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Predictive Coding and Control
Chun-Chia Huang, Behrooz Amini, Student Member, IEEE and Robert R Bitmead, Fellow, IEEE

Abstract—This paper deals with feedback control over a single
fixed-rate channel using predictive coding at the transmitter
side. The central thrust is to demonstrate that optimal control
based on predictive coding plus fixed memoryless quantization
at the transmitter, designed to improve the efficiency of the
channel usage and exemplified (or perhaps extremized) by the
transmission of the quantized innovations signal, in general
requires the construction of the joint density of both the plant and
predictor states at the receiver side and inherits a plant stability
requirement, which is examined. The Bayesian filter is developed.
This recursive filter’s state density is used to compute the optimal
feedback control. This is in contrast to the less complicated
propagation solely of the predictor state, which would suffice
in the linear quadratic optimal control problem – a feature that
is elucidated. A linear non-quadratic optimal control example is
provided to illustrate the approach and its benefits over control
based on the recovered predictor state density or control without
predictive coding. In each of these competing cases, a lower
complexity receiver architecture is possible but at the expense
of closed-loop control performance.

Index Terms—Quantization, state estimation, Bayesian filter,
innovations, optimal control.

I. INTRODUCTION

PREDICTIVE quantization [1] is used in communication
systems to whiten the transmitted digital signal and

remove redundancy, thereby improving coding performance.
In delay-free coding environments, a prediction of the source
signal is computed and then subtracted from the signal to yield
a prediction error, which is then quantized. Compared with the
original signal, the prediction error is both closer to white, i.e.
less correlated over time, and possesses a smaller variance,
which aids in scaling the quantizer range for improved effec-
tiveness. Such systems form the basis of familiar schemes such
as ITU-T G.721/722/726 Adaptive Differential Pulse Coded
Modulation (ADPCM) standards [2] and Delta Modulation [1].
The ADPCM schema is depicted in Figure 1. The quantizer Q
is fixed and the adaptive predictor and gain serve to whiten and
limit dynamic range fluctuations of the transmitted error signal,
thereby improving distortion between transmitter and receiver.
The decoder/receiver mimics the encoder/transmitter to undo
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Fig. 1. ITU-G.722 Adaptive Differential Pulse-Coded Modulation schema.
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its operations and recover an approximation, ŝt, of the signal
st. ADPCM has been proven in service in telecommunications
systems since at least 1984 and has spawned a number of vari-
ants as commercial lossy speech compressors. ADPCM has
been interpreted as a disturbance rejection feedback control
system in [3]. It provides a kindred example in the paper,
but without its attendant gain adaptation, which could bring it
closer to [4], nor its limitation to using the receiver-side signal
at the transmitter. It manifests similar stability requirements.

For network control systems, these methods can be applied
in the link between plant and controller to achieve more effi-
cient use of the available link bit-rate and, thereby, improved
control performance because the more effective coding leads
to more accurate reconstruction of the transmitted signal at
the receiver. It is this reconstruction and, in particular, plant
state density estimation, which is the focus of this paper. The
Bayesian filter is used to calculate the joint and marginal
densities of the plant and predictor states conditioned on the
received data. The general set-up is depicted in Figure 2 and
will be made precise shortly.
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Fig. 2. Predictive quantization based feedback control set-up.

While the structure and analysis with the Bayesian filter
pertains for general nonlinear systems, the most edifying
and best studied case concerns linear plants with Gaussian
noise paired with the Kalman filter as the state and output
predictor. In this case, the innovations sequence is Gaussian,
zero mean and white. Quantized innovations state estimation
has been studied in this case in [5], [6], [7], [8], both from
the perspective of state estimation and of control, notably
LQG control. We too shall specialize to the linear Gaussian
case, since the analysis is both relatively direct and most
informative, because the comparator unquantized controls are
so well known. However, we shall take an immediate departure
from the linear predictive coding approach of signal processing
by seeking at the receiver to compute the precise conditional
state density, p(xt|It, π0), rather than to capture the transmitter
side prediction or output, x̌t|t−1 or y̌t|t−1. Indeed, part of
the message is that the plant state density is in general the
important aspect for control; a point which we illustrate with
an example.
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Pertinent prior literature

Quantization in control under communications constraints
is a longstanding subject with emphases on both stabilization
and performance [8], [9], [10], [4]. Studies include adaptive
quantization of the control signal and of the plant output
measurement sequence and include simultaneous coding and
quantization. A subset of papers studies dynamic quantiza-
tion [11], [12] in which the coding is restricted to a finite-
dimensional linear system. Almost universally, the setting is
linear systems control with a quadratic criterion function.
From a signal processing and telecommunications perspective,
predictive coding [1] is familiar and involves pre-whitening of
the signal before quantization. In a Kalman filtering frame-
work, such methods equate to quantization of the innovations
sequence, which inherently is white, Gaussian with minimum
variance. Thus, the innovations is optimally coded and so we
seek a static memoryless quantizer as in ADPCM. This is a
restriction that we make on the coder.

Beginning with Fischer [13] the connection between quanti-
zation and LQ control performance was studied with the opti-
mal quantizer being time-varying, although with an asymptoti-
cally time-invariant dequantizer, with level boundaries depend-
ing on the current state estimate. For Fischer, the quantizer
operates on the computed optimal control signal. Fu [14] and
Yüksel [15] extend these results to causal coding quantizers
and Fu identifies some technical errors in [13]. The focus is
on fixed-rate quantizer design and the existence or otherwise
of a separation theorem in this case. The work [16] treats a
related output feedback control problem with variable bit rate
coding and random channel delay, deriving bounds for the
limiting average codeword length given a specified bound on
the controlled state covariance.

Papers [17], [18] consider the cost-rate tradeoff in linear
quadratic control. This problem seeks the lowest average
bitrate, R(b), channel required to achieve a specified LQ
performance b. Stavrou et al. [19] treat a related Kalman
filtering problem and seek the minimal data rate required to
achieve a specific distortion or mean squared error between
the plant state and the receiver-side Kalman filter. All three
papers start from a vector autoregressive plant model with
fully measured state at the transmitter. They restrict attention to
zero-delay coding schemes which is appropriate for feedback
control. Each of these papers arrives at a coding scheme based
on Shannon entropy coding of a quantized innovations, but a
different innovations from here.

