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Distributed Nonlinear Control Design Using
Separable Control Contraction Metrics

Humberto Stein Shiromoto , Max Revay , and Ian R. Manchester

Abstract—This paper gives convex conditions for the
synthesis of a distributed control system for large-scale
networked nonlinear dynamic systems. It is shown that the
technique of control contraction metrics can be extended to
this problem by utilizing separable metric structures, result-
ing in controllers that only depend on information from local
sensors and communications from immediate neighbors.
The conditions given are pointwise linear matrix inequali-
ties, and are necessary and sufficient for linear positive sys-
tems and certain monotone nonlinear systems. Distributed
synthesis methods for systems on chordal graphs are also
proposed based on semidefinite program decompositions.
The results are illustrated on a problem of vehicle platoon-
ing with heterogeneous vehicles, and a network of nonlinear
dynamic systems with over 1000 states that is not feedback
linearizable and has an uncontrollable linearization.

Index Terms—Contraction theory, distributed control,
feedback design, network systems, nonlinear systems.

I. INTRODUCTION

IN RECENT years, rapid advances in communication and
computation technology have enabled the development of

large-scale engineered systems such as smart grids [1], sensor
networks [2], smart manufacturing plants [3], and intelligent
transportation networks [4]. Despite these advances, the sys-
tematic design of feedback controllers for such large systems
remains challenging.

When it is assumed that a system has linear dynamics and that
all sensor information can be collected in a single location for
control computation, well-developed synthesis methods such
as LQG and H∞ can be applied [5], [6]. However, emerging
applications motivate going beyond these assumptions.

Firstly, for geographically distributed systems with hundreds
or thousands of nodes, such as transportation and power net-
works, it is not practical to collect all sensor information in
one location for control. In this case, there is a need for dis-
tributed methods that rely only on information available locally
or communicated from nearby nodes.
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Secondly, most real systems exhibit nonlinear dynamics.
When large excursions in operating conditions are expected,
e.g., due to changing production demands in a flexible manu-
facturing system, or recovery from a fault in a smart electrical
grid, one must take into account the system nonlinearity.

Decentralized and distributed control are long-standing prob-
lems in control theory, with important early work detailed in [7]
and [8]. A key concept is the vector Lyapunov function, i.e., a
Lyapunov function made up of individual storage functions for
the nodes, a concept closely related to the separability property
we use in this paper. Terminology is not completely uniform in
the literature, but in this paper we take “decentralized” to mean
that at each node the controller uses only local state information,
and “distributed” to mean that some communication is allowed
between nearby nodes.

For linear-state feedback, information flow can be encoded
by a sparsity structure on the feedback gain matrix; however, in
general this problem can be NP-hard [9]. It has been recognized
by many authors that if the search is restricted to diagonal (or
block diagonal) Lyapunov matrices, then the problem is convex
(see, e.g., [10]–[12] and references therein). The main benefit
is that sparsity structure in the gain matrix is preserved under
the standard change of variables for linear matrix inequality
(LMI)-based design. In general, restricting the set of Lyapunov
functions is conservative: it produces sufficient conditions for
stabilizability, but not necessary conditions. However, for the
important subclass of systems for which internal states are al-
ways nonnegative, known as positive systems, existence of a
diagonal Lyapunov function is actually necessary and sufficient
(see, e.g., [13] and references therein). This result has been ex-
tended to H∞ design [11], scalable algorithms for control design
[12], and identification [14] of networked positive systems.

Design of controllers for nonlinear systems has also been a
major topic of research for many years, see e.g. [15]–[17] for
established approaches. Most methods require (at least implic-
itly) the construction of a control Lyapunov function. While for
certain structured systems, constructive methods such as back-
stepping and energy-based control can be used [16], no general
methodology exists. Indeed, the set of control Lyapunov func-
tions can be nonconvex and disconnected [18], which poses a
challenge for synthesis.

A drawback of standard Lyapunov functions is the fact that
they are defined with respect to a particular set point or limit
set, which must be known a priori. When the target trajectory
may change in real time, a common situation in robotics or flex-
ible manufacturing, it is more appropriate to define a function
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depending on the distance between pairs of points. Tools such
as contraction metrics [19] and incremental Lyapunov functions
[20] provide such a capability for stability analysis. Contrac-
tion concepts have proven useful in the analysis of networked
systems, in particular oscillation synchronization and entrain-
ment [21]–[24], and techniques for contraction analysis based
on sum-separability properties of metrics [25]–[28]. Extensions
to reaction-diffusion partial differential equation (PDE) systems
have appeared in [29], where again a metric is constructed that
integrates over space, generalizing the notion of sum separabil-
ity to continuous spaces.

The concept of a control contraction metric (CCM) was in-
troduced in [30] and [31] and extends contraction analysis to
constructive control design. The main advantages this method
offers over the Lyapunov approach are that the synthesis con-
ditions are convex, and it provides a stabilizing controller for
all forward-complete solutions, not just a single set point. It
was shown in [31] that the CCM conditions are necessary and
sufficient for feedback-linearizable nonlinear systems.

The main contributions of this paper are the following.
1) We extend the results of [31] to show that by imposing

a separable structure on a CCM, a distributed nonlinear
feedback controller can be obtained via convex optimiza-
tion, with the property that all on-line computations can
be performed with prescribed information sharing be-
tween nodes.

2) We provide necessary conditions for the existence of a
separable metric for certain classes of monotone systems.

3) We show that the off-line convex search for a CCM can
scale to large-scale systems with chordal graph interac-
tion structure.

