars i and i+1
in the same level (denoted by I ) as follows:

xi+1− xi = gx ∀ i, i+1 ∈I (11)

Proof of Theorem 4.1: The stability condition on constants
b and k in control law (9) can be easily obtained from [25].
Claim (1) follows immediately.

Next we show the existence of C = [0 z1 . . . zn]
T in (9)

for cars in level I . The same arguments can be repeated for
other levels. Let m and m̃ be the total number of cars in level
I and in the level above (I −1). Let the cars in level I be
linked to cars jk with weights given by wi jk ∀ k ∈ (I −1).



Then the following equation can be obtained from (4) at
equilibrium:

Lxx =−gxC (12)

Choosing rows corresponding to cars in level I from (12),
and combining with (11), we get


1 0 . . . −1 0 . . . 0 . . . 0
0 wi j1 . . . wii wii+1 −1 0 . . . 0
0 wi+1 j1 . . . wi+1i+1 wi+1i+2 0 −1 . . . 0
...

...
...

...
...

...
...

...
...

0 . . . −1 1 . . . 0 0 0 0
0 . . . 0 −1 1 0 0 0 0
...

...
...

...
...

...
...

...
...




x1
...

xm+m̃
gxz1

...
gxzm+m̃

=


0
...
0
gx
...

gx


(13)

We show the existence and uniqueness of constants zi using
rank conditions. Rearranging columns of the augmented
matrix from (13) we get:

1 0 0 ... 0 −1 0 ... 0 0
0 −1 0 ... wi j1 −wii wii+1 0 ... 0
0 0 −1 0 ... wi+1 j1 ... wi+1i+1 ... 0

...
...

...
...

...
...

...
...

...
...

0 0 ... 0 −1 1 ... 0 0 gx
...

...
...

...
...

...
...

...
...

...
0 0 ... 0 0 −1 1 0 ... gx

 (14)

The matrix in (14) is in row echelon form with unity pivot
elements. Thus (14) is full row rank matrix. This guarantees
the existence of at least one solution (zi) giving the desired
equilibrium spacing.

The local/distributed nature of the C computation
can be verified by considering (13) for car i:
wi j1x j1 + . . . + wi jnx jn − wiixi = gxzi and xi+1 − xi = gx.
Clearly these equations only require information from the
immediate x-neighbours of the car i. 2

Remark 4.2: At the expense of some new notation, an
explicit formula for C can be given easily. Let x f ∈ Rn be
such that x f gx ∈ Rn give the x-coordinates of all the cars
in the formation. For example in Figure 3b if we want
all cars in the same level to have maintain a spacing of
gx from each other the corresponding x f should be, x f =
[0 1 2 3 . . .0 1 2 3]T . Then it is easy to verify that the
constant vector C in control law (4) is given by C = Lx f .

Remark 4.3: Though the above results have assumed that
influences percolate across atmost one level, this assumption
can be easily extended to multi-level influence graphs. Such
a requirement might arise, e.g. for a driver looking in the rear
view mirror while taking turns to avoid cars behind him.

V. TIME VARYING GRAPHS

In this section we analyze situations where the influence
graph changes over time, due to relative motion of the
vehicles during various traffic events, e.g., road widening or
traffic signals. During road widening scenario, cars moving
in a convoy may spread out. As the cars approach traffic
signals the cars in the formation may come closer. As this
motion takes place, cars may move in and out of influence
cones of other agents, thereby changing the influence graphs,

the transition matrix and the Laplacian. Hence (2) and (4)
become switched systems. We assume, quite reasonably, that
this switchings occur after finite intervals of time. Let P
be a finite index set: P = {1,2, . . .m}. Let σ be piece wise
constant switching signal σ : [0,∞)→ P, Γσ be the transition
matrix and Lσ the graph of the Laplacian of the system in (2)
and (4) corresponding to σ(t). We analyze the Y -dynamics
only for lack of space. Similar arguments work for the X-
dynamics as well. The switched version of (2) is given by,

[
ẏ
v̇y

]
=

[
0 I

−k L̃y
σ −b L̃y

σ

][
y
vy

]
− kgy

[
0
1

]
+

[
0

By
σ

][
bv0
ky0

]
(15)

where By
σ ∈ Rn×2, y,vy ∈ Rn. Clearly, L̃y

σ , Ly
σ , and By

σ

changes with the switching influence graph. In this section
we assume that the cars still want to preserve the same inter-
vehicle spacing even though the graph is changing. Hence
the spacing constant gy remains same for all σ(t). We show
that this is possible by local re-computation of the weights
assigned to the incoming edges by each car. We now give
the main result.