Each of [17], [18], [19] and ourselves has a single bandlim-
ited forward channel and a high-fidelity return channel, used
in [19] for communication of the receiver state estimate and in
[17], [18] and here to communicate the control signal. Kostina
and Hassibi [17] and Tanaka et al. [18] require stabilizability
of the plant system’s [A,B] pair and adjust the coding to
accommodate the plant feedback stabilization as part of their
calculation. This is evident in their inherent satisfaction of
Tatikonda’s and Mitter’s [20] and Nair’s and Evans’ [4] lower
bound on the bit rate based on the unstable eigenvalues of
A. Here, because we quantize directly the output innovations
process constructed at the transmitter, we must limit the anal-

ysis to stable plants. This is a property proven in Corollary 1
and explained as it arises in ADPCM. Tanaka et al. [18]
and Stavrou et al. [19] incorporate the communication of the
receiver’s state estimate of the plant state to compute their state
innovations, which is then quantized in the coder. We note too
that the encoding strategy in [17] also is based on quantizing
then entropy coding the state innovations between the true
plant state and the receiver’s estimate and can accommodate
partial state measurements with Gaussian noise. Initial values,
channel noise and quantization error force the state estimates
at the transmitter and receiver to differ. The effect of this is
seen in the additional stability condition in Corollary 1. To
improve performance and simplify analysis the quantizers can
be subtractively dithered in each of these works.

Uniform subtractive dithered quantizers of finite support
have been analyzed in [21], [22], where they demonstrated
that such quantizers and predictive coding arise in achieving a
Gaussian nonanticipative rate distortion function with a spec-
ified mean square filtering error overbound, provided quan-
tizer overload is avoided. In this context, they treat full-state
transmission over n-parallel AWGN channels with feedback
of the state prediction from the decoder. They also propose an
approach to mitigate the effects of overload. This formulation
differs from ours in the full-state communication and in the
feedback of the receiver prediction. The computation of the
innovations process before encoding, however, is similar and
demonstrated to be close to optimal for their constrained zero-
delay coding problem. For us, we take the predictive coder
with uniform subtractive dithered quantizers in each channel
as the starting point. Papers [21], [22] provide a justification
of this as a sensible starting point. The work of [23] connects
some of these coding aspects to the feedback control problem.

Contributions

• The results commence from the noisy plant output mea-
surement rather than the full state and extend to nonlinear
systems with non-quadratic optimal control. The treat-
ment includes quantized LQG and computed examples.

• They expose the role of the Bayesian filter and state
conditional density, rather than moment, reconstruction.

• They are based on or limited to predictive coding at the
transmitter using quantized output innovations by a mem-
oryless, fixed-rate quantizer. This solution is necessarily
zero-delay and fixed bit rate, in comparison with the other
entropy coded approaches which are variable rate.

• Our problem focus is to optimize the plant performance
given the communications structure based on predictive
coding. This is in contrast to [17], [18], [19] where
the control performance is specified and communications
required to achieve this is then designed.

A number of papers are dedicated to reconstruction of the
conditional density of either the plant state or the predictor
state using methods allied with Kalman filtering [5], Bayesian
filtering [6] and particle filtering [7]. These are closest in
focus to the current work, although they are limited to the
consideration of linear systems. Once the transmitter-side
prediction and quantization scheme is decided, the problem



HUANG et al.: PREDICTIVE CODING AND CONTROL 3

that we consider is the reconstruction by Bayesian filter at the
receiver of the filtered conditional density of the plant state,
as opposed to the density of the predictor state. We do this
in a fully nonlinear context and then specialize to the linear
problem. We provide theory and demonstrate by example
the control performance benefits of using: the plant state
density, the filtered density versus the predicted density, and
the quantized prediction error versus quantized output signals.
The contribution is to provide a unifying nonlinear framework
in which to treat the predicted and filtered state conditional
density reconstruction and to explore its connection with other
approaches from the linear context based on reconstruction of
the predictor state conditional density or its mean value.

Notation
We denote probability density functions (pdfs) by p(·).

Gaussian pdfs of mean µ and covariance P are denoted
N (µ, P ). The initial pdf of the transmitter state will be
denoted π0|−1. The data available at the receiver at time
t is It = {π0|−1, i0, . . . , it}. By the same token, the data
available at the transmitter is Et = {π0|−1, ε0, . . . , εt}. We
presume that, at time t, the input signal, ut, computed at the
receiver/controller is available also to the transmitter side.

II. NONLINEAR PREDICTIVE QUANTIZATION –
TRANSMITTER SIDE

We consider separately the general case of a nonlinear
plant at the transmitter side and its specialization to a linear
Gaussian system. The Bayesian filter construction applies to
both but the linear formulation allows us to draw on well
understood ideas from Kalman filtering. For comparison and
brevity, we present them side by side. Although the quantized
linear innovations problem has been more widely studied.

A. Nonlinear plant & predictor
The nonlinear stochastic plant system is described by

xt+1 = ft(xt, ut, wt), x0, (1)
yt = ht(xt, vt). (2)

Here, state xt ∈ Rnx , input ut ∈ Rnu , output yt ∈ Rny ,
process noise wt ∈ Rnw , measurement noise vt ∈ Rnv . Noise
sequences {wt} and {vt} are mutually independent, zero-mean
and white with known densities. The plant initial condition,
x0, has known density, π0|−1, and is independent from wt and
vt for all t.

The measured output and control signals at the transmitter,
ut and yt, are the inputs to a finite-dimensional predictor

ξt+1 = ḡt(ξt, ut, yt), ξ0, (3)
y̌t = jt(ξt). (4)

The prediction, in turn, is combined with yt to produce a
prediction error or innovations signal.

εt = yt − y̌t. (5)

Using (4)-(5), then (3) becomes

ξt+1 = gt(ξt, ut, εt), ξ0, (6)

since yt can be reconstructed from εt and y̌t.

B. Linear Gaussian plant & predictor

The linear plant system is described by

xt+1 = Axt +But + wt, (7)
yt = Cxt + vt, (8)

where {wt} and {vt} are mutually independent, white noises
of known densities and also zero-mean Gaussian with covari-
ances Q and R respectively. The state estimator and predictor
is the Kalman predictor with state x̌t and innovations

εt =
[
C −C

] [xt
x̌t

]
+ vt. (9)

The predictor recursion is

x̌t+1 = Ax̌t +But + Ltεt, (10)
= (A− LtC)x̌t +But + Ltyt,

= (A− LtC)x̌t + LtCxt +But + Ltvt, (11)
y̌t = Cx̌t,

Lt = AΣt|t−1C
T (CΣt|t−1C

T +R)−1,

where

Σt|t−1 = E{[xt − x̌t−1][xt − x̌t−1]T |Et−1},
Σt|t = E{[xt − x̌t][xt − x̌t]T |Et−1}.