The conference paper [32] presented preliminary results re-
lated to, but less general than, the results of this paper. In par-
ticular, it considered completely decentralized design, and did
not address scalability of the resulting computations. The main
result of [32] is Corollary 1 in this paper.

II. PRELIMINARIES AND PROBLEM FORMULATION

A. Notation

We use the notation R≥0 for the nonnegative reals, and
N[a,b] with a < b for natural numbers between a and b. Let
n > 0 be any integer, the vector ei denotes the vector with
zeros in all entries except the ith where it is 1. Given N ma-
trices M1 , . . . ,MN ∈ Rp×q , the notation diag(M1 , . . . ,MN )
denotes the block matrix M ∈ RN p×N q with the Mi matrices
on the main (block) diagonal, and zeros elsewhere. The nota-
tion M � 0 (resp. M � 0) stands for M being positive (resp.
semi) definite. The sets of (semi) definite symmetric matrices
are denoted as Sn

�0 = {M ∈ Rn×n : M � 0,M = MT }, where
� ∈ {�,�,≺,�}.

The notation L∞
loc(R≥0 , Rm ) stands for the class of functions

u : R≥0 → Rm that are locally essentially bounded. Given dif-
ferentiable functions M : Rn → Rn×n and f : Rn → Rn , the
notation ∂f M stands for matrix with dimension n × n and with
(i, j) element given by ∂mi j

∂x (x)f(x). The notation ḟ always
stands for the total derivative with respect to time t.

Fig. 1. Illustration of the directed graphs representing the physical in-
teraction between nodes Gp , and the communication network Gc . These
may or may not be identical.

Let N > 0 be an integer, a graph consists of a set of nodes
V ⊂ N[1,N ] and a set of edges E ⊂ V × V and it is denoted by
the pair (V ,E ) = G . A node i ∈ V is said to be adjacent to a
node j ∈ V if (i, j) ∈ E , the set of nodes that are adjacent to j is
defined as N (j) = {i ∈ V : i �= j, (i, j) ∈ E }. A graph is said
to be undirected if, for every edge (i, j) ∈ E , there exists (j, i) ∈
E . It is said to be directed if otherwise. For a directed graph
G = (V ,E ), we define an undirected graph G u = (V ,E u ) with
(i, j) ∈ E u (and hence also (j, i) ∈ E u ) if either (i, j) ∈ E or
(j, i) ∈ E , or both. Given two graphs with the same vertex set
G1 = (V ,E1), G2 = (V ,E2), we define their union G1 ∪ G2 to
be the graph (V ,E1 ∪ E2), i.e., the graph that contains all edges
appearing in either graph.

Given two nodes i and j ∈ V , an ordered sequence of vertices
vk , k = 1, ..., n with v1 = i, vn = j, and (vk , vk+1) ∈ E ∀k is
said to be a path from node i to node j. A path is said to be
a cycle if node i equals node j, no edges are repeated, and the
nodes i and j − 1 are distinct.

For an undirected graph, the following concepts are recalled
from [33] and [34]. A graph is said to be a tree if it is connected
and does not contain cycles. A clique C ⊂ V of the graph G is a
maximal set of nodes that induces a complete (fully connected)
subgraph on G . A chord of a cycle is any edge joining two
nonconsecutive nodes. A graph is said to be chordal if every
cycle of length greater than three has a chord. The importance
of a graph being chordal is that it has a tree decomposition into
cliques [35, Proposition 12.3.11]; such a tree is said to be a
clique tree and it is denoted as T (G ).

B. Networked System Definition

In this paper, we consider systems made up of a network of
N ∈ N nodes. Interconnection between the nodes is defined by
two directed graphs: a physical interaction network graph Gp

and a communication network graph Gc . Both graphs have the
same vertex set V = N[1,N ] corresponding to system nodes, but
may have different edge sets, as illustrated in Fig. 1. We assume
both graphs have self-loops at each node, i.e., (i, i) is in the edge
set for all i ∈ V .
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The physical graph Gp = (V ,Ep) defines the dynamical in-
teraction between individual nodes. At each node i ∈ V , there
is local state vector xi ∈ Rni and control input ui ∈ Rmi . We
define x̆i ∈ Rn̆ i as a stacked vector of node states xj for which
(j, i) ∈ Ep , i.e., all nodes that influence xi . Each node’s dynam-
ics are governed by the differential equation

ẋi(t) = fi(xi(t), x̆i(t)) + bi(xi(t), x̆i(t))ui(t). (1a)

We allow the case that for some nodes i ∈ V , bi(xi, x̆i) = 0 and
mi = 0, i.e., node i has no direct control input. For the complete
networked system we will also use the notation

ẋ(t) = f(x(t)) + B(x(t))u(t) (1b)

with stacked vectors and functions

x =

⎡
⎢⎣

x1
...

xN

⎤
⎥⎦ ∈ Rn , u =

⎡
⎢⎣

u1
...

uN

⎤
⎥⎦ ∈ Rm , f =

⎡
⎢⎣

f1
...

fN

⎤
⎥⎦

and input matrix B = diag(b1 , . . . , bN ). The functions f :
Rn → Rn and B : Rn → Rm×n are assumed to be smooth,
i.e., infinitely differentiable.

Similarly, the graph Gc = (N[1,N ],Ec) specifies a communi-
cation network, in that (j, i) ∈ Ec if node j can send instanta-
neous measurements of its state to node i for control computa-
tion, and �xi ∈ R�ni is a stacked vector of node states xj ∈ Rnj

such that (j, i) ∈ Ec .