Theorem 5.1: Under the assumptions stated in Section II-
B, the autonomous part of system (15) is globally uniformly
asymptotically stable and (15) is BIBO stable. Moreover, if
vy0 is constant and the net weight of all incoming edges for
each node be kept same (W ) for all σ(t), then:

1) vyi→ vy0 as t→ ∞ ∀ i ∈ {1, . . .n}
2) |yi(t)−y j(t)|→ 0 as t→∞ for all i, j in the same level.
3) At equilibrium, the relative spacing between cars in

two consecutive levels is gy/W .
Proof of Theorem 5.1:[Sketch of Proof] Stability for each
subsystem in (15) was shown in Theorem 3.1. The transition
matrix for the system subject to switching signal σ(t) in (15)
is given by

Γ̃
y
σ =

[
0 I
−kL̃y

σ −bL̃y
σ

]
and let P =

[
Ĩ 0
0 R

]
,

where R = RT > 0, Ĩ = In×n/q, q is a constant satisfy-
ing 1/kq < λmin(L

y
σ ). Noting that L̃yT

σ + L̃y
σ > 0 for q as

stated here, it is easy to verify under the assumptions of
Section II-B, that Γ̃

yT
σ P+PΓ̃

y
σ < 0. It follows [15] that the

autonomous part of (15) is globally uniform asymptotically
stable (GUAS). Further it is well known [16] that for a linear
switched system, GUAS ensures BIBO stability. Claims (1),
(2) and (3) follow in a similar fashion as in Theorem 3.1.

Remark 5.2: We have assumed that the net weight for
each node remains same. At every switching instant, we
assume that each car can locally redistribute the available
weight on its links. With this the equilibrium point of
the autonomous system in (15) remains invariant across
switching.

A. Obstacles

Using the switching theory developed above, stability of
inter vehicle spacing in the presence of stationary obstacles
can be ensured. The obstacle is modeled as a stationary
car having zero velocity in both directions and is numbered



0

2

3

4

1

0

2

3

4

1

0

2

3

4

1

1

(a) Graph before
obstacle is sensed

0

2

3

4

1

0

2

3

4

1

0

2

3

4

1

1

(b) Graph when
obstacle is sensed

0

2

3

4

1

0

2

3

4

1

0

2

3

4

1

1

(c) Graph afer
obstacle has passed

Fig. 4: Changes in information flow graph for Y direction
when 4 cars encounter an obstacle denoted by node 1

consecutively along with other nodes. Figure 4 shows the
transitions in the influence graph for a typical obstacle
crossing. We briefly describe the dynamics in Y -direction.
Similar arguments hold for the X-dynamics.

Let v0,vi and y0,yi be the velocity and position inputs of
leader node 0 and obstacle denoted by node i respectively.
By hypothesis, vi = 0 and yi = constant. The control law for
motion in Y direction:

[
ẏ
v̇y

]
=

[
0 I
−kL̃y

σ −bL̃y
σ

][
y
vy

]
−kgy

[
0
1

]
+

[
0

By
σ

]
bv0
ky0
bvi
kyi

 (16)

where Bσ ∈Rn−1×4, y,vy ∈Rn−1. As usual, Bσ identifies the
(switching) links between leader node 0 and the remaining
cars (except node i) and between node i and the remaining
cars in the formation.

Corollary 5.3: Suppose all cars influenced by the obstacle
are also influenced simultaneously by at least one more car
in the formation. Then Theorem 5.1 holds for (16).

B. Lane Change

In lane changing scenarios we assume that a particular
agent decides to change his X position arbitrarily within
the formation. We assume that the maneuver takes finite
time to complete. This is illustrated in Figure 5 where car
6 is changing lanes within the formation. Suppose car i is
changing lanes. We assume car i to be an external input. The
Y -axis dynamics is given by:

[
˙̃y

v̇y

]
=

[
0 I

−k L̃y
σ −b L̃y

σ

][
ỹ
vy

]
+

[
0
By

]
v0
ỹ0
vi
ỹi

 (17)

where ỹ, ˙̃y,vy, v̇y ∈ Rn−1, ỹ = y+ gy. As long as a directed
spanning tree continue to exist during the lane change,
clearly Theorem 5.1 continues to hold for (17). Similar
analysis holds for the X dynamics but is not included for
lack of space.

VI. STABILITY UNDER IMPULSE EFFECTS

In previous sections the individual cars were kept equidis-
tant from each other using the constants gy, gx, x f (and
C). However the cars might want to change the equilibrium
spacing in a variety of situations, such as, when the road
narrows/widens and we want cars to come closer/further

or some rogue drivers want to change their position in
the formation arbitrarily. Individual cars can decide on a
new gy, x f or C suddenly, introducing discontinuities in (2)
and (4). Such discontinuities are known as impulse effects
[12]. For simplicity we assume that the influence graph
remains invariant and the velocity vectors are continuous for
t ∈ [0,∞). However, time varying graphs can also be handled
easily.

The autonomous part of the system in (5) with impulse
effects at fixed time instants τk (assume 0 = τ0 < τ1 < τ2 <
.. . < limk→∞ τk = ∞) can be characterised as follows,[

˙̃y
v̇y

]
=

[
0 I
−k L̃ −b L̃

][
ỹ
vy

]
t 6= τk (18)

where ỹ = y+ gy. Let the cars decide to change instante-
neously the spacing constant from gy(t) to gy(t+)= gy(t)+ g̃y
at t = τk. This creates a discontinuous change in the position
state vector ỹ(t+) = ỹ(t) + ∆ỹ where ∆ỹ = g̃y at t = τk
Under these assumptions, the existence and uniqueness of
solutions for the system in (18) is ensured [32, Theorem
1.6.2].