Here the covariance matrix, Σt|t−1, is given by the Riccati dif-
ference equation commencing from Σ0|−1 [24]. The prediction
error or innovations is given by (9).

C. Quantization

The ‘quantizer’ (or combined quantizer-dequantizer pair) in
Figures 1 and 2, is a known single-valued function of the same
dimension, ny , as its input. Typically (and in our calculations
below), the quantization function, Q, maps real intervals to
unique fixed digital signal values in each channel and the
dequantization function, Q−1, maps these received values to
unique points in their corresponding intervals.

it = Q(εt) = Q−1 (Q[εt]) . (12)

Gersho and Gray [1] describe many quantizer designs for
communication systems, covering both scalar and vector quan-
tization including optimization for properties such as minimal
distortion and the Lloyd-Max quantizer, which is adapted to
signals with Gaussian distributions.

Assumption 1: The quantizer-dequantizer function, Q(·), is
known, finite range and memoryless.
Our formulation makes no other specific assumptions about the
quantizer. Although, our calculations later for linear systems
are based on a uniform (linear) mid-rise quantizer and its
mid-point ‘inverse’. We arbitrarily absorb the quantizer into
the transmitter side, since we only care about the quantizer-
dequantizer pair in the signal domain without regard to the
specifics of the channel representation. Although, it is straight-
forward to incorporate other features into the full formulation,
such as channel noise or the ADPCM structure as above.

More generally, the quantizer is a codec, a coder-decoder
pair. Since we focus on control, we limit our study to delay-
free coding. We consider memoryless coding for simplicity
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in order not to have to incorporate the codec states and
to exploit the whiteness of the innovations. The important
feature of quantized innovations signal, {it}, compared with
the transmitter-side innovations, {εt}, is that it has reduced
information content, measured by entropy or other metrics,
and this therefore diminishes its utility as a means to compute
the optimal control. Understanding the cost of quantization
borne by the control performance in this setting is the aim of
this paper.

The following result, a specialization of the Data Processing
Inequality [25], captures this relationship.

Lemma 1: Denote the following σ-algebras: It = σ(It) and
Et = σ(Et). Then, since it = Q(εt) for known Q(·),

It ⊆ Et. (13)

Subtractive dithered quantizer for the linear case
A subtractive dithered quantizer, Qd(·), consists of a fixed,

finite-range quantizer function Q(·) with a predetermined
dither signal, {dt}, which is known to both transmitter and
receiver. It is defined

Qd(εt) 4= Q(εt + dt)− dt. (14)

A linear quantizer is one with equally spaced steps with the
center points of the steps mapping the input value to the
same output value. A midrise quantizer has discontinuity at
the origin of the input. We have this result following [26].

Theorem 1: Suppose quantizer Q(·) is a subtractive,
dithered, b-bit-per-channel, midrise, symmetric, linear quan-
tizer with saturation values ±ζ. Suppose, further, that the sub-
tractive dither signal is white, independent in each channel, and
either uniformly distributed U(−ζ/2b, ζ/2b) or triangularly
distributed, dt ∼ tr(−ζ/2b−1, ζ/2b−1), and known exactly to
the transmitter and receiver. If the signal εt + dt ∈ [−ζ, ζ],
then the quantization noise

ψt
4
= it − εt = Qd(εt)− εt, (15)

is white, independent from {εt}, and uniformly distributed
ψt ∼ U [−ζ/2b, ζ/2b]. That is,

E(ψt) = 0, E(ψ2
t ) =

ζ2

3× 22b
4
= Ψ. (16)

D. Transmitter assumptions

Assumption 2:
1) xt ∈ Rnx , ut ∈ Rnu , yt ∈ Rny , ξt ∈ Rnξ .
2) Control signal ut is known to both transmitter and re-

ceiver at time t+ 1.
3) {wt} and {vt} are mutually independent, white noises of

known densities and, in the linear case, also zero-mean
Gaussian with known covariances.

4) The transmitter-side initial states, x0 and ξ0 (respectively
x̌0), have known joint density, π0|−1, independent from
{wt, vt}. In the linear case,

π0|−1 = N
([
x̂0|−1
x̂0|−1

]
,

[
Σ0|−1 0

0 0

])
.

The receiver has knowledge of these densities.
5) In the nonlinear case, if the conditional mean of the plant

state is computed at the transmitter, it is a function of ξt.

x̌t = E(xt|Yt−1) = E(xt|Et−1) = `t(ξt). (17)

6) The function gt(·, ·, ·) in (6) causes the predictor state
update to be uniformly incrementally input-to-state stable
[27]. In the linear case, A in (7) and (10) has all
eigenvalues strictly inside the unit circle. The origin of
this stability condition, at least in the linear case, is
examined in detail in Subsection III-A.

III. QUANTIZED INNOVATIONS BAYESIAN FILTERING –
RECEIVER SIDE

The nonlinear signal model for the sequence, {it}, arriving
at the receiver comprises:
• For the nonlinear case,

– Using (2), (4) and (5), εt = ht(xt, vt) − jt(ξt). Then
(6) and (7) yield the combined state recursion

zt+1
4
=

[
xt+1

ξt+1

]
=

[
ft(xt, ut, wt)
gt(ξt, ut, εt)

]
,

=

[
ft(xt, ut, wt)

gt(ξt, ut, ht(xt, vt)− j(ξt))

]
,

4
= ft(zt, ut, wt, vt). (18)

– Output equation

it = Q[ht(xt, vt)− jt(ξt)],
4
= ht(zt, vt). (19)

• Specializing to the linear Gaussian case with

Ft =

[
A 0
LtC A− LtC

]
, nt =

[
wt
Ltvt

]
, H =

[
C −C

]
,

– state equation

zt+1 =

[
xt+1

x̌t+1

]
, (20)

=

[
A 0
LtC A− LtC

] [
xt
x̌t

]
+

[
wt
Ltvt

]
,

= Ftzt + nt, (21)

– output equation

it = Q

([
C −C

] [xt
x̌t

]
+ vt

)
,

= Q (Hzt + vt) . (22)

A. Open-Loop System Stability Condition

The linear predictive decoder immediately highlights a
stability requirement on the source system (7) in order that the
receiver-side innovations filter also be stable. As the predictive
codec is envisaged as part of a feedback control scheme, this
imposes a restriction on the class of plants to which such a
scheme might be applicable.