C. Universal Exponential Stabilizability

A function u� ∈ L∞
loc(R≥0 , Rm ) is said to be an input signal

or control for (1). For such a control for (1), and for every initial
condition x�(0), there exists a unique solution to (1) ([36]) that
is denoted by X(t, x�(0), u�), when evaluated at time t. This
solution is defined over an open interval (t, t), and it is said to
be forward complete if t = +∞. We define a target trajectory
as a pair (x�, u�), where x� = X(·, x�(0), u�) is a forward-
complete solution of (1). Given a communication graph Gc we
define �x�

i analogously to �xi above.
Following [30] and [31], the system (1) is said to be univer-

sally exponentially stabilizable with rate λ > 0 if there exists a
feedback controller k : Rn × Rn × Rm → Rm and a constant
value C > 0 such that for every target trajectory (x�, u�), solu-
tions x(t) of the closed-loop system

ẋ(t) = f(x(t)) + B(x(t))k(x(t), x�(t), u�(t)))

exist for all t ≥ 0 and satisfy

|x�(t) − x(t)| ≤ Ce−λt |x�(0) − x(0)| (2)

for every initial condition x(0) ∈ Rn . Note that this is a stronger
condition than global exponential stabilizability of a particular
target trajectory, such as the origin.

D. Problem Statement

The main objective of this paper is to find a distributed con-
troller that can stabilize any trajectory of a particular system. To
formalize this, we make the following definition:

Definition 1: A state feedback controller u(t) = k(x(t), t)
for the system (1) is said to be to be Gc -admissable if it decom-
poses into N local feedback laws of the form

ui(t) = ki(xi, �xi, x
�
i , �x

�
i , u

�
i )

for i ∈ N[1,N ] . That is, each local control signal depends only
on local state and target trajectory information and neighbor
information communicated in accordance with G c .

We are now ready to state formally the distributed control
problem we consider in this paper.

Problem 1: For the system (1), find a Gc -admissable state-
feedback controller such that for any target trajectory (x�, u�),
the closed-loop system satisfies (2) for almost all x(0) ∈ Rn .

The “almost all x(0) ∈ Rn ” condition simplifies the resulting
CCM control construction; however, the result can be extended
to “all x(0) ∈ Rn ” by the sampled-data controller constructed
in [31].

E. Differential Dynamics and CCMs

We recall some standard facts from Riemannian geometry
(see, e.g., [37] for a complete development). A Riemannian
metric on Rn is a symmetric positive-definite bilinear form that
depends smoothly on x ∈ Rn . In a particular coordinate system,
for any pair of vectors δ0 and δ1 of Rn the metric is defined as the
inner product 〈δ0 , δ1〉x = δT

0 M(x)δ1 , where M : Rn → Rn×n

is a smooth function. Consequently, “local” notions of norm
|δ0 |2x = 〈δ0 , δ0〉x =: V (x, δ0) and orthogonality 〈δ0 , δ1〉x = 0
can be defined on the tangent space. The metric is said to be
bounded if there exists constants m > 0 and m > 0 such that,
for all x ∈ Rn , mIn ≤ M(x) ≤ mIn , where In ∈ Rn×n is the
identity matrix.

Let Γ(x0 , x1) be the set of piecewise-smooth curves c :
[0, 1] → Rn connecting x0 = c(0) to x1 = c(1). The Rieman-
nian energy of c is

e(c) =
∫ 1

0
|cs(s)|2c(s) ds =

∫ 1

0
V (c(s), cs(s)) ds

where the notation cs stands for the derivative ∂c
∂s . The Rieman-

nian energy between x0 and x1 , denoted as e(x0 , x1), is defined
as the minimal energy of a curve connecting them as follows:

e(x0 , x1) = inf
c∈Γ(x0 ,x1 )

e(c) . (3)

This curve is smooth and is referred to as a geodesic.
Along each solution of (1), one can define the differential

(a.k.a. variational or prolonged) dynamics

δ̇x = A(x, u)δx + B(x)δu (4)

where δx (resp. δu ) is a vector of the Euclidean space Rn (resp.
Rm ) and the matrix A ∈ Rn×n has components given by

Ajk (x, u) =
∂

∂xk

[
fj +

m∑
i=1

Bjiui

]

for indices j, k ∈ N[1,n ] . The differential dynamics (4) describe
the behavior of tangent vectors to curves of solutions of (1).
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Similar to (1), given a control δu for system (4), the solution
to (4) computed at time t ≥ 0, along solutions (x(t), u(t)) of
(1), and issuing from the initial condition δx ∈ Rn is denoted
by Δx(t, x(0), δx(0), u, δu ).

A sufficient condition for the stability of (4) is provided by an-
alyzing the derivative of a particular function along the solutions
of systems (1) and (4) [19].

Definition 2: A bounded metric V : Rn × Rn → R≥0 is
called a contraction metric for (1) if, for any control u for
system (1), there exists a scalar λ > 0 such that the inequality

d

dt
V (x(t), δx(t)) ≤ −2λV (x(t), δx(t)) (5)

holds, where x(t) := X(t, x(0), u) and δx(t) := Δx(t, x(0),
δx(0), u, 0), for every pair (x, δx) ∈ Rn × Rn .