Theorem 6.1: Suppose L̃ remains unchanged for t ∈ [0,∞)
and vy(t+)= vy(t). Then (18) is exponentially stable if gy(t+)
is chosen such that ||ỹ(t+)|| ≤ ||ỹ(t)||.
Proof of Theorem 6.1: Let ŷ :=

[
ỹ vy

]T . The common
Lyapunov function at time t 6= τk is given by, V (t, ŷ) =

ŷT
[

I/q 0
0 I

]
ŷ where 1

qk < λmin(L). At the switching instant

t = τk, V (t+, ŷ+ ĝy) = (ŷ+ ĝy)
T
[

Î 0
0 I

]
(ŷ+ ĝy) where ĝy :=[

g̃y 0
]T

, ĝy ∈ R2n. The 0 ∈ ĝy exists because we have
assumed that the velocity vector is a continuous for t ∈ [0,∞).

From [12], and [32, Theorem 4.14]: V (t, ŷ)≥V (t+, ŷ+ ĝy)
guarantees exponential stability. It is easy to be verified
that this condition is satisfied if ||ỹ(t)|| ≥ ||ỹ(t+)|| This
completes the proof. 2

A similar result holds for impulse effects in X-dynamics.

VII. SIMULATIONS

In this section we present some numerical simulations. In
our numerical simulations we use the scenarios of changing
formations, obstacle avoidance, and lane change. We use the
initial conditions depicted by graphs in Figure 6 for Y and X
axis motion respectively. Unidirectional communication for
X and Y axis is assumed with an influence level of one.
Cars 1,5,9,13 indicate the boundary of the road in Figure
6. The maximum number of cars in each level is 4. The
angle of view for Y axis is a 120°cone and for X axis it is a
180°angle. The system parameters in (2) and (4) are set as
follows: b= 0.4 and k = 0.001. The vertical spacing constant
between consecutive levels is gy = 50 and horizontal spacing
for cars in the same level is gx = 30.

A. Changing formations

When the equilibrium point of X or Y dynamics is
changed we observe a change in the formation. We change
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Fig. 7: The X vs Y coordinates of cars are indicated at a
time instant just before changing formations. The system is
at equilibrium at this time

0 50 100 150
0

20

40

60

80

100

15

13

12

10

11

9

8

7

6

5

4

3

2

1

14

16

y coordinate

x 
co

or
di

na
te

Snapshot at time 2000 units

Fig. 8: The X vs Y coordinates of cars are indicated at a
time instant after formation has changed and the system has
settled at equilibrium
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6 changes lanes
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Fig. 10: Figure shows the formation at the instant after car
6 has changed lanes

vector x f in Remark 4.2 at different time instants to attain
differing spacing between cars in the same level. Changing
x f introduces impulse effects in the system in (2). Figures 7
and 8 demonstrates this effect. Cars 1 to 4 act as references
and are spaced 30 units from each other. Nodes 1,5,9,13
represent the boundary. The ‘•’ and ‘N’ represents the system
a snapshot of the system at time 2000 and 5000 units
respectively. The corresponding values of x f for which the
figures are obtained is as follows. For time units of 5000
units, xT

f = [ 0 1 2 3 0 0.5 1 1.5 0 1 2 3 0 0.5 1 1.5]. For time
units of 2000 units, xT

f = [ 0 1 2 3 0 1 2 3 0 0.5 1 1.5 0 1 2 3 ].

B. Obstacle avoidance

Here we show the impact of a stationary obstacle on the
convoy. In our simulation the obstacle affects all cars below
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Fig. 11: Trajectories of cars in X direction changing due to
the obstacle
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Fig. 12: Velocities in Y direction are plotted as function of
time. The deviation is due to the obstacle

cars in level 2, i.e. cars 10 onwards. Figure 11 plots deviation
of x coordinates with respect to time. In Figure 11 the red
star denotes the stationary obstacle. Car 12 goes around the
obstacle. This causes a change in position and velocity of
cars 11 and 13 in the same level. Note that car 11 has moved
towards the obstacle, this is caused due to the control law
forcing car 11 to maintain a fixed distance with respect car
12 and the obstacle.

Figure 12 shows the change in Y velocities due to the ob-
stacle.The black dotted trajectory is the reference trajectory
in the absence of an obstacle. As cars 11 to 13 sense the
obstacle their velocities drop as shown in the Figure. This
drop causes a deviation in the y coordinates of the cars. We
now present the case for a particular car arbitrarily changing
x coordinates within the formation.

C. Lane change

For this example, car 6 changes lanes from the left to the
right in the formation. In doing so car 6 has moved from
one level below to one level above in the formation. Figure
9 shows the formation before lane change. As car 6 changes
lane other cars are also affected. This can be seen in Figure
10 in which cars 7,8 are moving closer to car 5. Cars 10,11
are moving closer to cars 5,7,8 in Y direction. Note that x f
has not been changed for level 2 even after car 6 has moved
out hence the spacing is remaining same as before.
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