Lemma 2: Consider the transmitter-side linear, time-varying
system (20), with joint state space R2nx , together with its
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predictively-coded innovations output signal, {εt} from (9).
The subspace

Span
{[
Inx
Inx

]}
⊂ R2nx ,

is unobservable and is associated with the eigenvalues of A.
Proof: Evidently and no matter the value of Lt,

[
C −C

] [Inx
Inx

]
= 0ny×nx ,

[
A 0
LtC A− LtC

] [
Inx
Inx

]
=

[
Inx
Inx

]
×A.

Corollary 1: Consider the transmitter-side predictive cod-
ing system (7)-(9),(15) with the receiver calculating its state
estimate using the innovations filter,

x̂t+1 = Ax̂t +But + Ltit. (23)

If system matrix A has any eigenvalues outside or on the open
unit disk and x̌t − x̂t possesses non-zero component in the
direction of this eigenvector for some t, then the error between
estimates, x̌t at the transmitter and x̂t at the receiver, grows
unbounded with time.

For stable linear systems at the transmitter, which might
consist of the joint stable plant and its stable predictor, the
linear analysis of the closed-loop fails when the fixed-range
quantizer overflows or saturates. Then, the assumptions of
Theorem 1 fail and the quantization error ceases to exhibit
the independence properties. Naturally, the Gaussian property
of the system noises guarantees both eventual overflow and
non-infinitesimal probability of overflow at any time. The
probability of saturation of a fixed-quantized signal in these
circumstances has been studied using Markov methods by
(a subset of) the authors in [28] for both intermittent and
quantized data. The time of first overflow is called the escape
time there. A feature of that analysis is that for many systems,
the escape time can be very large, depending on system
parameters including feedback gain K and saturation level ζ.

If A has all eigenvalues in the open unit disk and escape
time has yet to occur, then using (10), (15), (23), we have

x̌t+1 − x̂t+1 = A(x̌t − x̂t)− Ltψt,
and, letting t grow while vainly betting on no escape,

E [x̂t]→ E [x̌t] = E [xt] ,

cov [x̌t − x̂t]→
∞∑

j=0

{
AjLΨLTAj

T
}
.

Here, L is the limiting value of the Kalman gain, Lt. These
results are independent of the feedback control law other than
central dependence of the escape time itself on K.

These results of Lemma 2 and and the discussion following
for the underlying linear time-invariant system (7) carry over
directly to linear time-varying systems by the same argument
[29]. For linear systems with nonlinear measurements, one
may appeal to Curry [30], who shows that the innovations
is independent of the control signal, and Lemma 2 to argue
that the unobservability problem persists for these systems.
For more general nonlinear systems, it is less clear how

instability of the plant might be manifested in the error be-
tween transmitter-side and receiver-side estimates. Although,
Assumption 2.6 would be needed to analyze the estimate errors
locally.

The clear admonition of Corollary 1 is to apply predictive
coding solely to the control of stable systems. The recon-
struction of the state estimate from the receiver innovations
otherwise is unstable. This occurs because there is no output
injection of x̂t into the computation of εt and thus it. To our
knowledge, this was first observed in [31].

We also note that the practically implemented G.722 AD-
PCM standard [2], in the definition of the adaptive predictor
in its Section 3.6, includes specific pole-parameter restrictions
to enforce stability of the prediction model at both the trans-
mitter and receiver; it limits the number of poles to two and
projects the parameters to ensure stability. Thus, we offer four
observations.

(i) Predictive coding does not appear suited to the control
of unstable systems. We believe this to be a novel
observation and a reflection of the nature of predictive
coding itself.

(ii) The practical success of ADPCM indicates that predictive
coding has something to offer in control of stable plants.

(iii) The computed feedback control performance, in the ex-
ample presented in Section V for a stable linear system
close to instability, is significantly improved (reduced by
56%) using predictive coding for a finite bit-rate channel
over that in which the output signal itself is quantized.

(iv) The nonlinear example in Section V also demonstrates
significant improvement – in this case with a maximiza-
tion criterion and by a factor of 15 – of the innovations
based approach versus quantization of the output signal.

B. Bayesian filter

The Bayesian filter uses the sequence of measurements,
{ut, it}, to compute recursively the joint conditional density
of the transmitter-side state

πt = p
(
zt| It

)
= p

([
xt
ξt

]∣∣∣∣ It
)
.

For the general nonlinear system (18)-(19),

zt+1 = ft(zt, ut, wt, vt),

it = ht(zt, vt),

the Bayesian filter recursion is [32]

p(zt|It) =
p(it|zt, It−1)p(zt|It−1)∫

zt
p(it|zt, It−1)p(zt|It−1) dzt

,

=
p(it|zt, It−1)p(zt|It−1)

p(it|It−1)
, (24)

p(zt+1|It) =

∫

zt

p(zt+1|zt, It)p(zt|It) dzt. (25)

We have been careful to include explicitly the conditioning on
It in both integrands, since this plays a role in the case of
correlated process and measurement noises, as here.

The recursion commences from π0|−1 = p(z0) and consists
of two parts:
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• measurement update (24) with p(it|zt, It−1) derived from
the output equation (2) via the function ht(·, ·) and the
density of vt.

• time update (25) with p(zt+1|zt, It) reflecting ft(·, ·, ·, ·)
in (18) and the joint densities of wt, vt and it.

For linear Gaussian systems without quantization, the
Bayesian and Kalman filters coincide, although the Kalman
filter more efficiently computes just the sufficient statistics of
these conditional densities: the mean and covariance.

C. Reduced-order Bayesian filter
We note that the (full-order) Bayesian filter (24)-(25) yields

the joint density πt. The marginal densities, p(xt|It) and
p(ξt|It), are simply computed from πt by integration. If,
however, only the predictor state density, p(ξt|It), is desired,
this can more easily be calculated by applying the Bayesian
filter to state equation (6) with measurement equation (12).

ξt+1 = gt(ξt, ut, εt), ξ0,

it = Q(εt).

In the quantized linear Gaussian case, this corresponds
to using (10) and (12) to compute the density p(x̌t|It)
without the attendant calculation of p(xt|It). This results
in a reduced-order Bayesian filter which yields solely the
conditional density of x̌t. Such receiver-side reconstruction
of the predictor state is the mainstay of predictive coding in
signal processing [1]. Such ideas underpin some approaches
to quantized innovations Kalman and Bayesian filtering [5],
[6], [7] and Delta Modulation.