In particular, a metric V (x, δx) = δT
x M(x)δx is a contraction

metric for (1) if the following linear matrix inequality

Ṁ(x) + A(x, u)M(x) + M(x)A(x, u) � −2λM(x) (6)

holds for all x, u [19]. Since Ṁ = ∂f (x)+B (x)uM(x) and
A(x, u) are affine in each control input ui , this implies that
the corresponding coefficient matrices must be zero, shown as
follows:

∂bi
M(x) +

∂bi

∂x

T

M(x) + M(x)
∂bi(x)

∂x
= 0 (7)

for each i ∈ N[1,m ] , which means bi are Killing vectors for the
metric M . In that case, the inequality (6) is equivalent to

∂f M(x) +
∂f

∂x

T

M(x) + M(x)
∂f

∂x
� −2λM(x). (8)

In the remainder of the paper, we will often drop explicit depen-
dence on x of M(x) and other matrices for brevity, but these
matrices are always state dependent unless explicitly stated oth-
erwise.

The existence of a contraction metric for system (1) implies
that every two solutions to this system converge to each other ex-
ponentially with rate λ. To the authors knowledge, this was first
proven in [38] using Finsler metrics, a more general class than
Riemannian metrics. The paper [39] introduced the concept of
a Finsler–Lyapunov function to further investigate relationships
between Finsler structures and differential notions of stability
and contraction.

Contraction analysis was extended to constructive control
design in [31] by introducing the concept of a CCM.

Definition 3 ([31]): A bounded metric is said to be a CCM
for system (1) if (7) holds and there exists a constant value λ > 0
such that for δx �= 0 we have the implication

δT
x MB = 0 ⇒ δT

x

(
∂f M +

∂f

∂x

T

M + M
∂f

∂x
+ 2λM

)
δx < 0.

(9)
Condition (9) can be interpreted as the requirement that the

system be contracting in all directions orthogonal to the span of
the control inputs. It was shown in [31] that this is equivalent to
the existence of a differential feedback gain δu = K(x)δx for
which

Ṁ + (A + BK)T M + M(A + BK) + 2λM ≺ 0 (10)

for all x, u, which leads to the following control design method.
Step 1: (Offline LMI computation) The inequality (10) is

equivalent (see [31]) to the existence of a bounded “dual metric”
W : Rn → Rn×n such that W (·) = W (·)T � 0 and a function
Y : Rn → Rm×n satisfying the following linear matrix inequal-
ity:

−Ẇ + AW + WAT + BY + (BY )T + 2λW ≺ 0 (11)

for all (x, u) ∈ Rn × Rm . Note that (11) is linear in the matrix
functions W and Y . Consequently, for polynomial systems, the
pointwise LMI (11) can be solved via sum of squares program-
ming [40]. For nonpolynomial systems, these constraints could
be approximately satisfied either via polynomial approxima-
tion of dynamics, bounding of dynamics via linear differential
inclusions [41], or via gridding the state/input space.

Once a solution to LMI (11) has been computed, the function
defined, for every (x, δx) ∈ Rn × Rn , by

δu = Y (x)W−1(x)δx := K(x)δx (12)

is a differential feedback law that renders the origin globally
exponentially stable for system (4) in closed loop with δu .

Step 2: (Online controller computation). The feedback law
for system (1) can be obtained by integration as follows.

1) Compute a minimal geodesic

γ = arg min
c∈Γ(x� (t),x(t))

e(c) . (13)

2) Integrate the differential controller

u(t) = k(x(t), x�(t), u�(t))

= u�(t) +
∫ 1

0
K(γ(t, s))γs(t, s) ds. (14)

For a bounded metric, the Hopf–Rinow theorem (cf. [37,
Theorem 7.7]) ensures that for every pair x(t), x�(t), there exists
a minimizing geodesic γ solving (13). Furthermore, for each
x�(t) this geodesic is unique and a smooth function of x(t) for
almost all x(t).

Remark 1: In the case that the metric M = W−1 is inde-
pendent of x, the unique minimal geodesic is a straight line
joining x to x� . Furthermore in the case that Y and hence K are
also independent of x, the above controller reduces to a linear
feedback law

u(t) = k(x(t), x�(t), u�(t)) = u�(t) + K(x(t) − x�(t))

so (14) can be thought of as a natural generalization of linear
feedback synthesis to nonlinear systems.

Remark 2: For Theorem 1, we have assumed that (15) holds
for all x ∈ Rn . If (15) holds only on a subset S ⊂ Rn , then it
is necessary to ensure that γ(s) remains in this subset for all
s ∈ [0, 1]. This is the case if both x and x� are in S for all t,
and S is geodesically convex. For constant metrics, geodesic
convexity is the standard convexity in Rn , since geodesics are
straight lines.

III. CONVEX DESIGN OF DISTRIBUTED CONTROLLERS

In this section, we present the main results of the paper, ex-
tending the CCM methodology described above to distributed



SHIROMOTO et al.: DISTRIBUTED NONLINEAR CONTROL DESIGN USING SEPARABLE CONTROL CONTRACTION METRICS 1285

control design. Inspired by the notion of sum-separable Lya-
punov functions (see e.g. [42]), we introduce the following class
of CCMs:

Definition 4: A CCM V for system (1a) is called sum sep-
arable if it can be decomposed as follows:

V (x, δx) =
N∑

i=1

Vi(xi, δxi
) :=

N∑
i=1

δT
xi

Mi(xi)δxi

where for each index i ∈ N[1,N ] , and for every (xi, δxi
) ∈

Rni × Rni , the function Vi(xi, δxi
) is a metric on Rni .

In other words, Definition 4 states that the metric V on Rn can
be decomposed into a sum of smaller components, each of which
depends only on the local information xi, δxi

. Accordingly, we
define the following class of matrix functions.

Definition 5: For the system (1a), let Π denote the set of
matrix functions Rn → Sn

>0 with the following properties.
1) Each M(x) ∈ Π is block diagonal with N blocks, and

the ith block has dimension ni .
2) The ith block of M(x) is a function only of xi .

That is, a sum separable CCM V (x) = δT M(x)δ has
M(x) ∈ Π. Note that M(x) ∈ Π ⇔ M(x)−1 ∈ Π.

To address the information constraints on k described in
Problem 1, the structure of the feedback defined by (14) is
obtained by imposing a suitable constraint on the function Y to
be satisfied together with the LMI (11).

Definition 6: Let Ξ be the set of functions Y : Rn × Rm →
Rm×n with components defined by

Yij

{
= Yij (xi, �xi) ∈ Rmi ×ni , if (i, j) ∈ Ec

≡ 0mi ×ni
, otherwise

for every i, j ∈ V .
The set Ξ defines the topology of the differential feedback

law to be designed for system (4) and the dependence of each
element of the matrix Y on the state-space variables.

Theorem 1: For the system (1) and differential dynamics
(4), suppose there exist W (x) ∈ Π and Y (x) ∈ Ξ satisfying
the following pointwise linear matrix inequality:

−Ẇ + AW + WAT + BY + (BY )T + 2λW ≺ 0 (15)

for all x ∈ Rn , u ∈ Rm . Then, M(x) = W (x)−1 defines a
separable CCM for system (1a) and the controller (14) with
K(x) = Y (x)W (x)−1 solves Problem 1.

Proof: To prove the theorem we first establish the Gc -
admissability of the controller, and then that it achieves the
desired form of stability.

By assumption, W ∈ Π, so we also have M = W−1 ∈
Π, and therefore M defines a sum-separable metric, as per
Definition 4.

At a particular time t, the first stage of control calcula-
tion is to compute a minimum-energy geodesic from x(t) to
x�(t). Because M is sum separable, the energy of any curve
c : [0, 1] → Rn satisfies the following equation

e(c) =
∫ 1

0

N∑
i=1

Vi

(
ci(s),

∂ci

∂s
(s)
)

ds (16)

where ci : [0, 1] → Rni denotes the ith component of the curve
c, connecting xi(t) to x�

i (t). Defining the energy of each com-
ponent ci as

e(ci) =
∫ 1

0
Vi

(
ci(s),

∂ci

∂s
(s)
)

ds

and exchanging the order of integration and summation we have
e(c) =

∑N
i=1 ei(ci). Hence, computing the curve of minimal

energy e(c) decomposes into computing the component curves
ci of minimal energy ei(ci), each of which depends only on
local information xi(t), x�

i (t).
Hence, each local controller at node i, with knowledge of

xi(t), �xi(t), x�
i (t), �x

�
i (t), can compute the minimal geodesics

γi(t) and �γi(t), referring to the stacked vector function of
geodesics γj (t) for j : (j, i) ∈ E c .

The second stage of the control computation is integration
of the differential control law. Since M ∈ Π, i.e., both block
diagonal and with local state dependence of the blocks, the
transformation K(x) = Y (x)W (x)−1 = Y (x)M(x) preserves
the sparsity pattern and local dependence of Y (x), so K(x) ∈
Ξ. This means that the i, j block of K(x) can be written as
Kij (xi, �xi).

Then, each local agent computes the control signal, where
t dependence of signals has been dropped for simplicity as
follows:

ui = u�
i +

∑
j :(j,i)∈E c

∫ 1

0
Kij (γi(s), �γi(s))

∂γj

∂s
(s) ds. (17)

By construction, this control signal satisfies G c -admissability.
The LMI (15) implies that the inequality

δT
x

(
Ṁ + (A + BK)M + M(A + BK)T + 2λM

)
δx ≤ 0

holds, for every (x, δx, u) ∈ Rn × Rn × Rm . Thus, M is a
CCM for system (1) and, according to the main result of [31],
(12) is a differential feedback rendering the equilibrium of the
origin globally exponentially stable for system (4) in closed
loop. �

Corollary 1 ([32]): Assume that the matrix B satisfies the
identity ∂B W − ∂B

∂x W − W ∂B
∂x

T ≡ 0 and there exist N func-
tions ρi : Rni +�ni → R such that the matrix inequality

−∂f W +
∂f

∂x
W + W

∂f

∂x

T

− BRBT + 2λW ≺ 0 (18)

holds for all (x, u) ∈ Rn × Rm , where R(x) = diag(ρ1(x1)
In1 , . . . , ρN (xN )InN

) for some scalar functions ρi(xi), i =
1, .., N . Then, W is a sum-separable CCM for system (1) and
there exists a solution to Problem 1 with fully decentralized
information structure, i.e., G c has no edges (i, j), i �= j.

To see that Corollary 1 is a particular case of Theorem 1,
note that by choosing Y = −RBT /2, (18) is equivalent to (15).
Furthermore, Y by construction is block diagonal and the ith
block depends only on xi , hence Y ∈ Ξ.

Remark 3: In the above we have assumed that each node
consists of a node state xi and a colocated node control ui .
However, the above strategy is easily extended to a communica-
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tion structure based on separate “state measurement nodes” xi

and “actuation nodes” uj , and communication networks from
sensors to actuators defined by a directed bipartite graph Gc , the
adjacency matrix of which defines the sparsity structure of Y .
For the online control computation, at each measurement node
the state xi(t) is measured, and a minimal geodesic path to x�

i (t)
is computed. Then this path is communicated to each control
node j such that (i, j) is an edge of Gc . Then each control node
can compute the control according to (14).

Remark 4: As shown in [31], the Riemannian energy func-
tion then provides a useful control-Lyapunov function for any
target trajectory. In particular, at each time it defines a convex set
of control signals that achieve exponential contraction toward
the target trajectory. This was used in [43] to guarantee stability
in distributed economic model predictive control.