D. Computational issues
The Bayesian filter is numerically demanding. Notably,

the integration in time update (25) presents a challenge to
computation, since it involves performing a 2nx-dimensional
integral at each sample point in a 2nx-dimensional space,
yielding an operation count of O

(
16n4x

)
. By contrast, the

measurement update (24) is relatively benign at O(4n2x).
Increasing the number of sample points per dimension rapidly
causes problems. This is exacerbated by densities in xt and
x̌t being poorly conditioned, such as can occur with singular
densities for x̌t and with very fine quantization. No special
numerical ‘tricks’ were applied in the computations in this
paper. The Particle filter may be applied to implement approx-
imately the Bayesian filter using resampling ideas to manage
calculations. This comes with its own set of problems, issues
and fixes [33]. In our examples, we compute the Bayesian
filter on a fixed grid rather than by particles.

The distinction between computation of p(xt|It) and
p(x̌t|It) rests solely with the willingness to devote resources
to computation at the receiver. They both operate on the
same data. In a control setting, this is also connected to the
admissibility of accepting greater computational delay at the
receiver, which itself might preclude any advantage versus the
delay in accepting a prediction-based control signal.

It is certainly worth remarking that the Bayesian filter
calculations, notably central recursion (25), lend themselves
to highly parallelized implementation, which suggests using
GPUs or other processor architectures to achieve speedup [34].

E. Density properties

We have the following general results for the nonlinear and
linear cases.

Theorem 2: If the conditional mean state estimate is com-
puted at the transmitter, so that

x̌t = E(xt|Et−1),

then the two receiver-side conditional means coincide. That is,

E(xt|It−1) = E(x̌t|It−1). (26)

Proof: Lemma 1 shows that σ(It−1) = It−1 ⊆ Et−1 =
σ(Et−1). The smoothing property of conditional expectation
[35] then establishes that

E[x̌t|It−1] = E
[
E[xt|Et−1]|It−1

]
= E[xt|It−1].

Theorem 3: In the general nonlinear case, if the innovations
sequence, {εt}, is white, then

p(x̌t|It) = p(x̌t|It−1).

Proof: The whiteness property of {εt} implies that the received
signal, {it}, also is white and, since x̌t is computed causally
from Et−1, that x̌t is independent from εt and, therefore, it.

• Theorem 2 states that, should the objective be to calculate
the conditional mean of the plant state at the receiver, then one
might use the reduced-order Bayesian filter to achieve this.
• Theorem 3 establishes that in the case where the prediction
errors are white, the conditional x̌t density at the receiver (and
transmitter) will update only at the time-update stage.
• We appreciate that, while the transmitter side recursion
(3) is driven by the innovations, εt, derived directly from
xt, the receiver side Bayesian filter driven by the quantized
innovations requires stability of gt(·, ·, ·) as in Assumption 2.6
in order that its predictor state estimate not diverge too greatly
from that at the transmitter. This, underlying predictor stability
requirement is inherent in all works in this field and reflects
the estimate convergence condition for two state estimators
both driven by the innovations of one of the estimators.

IV. CONTROLLER

The sequence of quantized innovations, {it}, arrives at the
receiver and is used to generate the feedback control signal,
ut, as depicted Figure 2. The Bayesian filter is applied to the
received sequence to yield conditional densities p(xt|It−1) and
p(x̌t|It). We have the following result from stochastic optimal
control.

Theorem 4 (Kumar & Varaiya [36], Bertsekas [37]): For
any choice of optimization criterion admitting a bounded value
function, the optimal causal output feedback control for system
(18)-(19) is

uopt
t = kt(πt),

where πt = p(zt|It) and feedback policy kt(πt) is found by
solving the stochastic dynamic programming equation based
on the associated objective function.

The result follows from the Markovian property of (18)
and involves two computationally challenging aspects; the
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Bayesian filter for πt and the solution of the stochastic
dynamic programming equation. Inherently, this latter piece
is the harder and requires duality of the controller. For our
predictive coding setup, since the plant state xt is not depen-
dent on ξt, we can say more.

Corollary 2: For system (1)-(2), with objective function
dependent solely on future {xt, ut}, the optimal causal output
feedback control solution is

uopt
t = kt

(
p(xt|It)

)
.

That is to say, the predictor state, ξt, and its conditional density
are not explicitly part of the optimal control solution.

The control signal computation is based on the conditional
xt density from the Bayesian filter. Our central aim is to
describe the Bayesian filter for estimating the joint state,

zt =

[
xt
x̌t

]
,

representing the predictively coded transmitter side.
Theorem 5 (Curry [30], Section 5.4, pp. 75-78, Appendix D,

pp. 114-116): For the linear state system (7) with: memoryless
nonlinear measurement

yt = ϕt(xt, vt),

independent, white but not necessarily Gaussian noise pro-
cesses {wt} and {vt}, and quadratic objective function

Jt = E

(
N+1∑

k=t

xTkQkxk + uTkRkuk

∣∣∣∣∣Y
t,Ut−1, π0|−1

)
, (27)

the optimal output feedback control is given by

u?t = Kt E(xt|Yt,Ut−1, π0|−1),

where, Kt is the LQ optimal feedback gain computed from
the control Riccati equation.

Corollary 3: For linear system (7) with quantized innova-
tions measurement (12), quadratic objective function (27), and
one time-sample delay in the controller, the optimal output
feedback control is given by

u?t = Kt E(x̌t|It−1,Ut−1, π0|−1). (28)

Proof: Mita [38] establishes the optimality of the LQ-
optimal feedback gain with the predictive state estimate.
This translates directly to Curry’s result. For linear systems,
the innovations sequence is white and one may then appeal
to Theorem 2 to establish that E(xt|It−1,Ut−1, π0|−1) =
E(x̌t|It−1,Ut−1, π0|−1) and the result follows.

• Theorem 5 shows that, despite the nonlinear measurements,
the optimal LQ control is to feed back the filtered conditional
mean of the state. This would suggest using the receiver to
compute this quantity and then to calculate the control.
• Appealing to the results of [38], we see that, for a single
delay controller, the same calculation holds but with the
predicted state estimate at the receiver, which is simpler to
compute.
• Corollary 3 uses Theorem 2 to replace the conditional
mean of xt by that of x̌t, which incurs substantially fewer

computations for its estimation.
• It is worth noting that the filtered conditional mean of
xt is different from its predicted conditional mean, even
though Theorem 3 shows that they coincide for x̌t when the
innovations is white, as in the linear case.
• This theorem and corollary are specialized to linear systems
with quadratic criteria. We shall see shortly an example, where
the optimal controller depends on the complete density of xt
and not just on x̌t. In this case, the feedback controller based
on p(xt|It−1) outperforms that based on p(x̌t|It−1).

V. QUANTIZED LINEAR INNOVATIONS FILTERING

We now specialize the development to the case of quantized
linear Gaussian innovations, the Bayesian filter for which is
derived in the Appendix. In this section, we do not use a sub-
tractive dithered quantizer and compute the full Bayesian filter.
In the following section, we apply the subtractive dithered
quantizer and avail ourselves of the whiteness and uniform
density of the quantization noise.

The joint state zt is defined in (20) and evolves according
to the linear dynamics in (21), which defines system matrix
Ft. The quantized innovations signal, it, is described by (22),
which defines output matrix H . The Bayesian filter generates:
the conditional density, p(zt|It), of this 2nx-dimensional state,
the marginal densities of which yield p(xt|It), to be used for
the optimal controller; and, p(x̌t|It) = p(x̌t|It−1) according
to Theorem 3.

By the same token, we also consider the nx-dimensional
Bayesian filter for the innovations representation of the
transmitter-side state estimator,

x̌t+1 = Ax̌t +But + Ltεt, (29)
it = Q(εt),

to construct directly p(x̌t|It), without the attendant compli-
cation of producing p(xt|It), nor indeed of performing the
measurement update step. The conditional density p(x̌t|It) is
identical whether produced via the full-order Bayesian filter
or it reduced-order counterpart.

Example system
We consider a scalar example quantized innovations
system with: values A = 0.99, B = 1, C = 1,
Q = cov(wt) = 0.1, R = cov(vt) = 0.1; Kalman filter
initialization x̂0|−1 = 0, Σ0|−1 = 1.3. Depending on
the signal, εt or yt, being quantized, the corresponding
steady-state standard deviation, σε or σy, is computed
and the 3-bit/8-level, linear, symmetric, midrise quantizer
is used with saturation value at ζε = 5σε or ζy = 5σy
respectively, where σ refers to the stationary variance.

The quantized innovations Bayesian filter, the quantized
output Bayesian filter, and the unquantized Kalman filter were
computed for a number of steps. The resulting predicted
and filtered densities are displayed in Figures 3 and 4. The
densities were propagated at 71 sample points in the range
[-2, 2].
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Fig. 3. Predicted (8|7) density functions for: quantized innovations Bayesian
filter p(x8|I7) and p(x̌8|I7), quantized output Bayesian filter p(x8|Ȳ7),
transmitter-side Kalman predictor pKF (x8|E7). Actual plant state x8 de-
picted by a green square.

Fig. 4. Filtered (8|8) density functions for: quantized innovations Bayesian
filter p(x8|I8) and p(x̌8|I8), quantized output Bayesian filter p(x8|Ȳ8),
transmitter-side Kalman predictor pKF (x8|E8). Actual plant state x8 de-
picted by a green square. Note change of vertical scale versus Figure 3.

We offer the following observations.
• The predicted densities p(x8|I7) and p(x̌8|I7) are different,
although their mean values are the same, as guaranteed by
Theorem 2.
• The filtered densities p(x8|I8) and p(x̌8|I8) are different, as
are their mean values.
• The filtered density p(x̌8|I8) is identical to the predicted
density p(x̌8|I7), as guaranteed by Theorem 3.
• The conditional densities of xt based on quantized innova-
tions are different from those based on quantized output yt.

VI. LINEAR INNOVATIONS WITH DITHERED QUANTIZER

We now replace the standard quantizer by a subtractive
dithered quantizer, as described in Theorem 1, where now the
quantization noise is assumed white and uniformly distributed
with zero mean and covariance ζ2

3×22b . The Kalman filter
provides optimal second-order estimation in this case.

We have the above linear transmitter systems (18) and (10)
with transmitted data

it = εt + ψt, (30)
= Hzt + vt + ψt. (31)

Immediately, one has the receiver-side Kalman filter recur-
sion from (21)-(30) with usual accommodation of correlated
process and measurement noises. Denote

Ft = FtP̄tH
T +

[
0
LtR

]
.

Then the recursion for the receiver’s conditional mean and
conditional covariance is:

µt+1 = Ftµt + Ft(HP̄tHT +R+ Ψ)−1it, (32)

P̄t+1 = FtP̄tF
T
t −Ft(HP̄tHT +R+ Ψ)−1FTt

+

[
Q 0
0 LtRL

T
t

]
(33)

with initial condition

µ0 =

[
x̂0|−1
x̂0|−1

]
, P̄0 =

[
P0|−1 0

0 0

]
.

The conditional joint density at the receiver has

E(zt+1|It) = µt,

cov(zt+1|It) = P̄t.

Observations

• The first two conditional moments of p(x̌t|It−1) are com-
puted directly from signal model (10) and (30).

ˆ̌xt+1 = E[x̌t+1|It, π0|−1],

= Aˆ̌xt +But + Ltit, (34)
Mt+1 = cov(x̌t+1),

= AMtA
T + LtΣt|t−1[I − (Σt|t−1 + Ψ)−1Σt|t−1]LTt .

(35)

The resultant conditional density is unique no matter the
method of computation.
• The detailed recursion (34)-(35) for ˆ̌xt shows that the
estimate only adjusts at the time-update step of the Kalman
filter, since p(x̌t|It) = p(x̌t|It−1), which in turn is due to the
independence of x̌t and it from (34). This is a manifestation
of Theorem 3.
• The two dimension-nx components of the conditional mean
are equal per Theorem 2.

E(xt|It−1) = E(x̌t|It−1).

• While the conditional means of xt and x̌t at the receiver are
identical in this case, their covariances, and thus their complete
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conditional densities are different.
• For the case with zero channel or quantization noise, ψt,

P̄t = blockdiag(Σt|t−1 0).

In this case, x̌t is reconstructed perfectly at the receiver, since
it is a deterministic function of the innovations.
• The stability of matrix A is required for the convergence of
conditional mean Mt in (35). This follows Corollary 1.
•We have deliberately ignored the condition εt ∈ [−ζ, ζ] from
Theorem 1, required to ensure that ψt be white. The saturation
levels on the quantizer are presumed chosen to enforce this
with high probability.
• Additive white channel noise could be included into the
analysis in a fashion identical to the quantization noise, subject
to the saturation condition.