A. Conditions for Existence of a Separable CCM

The results we have presented so far give sufficient conditions
for existence of a distributed controller by way of a separable
CCM. A natural question to ask is how conservative is the
restriction to a separable CCM.

For linear time-invariant positive systems, i.e., those leaving
the positive orthant invariant, stability is equivalent to the ex-
istence of a separable quadratic Lyapunov function [13]. This
leads to the following simple result.

Theorem 2: Suppose ni = 1 and for a particular equilibrium
condition xe, ue of (1), the local linearization ż = A(xe, ue)z +
B(xe)v admits a stabilizing feedback gain K such that the
closed-loop system matrix ż = (A(xe, ue) + B(xe)K)z is pos-
itive. Then in a neighborhood of (xe, ue) there exists a
sum-separable contraction metric satisfying the conditions of
Theorem 1.

Proof: The linear closed-loop system has a diagonal
quadratic Lyapunov function zT Pz taking the metric with
M = P and differential feedback δu = Kδx ; (15) therefore
holds at xe, ue . Since it is a strict inequality and A,B are smooth
functions of x, u, it holds in a neighborhood of (xe, ue). �

The natural nonlinear analogue of a positive system is a
monotone system [44], which preserves elementwise ordering
between pairs of solutions, though for monotone systems the
question of the existence of a separable Lyapunov function is
more subtle [42]. In [28], global existence of separable contrac-
tion metrics was shown for certain classes of monotone con-
tracting nonlinear systems. In addition, the utility of naturally
separable l1-type metrics have been used by several authors in
the analysis of monotone system [26], [27]. Beyond these re-
sults, to the authors’ knowledge the question of how restrictive
it is to require M to be separable remains open.

Theorem 3: Suppose ni = 1 for i ∈ N[1,N ] and suppose
there exists a feedback controller u(t) = k(x(t), x�(t), u�(t))
solving Problem 1 such that the closed-loop system ẋ =
f(x, k(x, x� , u�)) is:

1) contracting with respect to a constant metric M > 0, i.e.,

M(A + BK) + (A + BK)T M ≺ −2λM (19)

for all x, x� , u� , where K = ∂k
∂x ;

2) monotone: (A + BK)ij ≥ 0 for i �= j;
3) linearly coupled: (A + BK)ij is independent of x for

i �= j.
Then there exists a sum-separable contraction metric satisfy-

ing the conditions of Theorem 1.
Proof: Since the closed-loop system is contracting, mono-

tone, and has linear coupling, by [28, Theorem 6] it has a sepa-
rable contraction metric.

Now, by assumption (19) holds for all x, x� , u� for the closed-
loop system, i.e., with A = A(x, k(x, x� , u�)). In particular, it
holds when x = x� , for which u = k(x, x� , u�) = u� , and the
same for any x�, u� ,

This implies that (10) holds for all x, u. Hence, M is a sepa-
rable CCM for (1). �

IV. SCALABLE DESIGN OF DISTRIBUTED CONTROLLERS

While the above developments give convex conditions for the
design of distributed controllers, for large-scale systems they
may still be impractical. The problem is that one must find W
and Y that satisfy (15), which is a matrix inequality of the same
dimension of the total number of states in the full network.
Despite its sparsity, this can still be very challenging to solve.

In this section, we show that when the combined communi-
cation/physical interconnection graph is chordal, the problem
of solving (15) is dramatically simplified. Many engineering
systems naturally have chordal graph structures, and this has
motivated research in efficient methods for semidefinite and
sum-of-squares programming [33], [34], [45].

Theorem 4: Let G := Gp ∪ Gc and suppose G u is chordal.
Let l ∈ N be the number of nodes of the clique tree T (G u ).
Then, the pointwise LMI (15) can be decomposed into l point-
wise LMIs of smaller dimension, each corresponding to a clique.
Furthermore, each pointwise LMI depends only on the xi, x̆i ,
and �xi for each node i contained in the corresponding clique.

Proof: Using the Algorithm 3.1 from [34], it is possible
to decompose the graph G into the clique tree T (G ). Let the
integer l > 0 be the number of cliques in T (G ). Our proof
follows similar arguments to Section II of [33].

Let the sets C1 , . . . ,Cl be the nodes of T (G ), and cardk be
the cardinality (number of elements) of the set Ck , k ∈ N[1,l] .
For each index k ∈ N[1,l] , define the matrix Ek ∈ Rcardk ×n

obtained from the n × n identity matrix with blocks of rows
indexed by N[1,N ] \ Ck removed.

Denote the left-hand side of the LMI (15) by T . The existence
of l cliques implies that there exist matrices Fk : Rcardk →
Rcardk ×cardk , where k ∈ N[1,l] , satisfying

T =
l∑

k=1

ET
k FkEk . (20)

Then, if Fk ≺ 0, ∀k ∈ N[1,l], the matrix T is negative definite.
Thus, the LMI (15) holds.

For each node i ∈ V contained in the clique Ck . The cor-
responding matrix Fk has arguments xi, x̆i , and �xi . In other
words, Fk depends on how strongly the nodes of the system
(defined by Gc ) and communication network (defined by Gp )
are connected among each other. �
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Fig. 2. Variation of drag force and drivetrain gain over velocity for each
vehicle.

If a graph is not chordal, it is possible to make it chordal
by adding “fake” edges to form new cliques in the graph. This
is referred to as a chordal embedding, chordal extension, or
a triangulation. Algorithms for finding such triangulations are
well developed and widely used for solving large sparse linear
equations and semidefinite programs [34], [46].