VII. COMPARATIVE OPTIMAL CONTROL EXAMPLES

We use the scalar example system from Section V above
and consider a sequence of control problems applied to the
subtractive dithered quantized system. The aim is to identify
circumstances where the control benefits accrue with the
availability of the filtered state density.

A. LQG control with dithered quantizer

For the example system presented earlier and LQ cost
function

J = lim
N→∞

E

{
1

N

N−1∑

t=0

xTt Qcxt + uTt Rcut

}
,

with Qc = 5 and Rc = 0.7, the performance of three
controllers was computed using the LQ-optimal feedback gain
and the various conditional mean state estimates.

I. filtered state estimate from quantized innovations
ut = −KE(xt|It),
[This is the optimal control by Theorem 5.]

II. predicted state estimate from quantized innovations
ut = −KE(xt|It−1) = −KE(x̌t|It−1),

III. filtered state estimate from quantized outputs
ut = −KE(xt|Ȳt).

The achieved LQG costs are given in this table.

Control law value J
ut = −KE(xt|It) 0.9311
ut = −KE(x̌t|It−1) 1.4126
ut = −KE(xt|Ȳt), 1.6712

These quantifications indicate the following.
• The optimal control relies on the use of the filtered density
and there is a substantial performance penalty to using the
predictive density for this example. This needs to be balanced
against the computational cost of operating the full-order
Bayesian filter at the receiver.
• There is, for this example, a substantial performance benefit
accruing the efficient use of the communications channel
through the transmission of quantized innovations signals
versus quantized outputs. Again, this comes at a complexity
cost in computation at the receiver. But it shows that a control

improvement can be realized via careful signal coding. This
is generally well understood [14], [15] but is quantified by the
example here.

B. Non-LQ optimal control

For the same system, define the performance function

ηt =

{
xt, if xt < 1,

0, else.

The one-step-ahead control objective is

ut = arg max
ut

E
[
ηt+1|It

]
.

The solution for the optimal control, given by (42) in the
Appendix, is

uopt = 1− E(xNF
t+1|It)− xsolv,

where xsolv is the solution of (43), an algebraic equation
involving solely the Bayesian filter predicted density function
pNF(xNF

t+1|It) for the unforced, ut = 0, state. That is, the
optimal control depends on the entire density of the state and
not just upon its first moment. The formula (45) for the optimal
cost in this case indicates dependence on the covariance.

We present three examples of optimal control of ηt based
on the densities: p(xt+1|It), p(x̌t+1|It) and p(xt|Ȳt). As seen
from Figure 3, these densities differ and each is associated with
a different value of the control parameters xsolv. Accordingly,
their control performances differ, even though their conditional
means might coincide.

Density xsolv E[ηt+1|It]
p(xt+1|It) -0.0673 0.1623
p(x̌t+1|It) 0.0587 0.1587
p(xt|Ȳt) -2.8118 0.0108

This reinforces the control performance value of the use of
the filtered quantized innovations state density. The xsolv
value computed from the x̌ density is inappropriate, leading
to diminished performance. For the quantized output density,
the increased variance in the density due to inefficient coding
degrades control performance.

VIII. CONCLUSION & EXTENSIONS

We have explored the application of the Bayesian filter for
control based on predictively coded signals. The predictive
coding brings efficiency in the use of the channel bits, which
leads to improved state estimation at the receiver and, in turn,
to a more accurate state density for control calculation. We
have paid particular attention to the generation of the filtered
state conditional density, the information state, at the controller
and identified the inherent performance difference from the
predicted state conditional density.

In addition to new theoretical results concerning the state
estimation task with predictive coding, the demonstration of
computed examples illustrates the feasible but high computa-
tional cost of these methods. We analyzed the control problem
with dithered quantization which permits precise evaluation
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of control performance in several cases. Extensions of the
computational examples are possible.
• Computation with fully nonlinear and time-varying state

and measurement equations, as illustrated in Figure 2,
requires some finesse in the following manner.
– The transmitter-side predictor yielding ξt and y̌t needs

to be based itself on a nonlinear filter, perhaps even a
Bayesian filter.

– The conditional densities p(it|zt) in (24) need to
incorporate the nonlinearity ht(·, ·, ·) in an appropriate
fashion in addition to the inclusion of the quantizer.

– The conditional densities p(zt+1|zt) in (25) need to
include the nonlinearity ft(·, ·, ·).

– The innovations sequence no longer need be white.
Even in the linear non-Gaussian case, it is uncorrelated
but not necessarily white.

These are standard issues with the application of the
Bayesian filter.

• Incorporation of further channel defects such as dropped
packets, additive noise, delays are simple extensions
of the Bayesian filter. We have already commented on
additive channel noise above.

• Practical issues arise when implementing the Bayesian
filter. Here, because we have chosen a stationary problem,
we have been able to compute the conditional densities on
a static grid in the zt-space. More generally, the Bayesian
filter is realized via the Particle filter [33]. This requires
some skill.
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APPENDIX

A. Proof of Theorem 1
Theorem QTSD of [26], Section 19.8, pp. 506-512, states

that, for a linear quantizer with quantization interval q, pro-
vided the characteristic function, Φd(·), of the subtractive
dither signal satisfies

Φd

(
l
2π

q

)
= 0, for l = ±1, ±2, . . . , (36)

and

ε+ d ∈ [−ζ, ζ], (37)

then the quantization error, ε − Q(ε), will be independent of
the input signal, ε, and uniformly distributed U(−q/2, q/2).

For the linear quantizer of range 2ζ and 2b levels, q =
ζ/2b−1. The characteristic function of a U [−a, a] density is
Φd,unif(ω) = sinc aω. Taking a = q/2, Φd,unif(ω) = sinc qω/2,
which satisfies (36) above.

The pdf of the sum of two independent U(−q/2, q/2)
random variables is the convolution of the uniform pdfs and
is triangularly distributed tr(−q, q). By the properties of the
Fourier transform, Φd,tr(ω) = Φ2

d,unif(ω) and (36) is satisfied.
We note in passing that Theorem QTSD does not explicitly

state the saturation condition (37) on the additively dithered
signal. Without it, the theorem fails.

B. Derivation of the Bayesian filters for quantized linear
systems

In Section VII, we explore the optimal control performance
of three candidate approaches to state conditional density
reconstruction at the receiver.

1) Full 2nth
x -order quantized innovations Bayesian filter,

reconstruction of the conditional state density p(xt|It),
and computation of the optimal control using this density.