We note here that these “fake” edges are only used to define
the l cliques used in the decomposition (20), in order to speed
up the computational verification of (15). The fake edges do
not appear in the communication graph and do not have any
impact on the resulting structure of the metric M or differential
controller K, and hence do not effect the theoretical results on
stabilization or distributed communication structure.

V. ILLUSTRATIVE EXAMPLES

A. Distributed Control of a Vehicle Platoon

We first illustrate the proposed method through the design of
a distributed nonlinear platoon controller. Platooning provides
a means for improving road safety, throughput, and vehicle
efficiency. The control objective is for groups of vehicles to
cooperatively maintain a group reference velocity with small
intervehicle spacing.

Each vehicle is assumed to be equipped with a radar mea-
suring intervehicle distance and a wireless communication de-
vice to communicate with surrounding vehicles. Limitations in
range and delay in the communication device mean that all-to-
all communication within a platoon is generally impossible, i.e.,
the platoon must operate with communication limited to nearby
vehicles. Several authors have proposed distributed controllers
achieving stability and string stability subject to communication
constraints, e.g., [47]–[49] and references therein. In [50], the
use of a nonlinear protocol leads to significant improvements in
string stability.

Adapting the model used in [51, Sec 3.1], we design decen-
tralized controllers for platoons of heterogenous vehicles with
dynamics

ṡi = vi, v̇i =
1

mi
Ti(vi)ui − kdi

2mi
v2

i + ωi (21)

where si , vi , ui , and ωi are the ith vehicles position, velocity,
control input, and a disturbance. The term Ti(vi) represents
the dynamics of the drive chain dynamics of the drive train,
illustrated in Fig. 2

Ti(vi) = αiTmi

(
1 − βi

(
αivi

ωmi

− 1
)2
)

.

TABLE I
RANGE OF PARAMETERS USED FOR VEHICLES IN PLATOON

The parameters used are randomly selected from the range
shown in Table I. Choosing a state vector of x = (s1 , v1 , s1 −
s2 , v2 , ..., sN −1 − sN , vN )T allows for the problem of platoon-
ing at a constant velocity with constant spacing to be formulated
as tracking a trajectory x(t) = (v∗t, v∗, d∗, v∗, ..., d∗, v∗) where
v∗ is the desired nominal platoon velocity and d∗ is the in-
tervehicular spacing. The dynamics of the platoon are written
concisely in the form (1b).

We consider a balanced communication graph with a horizon
h. That is, each agent i has access to the state of agents j ∈
N[i−h,i+h ] with 1 ≤ j ≤ N .

One advantage of the convexity of CCM synthesis is the ease
of adding additional constraints. In this paper, we constrain the
nonlinear controller to match a prescribed linear H∞ controller
near a particular operating point.

1) Distributed Linear H∞ Control Design: Choosing a

nominal operating point of v∗ = 25 ms−1 , u∗
i = kd i

v ∗2

2T (v ∗) , we de-
fine the linearized system

ẋ = Ãx + B̃u + Hw

y = C̃x + D̃u (22)

where Ã = ∂f
∂x |v ∗,u∗ , B̃ = ∂f

∂u |v ∗,u∗ , Bw = (0, 1, 0, ...0)T , and
C̃, D̃ specify the performance output which are chosen to be

yv1 = qv1 (v1), ys1 = qs1 (s1), yu1 = qu1 (u1)

ysi
= qs(si−1 − si), yui

= qu (ui)

for i = 2, ..., N where qs , qv , and qu are weights used to tune
the controller. The values used for the examples in this paper
were (qv1 , qs1 , qu1 , qs , qu ) = (10−2 , 1, 3 × 105 , 103 , 5 × 104).

We assume the existence of a block diagonal storage func-
tion V (x) = xT Px rendering the structured controller design
problem convex. While the restriction to a block diagonal P is
generally conservative, we find the same resulting gain bound
for the cases when P is full and P is block diagonal.

We solve a state-feedback H∞ control problem by searching
for a storage function P = Q−1 and feedback gain K = ZQ ∈
Ξ that minimizes a performance bound supw

||y ||L2
||w ||L2

≤ α via the

following semidefinite program [52]:

minimize
Q,Z,α

α

subject to Q > 0, Z ∈ Ξ,
⎡
⎢⎣

ÃQ + B̃Z + (ÃQ + B̃Z)T H (C̃Q + D̃Z)T

HT −αI 0

C̃Q + D̃Z 0 −αI

⎤
⎥⎦ < 0.

(23)

In general, there are many controllers that can satisfy the same
gain bound in problem (23). As such, we can improve the
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performance by first solving (23) and then fixing α and maxi-
mizing the smallest eigenvalue of Q.

2) Distributed CCM: The set of matrices W,Y satisfying
LMIs (15) define a set of universally stabilizing control laws of
the form (14). Note, however, that the model exhibits nonphys-
ical behavior for negative or large vi , when the term Ti(vi) is
zero or negative; hence, LMI (15) cannot be satisfied over all x.
It can, however, be enforced over a convex set vi ∈ [0, 50 ms−1 ]
using Lagrange multipliers, c.f. Remark 2 above. We utilize
a dummy variable ν to help solve the following feasibility
problem:

W � 0, Y (xnom) = KW (xnom)

− νT
(
AW + WAT + BY + (BY )T + 2λW

)
ν

−
∑

i

τivi(vi − 50) � 0

where Y ∈ Ξ consists of degree 2 polynomials, W is a block
diagonal, flat metric, and τi is a Lagrangian multiplier consisting
of degree 2 polynomials in x and ν. Solving this problem with
N = 10 and λ = 0.02 using Yalmip [53], [54] and Mosek on
an Intel i7 Processor with 8GB of RAM took 9 s for h = 0 and
40 s for h = 1.

We compare the resulting controllers for two communication
patterns in three different situations. The first situation looks at
tracking a step change in reference velocity from 10 to 5 ms−1

that occurs at time t = 5 s. We then study the platoon response
to a temporary disturbance at time t = 10 and a worst-case step
disturbance at time t = 20 as described by

w1(t) =

⎧
⎪⎨
⎪⎩

20 sin( 2π
10 (t − 95)), 95 ≤ t ≤ 100

10 t ≥ 180
0 otherwise

. (24)

The platoon velocity response can be seen in Fig. 3 and the
platoon’s position response can be seen in Fig. 4. Figs. 3 and 4
show the well-known, desirable effects that increasing commu-
nication has on the rate of synchronization and propagation of
disturbances down the vehicle chain. Fig. 4 also shows an over-
all reduction in the magnitude of the disturbance response. Note
that the nonlinear system is operating far from the lineariza-
tion point of 25 ms−1 . The use of separable CCMs allows for
controllers with different communication patterns to be easily
developed with guaranteed stability across an operating range.

B. Scalability and Flexibility: Large-Scale System With
Uncontrollable Linearization

In this section, we consider a more academic example to
illustrate the flexibility and scalability of the CCM approach.
Consider a system of N agents with local dynamics

ẋi = −xi − x3
i + y2

i + 0.01
(
x3

i−1 − 2x3
i + x3

i+1

)
ẏi = ui

(25)

for i ∈ N[1,N ] and for convenience define the boundary states
x0 = x1 and xN = xN +1 . For each index i ∈ N[1,N ] , de-
fine the vectors qi = (xi, yi), q̆i = (xi−1 , xi+1) and let q =

Fig. 3. Velocity response of a ten-car platoon to step reference change
and disturbance (24). The first vehicle is in blue and the last is in red.
(a) h = 0. (b) h = 1.

Fig. 4. Response of a ten-car platoon to step reference change and
disturbance (24). The first vehicle is in blue and the last is in red.
The position error is taken as si−1 − si − d∗i for i = 2, ..., N . (a) h = 0.
(b) h = 1.

(q1 , . . . , qN ), and

fi(qi, q̆i) =
[−xi − x3

i + y2
i + 0.01

(
x3

i−1 − 2x3
i + x3

i+1

)
0

]

Bi =
[
0, 1

]T
.

Note that system (25) is not controllable when linearized about
the origin, since the x and y dynamics are decoupled, and
furthermore is not feedback linearizable in the sense of [55],
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Fig. 5. Simulation of network (25) with N = 4 and the target trajectory
being the origin and under the controller obtained according to different
constrains for the computation of Y : diagonal, neighbor, and uncon-
strained.

because the vector fields

B = diag (B1 , . . . , BN )

∂f

∂q
B − ∂B

∂q
f = diag

([
2y1
0

]
, . . . ,

[
2yN

0

])

are not linearly independent at the origin. Furthermore, due to
the quadratic term on y, the only possible action by the controller
on the x-subsystem is to move the x-component of solution to
(25) toward the positive semiaxis. In other words, the controller
cannot reduce the value of the x-component.

To show the advantages of the method proposed in this paper,
a benchmark composed of three scenarios, according to the
constraints imposed on the matrix Y , has been created, namely
the unconstrained case, in which Gc is a complete graph, the
“neighbor” case, in which Gc = Gp , and the fully decentralized
case, in which Gc has no edges (i, j) with i �= j.

In each case, we searched for a constant dual metric W and
a matrix function Y with second-order polynomial terms in the
variables as described by Ξ. The numerical results were obtained
using Yalmip [53], [54] and Mosek running on an Intel Core i7
with 32GB RAM.

For the unconstrained case, the graph Gc describing the com-
munication network is fully connected and the matrix Y was
full, with each element able to depend on all state variables. For
this case, the set of matrix inequalities (15) could not be solved

Fig. 6. Computation time required to solve for a CCM for the three
communication structures considered in Section V-B.

due to memory constraints when N > 8, i.e., state dimension
n > 16.

For the two latter cases, it was possible to solve (15) for up
to N = 512 systems, i.e., a full-state dimension of n = 1024,
using the chordal decomposition of Section IV, since the string
topology is chordal, and the LMI (15) can be decomposed into
N − 1 cliques each with two nodes.

Fig. 5 shows simulations of the network (25) with N = 4. All
controller structures achieve exponential convergence, whereas
the open-loop simulation (performed with u ≡ 0) does not con-
verge to the origin.

Fig. 6 shows a plot of the time taken to solve (15) for the three
cases considered in this topology: unconstrained, “neighbor,”
and fully decentralized. According to this graph, for N = 1, 2,
the time taken for each of the three cases is comparable. How-
ever, as the number of systems increases, the unconstrained
quickly becomes infeasible, whereas in the neighbor and decen-
tralized cases, the computation time is approximately linear in
the number of nodes.

VI. CONCLUSION

In this paper, we have developed a method for control design
using separable CCMs, building upon [31]. The main advantage
in using a separable CCM is that it allows a convex (semidef-
inite programming) search for nonlinear feedback controllers
with specified communication structure in the controller. Fur-
thermore, we have shown that the search for a CCM can be made
scalable for certain interaction structures defined by chordal
graphs.
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