2) Simplified nth
x -order quantized innovations Bayesian fil-

ter, reconstruction of the conditional state estimate den-
sity p(x̌t|It), and computation of the optimal control
using this density.

3) The nth
x -order Bayesian filter operating directly on the

quantized output signal, φt = Q(yt), reconstruction of
the conditional density p(xt|Φt), and computation of the
optimal control using this density.

We now present the detailed Bayesian filter for each case.

C. Bayesian filter for quantized innovations

Measurement update

We begin the Bayesian filter recursion from the predicted
density p(zt|It−1) with the current measurement it in hand.
This it corresponds to εt ∈ (εlowert , εuppert ]. Then, from (21)-
(22),

p(it|zt, It−1) = p(it|zt),

=

∫ εuppert

εlowert

p(vt = εt − Cxt + Cx̌t) dvt,

= mvncdf(εlowert , εuppert , Hzt, R). (38)

The MATLAB function mvncdf computes the multivariate
normal cumulative distribution function between lower and
upper limits with given mean and covariance. This is then used
in (24) to yield the filtered joint conditional density p(zt|It).

Time update

For the time update step (25), the system equations (18) and
(11) yield

wt = xt+1 −Axt −But,
Ltvt = x̌t+1 − LtCxt − (A− LtC)x̌t −But.

Whence, the conditional density

p(zt+1|zt, It) =
p(zt+1, it|zt, It−1)

p(it|zt, It−1)
,

=
p(zt+1, it|zt, It−1)

p(it|zt)
, (39)

since the innovations and quantized innovations, it = Q(εt),
are white. Denominator p(it|zt) is given by (38). The numer-
ator comprises three terms

p(zt+1, it|zt, It−1) = W × V × T, (40)
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with

W = p(wt = xt+1 −Axt −But),
= mvnpdf(xt+1 −Axt −But, 0, Q),

V = p(Ltvt = x̌t+1 − LtCxt − (A− LtC)x̌t −But),
= mvnpdf(x̌t+1 − LtCxt − (A− LtC)x̌t −But, 0, LtRLTt ),

T = 1(Cxt − Cx̌t + vt ∈ (εlowert , εuppert ]).

Here, MATLAB function mvnpdf is the multivariate normal
probability density function and 1(·) is the set indicator
function. Relations (38) and (40) comprise the parts of (39)
of the time update step (25) of the Bayesian filter.

D. Bayesian filter for state-estimate density calculation

In place of the 2nx-dimension Bayesian filter (24)-(25)
using relations (38)-(40), we may appeal to (10) and (12) as
the basis of an nx-dimensional Bayesian filter for p(x̌t|It).
The system equations are

x̌t+1 = Ax̌t +But + Ltεt,

it = Q(εt),

x̌0 = x̂0|−1.

The driving noise process, {εt}, is white and Gaussian with
the following density

εt ∼ N (0, CΣt|t−1C +R).

Further, this whiteness together with the x̌t update (11) ensures
that x̌t is independent from εt. Thus,

p(it|x̌t) = p(it)

= mvncdf(εlowert , εuppert , 0, CΣt|t−1C
T +R).

(41)

Also, similarly to earlier,

p(x̌t+1|x̌t, It) =
p(x̌t+1, it|x̌t, It−1)

p(it|x̌t, It−1)
,

=
p(x̌t+1, it|x̌t, It−1)

p(it)
.

E. Bayesian filter for quantized outputs

This now proceeds directly from (1)-(2). Central quantities,

p(ȳt|xt, Ȳt−1) = p(ȳt|xt),
p(xt+1|xt, Ȳt) = p(xt+1|xt),

are fully described by, respectively: ht(·, ·) and the density of
vt; and ft(·, ·, ·) and the density of wt.

For the linear systems case,

p(ȳt|xt) = mvncdf(εlowert , εuppert , Hxt, R),

p(xt+1|xt) = mvnpdf(xt+1 −Axt −But, 0, Q).

These expressions extend simply for nonlinear system equa-
tions involving solely additive noises.

F. Optimal control and value E[ηt+1|It] for system (7)

The predicted state density generated by the Bayesian filter
is pNF(xNF

t+1|It), the unforced, i.e. ut = 0, state since ut has
yet to be determined. Eventually, xt+1 = xNF

t+1 + ut. Denote
conditional mean µt+1 = E(xNF

t+1|It) and define the centered
unforced state xc

t+1 = xNF
t+1 − µt+1. Then the forced state is

decscribed by xt+1 = xc
t+1 + µt+1 + ut. Thus,

E[ηt+1|It] =

∫ 1

−∞
xt+1 p(xt+1|It) dxt+1,

=

∫ 1−µt+1−ut

−∞
(xc
t+1 + µt+1 + ut) p

c(xc
t+1|It) dxc

t+1

=

∫ 1−µt+1−ut

−∞
xc
t+1 p

c(xc
t+1|It) dxc

t+1

+ (µt+1 + ut)

∫ 1−µt+1−ut

−∞
pc(xc

t+1|It) dxc
t+1

Differentiating with respect to ut,

dE[ηt+1|It]
dut

= (µt+1 + ut − 1) pc(1− µt+1 − ut|It)

− (µt+1 + ut) p
c(1− µt+1 − ut|It)

+

∫ 1−µt+1−ut

−∞
pc(xc

t+1|It) dxc
t+1.

Setting this derivative to zero yields the optimal control

uopt = 1− µt+1 − xsolv,

= 1− E(xNF
t+1|It)− xsolv, (42)

Where xsolv satisfies

pNF(xsolv|Ik−1) =

∫ xsolv

−∞
pNF(xNF

t+1|It)dxNF
t+1. (43)

Recall that pNF(xNF
t+1|It) is the state predicted density produced

by the Bayesian filter. Thus xsolv is the point where the
probability density function crosses the cumulative distribution
function for xNF

t+1.
The optimal value function or performance is given by

E(ηt+1|It) =

∫ xsolv

−∞
xc
t+1 p

c(xc
t+1|It) dxc

t+1

+ (1− xsolv)

∫ xsolv

−∞
pc(xc

t+1|It) dxc
t+1. (44)

If the Bayesian filter predicted state density, pNF(xNF
t+1|It), is

Gaussian N (µt+1, σ
2) then

E(ηt+1|It) = − σ√
2π

exp

[
− 1

2σ2
(xsolv)2

]

+ (1− xsolv) normcdf(xsolv, 0, σ). (45)
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